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Despite the progress in precision oncology, development of cancer therapies is limited            

by the dearth of suitable drug targets 1. Novel candidate drug targets can be identified              

based on the concept of synthetic lethality (SL), which refers to pairs of genes for which                

an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is              

lethal to the cell. We developed SLIdR ( Synthetic Lethal Identification in R), a statistical              

framework for identifying SL pairs from large-scale perturbation screens. SLIdR          

successfully predicts SL pairs even with small sample sizes while minimizing the number             

of false positive targets. We applied SLIdR to Project DRIVE data2 and found both              

established and novel pan-cancer and cancer type-specific SL pairs. We identified and            

experimentally validated a novel SL interaction between AXIN1 and URI1 in           

hepatocellular carcinoma, thus corroborating the potential of SLIdR to identify new           

SL-based drug targets. 

 

Key to exploiting SL in cancer therapy is the identification of a targetable dependent gene (SL                

partner) for a given genetically altered gene, such that a loss-of-function aberration in either              

gene alone does not affect cell viability, but aberrations in both genes are fatal to the cell (Fig.                  

1a ). A classical example of SL in cancer therapy is the use of PARP inhibitors in BRCA-mutated                 

cancers. The BRCA1/2 genes involved in DNA double-strand break repair are often mutated in              

breast and ovarian cancers3–5, and hence such cancer cells rely on alternate DNA repair              

processes. PARP1 plays a central role in these alternate DNA repair mechanisms6,7, and             

therefore inhibiting PARP results in catastrophic double-strand breaks during replication,          

ultimately leading to cancer cell death8,9.  

 
In recent years, large-scale perturbation screens based on siRNA, shRNA, CRISPR, or small             

molecules in cell lines and organoids have been used to identify SL interactions. McDonald et               
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al.2 conducted a large-scale deep RNAi screen targeting 7,837 genes in 398 Cancer Cell Line               

Encyclopedia10 (CCLE) models and provided a rich and robust dataset for the identification of              

SL pairs. However, the authors primarily analyzed gene interactions in a pan-cancer manner.             

Although pan-cancer analyses are statistically powerful due to their large sample sizes, the             

underlying data are diverse. We hypothesized that such rich large-scale perturbation screens            

can be exploited further to obtain SL pairs. We developed a novel method called SLIdR               

(Synthetic Lethal Identification in R) for predicting SL partners from such screens in both              

pan-cancer and cancer type-specific settings.  

 

To define the set of genetically altered genes, we focused on significantly mutated genes              

reported by MutSig 2CV v3.111,12 for each cancer type, and considered these genes to be               

altered in cell lines if they were subject to non-synonymous mutations or deep deletions (Online               

methods). We collectively refer to these altered genes as driver genes and these alterations as               

mutations. SLIdR aims to find SL partners for such drivers from perturbation data. We applied               

SLIdR to the Project DRIVE dataset2, focusing on cell lines from CCLE10 with available copy               

number data across various cancer types (Fig. 1b).  

 

SLIdR adopts a rank-based statistical framework to robustly identify SL interactions between a             

driver gene and a perturbed gene (Fig. 1c). In contrast to previous methods which perform               

statistical tests on the raw viability readouts2,13, SLIdR uses the normalized ranks of the              

viabilities across all perturbed genes for each cell line in order to increase statistical power for                

small sample sizes. For each driver gene, SLIdR first stratifies the cell lines into mutated and                

wild-type based on the mutation status of the driver gene. Subsequently, it tests, for each               

perturbed gene, whether the perturbation results in lower ranked viabilities in the mutated cell              
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lines but not in the wild-type cell lines. SLIdR uses two Irwin-Hall tests to mine for such                 

driver-perturbed SL gene pairs (Online methods). Cell lines with several co-occurring driver            

mutations can yield multiple SL pairs with the same perturbed gene. To identify the most likely                

SL pairs, we perform causal inference using matching-based potential outcome models. For a             

given candidate pair, we match the wild-type to mutated cell lines based on the other               

co-occurring mutations, thus achieving a covariate balance. Finally, SLIdR compares the           

viabilities of the matched groups and the significant SL pairs are reported (Fig. 1d; Online               

methods). 

 

We first applied SLIdR to the DRIVE data in a pan-cancer setting. We identified 151 SL pairs                 

(Supplementary Table S1) involving 84 driver genes (Fig. 2a ). Out of the 151 SL pairs, five                

pairs involving bona fide driver genes TP53, KRAS, BRAF, CTNNB1, and PIK3CA exhibited             

self-dependency, i.e., paired with themselves as the SL partner gene. This proved to be an               

efficient quality check for our method as these are well-established drivers and their subsequent              

knockdown resulted in cellular mortality. We also found that some cell lines with several              

co-occurring mutations resulted in multiple driver genes pairing with the same SL partner (Fig.              

2b; Supplementary Fig. S1a). For example, co-deletion of genes near p16 including MTAP and              

several interferons is common in several cancers and subsequently all these drivers paired with              

MAT2A as the SL partner. Using causal inference, we predicted the relevant driver genes for               

each SL partner (Fig. 2c; Supplementary Fig. S1b ), resulting in 90 SL pairs across 42 driver                

genes (Fig. 2d).  

 

Top predictions of SLIdR included PRMT5, MAT2A, and RIOK1 as SL partners of MTAP which               

are all well-established vulnerable targets for MTAP-altered cells2,14. SLIdR also predicted E2F3            
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and SKP2 as SL partners for RB1 2. Furthermore, RPL22 showed lethality with its paralog              

RPL22L1 confirming the findings of McDonald et al. 2. PIK3CA-BIRC5 was another reassuring            

pair as depletion of survivin (BIRC5) has been shown to have a pro-apoptotic effect in breast                

cancer cells with PIK3CA mutations15,16. In addition to established pairs, SLIdR also predicted             

several new SL pairs such as KRAS-TRPM7 and TP53-USP28 , which require further validation              

(Supplementary Table S2).  

 

While pan-cancer analyses are favoured for their large sample sizes and the ability to identify               

shared targets across different cancer types, it is often difficult to identify such targets due to                

inherent differences between primary sites. The differential sensitivities of the predicted           

pan-cancer hits based on primary sites suggests that the majority of the signal is cancer               

type-specific (Fig. 2d). For example, SLIdR identified NFE2L2 as the SL partner of the mutated               

KEAP1, both of which play an important role in cancer through Nrf2 pathway activation17.              

However, we noted that this SL interaction was largely due to signal from lung cancer samples                

(Fig. 2d), in accordance with Leiserson et al.18 who also reported the pair to be mutually                

exclusive in their pan-cancer TCGA analysis largely due to lung cancer samples. Thus, although              

a considerable number of pan-cancer hits are consistent with previous findings, this example             

among several others shows the need to identify cancer type-specific SL partners.  

 

Consequently, we applied SLIdR to the DRIVE data in a cancer type-specific setting. For 17               

cancer types, we identified a total of 839 SL pairs (Supplementary Table S1 ) over 233 unique                

driver genes. Out of the 233 drivers, 66 genes were mutated in more than one cancer type (Fig.                  

3a ). However, the mutation profiles are diverse across cancer types, with TP53 mutations being              

highly prevalent and observed in ~81% of the cancer types, while well-known drivers such as               
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BRAF, APC, and PTEN were distinctly associated with skin, large intestine, and endometrial             

cancers, respectively.  

 

Upon extensive literature survey of the SL pairs we identified 55 established and potential pairs               

with literature support (Fig. 3b; Supplementary Table S2). For example, SLIdR predicted            

GATA3-ESR1 in breast cancer. GATA3 is mutated in >10% of breast cancers and directly              

impacts ESR1 enhancer accessibility, thereby altering binding potential and transcriptional          

targets in tumor cells19. Furthermore, GATA3 mutations are almost never observed in            

ER-negative breast cancers, strongly suggesting SL. Despite the small sample size (7 cell             

lines), SLIdR also successfully elicited the RB1-MCL1 pair in osteosarcomas. Loss-of-function           

RB1 mutations are common in osteosarcomas20,21 and inhibition of MCL1 has been shown to              

block tumor growth in osteosarcoma22. Additionally, SLIdR predicted several significant SL           

partners specific to TP53, including TP53BP1, USP28, DDX3, and PNPLA6 in the pan-cancer             

setting, and HMGA1, RAB14, and RAC1 in osteosarcoma, renal, and breast cancers,            

respectively (Fig. 3b; Supplementary Table S2). These examples highlight the ability of SLIdR             

to identify well-established and novel targets in both pan-cancer and cancer type-specific            

settings.  

 

In hepatocellular carcinoma (HCC) we identified nine SL pairs (Fig. 3c ). To demonstrate the              

predictive power of SLIdR, we sought to validate AXIN1 -URI1 (Fig. 4a), a novel pair and our top                 

prediction in HCC. First, we validated the SL interaction between AXIN1 and URI1 in vitro using                

SNU449, a HCC cell line carrying an AXIN1 somatic mutation. Upon confirming that silencing of               

URI1 using siRNA reduced URI1 mRNA expression by >50% up to 96 hours post-transfection              

(Fig. 4b ), we assessed cell viability by measuring cell proliferation rate. We observed that the               
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knockdown of URI1 in SNU449 cells significantly decreased proliferation compared to control            

cells (Fig. 4c).  

 

Next, we validated the SL interaction between AXIN1 and URI1 in Huh-7, an AXIN1-wildtype              

HCC-derived cell line. In this cell line, we silenced AXIN1 and URI1 alone or in combination.                

After confirming that silencing of the genes using siRNAs reduced their mRNA levels by 50-90%               

up to 96 hours post-transfection (Fig. 4e ), we checked cells for growth inhibition using the same                

experimental approaches previously used in SNU449 (Figs. 4d,e ). Huh-7 cells transfected with            

siRNAs targeting both URI1 and AXIN1 proliferated significantly less compared to cells            

transfected with CTRL siRNA, AXIN1 siRNA or URI1 siRNA alone (Fig. 4d ). By staining cells               

with Annexin V and propidium iodide and analysing them by FACS, we showed that cells               

transfected with both AXIN1 and URI1 siRNA showed a higher proportion of apoptotic cells              

(15-20% more) and a lower proportion of living cells (20% less) compared to CTRL cells and                

cells transfected with either URI1 or AXIN1 siRNA alone (Fig. 4f), demonstrating that dual              

silencing was indeed fatal to the cells rather than merely arresting their proliferation. 

 

To ensure that the cell death was truly due to synthetic lethality between AXIN1 and URI1 and                 

not a result of an off-target effect or the cumulative cytotoxicity of the double siRNA transfection,                

we used the non-SL AXIN1 -TP53 pair as a negative control (Supplementary Fig. S2a). Dual              

silencing of AXIN1 and TP53 did not result in decreased cell proliferation compared to silencing               

of TP53 or AXIN1 alone (Supplementary Fig. S2c ), confirming AXIN1-URI1 as a novel SL pair               

in HCC.  
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Taken together, SLIdR provides a robust statistical framework to facilitate rapid discovery of SL              

interactions from large-scale perturbation screens in both pan-cancer and cancer type-specific           

settings. Particularly, in precision oncology, SLIdR can help in developing novel           

mutation-specific and effective personalised therapies.  
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ONLINE METHODS 

Screening data 

We used viability profiles published in Project DRIVE2, as well as corresponding mutation data              

and copy number data from the Cancer Cell Line Encyclopedia (CCLE) collection10 for 373 cell               

lines across 23 cancer types. 

 

Viability data from perturbation screens 

Viability data specifies the viability of cell lines for each gene knockdown experiment. In Project               

DRIVE, 7837 genes were targeted by using an average of 20 pooled shRNAs per gene. The                

shRNA activities were defined as the quantile normalised log fold change in shRNA read counts               

14 days after the start of the knockdown experiment to the shRNA abundance in the input                

library. The gene-level viability score of each cell line was computed by aggregation of shRNA               

activities using two computational methods, namely RSA23 and ATARiS24. The RSA method            

uses all shRNA reagents targeting a gene and can be used to identify essential, inert and active                 

genes, while ATARiS only uses a subset of shRNAs with consistent activity across the cell lines                

and aims to provide a robust gene-level score by discarding shRNA reagents with off-target              

effects. ATARiS provides a relative score for the gene-level activity by median-centering the             

data for each reagent, and as a result, cannot distinguish between inert and essential genes. 

 

To process the viability data, we removed essential genes using the RSA method as was               

performed in Project DRIVE2. Genes with an RSA value in more than 50% of cancer cell         −≤ 3         

lines were reported as essential genes. In total, 460 and 185 genes were reported essential in                

cancer type-specific and pan-cancer settings, respectively. The resulting viability matrices          
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consisted of the ATARiS scores for the remaining perturbed genes (rows) for each cell line               

(columns).  

 

Mutation and copy number data  

For the pan-cancer setting, we focused on genes with mutations or copy-number aberrations in              

more than 30 cell lines. We downloaded mutation data and copy number data from the CCLE                

website, and binarized them as follows. A gene in a given cell line was assigned a value of 1 if it                     

was subject to non-synonymous mutations, and 0 otherwise. For copy number data, we focused              

only on homozygous deletions and binarized a gene in a given cell line by assigning a value of 1                   

if the gene was homozygously deleted and a value of 0 otherwise. Finally, combining both these                

data, a driver gene in a given cell line was assigned a value of 1 if it was subject to                    

non-synonymous mutations, deep deletions, or both; 0 otherwise.  

 

In the cancer type-specific setting, to define the set of driver genes, we first used the MutSig                 

2CV v3.111,12 MAF file from TCGA for each cancer type and focused only on significantly               

mutated genes (q <= 0.05). Next, we concentrated on genes with non-synonymous mutations in               

two or more cell lines, and excluded copy number data as it was very noisy in this setting. Thus,                   

a gene in a given cell line was assigned a value of 1 if it was subject to non-synonymous                   

mutations, and 0 otherwise. The resulting binarised mutation matrices described the mutation            

profiles for each cell line (column) across all driver genes (rows). 

 

SLIdR algorithm 

SLIdR is a rank-based statistical framework to identify the presence of synthetic lethal             

dependency between a driver gene and a perturbed gene . For each driver gene , we     d      g      d   
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divided the cell lines into two groups according to the mutation status of , namely wild-type cell             d     

lines (WT) and mutated cell lines (Mut). Further, we ranked the perturbed genes by their               

ATARiS scores, for each mutated and WT cell line and normalized it between 0 and 1. Due to a                   

large number of perturbed genes, the normalized ranks have many distinct levels and are highly               

fine-grained. Hence, we assumed the normalized ranks to be continuous.  

 

Let be a fixed pair of driver and perturbed gene and be the set of cell lines mutated in d, )( g            C
d

         

of cardinality . If is an SL pair, based on the aforementioned definition (Fig. 1a ), ad    n   d, )( g              

mutation in driver gene in combination with knockdown of gene , results in low viabilities in    d        g       

mutated cell lines . We used a one-sided statistical test based on the Irwin-Hall distribution to   C
d

             

test whether the viabilities of mutated cell lines from knockdown of gene are lower than        C
d

     g     

expected by chance. We defined the null hypothesis as the knockdown of gene having        H0       g   

no impact on the viability of the cell lines in . For each cell line , we computed the          C
d

     c∈ C
d

    

normalized rank of the viability of from knockdown of gene across all other gene      c      g      

knockdowns in cell line , and denoted this rank as . Under the null hypothesis, the    c       r
c|g       

normalized ranks take uniform random values in the interval [0, 1], . The test           (0, 1)r
c|g ~ U     

statistic for the pair is then defined as the sum of normalized viability ranks of mutated T     d, )( g              

cell lines perturbed in gene , . Under , the test statistic is the sum of   C
d

   g   T = ∑
 

c∈C
d

r
c|g   H0     T      n  

independent uniform random variables on the unit interval and hence it follows the Irwin-Hall              

distribution of order . The resulting p-value was computed as the lower tail probability   n            

, where is the observed test statistic. For large , computation of the Irwin-Hall(T )P < t
obs

  t
obs

        n      

probability distribution is either computationally expensive or numerically unstable. Therefore,          

we used the approximation  for .(n/2, n/12)T ~ N  0n > 2   
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Conversely, based on the definition of synthetic lethality (Fig. 1a), wild-type cell lines with              

respect to driver gene are expected to behave similar to healthy cells when perturbed in gene    d              

. Therefore, it is important to filter out genes which upon knockdown adversely alter theg                

viabilities of WT cell lines. We used a two-sided Irwin-Hall test to filter out any pair that                d, )( g   

reached statistical significance ( ) in the WT cell lines. However, we did not use this filter    0.1α =               

for pan-cancer setting due to the diverse nature of the cell types and cancer types.  

 

Multiple testing 

We reduced the number of false positives arising from multiple testing by choosing a              

significance level of , where is the number of knockdowns and is the number of   /(M )1 × N   M        N      

driver genes. Therefore, we expect on average one false positive hit among all reported SL hits                

for each cancer. Our method is computationally inexpensive as it avoids performing all             M × N  

tests. For each driver, we compute the test statistic for all perturbed genes and sort them in                 

ascending order. The pre-ordering of the test statistics enables us to test for genes until the                

corresponding p-value is less than the chosen significance level. Further, we note that this              

approach was in good agreement with controlling the false discovery rate at 10%             

(Supplementary Fig. S1c).  

 

Causal inference 

Cell lines are often subject to mutations or aberrations in multiple driver genes, and as a result,                 

different driver genes pair with the same SL partner gene (Fig. 2b; Supplementary Fig. S1a ).               

This is typically not an issue in the cancer type-specific setting but is prevalent in the pan-cancer                 

setting. In order to identify the most likely SL pairs from the many confounding driver genes, we                 
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used matching-based potential outcome models. The main goal of the matching method is to              

emulate a randomized experiment by matching samples of treated and control groups according             

to covariates, thereby obtaining similar covariate distributions across the two groups. For a             

given driver gene , the cell lines mutated in constituted the treated group and the cell lines   d       d          

wild-type in formed the control group. The remaining driver genes formed the confounding  d             

covariates and the viability of the SL partner gene was used as the response or outcome         g         

variable. We used the Matching R package25 and performed propensity-score matching with a             

caliper of 0.1. Since matching is dependent on the order of the samples, we reshuffled and                

repeated matching 50 times. After each run, we recorded the standardised mean difference             

(smd) between the two groups for all covariates and chose the run with the lowest sum of smd                  

across all covariates. Finally, for the chosen run, we performed a paired t-test between the               

responses of treated and control groups. We repeated this entire process for all the driver genes                

pairing with the same SL partner gene and reported the significant ( ) SL pairs (Fig.       g       0.05α =      

2c; Supplementary  Fig. S1b).  

 
Code and data availability. 

The code base of SLIDR is available at https://github.com/cbg-ethz/slidr/. The raw shRNA data             

has already been published as a part of project DRIVE          

(https://data.mendeley.com/datasets/y3ds55n88r/4) and all the mutation and copy number data         

from CCLE is available at https://portals.broadinstitute.org/ccle. The MutSig 2CV v3.111,12 MAF           

file for each cancer type is available at http://firebrowse.org/. 

 

Cell lines maintenance 
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Liver cancer-derived cell lines SNU449 and Huh-7 were obtained from the Laboratory of             

Experimental Carcinogenesis (Bethesda, MD, USA), authenticated by short tandem repeat          

profiling as previously described26 and tested for mycoplasma infection using a PCR-based test             

(ATCC). All cell lines were maintained under the conditions recommended by the provider.             

Briefly, all cell lines were cultured in DMEM supplemented with 5% Fetal Bovine Serum (FBS),               

non-essential amino-acids (NEAA) and antibiotics (Penicillin/Streptomycin). The cells were         

incubated at 37°C in a humidified atmosphere containing 5% CO2 . Exponentially growing cells              

were used for all in vitro studies. 

 

Transient gene knockdown by siRNAs 

Transient gene knockdown was conducted using ON-TARGET plus siRNA transfection.          

ON-TARGET plus SMARTpool siRNAs against human URI1 , AXIN1 and TP53, ON-TARGET           

plus SMARTpool non-targeting control and DharmaFECT reagent were all purchased from GE            

Dharmacon (Supplementary Table S3 ). Transfection was performed according to the          

manufacturer’s protocol. Briefly, log-phase liver cancer cells were seeded at approximately 60%            

confluence. Since residual serum affects the knockdown efficiency of ON-TARGET plus siRNAs,            

growth medium was removed as much as possible and replaced by serum-free medium             

(Opti-MEM; Supplementary Table S3). siRNAs were added to a final concentration of 25 nM.              

siRNAs targeting different genes can be multiplexed. Cells were incubated at 37°C in 5% CO2 for                

24-48-72 hours (for mRNA analysis) or for 48-72 hours (for protein analysis). In order to avoid                

cytotoxicity, transfection medium was replaced with complete medium after 24 hours. 

 

RNA extraction and relative expression by qRT-PCR 
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Total RNA and proteins were extracted from cells at 75% confluence using TRIZOL             

(Supplementary Table S3) according to manufacturer's guidelines. cDNA was synthesized from           

1 μg of total RNA using SuperScript™ VILO™ cDNA Synthesis Kit (Supplementary Table S3 ).              

All reverse transcriptase reactions, including no-template controls, were run on an Applied            

Biosystem 7900HT thermocycler. Gene expression was assessed by using FastSart Universal           

SYBR Green Master Mix (Supplementary Table S3) and all qPCR were performed at 50°C for               

2 min, 95°C for 10 min, and then 40 cycles of 95°C for 15 s and 60°C for 1 min on a QuantStudio                       

3 Real-Time PCR System (Applied Biosystems). The specificity of the reaction was verified by              

melting curve analysis. Measurements were normalized using GAPDH level as the reference.            

The fold change in gene expression was calculated using the standard ΔΔCt method as              

previously described27. All samples were analyzed in triplicates. 

 

Proliferation assay 

Cell proliferation was assayed using the xCELLigence system (RTCA, ACEA Biosciences, San            

Diego, CA, USA). Background impedance of the xCELLigence system was measured for 12 s              

using 50 μl of room temperature cell culture media in each well of E-plate 16. Cells were grown                  

and expanded in tissue culture flasks as previously described. After reaching 75% confluence,             

the cells were washed with PBS and detached from the flasks using a short treatment with                

trypsin/EDTA. 5000 cells were dispensed into each well of an E-plate 16. Growth and              

proliferation of the cells were monitored every 15 min up to 120 hours via the incorporated                

sensor electrode arrays of the xCELLigence system, using the RTCA-integrated software           

according to the manufacturer’s parameters. In the case of transient siRNA transfection, cells             

were detached and plated on xCELLigence 24 hours post-transfection.  
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Apoptosis analysis by Flow Cytometry 

Cells were collected 72 hours post siRNA transfection, stained with annexin V (FITC conjugate;              

Supplementary Table S3) and propidium iodide (PI), and analyzed by flow cytometry using the              

BD FACSCanto II cytometer (BD Biosciences, USA). Briefly, cells were harvested after            

incubation period and washed twice by centrifugation (1,200 g, 5 min) in cold             

phosphate-buffered saline (DPBS; Supplementary Table S3). After washing, cells were          

resuspended in 0.1 mL AnnV binding buffer 1X (ABB 5X, Supplementary Table S3 ) containing              

fluorochrome-conjugated AnnV and PI (PI to a final concentration of 1 ug/mL) and incubated in               

darkness at room temperature for 15 min. Following immediately, cells were analyzed by flow              

cytometry, measuring the fluorescence emission at 530 nm and >575 nm. Data were analyzed              

by FlowJo software version 10.5.3 (https://www.flowjo.com/).  

 

For details on the reagents used, please refer to Supplementary Table S3.  
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Fig. 1. Overview and SLIdR workflow. a, Definition of a synthetic lethal pair: Aberration of               

gene A or knockdown of gene B alone do not affect the viability of the cell. However, the                  

combination of mutated gene A and knockdown of gene B is lethal to the cell. b , Distribution of                  

the number of cell lines with copy number data from CCLE across 23 different cancer types                

used in this study. c, Illustration of the SLIdR algorithm with a toy example. The data consists of                  

driver genes DG 1-DG 4 and perturbed genes PG 1-PG 15 across cell lines CL 1-CL 10. Cell                  

lines CL 2-5 are mutated in the driver gene DG 1 (Mut), while the remaining cell lines are DG 1                    

wild-type (WT). Comparison of viability distributions across all perturbed genes PG 1-PG 15 in              

the DG 1 mutated (Mut) and WT cell lines shows that perturbation of gene 8 (PG 8) results in                   

reduced viability only in CL 2-5 and not the WT cell lines. Thus, PG 8 is a SL partner of DG 1. d,                       

The computational pipeline illustrating the different steps performed to obtain the candidate SL             

pairs from mutation profiles and perturbation screen data. 
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Fig. 2. Pan-cancer SLIdR predictions. a, Stacked barplot indicating the frequencies of 84             

mutated driver genes across different cancer types. b , Bubble-plot summarising the significance            

(-log10(p-value)) of different driver genes (x-axis) pairing with the same SL partner gene             

(y-axis). c, Corresponding list of significant SL pairs after accounting for confounding mutations             

and performing causal inference using matching-based potential outcome models. d, Differential           

sensitivities of pan-cancer SL pairs in subsets of cell lines grouped by primary sites (y-axis).               

Each panel corresponds to a specific driver gene (x-axis top) and encapsulates the significance              
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profiles of all its SL-partners (x-axis bottom). Each column in a given panel depicts the               

significance profile of the SL pair in subsets of cell lines grouped by primary sites. The p-values                 

are computed using IH-test.  
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Fig. 3. Cancer type-specific SLIdR predictions. a , Heatmap of frequencies of 66 driver genes              

across 16 cancer types. b , Circos plot summarizing the SL partners (right) of different driver               

genes (left) with literature evidence, across 11 cancer types. c, Top-ranked SL pairs in              

hepatocellular carcinoma reported by SLIdR.  

 

 

Fig. 4. Functional validation of SL interaction between AXIN1 and URI1. a , Top SL pair in                

HCC. Viability scores of AXIN1 mutant vs wild-type (WT) HCC cell lines with URI1 knockdown.               

 

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2019. ; https://doi.org/10.1101/810374doi: bioRxiv preprint 

https://doi.org/10.1101/810374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

b, RNA expression level (fold-change) of URI1 relative to GAPDH in SNU449 cells transfected              

with control siRNA (black) or URI1 siRNA (light blue). RNA levels were assessed by quantitative               

real-time PCR (qPCR). Error bars represent SD from two independent experiments. c, Cell             

proliferation assay in SNU449 cell line (AXIN1 mutated) transfected with control siRNA (black)             

or URI1 siRNA (light blue). Error bars represent standard deviation (SD) from two independent              

experiments. d, Cell proliferation assay in Huh-7 cell line (AXIN1 WT) transfected with control              

siRNA (black), URI1 siRNA (light blue), AXIN1 siRNA (dark blue) or both (red). Error bars               

represent SD from three independent experiments. e, RNA expression levels (fold-change) of            

URI1 (left) and AXIN1 (right) relative to GAPDH in Huh-7 cell line transfected with control siRNA                

(black), URI1 siRNA (light blue), AXIN1 siRNA (dark blue) or both (red). Error bars represent SD                

from three independent experiments. f , Apoptosis assay using AnnexinV and propidium iodide            

(PI) staining in Huh-7 cell line (AXIN1 wild-type) transfected with control siRNA (black), URI1              

siRNA (light blue), AXIN1 siRNA (dark blue) or both (red). Quantification of the mean (+/- SD)                

percentage of apoptotic cells (AnnexinV+) and live cells (PI-/AnnexinV-) across the different            

groups (n=4) (right). Error bars represent SD from two independent experiments. For all             

experiments performed, statistical significance was assessed by multiple t-tests (* P < 0.05, ** P               

< 0.01, *** P < 0.001). 
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