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Abstract 

While it is well-established that instantaneous changes in neuronal networks´ states lead 

to variability in brain responses and behavior, the mechanisms causing this variability are 

poorly understood. Insights into the organization of underlying system dynamics may be gained 

by examining the temporal structure of network state fluctuations, such as reflected in 

instantaneous cortical excitability. Using the early part of single-trial somatosensory evoked 

potentials in the human EEG, we non-invasively tracked the magnitude of excitatory post-

synaptic potentials in the primary somatosensory cortex (BA 3b) in response to median nerve 

stimulation. Fluctuations in cortical excitability demonstrated long-range temporal 

dependencies decaying according to a power-law across trials. As these dynamics covaried with 

pre-stimulus alpha oscillations, we establish a functional link between ongoing and evoked 

activity and argue that the co-emergence of similar temporal power-laws may originate from 

neuronal networks poised close to a critical state, representing a parsimonious organizing 

principle of neural variability. 
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1 Introduction 

Evoked brain responses demonstrate remarkable variability even when they are 

produced by the same stimulus. This observation is ubiquitous for diverse neuronal measures, 

such as EEG (Forschack, Nierhaus, Müller, & Villringer, 2017; Iemi et al., 2019; Jansen & 

Brandt, 1991; Rahn & Basar, 1993; Romei et al., 2008; Vanrullen, Busch, Drewes, & Dubois, 

2011), BOLD signal (Becker, Reinacher, Freyer, Villringer, & Ritter, 2011; Fox & Raichle, 

2007), LFP (Arieli, Sterkin, Grinvald, & Aertsen, 1996), and single-cell recordings (Azouz & 

Gray, 1999; Churchland et al., 2010). Furthermore, the variability in neuronal activity is linked 

to variability in behavioral responses (Britten, Newsome, Shadlen, Celebrini, & Movshon, 

1996; Dinstein, Heeger, & Behrmann, 2015; Renart & Machens, 2014), thus emphasizing the 

importance to understand its mechanisms in more detail. 

 It has been proposed that variability in brain responses originates from fluctuations in 

the instantaneous brain state (Arieli et al., 1996; Sadaghiani, Hesselmann, Friston, & 

Kleinschmidt, 2010) which can in turn be associated with changes of cortical excitability, as 

has been suggested particularly for alpha band activity (8-12 Hz) in the EEG  (Jensen & 

Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr, 2007; Mathewson et al., 2011). On the one 

hand, trial-to-trial variability of cortical excitability posits a major challenge for research on 

stimulus-related brain processes, as typically only responses averaged over many trials can be 

investigated, and these averages do not necessarily reflect the actual brain processes on a single-

trial level. On the other hand, as we will show here, investigating the dynamics of this neuronal 

variability offers a unique opportunity to gain deeper insights into the complex spatio-temporal 

organization of the neuronal system. 

So far, studies on neuronal variability have mainly focused on the strength of variability 

(Dinstein et al., 2015; Garrett et al., 2013), comparing, for example, the extent of pre- and post-

stimulus variability (Churchland et al., 2010). The nature or type of neuronal variability, 

however, has often been neglected although it may reveal even more details of the mechanisms 
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underlying the neuronal variability. On a conceptual level, three different types of variability 

can be distinguished in neural signals regarding their temporal dynamics (Fig. 1). 

 

 

Fig. 1. Types of signal variability. A) Deterministic changes. B) Partially deterministic changes, 

i.e. power-law dynamics (auto-correlated). C) Stochastically independent fluctuation 

(completely indeterministic). 

 

  

First, a measure of interest can show a deterministic change over time. This can be a 

monotonous de- or increase or another regular pattern, such as a sinusoidal or parabolic signal 

change. For example, habituation processes may lead to a monotonous decrease of neural 

responses to identical stimuli presented repeatedly (i.e., repetition suppression; Grill-Spector, 

Henson, & Martin, 2006). Second, the signal may not show any deterministic pattern but 

fluctuate stochastically independently (i.e., “white noise”). In this case, the data does not show 

any temporal pattern and there is no relationship between the samples of the signal. This type 

of variability is, for example, often used as an assumption in modeling approaches of 

physiological time series (Richman & Moorman, 2000). Besides these two common types of 

variability, a third class has recently received much attention, so-called power-law dynamics, 

which seem to play an important role in the (self-)organization of complex biological systems 

(Muñoz, 2018; Sethna, Dahmen, & Myers, 2001). For this type of variability, the samples of 
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the signal are not independent and show long-lasting temporal dependencies. Thus, the signal 

is partially but not entirely deterministic. Characteristically, the fluctuation of such a signal is 

related to the length of the data according to a power-law:  𝐹(𝜏) ∝  𝜏𝛼  , where 𝐹  is the 

cumulative fluctuation, 𝜏 is the signal length (or window size), and α the power-law exponent. 

Signals following such a power-law have also been termed as scale-free or self-similar as their 

statistical properties are similar on micro-, meso-, and macroscale. Importantly, it has been 

shown that complex systems that are poised at the phase transition between two distinct states, 

such as order and disorder, typically show power-law dynamics both in their spatial and 

temporal dynamics (Sethna et al., 2001). This phase transition has been referred to as the so-

called critical state (Bak, Tang, & Wiesenfeld, 1987; P. Bak, Tang, & Wiesenfeld, 1988; Beggs 

& Plenz, 2003). Figure 2A visualizes the described system states using the Ising model of 

ferromagnetism (Ising, 1925), a model of temperature-dependent spontaneous transitions 

between magnetization states in ferromagnetic material, which has also been successfully used 

to model complex neuronal dynamics (Botcharova, Farmer, & Berthouze, 2014; Kitzbichler, 

Smith, Christensen, & Bullmore, 2009; Schneidman, Berry II, Segev, & Bialek, 2006; Sethna 

et al., 2001).  
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Fig. 2. A) Ising model at different system states: ordered, critical, disordered (from left to right). 

Transferred to a grid of neurons, black and white color reflect firing and non-firing neurons, respectively. 

Here, snapshots of the system at a given time point are shown. In an ordered system, local interactions 

dominate and lead to highly stable neural activity. In contrast, firing patterns in a disordered system are 

very unstable and change fast from moment to moment in a stochastically independent manner (i.e., 

white noise). At the critical state, the system resides at the border between the tendencies either towards 

an ordered or towards a disordered system. This is reflected by the spatio-temporal dynamics, that is, 

scale-invariance or power-law dynamics. Scale-invariance is visible from the middle panel as similar 

clusters of black pixels occur on all scales. B) Experimental paradigm. The instantaneous state of the 

neuronal system (here illustrated with snapshots from the Ising model at the critical state) is probed 

using somatosensory stimuli. SEP fluctuations should directly reflect dynamics of the instantaneous 

system state since evoked responses with amplitude A are approximately proportional to the number of 

synchronously recruited neurons, formally written as A(N) ~ cN, where c depends on the leadfield matrix 

properties and N reflects the number of neurons capable of generating a response (black pixels which 

are in the probed area, indicated by the red circle). In a stable system, the number of neurons N would 

barely change over time whereas in an unstable system N would be random. Yet at the critical state, N 

would show the largest range of variation over time. 
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In neuronal systems, criticality seems to be a general organization principle reflecting a 

dynamic equilibrium between coordinated (ordered) and uncoordinated (disordered) neuronal 

activity: Power-law dynamics indicating proximity to the critical state have been found in the 

size and duration of neuronal avalanches in rat brain slices (Beggs & Plenz, 2003; Friedman et 

al., 2012), monkeys (Petermann et al., 2009; Priesemann, Munk, & Wibral, 2009; Yu et al., 

2017), cats (Hahn et al., 2010), zebrafish larvae (Ponce-Alvarez, Jouary, Privat, Deco, & 

Sumbre, 2018), as well as humans (Arviv, Goldstein, & Shriki, 2015; Priesemann, Valderrama, 

Wibral, & van Quyen, 2013; Shriki et al., 2013). Furthermore, when focusing on the temporal 

domain, power-law dynamics can be found in human resting-state fMRI networks 

(Tagliazucchi et al., 2013), as well as in amplitude fluctuations of alpha band activity in the 

MEG (Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001; Palva et al., 2013). In 

addition, a recent study observed that even single-cell membrane potentials in the turtle visual 

cortex show critical dynamics (Johnson, Wright, Xia, & Wessel, 2019). These findings suggest 

that fluctuations of the instantaneous brain state are characterized by a complex spatio-temporal 

structure, leading to endogenous dynamics in cortical excitability which, in turn, should affect 

the commonly observed variability in brain responses, such as ERPs. However, the link between 

power-law dynamics of instantaneous brain states, cortical excitability, and fluctuation of brain 

responses in the human brain is still elusive, and evidence for such a temporal structure in 

human ERPs is still missing. 

To test this relationship, a direct measure of cortical excitation is needed, ideally 

manifested in a well-defined neuronal process. Whereas previous studies proposed that alpha 

band activity reflects cortical excitability (Klimesch et al., 2007; Pfurtscheller, Stancák, & 

Neuper, 1996; Romei et al., 2008), its mechanistic underpinnings are still under debate (van 

Diepen, Foxe, & Mazaheri, 2019), and the modulatory role of alpha activity seems to be more 

pronounced for higher-level cognitive processes, such as perceptual confidence (Samaha, Iemi, 

& Postle, 2017), rather than for excitability on a more basic, neurophysiological level.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2019. ; https://doi.org/10.1101/809285doi: bioRxiv preprint 

https://doi.org/10.1101/809285
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Here we propose an alternative, more direct measure of instantaneous cortical 

excitability based on somatosensory evoked potentials (SEP) in response to median nerve 

stimulation, measured non-invasively with EEG. 

Specifically, the N20 component of the SEP is thought to solely reflect excitatory post-

synaptic potentials (EPSPs) of the first thalamo-cortical volley (Bruyns-Haylett et al., 2017; 

Nicholson Peterson, Schroeder, & Arezzo, 1995; Wikström et al., 1996), generated in the 

anterior wall of the postcentral gyrus, Brodmann area 3b (Allison, McCarthy, Wood, & Jones, 

1991). Recent evidence from pharmacological studies furthermore suggests that excitatory 

processes dominate even until the rising flank of the P35, the next component after the N20 in 

the SEP (Bruyns-Haylett et al., 2017). Therefore, the amplitude of this early part of the SEP 

represents a direct probe of the instantaneous excitability of a well-defined neuron population 

in the somatosensory cortex. 

In the present study, we probed the excitability of the primary somatosensory cortex in 

humans using electrical median nerve stimuli and investigated its variability over time with 

single-trial SEP amplitudes in the EEG (Fig. 2B). The temporal structure of excitability changes 

was examined using Detrended Fluctuation Analysis (DFA; Hardstone et al., 2012; Kantelhardt, 

Koscielny-Bunde, Rego, Havlin, & Bunde, 2001). Indeed, while controlling for subcortical and 

peripheral signal variability, we found power-law dynamics in early cortical SEPs over trials. 

Thus, fluctuations of cortical excitability in the primary somatosensory cortex were 

characterized by long-range temporal dependencies, consistent with the hypothesis that cortical 

network dynamics are poised at a critical state. In addition, pre-stimulus alpha band activity and 

initial cortex excitation, as reflected in the N20 component, demonstrated a close relationship 

as both their amplitudes and temporal structure (i.e., power-law dynamics) were coupled. Hence, 

similar network mechanisms may govern variability in both ongoing and evoked neural activity.  
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2 Results 

SEPs and neuronal generators 

The SEPs, averaged across all participants and trials, are shown in Figure 3. As expected, 

a negative peak at around 20 ms and a positive peak at around 35 ms are visible in the electrodes 

contralateral to the stimulation site and posterior to the central sulcus. Furthermore, the scalp 

topography at 20 ms shows a typical dipole pattern consistent with the assumption of neuronal 

generators located in the anterior wall of the postcentral gyrus.  

 

Fig. 3. Grand average of SEPs across all subjects in sensor space. A) Somatosensory evoked potential 

(SEP) at F4 (blue), CP4 (green), and P4 (red). B) Scalp topography at 20 ms post-stimulus. 

 

 

To extract single-trial SEPs we used a variant of Canonical Correlation Analysis (CCA) 

in which spatial filters were trained based on a pattern matching between average SEP and 

single trials (Fedele et al., 2013; Waterstraat, Fedele, Burghoff, Scheer, & Curio, 2015). With 

this method, we obtained a set of spatially distinct CCA components for every individual 

subject. In all subjects, a prominent CCA component was identified that displayed a pattern 

consistent with a tangential dipole centered over the central sulcus, as it would be expected for 

generators located in the anterior wall of the postcentral gyrus (Fig. 4A). 
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Fig. 4. Categorization of CCA components into a tangential and a radial component. Panels A and B 

show the spatial patterns, panels C and D the activation time courses of the tangential and radial 

component, respectively. Panels E and F depict sources (absolute values) underlying the spatial patterns 

of the tangential and radial component, respectively, reconstructed using eLoreta based on models of 

individual brain anatomies; left sub-panels without threshold, right panels thresholded at 95% amplitude. 

All panels (A to F) depict averages across participants and trials. 

 

In addition, in most subjects another CCA component was consistently found that was 

characterized by a radial pattern (Fig. 4B). In all subjects, these two spatially distinct CCA 

components were among the first three most prominent CCA components (i.e., highest 

correlation with the SEP average; see methods section for more details). In the temporal domain, 
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the tangential CCA component showed a large negative peak at around 20 ms post-stimulus 

(Fig. 4C) whereas the radial component´s activity seemed to be more pronounced slightly later 

at around 25 ms (Fig. 4D). Moreover, subsequent source reconstruction of the spatial patterns 

indeed showed that the strongest generators of the tangential component were located in the 

anterior wall of the postcentral gyrus (Fig. 4E) whereas generators of the radial component 

tended to be on top of pre- and post-central gyri (Fig. 4F). Both the temporal as well as the 

spatial characteristics suggest that the tangential CCA component reflected activity related to 

the N20 component of the SEP, associated with the initial cortex excitation. In the following 

analyses, we therefore focus on the tangential CCA component. 

Single-trial SEPs retrieved for the tangential CCA component are displayed in Figure 

5A for an exemplary subject. It is apparent that the amplitude of the early SEP fluctuates over 

trials, however without a clear monotonous trend (Figure 5B). 
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Fig. 5. Analysis of power-law dynamics in SEP amplitude fluctuations for an exemplary subject. A) 

Single-trial SEPs extracted using CCA; depicted is the tangential CCA component. B) SEP amplitude 

fluctuations across trials for exemplary latencies (20 ms, 25 ms, and 29 ms post-stimulus). C) Detrended 

Fluctuation Analysis (DFA) for amplitude fluctuations depicted in B. Indicated slopes reflect the 

respective DFA exponents quantifying the power-law dynamics of the signal. D) Time course of DFA 

exponents in an exemplary subject; blue, red, and yellow arrows mark the latencies which are displayed 

in B and C. 

 

 

Temporal dynamics in single-trial SEP amplitude fluctuations 

To evaluate the characteristics of SEP fluctuations across trials, we applied Detrended 

Fluctuation Analysis (DFA). The DFA exponent α quantifies the extent of power-law dynamics 

of a signal, with α > 0.5 indicating persistent auto-correlations; whereas α = 0.5 would suggest 

a signal without a temporal structure (i.e., white noise). DFA was performed on the amplitudes 

at every latency relative to the stimulus onset, across trials. Figure 5C depicts the DFAs for the 

three exemplary amplitude time series from Figure 5B, measuring the power-law exponent α as 
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the slope of a regression line fitted to the log-log relationship between window size τ and the 

fluctuation of each window size. Applying DFA at all latencies provided a DFA exponent time 

course for every subject (Fig. 5D). This time course indicates which portions of the early SEP 

show power-law dynamics (i.e., DFA exponents > 0.5) and thus do not fluctuate stochastically 

independently across the trials. Subsequently, DFA exponent time courses were averaged 

across participants. The average explained variance of the power-law relationship between 

window size τ and the fluctuation within a given window of size τ was R2 > .99 at all latencies 

in the time range of the early SEP (10 and 50 ms), indicating a near-perfect fit of the DFA 

method for this data.  

Increased DFA exponents were observed particularly in the early part of the SEP 

whereas surrogate data generated by shuffling the trial order yielded DFA exponents close to α 

= 0.5 (Fig. 6A). Two prominent peaks in the DFA exponent time course are visible from Figure 

6B, with DFA exponents of α = .575 and α = .577, at latencies of 25 and 33 ms post-stimulus, 

respectively. Note, however, that the absolute value of DFA exponents highly depends on the 

signal-to-noise ratio (SNR) of the signal, as is further examined in simulations below which 

suggest DFA exponents of at least α = .63 when the SNR bias is taken into account. The 

observation of two prominent DFA exponent peaks was statistically confirmed as two main 

clusters were found around these two peaks by cluster-based permutation tests (pscluster
 < .001), 

the first cluster starting at around the latency of the N20 component. Interestingly, the DFA 

exponents were characterized by a similar yet not identical time course as compared to the 

magnitude of the SEP (Fig. 6B). The second DFA exponent cluster peaked at around the same 

latency as the P35 component of the SEP whereas the first DFA cluster peaked at around 25 ms, 

thus slightly later than the N20 component. Temporal filtering in the preprocessing of the data 

cannot have caused these long-range temporal dependencies since no DFA exponent increases 

were observed during the pre-stimulus baseline of the SEP, and additional control analyses did 
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not show increased DFA exponents when applying the same preprocessing to stochastically 

independent SEP fluctuations (simulated data). 

Additionally, we examined the relationship between single-trial N20 and P35 peak 

amplitudes using a random-slope linear-mixed-effects model with P35 peak amplitude as 

dependent variable, N20 peak amplitude as independent variable and subject as random factor. 

Across subjects, we found a moderate negative relationship between N20 and P35, 

βfixed = -.378, t(29.800) = -9.342, p < .001 (fixed effect of N20 peak amplitude on P35 peak 

amplitude). 

Fig. 6. A) Time course of DFA exponents calculated for SEP fluctuations across trials (blue), and DFA 

exponents of surrogate data (shuffled trial order; grey); both averaged over participants. B) Enlarged 

view of DFA exponents (blue) in the range of the earliest SEP components (red). Grey boxes indicate 

significant clusters of DFA exponents significantly differing from α = 0.51 (i.e., average DFA exponent 

with shuffled trial order). 
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Do power-law dynamics originate from the neuronal fluctuations in the periphery or at the 

thalamic level?  

To investigate whether the observed temporal dynamics in cortical SEPs may arise from 

fluctuations in the peripheral nerve excitability, we applied the same procedure as described 

above to the compound nerve action potential (CNAP) of the median nerve measured at the 

inner side of the upper arm. As expected, the nerve potential peaked at around 6 ms post-

stimulus and fluctuated over trials (Fig. 7A). However, no increased DFA exponents were 

observed (Fig. 7B). 

Fig. 7. Control measures. A) Single-trial compound nerve action potentials (CNAP) of the median nerve 

measured on the inner side of the upper arm; depicted for an exemplary subject. B) DFA exponents 

(blue) and CNAP (orange) of the median nerve; averaged over all subjects. C) Single-trial SEPs of the 

thalamus-related CCA component of an exemplary subject. D) DFA exponents (blue) and SEP (orange) 

of the thalamus-related CCA component; averaged over the 13 subjects in which a peak at around 15 

ms was observed on single-trial level. E) Average spatial pattern of the thalamus-related CCA 

components; averaged over 13 subjects. 
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In addition, a CCA component was identified in 13 out of the 31 participants that 

contained SEP activity already at 15 ms (Fig. 7C & 7D), most likely reflecting the P15 

component of the SEP which is thought to represent thalamus-related activity (Albe-Fessard, 

Tasker, Yamashiro, Chodakiewitz, & Dostrovsky, 1986). Also, the spatial patterns of this CCA 

component suggested a deeper and more medial source than the tangential or radial CCA 

components (Fig. 7E). Importantly, the DFA exponents of this subcortical activity did not show 

any increase in the range of the P15 component (Fig. 7D) thus being in contrast with the DFA 

exponent increase for early cortical potentials. 

DFA exponents and SNR 

Since it is known from previous studies that the signal-to-noise ratio (SNR) highly 

affects the measurement of power-law dynamics (Blythe, Haufe, Müller, & Nikulin, 2014), we 

investigated the relationship between DFA exponents and SNR in single-trial SEPs. On average 

across all participants, the SNR of the tangential CCA component was 
𝑟𝑚𝑠(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑟𝑚𝑠(𝑛𝑜𝑖𝑠𝑒)
=

1.68 (SD = .42), and showed a positive rank correlation with DFA exponent increase in the 

time range from 10 to 50 ms post-stimulus, r = .36, p = .049. 

Additionally, we further clarified this relationship with simulations: We mixed signals 

expressing different DFA exponents with white noise (DFA exponent α = 0.5), for a range of 

SNRs, and measured the DFA exponent of these mixed signals. As is visible from Figure 8, 

DFA exponents of the mixed signals are attenuated towards α = 0.5 when lowering the SNR. 

Given an SNR of 1.68 and an empirical DFA exponent of α = 0.575, as was the case for the 

tangential CCA component in the present study, our simulations suggest an underlying source 

with a DFA exponent of α ≈ 0.63. 

To relate this simulation also to the others measures for which we calculated DFA 

exponents, we calculated the SNR of the CNAP at the upper arm and thalamic CCA components. 

Here, we found SNRs of 2.20 (SD = .85)  and 1.33 (SD = .11), respectively, suggesting that our 
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signal quality was sufficient to detect DFA exponent increases if they had been there since the 

SNR of the CNAP was even higher than that of the SEP and the SNR of the thalamic CCA 

component was just slightly lower. 

 

Fig. 8. Simulation of the influence of signal-to-noise ratio (SNR) on the measurement of DFA exponents. 

Signals with varying DFA exponents (plotted on vertical axis) were mixed with white noise (i.e., DFA 

exponents of ~0.5) with varying SNR (plotted on horizontal axis). The resulting DFA exponents of the 

mixed signals are color-coded. The red circle indicates the region of empirically observed DFA 

exponents of ~0.57 at an SNR of ~1.68 suggesting an underlying DFA exponent of the unmixed source 

of ~0.63. 

 

Power-law dynamics in alpha band activity and its relation to the SEP 

Since previous studies on cortical excitability in M/EEG focused on oscillatory activity 

in the alpha band, we investigated both its correspondence to the early part of the SEP as well 

as its DFA exponents. 

To test the relationship between alpha oscillatory activity and SEP amplitude, we 

performed a regression analysis between the mean alpha amplitude in a pre-stimulus window 

from -200 to -10 ms and the peak amplitude of the N20 component. Alpha activity was extracted 

from the same neuronal sources as the SEP by applying the spatial filter of the tangential CCA 

component.  A significant negative relationship was found on group-level using a random-slope 

linear-mixed-effects model, βfixed = -.034, t(25.689) = -4.984, p < .001. Thus, higher pre-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2019. ; https://doi.org/10.1101/809285doi: bioRxiv preprint 

https://doi.org/10.1101/809285
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

stimulus alpha activity was associated with more negative N20 peak amplitudes. To control for 

spurious covariation caused by the auto-correlated structure of both signals, we additionally ran 

permutation tests using surrogate data with comparable temporal structure as suggested in 

Schaworonkow, Blythe, Kegeles, Curio, and Nikulin (2015). Aggregated on group-level, these 

tests confirmed the negative relationship between pre-stimulus alpha activity and N20 peak 

amplitude, rgroup-level = -.035, p < .001. 

Next, we investigated the DFA exponents of mean pre-stimulus alpha amplitude across 

trials. Averaged across subjects, we observed a mean DFA exponent of α = .60, which 

significantly differed from DFA exponents for shuffled trial order, t(30) = 6.627, p < .001. Also, 

DFA exponents in continuous, ongoing alpha activity were significantly increased across 

subjects, α = .66, t(30) = 10.591, p < .001. Thus, power-law dynamics were present in both pre-

stimulus and continuous, ongoing alpha activity. 

To further test the relationship between pre-stimulus and SEP dynamics, we correlated 

DFA exponents of pre-stimulus alpha amplitude and DFA exponents of the SEP across 

participants. DFA exponents of the SEP were aggregated (using root-mean-square) in four 

consecutive time windows of 5 ms each, between 20 and 40 ms post-stimulus. DFA exponents 

of alpha activity were correlated with the DFA exponents of the first time window from 20 to 

25 ms, r = .485, p = .025 (Bonferroni-corrected). However, this relationship did not emerge for 

any other time window between 25 and 40 ms, ps > .3 (Fig. 9). Notably, the SNR of the SEP 

cannot explain the relation between DFA exponents of alpha activity and DFA exponents of 

the SEP, as no relationship was found between SNR of the SEP and DFA exponents of pre-

stimulus alpha activity, r = .208, p = .261. 

Taken together, our results show that both amplitude and temporal structure of 

oscillatory activity in the alpha band relate to the corresponding parameters of the early SEP 

responses, establishing a link between these two measures of instantaneous cortical excitability.  
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Fig. 9. Relation between pre-stimulus alpha band activity and the early SEP. Panels Aa and Ab depict 

the SEP plotted by quintiles of pre-stimulus alpha band amplitude, demonstrating their relationship for 

the N20 component peak (Ab). Panels Ba, Bb, Bc, Bd show the correlations between DFA exponents of 

pre-stimulus alpha amplitude and DFA exponents of the SEP in time windows from 20 to 25, 25 to 30, 

30 to 35, and 35 to 40 ms, respectively. The DFA exponents of the SEP were aggregated over time 

points using root-mean-square (rms). 
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3 Discussion 

In the present study, we probed instantaneous excitability changes of the somatosensory 

cortex by applying median nerve stimuli and evaluating single-trial SEP amplitudes in the range 

of the N20 component which is assumed to reflect excitatory post-synaptic potentials (EPSPs) 

of the first thalamo-cortical volley (Allison et al., 1991; Bruyns-Haylett et al., 2017; Wikström 

et al., 1996). Fluctuations of cortical excitability demonstrated power-law dynamics across 

trials, consistent with the hypothesis that neuronal systems operate close to a critical state 

(Beggs & Plenz, 2003; Linkenkaer-Hansen et al., 2001; Palva et al., 2013; Poil, Hardstone, 

Mansvelder, & Linkenkaer-Hansen, 2012; Priesemann et al., 2013). Most likely, these power-

law dynamics were of cortical origin as DFA exponents were not increased in peripheral or 

subcortical neural signals. In addition, fluctuations in alpha band activity and initial cortical 

excitation were related regarding their amplitudes as well as their temporal structure as 

measured by DFA. For the first time, these findings thus link critical dynamics in ongoing and 

evoked activity as measured non-invasively in the human EEG, and directly associate the 

observed power-law dynamics with variability in cortical excitability. 

Neurophysiological basis of temporal fluctuations in the early SEP 

The observed power-law dynamics were calculated on the basis of amplitude 

fluctuations in the early SEP which has previously been shown to reflect EPSPs in the primary 

somatosensory cortex (Allison et al., 1991; Bruyns-Haylett et al., 2017; Wikström et al., 1996). 

In principle, the scalp EEG is sensitive to relative changes in collective charge distributions 

resulting from neuronal activation manifested in primary post-synaptic currents (PSCs; 

Ilmoniemi & Sarvas, 2019; Kandel, Schwartz, & Jessell, 2000; Lopes da Silva, 2004). Since 

the scalp EEG aggregates the signal of many neuronal populations, its magnitude also depends 

on the number of neurons involved. Hence, the magnitude of an EEG potential emerging 
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through synchronous activity of a well-specified neuron population, as is assumed for the N20 

component of the SEP, should follow the general relationship 

𝑈 ~ 𝐼 ∗ 𝑁𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝐿𝐹 

where U denotes the magnitude of the potential on scalp level, I the sum of local primary post-

synaptic currents, and LF the lead field coefficient projecting source activity to the electrodes 

on the scalp. Since intensity and position of the electrical nerve stimulation was kept constant 

in our paradigm, we expect an approximately constant number of neurons to have been involved 

in the generation of SEPs in the primary somatosensory cortex. Also, LF is a constant reflecting 

the conductance of the head tissues and the stable dipole orientation of the N20 component. 

Therefore, we believe that primarily the variability of PSCs contributed to the amplitude 

fluctuations of the early part of the SEP, reflecting instantaneous changes of cortical excitability. 

This notion is corroborated by findings in basic physiology, where pre-stimulus membrane 

potential modulations have been found to be associated with variability in subsequent PSPs and 

PSCs (Deisz, Fortin, & Zieglgansberger, 1991). Specifically, pre-stimulus depolarization 

facilitates the generation of spiking activity (Azouz & Gray, 1999) and thus represents a state 

of higher neuronal excitability (Castro-Alamancos, 2009). Hence, temporal dynamics on a 

cellular level, manifested in collective membrane fluctuations, might lead to excitability 

changes which determine the magnitude of PSCs and eventually translate to fluctuations of the 

SEPs across trials, that is, specifically the N20 component of the SEP in our study. 

What do temporal dynamics in SEPs tell about the functioning of the neuronal system? 

DFA exponents of SEP amplitudes significantly exceeded α = 0.5, thus reflecting long-

range dependencies of SEPs across trials. That is, the SEP of a given stimulation event is related 

to the history of previous stimulation events, and also contains information about the SEPs of 

subsequent stimulation events. In our data, this relationship held for time windows of up to 70 

trials, equivalent to around 50 seconds. Furthermore, we used the early part of the SEP as a 
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probe of excitability of the somatosensory cortex at the moment of stimulation, that is, as a 

probe of the instantaneous system state of the involved neuron populations in this particular 

cortical area. Therefore, the observed power-law dynamics suggest that instantaneous system 

states of the primary somatosensory cortex are characterized by long-range temporal 

dependencies and do not fluctuate stochastically independently over time. 

Both spatial and temporal power-law dynamics in system states have often been 

interpreted within the hypothesis that the underlying system is poised at a critical state (Bak et 

al., 1987; P. Bak et al., 1988; Beggs & Plenz, 2003; Sethna et al., 2001). In various models of 

complex systems, such as the Abelian Sand Pile model (Bak et al., 1987), the Kuramoto model 

(Kuramoto, 1984), and the Ising model (Ising, 1925), power-law dynamics can be found when 

they are at the border of a phase transition (Kitzbichler et al., 2009), which has been referred to 

as the critical state (Bak et al., 1987; P. Bak et al., 1988; Beggs & Plenz, 2003). Crucially, it 

has been shown that information transfer is optimized when a system operates at the critical 

state (Kinouchi & Copelli, 2006; Shew & Plenz, 2013) making the criticality hypothesis an 

appealing approach to parsimoniously explain the still poorly understood processing 

capabilities of the central nervous system. 

Conceptually, the temporal dynamics we observed in our data can be seen in analogy to 

system dynamics observed in above models, as depicted for the Ising model in Figure 2. Usually, 

long-range dependencies are quantified by certain power-law relationships in these models, 

such as the distribution of size and duration of neuronal avalanches (Sethna et al., 2001). In the 

present study, however, we report power-law dynamics in the temporal domain (i.e., SEPs 

across trials). This finding is in line with previous M/EEG studies reporting long-range temporal 

correlations (LRTCs) for fluctuations in alpha band activity (Linkenkaer-Hansen et al., 2001; 

Linkenkaer-Hansen, Nikulin, Palva, Kaila, & Ilmoniemi, 2004; Palva et al., 2013), which could 

also be replicated in the present study. Importantly, simulations using the Ising model have 

shown that a system at a critical state, characterized by power-law dynamics in the spatial 
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domain, indeed expresses power-law dynamics when observing its behavior in the temporal 

domain, too (Zhao et al., 2017). Thus, the observed long-range temporal dependencies in 

cortical excitability in our data may indicate that the system operates close to a critical state 

also in the spatial domain. Specifically, neuronal excitability may differ across the network of 

neurons that is involved in the generation of the SEP in the primary somatosensory cortex, 

which, in turn, would lead to a spread of activation of the SEP in line with scale-free behavior 

of neuronal avalanches as observed in the seminal paper by Beggs and Plenz (2003) for neuronal 

dynamics in slices of the rat somatosensory cortex. We now extend this notion by showing that 

signatures of critical dynamics can also be present in the human primary somatosensory cortex. 

Accordingly, the power-law dynamics we observed in early SEPs may reflect intrinsic 

properties of the underlying networks which may be built and function in such a way that the 

activation propagation is similar to that observed at critical states. 

In addition, assuming that fluctuations of the early SEP reflect changes in EPSCs which 

in turn depend on pre-stimulus membrane potentials, it follows that these dynamics may be 

manifested in ongoing modulations of membrane potentials. Intriguingly, dynamics close to 

criticality have been demonstrated for membrane potential fluctuations in pyramidal neurons of 

the visual cortices in turtles (Johnson et al., 2019), consistent with our idea of the origin of 

power-law dynamics in early human SEPs. 

Of course, this notion should be treated with some caution as it is based on the strong 

assumption that mechanisms observed in single-cell recordings (in animals) can be generalized 

to cell populations in the human cortex. Nevertheless, the present findings could represent the 

missing link between power-law dynamics on micro (single-cell) and macro (cell population) 

scale and would relate findings of criticality in neuronal avalanches to non-invasively measured 

EEG potentials in humans. 
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Temporal specificity of the DFA exponent increases 

Interestingly, we found two prominent peaks in the DFA exponent time course, one at 

around 25 ms, and the other at around 33 ms (Fig. 6). Although the first significant DFA 

exponent cluster started together with the peak of the N20 component, the first DFA exponent 

peak appeared slightly later. This suggests that long-range temporal dependencies are not 

primarily pronounced in N20 peak amplitudes but rather reflect the variation of the SEP 

returning back to baseline. The second DFA time course peak co-occurred with the second 

prominent peak of the SEP, the P35 component. This second DFA peak most likely reflects 

activity propagated from the N20 component to the P35 as these two components moderately 

covaried in our data. Taken together, we conclude that power-law dynamics started to rise 

around the peak of the N20 component but reached their full extent only a few milliseconds 

later. This may reflect activity of a more distributed network involved in the SEP after the N20 

component, potentially also comprising some mixture of inhibitory processes. 

Dissociation of temporal dynamics in the cortex from peripheral and subcortical variability 

The fact that DFA exponents were not systematically higher than α = 0.5 earlier than 

the N20 component suggests that the generators of power-law dynamics were located in the 

primary somatosensory cortex. In addition, we applied the following control analyses to 

examine the origin of these dynamics in more detail. 

First, we inspected the sources of the SEP from which we derived the power-law metrics. 

In all participants, the single-trial analysis using CCA resulted in one component that showed 

a tangential spatial pattern (therefore referred to as tangential CCA component; left panels in 

Fig. 4). We chose this component because both the time course and the spatial pattern suggested 

that the N20-P35 complex of the SEP is well preserved in this CCA component. Indeed, the 

source reconstruction confirmed that the strongest generators of this component lay in the 
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anterior wall of the post-central gyrus (Fig. 4E) as is expected from the literature for the N20 

component (Allison et al., 1991). 

Second, it is conceivable that the power-law dynamics in the early SEP stemmed from 

fluctuations in peripheral nerve excitation. To control for this, we measured the compound 

nerve action potential (CNAP) of the median nerve on the inner side of the upper arm. We did 

not find increased DFA exponents in this measure. Thus, peripheral nerve activity cannot 

account for the power-law dynamics in the SEP. 

Third, sub-cortical structures may play a role in shaping the variability of the cortical 

response. The thalamus represents the last processing stage before stimulus information enters 

the cortex. Therefore, investigating variability on this level should inform about whether power-

law dynamics were of cortical or sub-cortical nature. The P15 component of the SEP is assumed 

to reflect thalamic processing of median nerve stimuli (Albe-Fessard et al., 1986). In our data, 

a CCA component was identified in a subsample of 13 subjects, which showed a peak at 15 ms 

and a spatial pattern suggesting a deep medial source (Fig. 7C and 7E). Importantly, the 

variability of this activity presumably originating in the thalamus, did not express power-law 

dynamics. 

Having found no evidence for power-law dynamics arising earlier than cortical 

processing stages, we conclude that these temporal dynamics most likely are of cortical origin. 

Underestimation of power-law dynamics due to signal-to-noise ratio 

It is known that the signal-to-noise ratio (SNR) has an impact on the estimation of DFA 

exponents (Blythe et al., 2014), that is, even a signal with an exponent of α = 1.0 would result 

in lower DFA exponents when being contaminated with strong noise characterized by 

exponents of α ≈ 0.5. To account for this, we estimated the SNR of the single-trial SEPs and 

simulated measurement scenarios with varying SNRs and DFA exponents of a signal mixed 

with white noise. The simulation results indeed indicated that our empirical DFA exponents 
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underestimated the underlying DFA exponents of the signal. Given our single-trial SNR, the 

simulation suggested an underlying DFA exponent of α ≈ 0.63 (Fig. 8), which is in the range 

of power-law dynamics reported in previous M/EEG studies for alpha band activity 

(Linkenkaer-Hansen et al., 2001; Palva et al., 2013). However, the estimation of unbiased DFA 

exponents derived from our simulation is a rather conservative estimate: First, we only assumed 

one noise source to be mixed with the signal. This is probably not true for the EEG as there will 

be a vast number of noise sources in reality, thus further degrading the estimation of DFA 

exponents. Second, the interval in which we estimated the signal (i.e., in the range of the early 

SEP) is not noise free. Hence, the signal term contained in the SNR is also a mixture of both 

signal and noise, biasing the SNR towards higher values. Third, the “signal” which is relevant 

for DFA applied across trials is, strictly speaking, not the amplitude of the single-trial SEP in 

relation to baseline (as was used for our SNR estimate) but rather the fluctuation of single-trial 

amplitudes across trials. Thus, the effective SNR for DFA was most likely even smaller and, 

with a DFA exponent of α ≈ 0.63, the power-law dynamics of the neuronal system are most 

likely still underestimated. 

Relationship between pre-stimulus alpha activity and initial cortex excitation 

Since it has been claimed that oscillatory activity in the alpha band reflects cortical 

excitability (Klimesch et al., 2007; Madsen et al., 2019; Pfurtscheller et al., 1996; Romei et al., 

2008; Sauseng, Klimesch, Gerloff, & Hummel, 2009; Zrenner, Desideri, Belardinelli, & 

Ziemann, 2017), we tested whether this measure was related to the initial cortex excitation as 

measured by the N20 amplitude. Following a rather simplistic notion that higher excitability 

leads to larger brain responses, one might assume larger SEP amplitudes in the EEG being 

present at states of higher cortical excitability. However in our data, lower alpha band activity, 

typically referred to as state of increased excitability, was associated with smaller (less 

negative) N20 amplitudes. At first sight, this finding thus seems to contradict the hypothesis of 
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alpha oscillations representing functional inhibition (Jensen & Mazaheri, 2010; Klimesch et al., 

2007). Yet, it may be explained in a straightforward manner by the neurophysiological basis of 

EEG generation. 

As outlined above, EEG cannot directly measure PSPs, but reflects relative changes in 

collective charge distributions produced by post-synaptic currents (PSCs). Now, at states of 

high excitability (i.e., pre-stimulus membrane depolarization), the electrical driving force for 

inward currents is decreased and less current is needed to reach the threshold potential for 

excitatory responses (Castro-Alamancos, 2009). This leads to decreased PSCs at high 

excitability states (Deisz et al., 1991), which would result in lower amplitudes in the EEG signal. 

Hence, assuming alpha activity to be associated with neuronal excitability, on a cellular level 

possibly reflected in the membrane potential, one should rather expect decreased N20 

amplitudes following low pre-stimulus alpha activity (higher depolarization). As this 

relationship held true for our data, we argue that our findings are in fact in line with the alpha 

inhibition hypothesis and may furthermore shed light on the functional link between ongoing 

alpha activity and evoked responses which might be manifested in modulations of membrane 

potentials on a cellular level. 

Adding to the relationship between pre-stimulus oscillatory and evoked activity, DFA 

exponents of pre-stimulus alpha activity and DFA exponents of the early part of the SEP were 

correlated across subjects. Interestingly, this relation only held for the SEP time range between 

20 and 25 ms, which corresponds to the first cluster of increased DFA exponents. This might 

indicate that DFA exponents of SEPs and alpha oscillations reflect similar underlying brain 

dynamics, which can be tested both with evoked responses and ongoing oscillations. Although 

we cannot completely rule out that general data quality (i.e., SNR) influenced the correlation 

between DFA exponents in alpha band activity and in the SEP across subjects, this alternative 

explanation seems rather unlikely at this point since the SNRs of the SEP and DFA exponents 

of alpha activity were not found to be correlated in our data. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2019. ; https://doi.org/10.1101/809285doi: bioRxiv preprint 

https://doi.org/10.1101/809285
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

Taken together, the two measures of cortical excitability, alpha band activity and early 

SEP amplitudes, indeed seem to closely correspond regarding both their amplitudes and 

temporal structure, suggesting similar organizing principles. Yet, the current data cannot 

disentangle whether there is a causal relationship between pre-stimulus alpha band and early 

SEP fluctuations, as it cannot be excluded that a common factor, reflected in the underlying 

system state, gives rise to these phenomena independently from each other. 

Implications for the perspective on neural variability 

Why neuronal systems express a large variability, particularly in perceptual processes, 

has been an enduring question for many years. Previous studies investigated variability in terms 

of its strength (Churchland et al., 2010; Dinstein et al., 2015; Garrett et al., 2013) and regarding 

its accompanying neuronal signatures (Arieli et al., 1996; Iemi et al., 2019; Romei, Gross, & 

Thut, 2010; Sadaghiani et al., 2010; Vanrullen et al., 2011). In the present study, we approached 

neural variability, specifically of cortical excitability, from a different perspective and 

examined its temporal dynamics. In particular, it may be that not only the strength of variability 

but rather its specific temporal signature is important for a proper functioning of the underlying 

system. We believe that such temporal dynamics might be of a very special type, i.e., those 

corresponding to a critical state, which is manifested in the presence of long-range temporal 

dependencies. This type of variability has been shown to be associated with the maximization 

of the dynamic range, as well as optimized information processing and capacity (Kinouchi 

& Copelli, 2006; Shew & Plenz, 2013). Hence, this notion represents a compelling account for 

why neuronal variability can be functionally needed and how this variability is actually 

embedded in the complex dynamics of the human neuronal system. 

Conclusions 

Cortical excitability, as probed by early SEPs and pre-stimulus alpha band activity, 

demonstrated power-law dynamics over time, indicating long-range temporal dependencies of 
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instantaneous brain states. Thus, excitability changes do not seem to occur stochastically 

independently (i.e., like white noise) but do possess a temporal structure. Furthermore, this 

observation may shed light on the spatio-temporal organization of the underlying neuronal 

system, as power-law dynamics are traditionally seen as a key signature of a complex system 

poised at a transition state between stability und instability, the so-called critical state. Although 

such temporal dynamics are not a direct proof for the presence of criticality, we consider our 

present findings of power-law dynamics in early SEP amplitudes as another complementary 

evidence consistent with the hypothesis that the neuronal system indeed operates in proximity 

to a critical state. 

 

4 Methods 

Participants 

EEG data were recorded from 33 male, human subjects. Two subjects had to be 

excluded because no clear SEPs were visible in the single-trial analysis, probably due to 

suboptimal placement of the stimulation electrodes and a low SNR of the EEG. The remaining 

sample of 31 subjects had an average age of M = 26.9 years (SD = 5.0). All participants were 

right-handed (lateralization score, M = +92.9, SD = 11.7), as assessed with the Edinburgh 

Handedness Inventory (Oldfield, 1971), and did not report any neurological or psychiatric 

disease. All participants gave informed consent and the study was approved by the local ethics 

committee. 

Stimuli 

Somatosensory stimuli were applied using electrical stimulation of the median nerve. A 

non-invasive bipolar stimulation electrode was positioned at the left wrist (cathode proximal). 

The electrical stimuli were designed as squared pulses of a duration of 200 µs. The stimulus 
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intensity was set to 1.2 x motor threshold leading to clearly visible thumb twitches for every 

stimulus, as individually determined by a staircase procedure prior to the experiment. Stimuli 

were applied using a DS-7 constant-current stimulator (Digitimer, United Kingdom). 

Procedure 

During the experiment, participants were sitting comfortably in a chair their hands 

extended in front of them on a pillow with their hands in supinated position. Electrical stimuli 

were presented in a continuous sequence with inter-stimulus intervals (ISI) ranging from 663 

to 763 ms (randomly drawn from a uniform distribution; ISIaverage = 713 ms). In total, 1000 

stimuli were applied divided into two blocks of 500 stimuli each. After the first block, the 

sequence was interrupted by a short break. Participants were instructed to relax and to fixate 

with their eyes on a cross on a computer screen in front of them while receiving the stimuli. 

Data Acquisition 

EEG data were recorded from 60 Ag/AgCl electrodes at a sampling rate of 5000 Hz 

using an 80 channel EEG system (NeurOne, Bittium, Oulu, Finland) with a bandwidth of 0.16 

to 1250 Hz. Electrodes were mounted in an elastic cap (EasyCap, Herrsching, Germany) at the 

international 10-10 system positions FP1, FPz, FP2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, 

Fz, F2, F4, F6, F8, FT9, FT7, FT8, FT10, FC5, FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, 

C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, T7, T8, TP7, TP8, P7, P5, P3, P1, Pz, P2, P4, 

P6, P8, PO7, PO3, PO4, PO8, O1, O2. Four additional electrodes were placed at the outer 

canthus and at the infraorbital ridge of each eye to record the electro-oculogram (EOG). During 

recording, the EEG signal was referenced to FCz, POz served as ground. All impedances were 

kept below 10 kΩ. For source reconstruction, EEG electrode positions were measured in 3D 

space individually for every subject using Polhemus Patriot (Polhemus, Colchester, Vermont). 

Additionally, the compound nerve action potential (CNAP) of the median nerve was measured 

using two bipolar electrodes, positioned at the inner side of the left upper arm. 
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Structural MRI scans (MPRAGE) of every participant were obtained at a different 

testing date prior to the experiment on a 3T Siemens Verio, Siemens Skyra or Siemens Prisma 

scanner (Siemens, Erlangen, Germany). 

EEG pre-processing 

Stimulation artifacts were cut out and interpolated between -2 to 4 ms relative to 

stimulus onset using Piecewise Cubic Hermite Interpolating Polynomials (PCHIP). The EEG 

data were band-pass filtered between 30 and 200 Hz, sliding a 4th order Butterworth filter 

forwards and backwards over the data to prevent phase shift. With this filter, we specifically 

focussed on the N20-P35 complex of the SEP. Furthermore, this filter effectively served as 

baseline correction of the SEP since it removed slow trends in the data, reaching an attenuation 

of 30 dB at 14 Hz, thus ensuring that fluctuations in the SEP did not arise from fluctuations 

with  slower frequencies (e.g., alpha band activity). (The relationship between decibels (dB) 

and magnitude is defined as 𝑑𝐵 = 20 ∗ 𝑙𝑜𝑔10(𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒).) Bad segments of the data were 

removed by visual inspection, resulting in 989 trials on average per participant. The data were 

then re-referenced to an average reference. Eye artefacts were removed using Independent 

Component Analysis (ICA). For the analysis of SEPs, the data were segmented into epochs 

from -100 to 600 ms relative to stimulus onset. EEG pre-processing was performed using 

EEGLAB (Delorme & Makeig, 2004), and custom-written scripts in MATLAB (The 

MathWorks Inc., Natick, Massachusetts). 

Single-trial extraction using CCA 

Single-trial SEPs were extracted applying a variant of Canonical Correlation Analysis 

(CCA), as previously proposed by Waterstraat et al. (2015). CCA is used for finding weights 

wx and wy that mutually maximize the correlation between two signals X and Y, so that: 

𝑋 ∗ 𝑤𝑥  
max𝑐𝑜𝑟𝑟
↔      𝑌 ∗ 𝑤𝑦 
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For extracting single-trial SEPs, we constructed X as a two-dimensional matrix (time by 

channel) containing all single-trial epochs (concatenated in the time domain) whereas Y 

contained the average SEP, concatenated as many times as there were epochs (also concatenated 

in the time domain). The resulting weight matrix wx represents spatial filters which maximize, 

in combination with wy, the correlation between single-trial activity (X) and the average SEP 

(Y). To particularly focus on the early portion of the SEP, the spatial filters wx were trained 

using shorter segments from 5 to 80 ms post-stimulus but applied to the whole epochs from -

100 to 600 ms. Applying the spatial filters to the single-trial matrix, we derived a number of 

spatially distinct components, here denoted as CCA components: 

𝑋𝐶𝐶𝐴 = 𝑋 ∗ 𝑤𝑥 . 

To characterize the CCA components in more detail, their spatial patterns were 

computed as 

𝐴𝐶𝐶𝐴 = 𝑐𝑜𝑣(𝑋) ∗ 𝑤𝑥 , 

and components were visually identified that showed a tangential spatial pattern over the central 

sulcus as is typical for the N20-P35 complex (referred to as tangential CCA components). 

Furthermore, components were identified that were characterized by a radial pattern over the 

central sulcus (referred to as radial CCA components), as well as components that showed a 

peak in the activity time course at 15 ms (referred to as thalamic CCA components; only in a 

subset of the sample). This procedure was performed individually for every subject for the first 

four CCA components, as sorted by their canonical correlation coefficients. Since CCA is 

insensitive to the polarity of the signal, the resulting tangential CCA components were 

standardized so that the N20 always appeared as a negative peak in the SEP (i.e., by inverting 

their spatial filters wx, if necessary). Furthermore, CCA is insensitive to the order of trials. Thus, 

the same spatial filters wx are obtained when permuting the order of single-trial SEPs and it is 

therefore not possible that CCA influences the temporal structure of SEP amplitudes across 

trials. 
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SEP peak amplitudes and pre-stimulus oscillatory activity 

N20 peak amplitudes were defined as the minimum value in single-trial SEPs of the 

tangential CCA components ±2 ms around the latency of the N20 in the within-subject average 

SEP. Accordingly, P35 peak amplitudes were extracted. 

Pre-stimulus alpha band activity was obtained from data segments between 

-200 to -10 ms relative to stimulus onset, band-pass filtered between 8 and 13 Hz (8th order 

Butterworth filter), after mirroring the pre-stimulus segments to both sides in order to reduce 

filter-related edge effects. To make a direct comparison with the SEP possible, we applied the 

spatial filter corresponding to the tangential CCA component to the pre-stimulus data. 

Subsequently, the pre-stimulus alpha envelope was measured by taking the absolute values of 

the signals processed with the Hilbert transform. To derive one pre-stimulus alpha metric for 

every trial, amplitudes of the alpha envelope were averaged across the whole pre-stimulus time 

window. 

EEG source reconstruction 

To reconstruct the sources of the EEG signal, we estimated leadfield matrices based on 

individual brain anatomies and individually measured electrode positions. The structural brain 

scans (MPRAGE) were segmented using the Freesurfer software 

(http://surfer.nmr.mgh.harvard.edu/), and a 3-shell boundary element model (BEM) was 

constructed which was used to compute the lead field matrix with OpenMEEG (Gramfort, 

Papadopoulo, Olivi, & Clerc, 2010; Kybic et al., 2005). For two subjects, a template brain 

anatomy (ICBM152; Fonov, Evans, McKinstry, Almli, & Collins, 2009) was used as no 

individual structural MRI scans were available. For one subject, standard electrode positions 

were used instead of individually measured positions. The leadfield matrices were inverted 

using eLORETA (Pascual-Marqui, 2007), and sources were reconstructed for the spatial 

patterns of the tangential and radial CCA components, respectively, for every subject. Next, 
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individual source spaces were transformed into a common source space based on the ICBM152 

template using the spherical co-registration with the FSAverage atlas (Fischl, Sereno, Tootell, 

& Dale, 1999) derived from Freesurfer, in order to average the obtained sources of the CCA 

components across subjects. The calculation of the individual head models and visualization of 

the sources was performed using Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). 

The MATLAB implementation of the eLORETA algorithm is available in the MEG/EEG 

Toolbox of Hamburg (METH). 

Processing of peripheral electrophysiological data (median nerve CNAP) 

Stimulation artefacts were cut out and interpolated between -2 to 4 ms relative to 

stimulus-onset using Piecewise Cubic Hermite Interpolating Polynomials (PCHIP). The 

peripheral electrophysiological data were high-pass filtered at 70 Hz, sliding a 4th order 

Butterworth filter forwards and backwards over the data to prevent phase shift. Additionally, 

notch filters (4th order Butterworth) were applied from 48 to 52 Hz and 148 to 152 Hz, 

respectively. Analogously to the EEG data, epochs were extracted from -100 to 600 ms relative 

to stimulus onset. 

Detrended Fluctuation Analysis (DFA) 

Power-law dynamics in the fluctuations of early SEPs as well as of pre-stimulus alpha 

band activity were quantified applying Detrended Fluctuation Analysis (DFA; Hardstone et al., 

2012; Kantelhardt et al., 2001). DFA calculates the fluctuation (i.e., standard deviation) of a 

cumulative signal on different time scales and tests whether its distribution follows a power-

law: 𝐹(𝜏) ~ 𝜏𝛼, where 𝐹 denotes the fluctuation function, 𝜏 the signal length (or window size), 

and α the power-law exponent. The DFA exponent α quantifies the extent of power-law 

dynamics of a signal, with α > 0.5 indicating persistent auto-correlations; whereas α = 0.5 is 

expected for a signal without a correlated temporal structure (i.e., white noise). We analyzed 

power-law dynamics in the fluctuation of SEP and pre-stimulus alpha amplitudes across trials 
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in windows ranging from 7 to 70 trials, which correspond to time windows of around 5 to 

around 50 seconds. The same time windows were selected for the DFA of continuous, ongoing 

alpha band activity. 

Evaluation of SNR 

The signal-to-noise ratio of the single-trial SEP, as measured by the tangential CCA 

component, was quantified as the quotient of  the root-mean-square signal in the time range of 

the SEP (10 to 50 ms)  and a pre-stimulus baseline (-50 to -10 ms), so that 𝑆𝑁𝑅 = 
𝑟𝑚𝑠(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑟𝑚𝑠(𝑛𝑜𝑖𝑠𝑒)
.  

The same procedure was applied to estimate the SNR of the CNAP and of the thalamic 

CCA component. For the CNAP we chose time windows from 5 to 8 ms and -8 to -5 ms, and 

for thalamic activity 12 to 18 ms and -18 to -12 ms, to estimate signal and noise, respectively. 

Simulation of the relationship between SNR and DFA exponent 

Signals with DFA exponents systematically varying in the range from α = 0.5 to α = 0.8 

were generated by filtering white noise with IIR filters whose coefficients depended on the 

desired DFA exponents as described in Schaworonkow et al. (2015) according to the algorithm 

of Kasdin (1995). The length of these time series was set to 1000 data points corresponding to 

our empirical data from the SEP fluctuation across trials. These time series were mixed with 

white noise, that is, stochastically independent time series with DFA exponents of α = 0.5, being 

consistent with DFA exponents measured before stimulus-onset in our empirical data. The time 

series with varying DFA exponents were mixed with the noise at varying SNRs ranging from 

0.001 to 6, defined as 𝑆𝑁𝑅 = 
𝑟𝑚𝑠(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑟𝑚𝑠(𝑛𝑜𝑖𝑠𝑒)
. This procedure was repeated 100 times to account 

for the variance in the generation of random time series. Subsequently, DFA exponents of the 

mixed time series were measured and the average DFA exponent of the simulated signal was 

identified for which the SNR and DFA exponent of the mixed time series corresponded to our 
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empirical analysis of SEP fluctuations. For visualization purposes, the results of the simulation 

are displayed in Figure 8 only for a sub-range of DFA exponents and SNRs. 

Simulation of the influence of temporal filtering on DFA exponents 

To confirm that our temporal filtering did not cause the DFA exponent increases in the 

early SEP, we applied the same filtering to surrogate data with stochastically independent SEP 

fluctuations. SEP fluctuations across trials were simulated by decreasing or increasing an 

average SEP time course by a randomly generated factor for every trial. These signals were 

superimposed on continuous pink noise which was band-pass filtered between 30 and 200 Hz 

(4th order Butterworth filter), using a signal-to-noise ratio of 2, a typical value for empirical 

data. Subsequently, DFA was applied across trials for every time sample of the simulated SEP, 

corresponding to above described DFA analyses of the empirical SEPs. 

Statistical analyses 

We compared the empirical DFA exponent time courses to surrogate data and applied 

cluster-based permutation tests to assess whether, and at which latencies, DFA exponents were 

significantly higher than it would be expected for stochastically independent fluctuation (i.e., 

white noise). First, we determined the expected DFA exponents for stochastically independent 

fluctuation by shuffling the trial order of our data and applying DFA to it. To account for 

variability due to random shuffling, this step was repeated 1000 times, and DFA exponents of 

these iterations were averaged, yielding an average surrogate DFA exponent time course for 

every subject. (Averaged across all samples and subjects, the mean DFA exponent was α = .512, 

thus slightly increased as compared to the theoretical DFA exponent of white noise of α = .5. 

This small empirical deviation may have been caused by the asymptotic behaviour of DFA for 

small window sizes.) Next, the DFA exponents of the data with intact trial order were compared 

to the average DFA exponents of the surrogate data, using a two-sample t-test, resulting in a t 

value for every comparison over the time course of the SEP. To obtain clusters of increased 
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DFA exponents, t values were thresholded at ppre = .001. Within clusters, t values were summed 

up to cluster t values tcluster,empirical. The same procedure was repeated 1000 times for the 

surrogate data, always comparing one surrogate dataset to the average surrogate data, which 

provided us with the distribution of cluster t values under the null hypothesis.  Next, a cut-off 

value tcluster,crit was defined at the 99.9th percentile corresponding to a cluster threshold of 

pcluster = .001. Finally, tcluster,empirical of all clusters in the empirical DFA exponent time course 

were compared to tcluster,crit to identify clusters of significantly increased DFA exponents. With 

this procedure, we controlled for the number of samples over the SEP time course, inter-subject 

variability, and the distribution of amplitude values of the SEP from which DFA exponents 

were derived. 

Analogously, DFA exponents of pre-stimulus alpha band activity were statistically 

tested using a t-test on group-level to compare them to the average DFA exponents of the null 

distribution, which was calculated from 1000 surrogate datasets with shuffled trial order. 

Similarly, the statistical significance of the DFA exponents of continuous alpha band activity 

was tested, however shuffling samples instead of trials to obtain DFA exponents under the null 

hypothesis. 

To test the relationship of SNR and DFA exponents, we correlated the average SNR of 

single-trial SEPs with the area-under-the-curve (AUC) of DFA exponents between 10 and 

50 ms post-stimulus, across participants using Spearman correlation. 

Furthermore, we assessed the relationship between single-trial N20 peak amplitudes and 

pre-stimulus alpha amplitudes using a linear-mixed-effects model with subject as random factor, 

estimating the fixed effect as well as the random slope of the predictor pre-stimulus alpha 

amplitude with the dependent variable N20 peak amplitude (intercepts were included both for 

the fixed and random effects). Denominator degrees of freedom were adjusted using 

Satterthwaite´s method (Satterthwaite, 1946) to derive a p value for the fixed effect of pre-

stimulus alpha amplitude as implemented in the R package lmerTest (Kuznetsova, Brockhoff, 
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& Christensen, 2017). Additionally, the relationship between N20 peak amplitudes and pre-

stimulus alpha amplitudes was assessed with a permutation-based approach in which we 

compared their Spearman correlation coefficients with those from surrogate pre-stimulus alpha 

amplitudes with the same auto-correlated structure but shuffled phases generated by Adjusted 

Amplitude Fourier Transform (Theiler, Eubank, Longtin, Galdrikian, & Doyne Farmer, 1992), 

as suggested in Schaworonkow et al. (2015). Empirical correlation coefficients were averaged 

across subjects after Fisher´s Z transformation and compared with the null distribution of 10000 

averaged correlation coefficients from the surrogate analyses to obtain the corresponding p 

value. 

Also, we correlated DFA exponents of pre-stimulus alpha activity and DFA exponents 

of the SEP. To account for the variability in the DFA exponent time course in the early SEP, 

we calculated the root-mean-square of DFA exponents in four subsequent time windows, 20 to 

25, 25 to 30, 30 to 35, and 35 to 40 ms, and computed their Spearman correlation coefficients 

with the DFA exponents of pre-stimulus alpha activity, respectively. To control for the resulting 

multiple testing, we applied Bonferroni correction. 

Finally, the relation between single-trial N20 and P35 peak amplitudes was tested using 

a linear-mixed-effects model with the dependent variable P35 peak amplitude, estimating the 

fixed effect and the random slope of the independent variable N20 peak amplitude including 

subject as random factor (intercepts were included both for the fixed and random effects). Again, 

Satterthwaite´s method (Satterthwaite, 1946) was used to derive a p value for the fixed effect.  

For all correlation analyses the significance level was set to p = .05. Correlation analyses 

as well as permutation-based statistics were performed in MATLAB (version 2017b, The 

MathWorks Inc., Natick, Massachusetts). The linear-mixed-effects models were calculated in 

R (version 3.5.1, R Core Team, 2018) using the lme4 (Bates, Mächler, Bolker, & Walker, 2015) 

and lmerTest packages (Kuznetsova et al., 2017). 
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