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Abstract 

Previous research suggests that the proximity of individuals in a social network predicts how 

similarly their brains respond to naturalistic stimuli. However, the relationship between social 

connectedness and brain connectivity in the absence of external stimuli has not been examined. To 

investigate whether neural homophily between friends exists at rest we collected resting-state 

functional magnetic resonance imaging (fMRI) data from 68 school-aged girls, along with social 

network information from all pupils in their year groups (total 5,066 social dyads). Participants were 

asked to rate the amount of time they voluntarily spent with each person in their year group, and 

directed social network matrices and community structure were then determined from these data. 

No statistically significant relationships between social distance, community homogeneity and 

similarity of global-level resting-state connectivity were observed. Nor were we able to predict social 

distance using a machine learning technique (i.e. elastic net regression based on the local-level 

similarities in resting-state whole-brain connectivity between participants). Although neural 

homophily between friends exists when viewing naturalistic stimuli, this finding did not extend to 

functional connectivity at rest in our population. Instead, resting-state connectivity may be less 

susceptible to the influences of a person's social environment.   
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1. Introduction 

Homophily is the tendency of individuals to attract and interact with those who share similar traits. 

Homophilic selection is observed for broad categorical traits such as gender, ethnicity and sexual 

orientation 1, 2, 3 but also for personal traits such as motivation 4, personality and cognitive ability 5, 

and academic achievement 6. High school and university students have been found to rearrange 

their local social networks to form ties and clusters with students who have similar performance 

levels 6 and this type of homophily has been observed even in polygenic scores for academic 

achievement 7.  

Given the predominance of social network homophily for behavioural, personality and cognitive 

traits, we can reasonably expect that this extends to similarities in brain function. In fact, neural 

responses observed during unconstrained viewing of naturalistic stimuli (movie clips) were found to 

be significantly more similar among friends compared with those farther removed in a real-world 

social network 8. This effect persisted, even after controlling for inter-subject similarities in 

demographic variables, such as age, gender, nationality and ethnicity. Social closeness also provides 

opportunities for behavioural contagion  ̶  researchers have shown that social contagion modulates 

neural representations of risk in reward-related areas and that functional connectivity between the 

caudate and prefrontal cortex accounts for individual differences in susceptibility to risk-taking 

contagion 9. 

Previously, neural similarity was assessed using intersubject correlation of blood oxygenation level-

dependent (BOLD) timeseries across functionally derived regions of the brain. This method of 

intersubject correlation evaluates the externally generated (extrinsic) stimulus-locked BOLD 

activation associated with the task but ignores the internally generated (intrinsic) component of 

BOLD activity, which is cancelled out when correlating across participants 10. Therefore, it remains 

unclear whether internally-generated brain activity similarly exhibits neural homophily between 

friends.  
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Patterns of brain connectivity elicited from internally generated resting-state BOLD activation are 

mirrored by activation networks found under explicit task-based activation 11. For example, resting-

state sub-networks have been shown to correspond with externally generated activation from 

attention, speech, reasoning, emotion, memory and social cognition tasks 11, 12. Resting-state 

connectivity is also associated with non-cognitive measures of motivation. Grit and growth mind-set 

were found to be associated with functional connectivity between ventral striatal and bilateral 

prefrontal networks important for cognitive-behavioural control 13. Connectivity at rest also predicts 

personality. Connectome-based predictive modelling has been used to successfully predict trait-level 

measures of personality, including openness to experience 14, neuroticism and extraversion 15. 

Others have found that global connectivity of the left prefrontal cortex predicts individual 

differences in fluid intelligence and cognitive control 16 and a clinical measure of attention can be 

predicted from resting-state connectivity in a network associated with sustained attention 17. These 

findings highlight the utility of resting-state connectivity for identifying individual differences in 

cognition, behaviour and personality, all of which have exhibited homophily within social networks. 

Researchers have also linked internally generated brain connectivity with a number of social 

behaviours. For example, resting-state sub-networks for motor, visual, speech and other language 

functions have been associated with the quality and quantity of social networks in older adults 18. 

Others have demonstrated positive associations between functional connectivity and social network 

size and embeddedness 19. There is also evidence for stronger amygdalar connectivity with brain 

networks subserving perceptual and affiliative behaviours in healthy adults who foster and maintain 

larger and more complex social networks 20. Social network size may also dictate the degree of 

connectivity within the default mode network (DMN). The DMN overlaps considerably with regions 

important for theory of mind and social cognition 12, 21 and has been found to exhibit greater 

coupling with anterior cingulate and dorsolateral prefrontal cortex in those with larger social 

network size 22. This striking overlap between the DMN and regions involved in social cognition 

infers a tendency for entertaining thoughts about oneself and others during rest 23. Despite 
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investigations into the relationship between internally generated connectivity patterns and social 

behaviour, however, no study has investigated whether close social relationships are associated with 

similarities in resting-state connectivity.  

In the current study, we collected resting-state fMRI data of pupils attending a single school, along 

with social network (friendship) information between them. This unique data allow us to test the 

hypothesis that friends exhibit greater similarity in internally generated connectivity compared with 

those farther removed in a school-based social network. We tested this hypothesis with a variety of 

methods based on resting-state network connectivity — whole-brain correlation, graph-theoretic 

metrics, and machine learning. We evaluated similarities in whole-brain connectivity as well as 

resting-state subnetworks associated with motivational and social behaviours, which are relevant to 

schoolchildren.  

 

2. Methods 

2.1. Participants 

For the social network component of the study, individuals 12-14 years of age in years 8 (cohort 1: 

n=59; cohort 2: n=51) and 9 (cohort 3: n=65) were recruited from a private girls’ day and boarding 

school in the United Kingdom (as part of a larger study). Participants were recruited during 2017 and 

2018 from total year group pools of 62 (cohort 1), 53 (cohort 2) and 75 (cohort 3) students, 

corresponding to inclusion rates of 95%, 96% and 87%, respectively.  

The study was approved by the University Research Ethics Committee. All students gave informed 

written assent to take part in the study and consent was obtained from parents.  

Individuals from cohorts 1, 2 and 3 were also invited to take part in the functional magnetic 

resonance imaging (fMRI) component of the study. Twenty-eight students from cohort 1, 17 

students from cohort 2 and 34 students from cohort 3 were recruited into the fMRI study (cohorts 1-
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fMRI, 2-fMRI and 3-fMRI, respectively); of these, 5 participants from cohort 1-fMRI and 6 from 

cohort 3-fMRI had unusable data due to artefacts caused by dental braces. Children with braces 

were excluded from cohort 2-fMRI at the time of screening. This resulted in the final inclusion of 68 

students in the fMRI component of the study, consisting of 23 (cohort 1-fMRI, 12-13 years of age), 

17 (2-fMRI, 12-13 years of age) and 28 (3-fMRI, 13-14 years of age) students in respective cohorts.  

The fMRI sample affords a total of 5,066 dyads to examine potential neural homophily. Currently, 

there is no software available to perform a statistical power analysis with the mixed-effects model 

we specified to test our hypothesis with the dyadic data (see section 2.6. for linear mixed effects 

model specification); as such, we created an in-house simulation code to perform a power analysis. 

The simulation results showed that our sample size is sufficient to detect very small effects of social 

distance on similarity. Specifically, the study was powered to detect a change in z standardised 

similarity score of at least .08 with the one unit change in social distance at a power of 80%, and a 

change in z standardized similarity score of .10 at a power of 95%. As previous neuroimaging work 

identified a difference of -.2 to -.23 in z standardized similarity scores between social distances 1 to 2 

and 2 to 3, respectively 8, we consider our sample size to be sufficiently powered to detect 

meaningful changes in similarity score between our social distance units. 

Exclusion criteria pertaining to all groups consisted of standard safety-related contraindications for 

MRI. All students gave informed written assent and one parent per child gave informed written 

consent for their child to participate.  

2.2. Data acquisition 

The social network data were acquired in class using an online survey administered with 

SurveyMonkey (SurveyMonkey Inc., San Mateo, California, USA).  Social network data were acquired 

in October and November of 2017 (cohorts 1 and 3) and 2018 (cohort 2), one-to-two months after 

the start of the academic year. Students had been registered at the school for a maximum of one 

(cohorts 1 and 2) or two (cohort 3) years when the survey took place. A roster-and-rating method 
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was used to assess the social networks of students. Specifically, participants were provided with a 

list of all students in their year group and asked to consider the question: “How much time do you 

spend interacting with this student?”. Students answered on a five-point Likert scale, which included 

options: “None”, “A rare amount”, “Some”, “More than some” and “Most”. Participants were told to 

consider time spent voluntarily interacting with other students but not time spent in planned seating 

situations, allocated group work or in classes without opportunities to talk amongst themselves. 

Investigators were blinded to the identity of students. 

In addition, participants were asked to nominate up to five individuals from their cohort with whom 

they considered themselves to be “close with” 24. Peer nominations and roster-and-rating methods 

measure different aspects of peer interactions. Whereas rating assesses general acceptance of 

peers, nomination is thought to encourage the naming of “best friends” 25. In the main text, we 

report results from roster-and-rating data only. However, nomination data provided the same 

conclusion as roster-and-rating data (see supplementary figures S1 and S2). Participants were asked 

to report on social interactions within their own year group only.  

Structural and resting-state functional MRI data were acquired using a Siemens Magnetom 

Prisma_fit 3T scanner. All participants were imaged using a 32-channel head coil. A structural T1-

weighted image was acquired using an MPRAGE sequence 26 with repetition time (TR) 2300 ms; echo 

time (TE) 2.29 ms; inversion time 900 ms; flip angle 8°; in-plane acceleration (GRAPPA) factor of 2; 

field of view (FOV) 240 mm; voxel size 0.9 x 0.9 x 0.9 mm. 

Resting-state functional images were acquired over 10 minutes using the Siemens two-dimensional 

multiband gradient-echo echo planar image (EPI) sequence with TR 1500 ms, TE 30 ms; multiband 

slice acceleration factor 4; GRAPPA 2; flip angle 66°; echo spacing 0.93 ms; EPI factor 96; phase-

encode direction posterior >> anterior; slices 68; volumes 400; FOV 192 mm; voxel size 2 x 2 x 2 mm. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/788208doi: bioRxiv preprint 

https://doi.org/10.1101/788208
http://creativecommons.org/licenses/by-nc-nd/4.0/


During resting-state data acquisition, participants were asked to lie still with eyes open and look at a 

blank screen in front of the scanner. Instructions were given to relax and think of nothing in 

particular.  

 

2.3. Social network characterisation 

Social network analysis was performed using the igraph package in R 27, 28. Data were included only 

for individuals who took part in the social network survey; any outgoing social ties with those not 

participating in the survey were removed. Mutually-reported (reciprocal) social ties are deemed to 

be more robust indicators of friendship than unreciprocated ties. Therefore, an unweighted, 

undirected graph containing only mutual social ties was used to determine social distance and 

community affiliation.  

Social network data were processed as follows: Roster-and-rating data (5-point scale) were binarised 

using a threshold of 4 (i.e. only instances in which students spent “more than some” or “most” of the 

time with another student were included). This threshold was selected to mitigate central tendency 

bias often reported with Likert-type questionnaires 29. Any non-mutual connections were then 

removed (i.e. if subji gave subjj a rating of 4 or greater but subjj gave subji a rating below 4, the 

connection would be lost). This yielded an unweighted (binary), undirected (reciprocal) adjacency 

matrix for each cohort, from which social networks graphs were derived. Adjusting the distance 

threshold to 5 (I spend “most of my time” with this person) or using non-reciprocated (directed) 

social ties (rather than mutual ties) did not change the overall results of the analyses (see 

supplementary figures S3-S6).  

The distance between two individuals in a social network is an important predictor of behavioural 

tendencies 30 and may relate to shared patterns in brain function 8. Social distances in the current 

study were relatively short compared with previous literature (e.g. Parkinson et al. (2018) reported a 
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network diameter of 6 using only mutually reported social ties compared to a maximum diameter of 

4 in the current study). The highly interconnected nature of our networks may affect how social 

distance and brain function similarities are associated with one another. Therefore, we also 

evaluated dyadic similarities as a function of community affiliation. By splitting social networks into 

smaller friendship communities and evaluating the differences in brain similarity between those 

inside and outside each community, we measured relationships between neural homophily and 

social behaviour at a friendship group level.  

Measures of social proximity (social distance and community affiliation) were determined separately 

for each cohort. Social distance was calculated as the shortest path length between each pair of 

nodes (students) in the network. A dyad (student pair) with a social distance (shortest path length) 

of 1 represented a relationship in which both students had said they spent “more than some” or 

“most” of their time with the other student (i.e. they were friends). Social distances of 2 and 3 

represented dyad pairs in which students did not possess a reciprocal friendship (i.e. did not have a 

mutual rating of “more than some” or “most” of the time) but reported a mutual friend or friend of 

a friend, respectively. 

Community structure was ascertained using the Louvain method 31. This method implements multi-

level modularity optimisation to subdivide the network into non-overlapping groups of nodes that 

maximise the number of within-group (within-module) friendships (edges) and minimised the 

number of between-group friendships for each cohort. 

 

Each cohort was described in terms of its network characteristics, in particular, its network diameter, 

modularity, mean path length, reciprocity and density. Network diameter is the length of the longest 

geodesic distance between two nodes in the network, i.e. the number of edges between subji and 

subjj when these individuals are the farthest from each other in the network. 
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Modularity (𝑄) is a measure of how easily a network segregates into smaller subnetworks and is 

defined by the equation:  

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −  

𝑘𝑖 ∗ 𝑘𝑗

2𝑚
)

𝑖𝑗

𝛿(𝑐𝑖, 𝑐𝑗) 

where 𝑚 is the number of edges in the network, 𝐴𝑖𝑗 is the element of the 𝐴 adjacency matrix in row 𝑖 

and column  𝑗, 𝑘𝑖 is the degree (number of edges associated with a node) of 𝑖, 𝑐𝑖 is the community to 

which 𝑖 belongs and 𝛿(𝑐𝑖, 𝑐𝑗) is 1 if 𝑐𝑖 = 𝑐𝑗 and 0 otherwise. Nonzero values of 𝑄 represent 

deviations from randomness; a value above 0.3 is an indicator of significant community structure in 

a network 32. 

Mean path length is the mean shortest path length (number of edges separating a pair of nodes) 

between all nodes in the network. Reciprocity defines the proportion of connections in a directed 

graph that are mutual connections. It is otherwise defined as the probability that the counterpart (j 

to i) of a directed edge (i to j) is included in the graph. Graph density is the ratio of actual 

connections (edges) to possible connections in the graph; larger values denote more densely 

connected networks. 

2.4. Functional MRI data analysis 

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool, version 6.0 33) part of 

the FMRIB Software Library (FSL; Oxford, United Kingdom) 34, 35. Registration of functional images to 

high resolution structural and Montreal Neurological Institute (MNI-152) standard space images was 

carried out using FLIRT 36, 37. Registration from high resolution structural to standard space was then 

further refined using FNIRT nonlinear registration 38, 39.  

The following pre-statistics processing was applied; motion correction using MCFLIRT 37; non-brain 

removal using BET 40; multiplicative mean intensity normalization of the volume at each time point 

and high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 
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sigma=50.0s). Independent components analysis (ICA)-based exploratory data analysis was carried 

out using MELODIC 41, in order to investigate the possible presence of unexpected artefacts. FIX - 

FMRIB’s ICA-based Xnoiseifier 42, 43 was used to auto-classify ICA components into “good” and “bad” 

components following hand-classification and training using a sample of 10 subjects’ data (4 from 

cohort 1- fMRI and 3 each from cohorts 2-fMRI and 3-fMRI, all randomly selected). “Bad” 

components were removed from the data and clean data were registered to standard space using 

warping parameters determined by FEAT. 

Analysis of pre-processed data is illustrated in Figure 1. First, motion-corrected fMRI data were 

divided into 272 parcels using a whole-brain parcellation scheme 44. This parcellation scheme 

combines parcels from the Human Brainnetome Atlas 45, a modification of the Desikan-Killiany (DK) 

atlas 46 and the probabilistic MR atlas of the human cerebellum 47. Mean blood oxygen level 

dependent (BOLD) timeseries were extracted from each of the 272 parcellated regions (nodes). 

Next, the Pearson’s correlation coefficient (connection strength) between BOLD timeseries was 

determined for each pair of nodes in Matlab 2016a (MathWorks, USA). This produced a weighted, 

undirected whole-brain matrix of functional connectivity for each participant. All self-self nodal 

connections were removed prior to further analysis. 

Z transformations of weighted, undirected whole-brain matrices were then used for inter-subject 

correlations. Data from each participant were compared with every other participant from the fMRI 

cohort using a Pearson’s correlation. For example, the Z-transformed whole-brain matrix of subji was 

vectorised and correlated with the (vectorised) Z-transformed whole-brain matrix of subjj, then subjk, 

then subjl, and so on. This method provides a measure of the similarity of connectivity strength in 

whole-brain networks within participant pairs. Prior to further analysis, correlation strengths were 

standardised within each cohort to have a mean of 0 and a standard deviation of 1. 

Evaluating similarities in resting-state connectivity at a whole-brain level is informative but the 

inclusion of brain regions unlikely to impact or be impacted by social connectedness could lead to 
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losses in signal to noise. Focusing on smaller groups of nodes, related to cognitive performance and 

social interaction would therefore be expected to increase functional similarities associated with 

friendship. Thus, in addition to whole-brain resting-state connectivity, we evaluated functional 

resting-state connectivity for subnetworks relevant for social and motivational processing. These 

included the DMN 48, salience network 49, and left and right frontoparietal networks (lFPN and rFPN, 

respectively) 50. DMN and FPNs were extracted from 11. Z statistic images of ICA maps were then 

binarised using a threshold of z=4 and warped to 1 mm MNI-152 standard space. Our threshold of 

z=4 is larger than that reported by 11, who adopted a threshold of z=3 for presentation of resting-

state subnetworks. Our larger z threshold was chosen to increase the probability that brain nodes 

overlapping DMN and FPN spatial maps were truly part of these networks. The salience network was 

derived using the online meta-analysis tool Neurosynth.org 51 (accessed January 2019; seed 

positioned in the anterior insular [x=36, y=18, z=4]). The salience network was binarised using a 

threshold of 0.3, based on results from previous research 52. The overlap between each resting-state 

subnetwork and the whole-brain parcellation was determined by applying a binarised mask of the 

resting-state subnetwork over whole-brain parcellation data. Nodes from the whole-brain 

parcellation that overlapped with at least 50 voxels from the resting-state subnetwork were used to 

partition the whole-brain node-to-node matrix. A graphical depiction of the analysis is provided in 

the supplementary materials (figure S7).  

 

2.5. Brain network characterisation 

Graph metrics of functional connectivity were derived from whole-brain weighted, undirected 

matrices using the Brain Connectivity Toolbox 53 in Matlab (2016a). Analysis steps are provided in 

Figure 2. Modularity and community structure were calculated using the Louvain method 31, 

assigning higher values to positively, compared with negatively weighted connections.  Modularity 

was defined as: 
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𝑄∗ = 𝑄+ +
𝑣−

𝑣+ + 𝑣−
𝑄− 

=
1

𝑣+
∑(𝑤𝑖𝑗

+ − 𝑒𝑖𝑗
+)

𝑖𝑗

𝛿(𝑀𝑖, 𝑀𝑗) −
1

𝑣+ + 𝑣−
∑(𝑤𝑖𝑗

− − 𝑒𝑖𝑗
−)

𝑖𝑗

𝛿(𝑀𝑖, 𝑀𝑗)   

where 𝑄+ is modularity from positively weighted connections, 𝑄− is modularity from negatively 

weighted connections,  𝑣+ is the sum of all positive connection weights of 𝑖, 𝑣− is the sum of all 

negative connection weights of 𝑖, 𝑤𝑖𝑗
+ is the present within-module positive connection weights, 𝑤𝑖𝑗

− 

is the present within-module negative connection weights,  𝑒𝑖𝑗
+ is the chance expected within-

module positive connection weights, 𝑒𝑖𝑗
− is the chance expected within-module negative connection 

weights and 𝛿(𝑀𝑖, 𝑀𝑗) is 1 if 𝑖 and 𝑗 are in the same module and 0 otherwise. 

The absolute difference in brain modularity within a dyad pair (i.e. between subji and subjj) was 

calculated for every pair of dyads in a social network. Differences were then standardised within 

each cohort to have a mean of 0 and standard deviation of 1. 

Nodal strength (a node-level measure of centrality, the importance of a node in its network) and 

diversity (a node-level measure of integration that takes into account the strength of a node within 

its own module) were also calculated using asymmetric values for positively and negatively weighted 

connections, as previously described by Rubinov & Sporns (2011). Strength was defined as: 

𝑆𝑖
′∗ = 𝑠𝑖

′+ − (
𝑠𝑖

−

𝑠𝑖
+ + 𝑠𝑖

−)𝑠𝑖
′− 

where 𝑠𝑖
′+ is the normalised sum of positive connection weights associated with node 𝑖, and 𝑠𝑖

+  and  

𝑠𝑖
− are the raw sums of positive and negative connections weights, respectively, associated with 

node 𝑖. 

Diversity was defined as: 

ℎ𝑖
∗ = ℎ𝑖

+ − (
𝑠𝑖

−

𝑠𝑖
+ + 𝑠𝑖

−)ℎ𝑖
− 
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and  

ℎ𝑖
± =

1

log 𝑚
∑ 𝑝𝑖

±

𝑢∈𝑀

(𝑢) log 𝑝𝑖
±(𝑢)   

where 𝑝𝑖
±(𝑢) =  

𝑠𝑖
±(𝑢)

𝑠𝑖
± , 𝑠𝑖

±(𝑢) is the strength of node 𝑖 within module 𝑢 (the total weight of 

connections of 𝑖 to all nodes in 𝑢) and 𝑚 is the number of modules in modularity partition 𝑀. 

Nodal strength and diversity data from each participant were compared with every other participant 

from the fMRI cohort using a Pearson’s correlation. Prior to further analysis, correlation strengths 

were standardised within each cohort to have a mean of 0 and a standard deviation of 1. 

 

2.6. Dyadic similarities in functional connectivity as a function of social proximity 

To test our hypothesis, we examined whether similarities in resting-state connectivity and brain 

network characterization were explained by social proximity. In this set of analyses, each student 

dyad (pair of students) in the fMRI cohort was described by two independent variables: social 

distance (i.e. shortest path length between the pair within the full year group cohort) and 

community affiliation (i.e. whether or not two students belonged to the same community, 

determined using the Louvain community detection method). Dependent variables were similarities 

in whole-brain connectivity, resting-state subnetwork (DMN, salience network, lFPN and rFPN) 

connectivity, nodal strength, nodal diversity (each determined by the Pearson’s correlation 

coefficient), and modularity (determined by the absolute difference between members in the dyad).  

Using pairs of students (dyads) as the unit of analysis creates dependence in the data, caused by the 

involvement of every student in multiple dyads (cross-nesting) 54 55. Using ordinary least-square 

methods in such data potentially increases Type-1 error rates. We accounted for this dependence 

structure by including each dyad member (student) as a random variable in a linear mixed effects 
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(LME) model with crossed random effects (see 56, for a similar model specification). Any subject-

specific effects on the dyadic outcomes are therefore accounted for in the model 57.  

More specifically, the LME model is specified as: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗 =  𝛽00 + 𝛽01 ∗ 𝑠𝑜𝑐𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 + 𝑠𝑢𝑏𝑗𝑖 + 𝑠𝑢𝑏𝑗𝑗 + 𝑒𝑖𝑗 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗  is the similarity in brain function between students 𝑖 and 𝑗, where 𝛽00 is the intercept, 

and 𝛽01 represents the relationship between social distance and brain similarity; 𝑠𝑢𝑏𝑗𝑖 and 𝑠𝑢𝑏𝑗𝑗 are 

crossed random effects (i.e. student-specific effects) of students 𝑖 and 𝑗, respectively, and 𝑒𝑖𝑗  are 

residuals. We posited a Gaussian distribution for the random effects and residuals. No distribution 

assumption was made for social distance. Where social network data were described using 

community affiliation, 𝑠𝑜𝑐𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗  in the above equation was replaced with 

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗  (i.e. whether or not two students belong to the same friendship 

community, as determined by the Louvain method).  

Data were analysed using the lme4 package 58 in R. Dependent variables included similarities in 

whole-brain, resting-state subnetwork and graph theory measures of connectivity between students 

(dyads) in each cohort. For each dependent variable, we tested a model with social distance as the 

independent variable, and tested another model with community affiliation as the independent 

variable.  

We also tested a model with random slopes (i.e. random slopes of the subjects were added to the 

model above). This model failed to converge in most of the analyses. The omission of random slopes 

could make the statistical test less conservative 59, 60. However, as our results all showed non-

significant effects in the model without random slopes, we decided not to pursue the model with 

random slopes any further. 

Effects of demographic data as well as their interactions with social distance or community affiliation 

were also included in a second series of models to determine whether boarding status (i.e. whether 
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students matched in their boarding status [boarding or day student]) and ethnicity (i.e. whether or 

not students reported belonging to the same ethnic group) affected the relationship between social 

proximity and similarity in resting state connectivity between students. As only one student from 

each fMRI cohort was left-handed, we elected not to include handedness as a covariate. 

Cohorts were analysed separately to preserve the independence of the three social networks. Then, 

we integrated the regression coefficients of the LME models from three cohorts using a random-

effect meta-analysis with the Metafor package 61 in R.   

2.7. Data-driven predictive model of social proximity from neural similarity 

In the previous analysis, we assessed the overall similarity of the whole brain network or 

subnetworks between pairs of students and examined whether social distance is related to the 

overall similarity. Although this analysis gives us the most straightforward test of our hypothesis, the 

analysis does not address the possibility that social distance is represented by the collection of local-

level similarities (i.e. similarity between a specific pair of nodes). To examine whether any local-level 

similarity in the brain functional connectivity encodes social distance, we employed regularised 

regression techniques to predict social distance between two students based on similarities in their 

functional brain connectivity of all pairs of nodes. Specifically, we computed the absolute difference 

in connection strength for each edge in the 272 node brain network (i.e. each node-to-node 

connection) for every student dyad in the fMRI cohort. This yielded 𝑁𝑛𝑜𝑑𝑒𝑠 ∗  (𝑁𝑛𝑜𝑑𝑒𝑠 –  1)/2 =

36,856 similarity (absolute difference) measures for each student dyad, where 𝑁𝑛𝑜𝑑𝑒𝑠 is the 

number of nodes in the whole-brain parcellation (i.e. 272). We then employed elastic-net 

regularised linear regression to predict social distance of student dyads from the 36,856 similarity 

measures of resting-state functional connectivity. This regression technique has been used to 

successfully predict a variety of outcomes from MRI data, including openness to experience (a Big 

Five personality trait) 14, psychosis 62, and progression to Alzheimer’s disease in people with mild 

cognitive impairment 63, demonstrating its ability to cope with the high dimensionality of MRI data. 
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Elastic-net regression combines penalty features of lasso and ridge regression techniques to shrink 

the coefficients of some regressors toward zero to deal with high dimensional data. Whereas lasso 

regression can shrink unnecessary regressors to zero and thereby reduce the number of predictors, 

ridge regression retains all regressors for inclusion in the model. Both lasso and ridge regression 

techniques have been shown to perform well when dealing with high-dimensional data under 

various conditions 64. Combining the two approaches, elastic-net regression allows for adjustment of 

the lasso-to-ridge ratio (α), providing greater opportunity for better model fits 65.  

Elastic-net regressions of connectivity and social distance data were conducted in R using the glmnet 

package 66. Three regression models were trained using data from two fMRI cohorts each (see Table 

1). One fMRI cohort’s data were withheld during training so that the performance of the regression 

model could be evaluated using a previously unseen set of data.  

The best-performing regression model for each training set was determined by optimising the tuning 

parameters λ and α (see Table 1). λ is a tuning parameter for the shrinkage penalty used to adjust 

the regression coefficients in the elastic-net regression. When λ = 0, the penalty term has no effect 

but as λ tends toward infinity, the shrinkage penalty grows, and the regression coefficient estimates 

approach zero. The optimal value of λ for each regression model was determined using a 10-fold 

nested cross-validation within the training data. The largest value of λ such that the cross validation 

error was within one standard error of the minimum was selected and the model was re-fit using all 

available observations.  

The tuning parameter α dictates the ratio of ridge to lasso in the elastic-net regression. α values 

between 0 and 1 (with iterations of 0.1) were evaluated for each regression model. The best 

performing α value was chosen based on the smallest root mean squared error (RMSE) between 

predicted and observed values of social distance in the training data. Best-performing α values were 

α = 0 (pure ridge regression) for models 1 & 2 and α = 1 (pure lasso regression) for model 3. The 
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performance of the optimised regression model was then evaluated by predicting the social distance 

of dyads in the previously unseen testing dataset.    

After obtaining the predicted social distance scores from the elastic-net regression models, we 

evaluated the accuracy of predictive models by examining the relationship between the predicted 

social distance and the observed (actual) social distance. As before, there is a dependency of the 

data structure, owing to the involvement of each student in multiple dyads, potentially inflating the 

test statistics assessing statistical significance of the accuracy scores. To account for the dyadic 

nature of the data, we again used an LME model to obtain p value using the observed social distance 

as the dependent variable and the predicted social distance as the independent variable, with 𝑠𝑢𝑏𝑗𝑖 

and 𝑠𝑢𝑏𝑗𝑗 included as crossed random effects.  

Finally, to evaluate the overall predictability of social distance using similarity in resting-state 

connectivity, we conducted a meta-analysis of LME models from the three elastic-net regressions 

(models 1, 2 and 3). A positive beta weight with 95% confidence interval excluding zero would 

indicate that prediction of social distance from neural similarity is feasible.  

3. Data availability 

The datasets generated and analysed during the current study are available from the corresponding 

author on reasonable request.  

4. Results 

4.1. Participant and network characteristics 

Demographic data for each cohort are presented in Table 2. fMRI cohorts were relatively well 

matched to full year group cohorts for most demographic characteristics. Network characteristics for 

each cohort are presented in Table 3. Relatively higher modularity and mean path length in cohort 3 

suggest that this network was more segregated and less well integrated compared with the younger 

two cohorts (cohorts 1 and 2). 
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4.2. Social network characterisation 

The social networks for each cohort are depicted in Figure 3; fMRI cohorts were well distributed 

within whole year group samples and include both highly influential and less influential students 

(determined by Eigenvector centrality). Community detection analysis identified four communities 

(modules) in cohorts 1 and 3 and three communities in cohort 2 (Figure 4). 

 

4.3. Dyadic similarities in functional connectivity as a function of social distance 

Similarities in functional connectivity were assessed using LMEs on a whole-brain network level as 

well as within individual resting-state subnetworks for each fMRI cohort. No statistically significant 

relationship between social distance and similarity in functional brain connectivity was observed for 

any fMRI cohort at any resting-state network level (see Figure 5 for example plot). Beta weights 

(slopes) and 95% confidence intervals for LME models are presented in Figure 6a. Corresponding t 

and p values for individual tests are provided in the supplementary materials (table S1). Meta-

analyses of LME models did not reveal any significant effects of social distance on the degree of 

functional brain similarity between students. Likewise, there was no relationship between the 

similarity in strength, diversity or modularity of students’ brains and their distance from one another 

in the social network (Figure 7a). These results indicate that the minimum path length between two 

individuals in a social network is not associated with similarities in brain function at rest, either at a 

whole-brain network or subnetwork level.  

 

4.4. Dyadic similarities in functional connectivity as a function of community affiliation 

Students’ relationships were then defined by their affiliation to different communities (friendship 

groups), derived using the Louvain method for community detection. Dyads including students from 
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the same community were scored 1 and dyads including students from different communities were 

scored 0. LME models predicting brain similarity as a function of community affiliation did not 

support an effect of friendship grouping as a predictor of connectivity similarity. This was true for 

whole-brain and resting-state subnetwork connectivity (Figure 6b), as well as for graph measures of 

connectivity (Figure 7b). These results support those of the social distance analysis. They indicate 

that the similarity in resting brain function is no greater between individuals in the same social 

community (which we used here to estimate friendship groups) than those spanning different 

communities.  

Inclusion of demographic variables (i.e. similarities in ethnicity and boarding status) in LME models 

did not affect the statistical significance of the overall findings (see table S2 for t and p values of 

individual tests).  

 

4.5. Prediction of social distance based on node-to-node neural similarities 

Using elastic-net regression, we sought to determine whether similarities in node-to-node 

connectivity within the brain could predict social distance between students. Data were split into 

training and testing sets such that each cohort was used to train two models and test the predictive 

validity of a third model. Assignments of training and testing sets for the three models are provided 

in Table 1. Optimal parameters (i.e. α and λ values) for each model were determined using training 

data; these parameters were then used to predict social distance in the testing set (to which the 

model was naïve). 

RMSE quantifies how much a set of predicted values differ from their observed counterparts by 

measuring the standard deviations of the prediction errors. Lower values indicate smaller errors. 

RMSEs were 0.60, 0.65 and 0.82 for models 1, 2 and 3, respectively. Correlations for the observed vs 

predicted distance with the p values of the beta weights obtained from the LMEs between each pair 
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of participants are presented in Figure 8a. Meta-analysis of LME models showed poor predictive 

power of models to classify social distance of dyads based on whole-brain functional connectivity 

(Figure 8b). Our meta-analysis results suggest that our predictive models will not extrapolate well to 

predict social distance in previously unseen social networks. 

 

5. Discussion 

Our results provide little evidence for homophily of internally generated (resting-state) functional 

brain connectivity in school-based social networks. Neither whole-brain nor subnetwork-based 

analysis (i.e. subnetworks relevant to social and motivational processing) of resting-state 

connectivity resulted in significant differences in similarity between friends and those farther 

removed in their social network. Likewise, graph theoretical measures of brain connectivity, 

including modularity, diversity and strength, were no more similar among friends than other more 

distantly connected pairs of students. Results from elastic-net regression, using the whole collection 

of local-level connectivity to predict social distance, also provide minimal evidence for similarity in 

resting-state functional connectivity among friends. Our findings were robust across individual 

cohorts of students and demonstrated a consistent non-significant result for homophily of resting-

state connectivity. The inclusion of a data-driven approach to analysis (elastic-net regression) 

suggests our lack of evidence for the hypothesis is not due to noise from irrelevant variables or poor 

a priori selection of resting-state subnetworks for dimensionality reduction. Likewise, results are not 

due to poor sampling from the overall population. Students participating in the fMRI component of 

the study exhibited demographic characteristics representative of their original class cohorts, from 

which 87% - 96% of enrolled students provided social network data.  

Current literature supports a role for social closeness in synchronisation of neural activation. For 

example, students who report higher social closeness to one another who also engage in silent eye 

contact prior to class exhibit stronger pairwise brain-to-brain synchrony during class activities 
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compared with those less close who engage in eye contact 67. This increased synchronisation 

between friends is evident even when friends are in the absence of one another; using functional 

MRI of individual students in a real-world social network, Parkinson and colleagues (2018) 

investigated synchronisation of neural activation during video clip viewing and found evidence for 

homophily at the neural response level. Brain regions where response similarity was associated with 

social network proximity included areas implicated in motivation, learning, affective processing, 

memory, attention, theory of mind and language processing 8, some behavioural traits of which have 

exhibited homophily in previous non-imaging studies 4, 5, 68, 69. These results suggest that, at least in 

terms of cognitive processing, similarities in behaviour relate to similarities in brain function. 

In contrast, the current study examined neural homophily during a resting state scan. Our findings 

suggest that neural homophily observed in previous work may be specific to stimulus-evoked 

activation, and may not extend to stimulus-free intrinsically-generated brain activities. Importantly, 

stimuli used by Parkinson and colleagues (2018) included video clips of comedy, debates and 

documentaries, intended to evoke social and emotional responses from participants. The homophily 

observed in their study may therefore be dependent on cognitive processes important for social 

interaction. This would also explain how our resting-state experiment, which was relatively devoid of 

social context, failed to elicit homophilic outcomes.  

It should be noted that, in a stimulus-free environment, i.e. during rest, subjects are free to mind 

wander, providing no time-locked cue with which to directly compare activation between two 

subjects. Instead, simultaneous activation of spatially disparate brain regions is evaluated within 

each subject to identify networks of brain regions that exhibit highly correlated patterns of activity. 

Therefore, in the current study, we evaluated the correlational strength between every node in the 

brain for each individual participant and correlated the whole-brain or subnetwork connectivity 

pattern between every pair of participants in the social network. This was a powerful approach to 

evaluating dyadic similarities in resting-state brain function in a social network, but at the same 
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time, this novel approach makes it difficult to directly compare the current findings with the 

previous one 8, which focused on the similarities of the activation pattern rather than the pattern of 

brain functional connectivity. Given the evidence that the architecture of task-based networks 

closely resembles networks seen at rest 70, it may be an interesting future inquiry to examine 

whether neural homophily is observed in the brain functional network connectivity triggered by 

external cues and stimuli.  

A notable difference between our sample population and that of Parkinson et al. is the age at which 

social network and imaging data were collected (schoolchildren vs undergraduate students). 

Differences in DMN connectivity have been reported between adults and children 71 as well as within 

individuals throughout early adolescence 72. In addition, researchers have found associations 

between pubertal development and strength of intrinsic functional connectivity 73. Younger samples 

may therefore exhibit less intrinsic network homophily than more mature samples due to greater 

brain variability between subjects. 

The current study benefits from several strengths. Most notably, we evaluated homophily of resting-

state connectivity in three different social networks comprising students of the same gender and 

similar age and education level, eliminating by design these demographic variables as possible 

sources of confound for neural homophily. Cohorts were evaluated as independent samples and 

then as individual studies in meta-analyses, ensuring sufficient statistical power of the overall 

analysis to find neural homophily. Homophily based on cognitive ability has been reported at a 

higher rate among girls compared with boys 5 and polygenic scores for educational achievement are 

more homogenous in women’s female social networks compared with men’s male social networks 7. 

As intelligence and cognitive control are reflected in the resting-state connectivity 16, we therefore 

anticipated that an all-female sample would exhibit stronger homophily of resting-state connectivity 

than a mixed-gender or all-male sample. Based on these attributes, our study was well designed to 

identify homophily at the resting-state connectivity level. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/788208doi: bioRxiv preprint 

https://doi.org/10.1101/788208
http://creativecommons.org/licenses/by-nc-nd/4.0/


These results contribute to the homophily literature by suggesting that homophily at the neural level 

may require some external stimulus that engages individuals in social or cognitive thoughts before 

synchronisation or similarities in connectivity are evident. To further our understanding of how our 

brain functioning is shaped by social factors, future research should examine the exact conditions 

under which neural homophily can be observed.  
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Figure 1. Processing pipeline for determining similarity of resting-state functional connectivity 

between participants. Mean blood oxygen-dependent (BOLD) timeseries data for each brain parcel 

were correlated within participants and then each participant’s and then whole-brain correlation 

matrices were compared between participants. 
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Figure 2. Processing pipeline for graph metric analysis of resting-state data. Community detection 

was performed on each participant’s brain data to determine modules (communities) from which 

further graph metrics could be analysed. Brain modularity, nodal strength and nodal diversity were 

determined for each participant and compared between all participants in the MRI cohorts. 
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Figure 3. Social networks of cohorts 1, 2 and 3, depicting reciprocal friendships. Nodes represent 

students; lines (edges) represent mutually reported social ties where students rated the amount of 

time they spent with each other as "more than some" or "most" of the time. FMRI cohorts are 

depicted in green; students who provided information about their social interactions but were not 

included in the fMRI cohort are shown in grey. The size of each node depicts the Eigenvector 

centrality of that student. Eigenvector centrality is a measure of the relative importance/influence of 

a node in the network. Nodes with high importance (those who are themselves well-connected and 

are connected to others who are well-connected) have higher centrality (these are the largest nodes 

in the network), those with low importance have low centrality (these are the smallest nodes in the 

network). 
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Figure 4. Community structure of each cohort, determined using the Louvain method 31. Community 

detection was used to estimate “friendship” groups within each cohort. The fMRI study included 

students from all communities. 
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Figure 5. Example plot of standardised correlation strength of whole-brain connectivity between 

dyad members (y axis), as a function of social distance (x axis). Data here are for whole-brain 

connectivity similarities for all three cohorts; threshold was set at a distance of 4 (I spend “more 

than some” of my time with this person). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/788208doi: bioRxiv preprint 

https://doi.org/10.1101/788208
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. a) LME model outcomes and meta-analyses of functional connectivity similarity as a 

function of social distance. b) LME model outcomes and meta-analyses of functional connectivity 

similarity as a function of community affiliation. Whole-brain and RESTING STATE NETWORK data are 

shown for all three cohorts. Circles and bars represent beta weights (slopes) and 95% confidence 

intervals (95% CI), respectively, for individual cohorts. Triangles represent beta weights for meta-

analyses. Relative confidence in the effect is represented by the size of the circle/triangle; colours 

represent brain networks. 
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Figure 7. a) LME model outcomes and meta-analyses of similarities in graph theory measures of 

nodal strength, nodal diversity and brain modularity as a function of social distance. b) LME model 

outcomes and meta-analyses of similarities in graph theory measures of nodal strength, nodal 

diversity and brain modularity as a function of community affiliation. Data are shown for all three 

cohorts. Circles and bars represent beta weights (slopes) and 95% CI, respectively, for individual 

cohorts. Triangles represent beta weights for meta-analyses. Relative confidence in the effect is 

represented by the size of the circle/triangle; colours represent graph metrics. 
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Figure 8. Performance of regression models predicting social distance from similarity in whole-brain 

functional connectivity. a) Predicted vs. observed social distance in testing data sets for models 1, 2 

and 3. Blue dotted line represents the line of perfect accuracy (predicted = observed). Pearson’s 

correlations were negative for models 1 and 2, indicating that the models performed worse than 

chance. P values are from LME with crossed random effects, taking into account clustering of dyad 

members. b) Meta-analysis of LME models for regression model of predictive performance.  
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Table 1. Training and testing sets for each predictive model. Each model was trained using data from 

two of the MRI cohorts and trained on unseen data from the third MRI cohort. Tuning parameters 

were determined separately for each model during the training phase. 

 Model 1 Model 2 Model 3 

Training set Cohort 2-fMRI 

Cohort 3-fMRI 

Cohort 1-fMRI 

Cohort 3-fMRI 

Cohort 1-fMRI 

Cohort 2-fMRI 

Testing set Cohort 1-fMRI Cohort 2-fMRI Cohort 3-fMRI 

 

Tuning Parameters: 

   

λ 209.085 176.565 .068 

α 0 0 1 
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Table 2. Demographic data for full and fMRI cohorts. 

Full cohort [fMRI cohort] Cohort 1  Cohort 2  Cohort 3  

N 59 [23] 51 [17] 65 [28] 

Ethnicity (%) 

White 

Asian 

Black 

Mixed 

Other 

 

86.4 [91.3] 

8.5 [4.3] 

3.4 [4.3] 

1.7 [0] 

0 [0] 

 

78.4 [76.5] 

7.8 [5.9] 

7.8 [5.9] 

5.9 [11.8] 

0 [0] 

 

75.4 [75] 

7.7 [3.6] 

9.2 [14.3] 

6.2 [7.1] 

1.5 [0] 

Boarding status (% boarders) 27.1 [17.4] 33.3 [35.3] 41.5 [39.3] 

Handedness (% left handed) [4.4] [5.9] [3.6] 
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Table 3. Network characteristics of cohorts 1, 2 and 3, using threshold 4 social network data. 

Network diameter is the length of the longest geodesic distance between two nodes in the network. 

Modularity is a measure of how easily a network segregates into smaller subnetworks; large values 

represent networks that segregate easily into smaller communities. Mean path length is the mean 

geodesic distance between any two nodes in the network; smaller values are representative of more 

“tight-knit” networks. Reciprocity defines the proportion of connections in a directed graph that are 

mutual connections. Graph density gives the ratio of the number of connections (edges) and the 

number of possible connections in the network; higher values indicate that a larger number of 

possible connections have been made.  

Network characteristics Cohort 1  Cohort 2  Cohort 3  

Network diameter 3 3 4 

Modularity 0.304 0.286 0.426 

Mean path length 1.769 1.750 2.033 

Reciprocity 0.618 0.630 0.668 

Graph density 0.285 0.320 0.220 
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