Supplementary Material for "Identifying density-dependent interactions in collective cell behaviour"

Alexander P Browning ${ }^{1,2^{*}}$, Wang Jin ${ }^{1}$, Michael J Plank ${ }^{3,4}$, and Matthew J Simpson ${ }^{1}$
${ }^{1}$ School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
${ }^{2}$ ARC Centre of Excellence for Mathematical and Statistical Frontiers, QUT, Australia
${ }^{3}$ Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
${ }^{4}$ Te Pūnaha Matatini, a New Zealand Centre of Research Excellence, New Zealand

October 18, 2019

Contents

1 ABC algorithms 2
1.1 ABC rejection algorithm 2
1.2 SMC algorithm 3
2 Pilot ABC results 4
2.1 Pilot ABC to determine σ. 4
2.2 Wider priors 5
2.3 Excluding \mathcal{P} from inference 6
3 Quantile plots 7
4 Considering $\gamma_{p}=0$ 8
5 Model selection for $\sigma=24 \mu \mathrm{~m}$ 9
6 Results for all nine experiments 9
6.1 Full results for $\sigma=12 \mu \mathrm{~m}$ 10
6.2 Full results for $\sigma=24 \mu \mathrm{~m}$ 12
List of Figures
S1 Posteriors where σ is sampled from $U(2,30)$ 4
S2 Fig S1 with wider priors for γ_{p} and γ_{b} 5
S3 Fig S1 where $w_{\mathcal{P}}=0$ 6
S4 Quantile plot 7
S5 Fig 4 where we allow $\gamma_{p}=0$ 8
S6 Posteriors for $\sigma=24 \mu \mathrm{~m}$ 9
S7 Fig 6 for all replicates, cell locations 10
S8 Fig 6 for all replicates, summary statistics 11
S9 Fig 6 for all replicates and $\sigma=24 \mu \mathrm{~m}$, cell locations 12
S10 Fig 6 for all replicates and $\sigma=24 \mu \mathrm{~m}$, summary statistics 13

[^0]
1 ABC algorithms

Here, we present the ABC rejection algorithm algorithm 1 and ABC SMC algorithm algorithm 2.

1.1 ABC rejection algorithm

```
Algorithm 1 ABC rejection sampling algorithm.
    Draw parameter samples from the joint prior \(\boldsymbol{\theta}_{j} \sim \pi(\boldsymbol{\theta})\).
    2: Set discrepancy of \(j\) th sample \(\kappa_{j}=0\), experiment index \(i=1\).
    2.1: Set agent locations, \(\left\{\mathbf{x}_{n}\right\}_{n=1}^{N(0)}\), to match experimental data \(\mathbf{X}_{\text {obs }}^{(i)}\) at \(t=0\).
    2.2: Simulate model with parameters \(\boldsymbol{\theta}_{j}\) for \(t \leq 36\), storing the agent locations at
        \(t=18 \mathrm{~h}\) and \(t=36 \mathrm{~h}\), denoted \(\mathbf{X}_{\text {sim }}^{(i)}\).
    2.3: Update the discrepancy \(\kappa_{j} \leftarrow \kappa_{j}+d\left(\mathbf{X}_{\text {obs }}^{(i)}, \mathbf{X}_{\text {sim }}^{(i)}\right)\), where \(d(\cdot, \cdot)\) is the discrepancy
        function.
    2.4: Move to the next replicate by setting \(i=i+1\) and repeat steps 2.1-2.4 until
        \(i=9\).
    3: Repeat steps \(1-2\) until \(10^{5}\) samples \(\left\{\boldsymbol{\theta}_{j}, \varepsilon_{j}\right\}_{j=1}^{10^{5}}\) are simulated.
    4: Order \(\left\{\boldsymbol{\theta}_{j}, \kappa_{j}\right\}_{j=1}^{10^{5}}\) by \(\kappa_{j}\) such that \(\kappa_{j}<\kappa_{j+1}\).
    Retain the first \(1 \%(\alpha=0.01)\) of prior samples \(\boldsymbol{\theta}_{j}\), as posterior samples, \(\left\{\boldsymbol{\theta}_{j}\right\}_{j=1}^{10^{5} \alpha}\).
```


1.2 SMC algorithm

We apply the SMC model selection algorithm of Toni et al. [1], given in algorithm 2 . We choose the perturbation kernel to be a multivariate Gaussian with independent components and variances approximately equal to the ABC rejection posterior variances [2].
$\overline{\text { Algorithm } 2 \text { ABC SMC sampling algorithm for model selection with uniform priors [1]. }}$
1: Choose $\varepsilon_{1}, \ldots, \varepsilon_{T}$ such that $\varepsilon_{k}>\varepsilon_{k+1}$ and the desired total number of particles,
$N_{\text {samples }}$. Set the population indicator $k=1$.
2: Set the particle indicator $j=1$.
2.1: Sample model indicator, $M_{a}^{*} \sim \pi\left(M_{a}\right)$.
2.2: If $k=1$, sample proposal $\boldsymbol{\theta}^{* *} \sim \pi_{a}(\boldsymbol{\theta})$ where $\pi_{a}(\boldsymbol{\theta})$ is the prior given model M_{a}^{*}. Go to step 2.4.
2.3: If $k>1$, sample $\boldsymbol{\theta}^{*}$ from the subset of the previous population of particles for $M_{a}, \boldsymbol{\Theta}^{(a)}(k-1)$. If population is empty, return to 2.1. Perturb $\boldsymbol{\theta}^{* *} \sim K\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{*}\right)$, where $K(\cdot, \cdot)$ is a symmetric perturbation kernel. If $\pi_{a}\left(\boldsymbol{\theta}^{* *}\right)=0$, return to step 2.1.
2.4: Set discrepancy $\kappa=0$, experiment index $i=1$.
2.4.1: Set agent locations, $\left\{\mathbf{x}_{n}\right\}_{n=1}^{N(0)}$, to match experimental data $\mathbf{X}_{\mathrm{obs}}^{(i)}$ at $t=0$.
2.4.2: Simulate model M_{a} with parameters $\boldsymbol{\theta}^{* *}$ for $t \leq 36$, storing the agent locations at $t=18 \mathrm{~h}$ and $t=36 \mathrm{~h}$, denoted $\mathcal{X}_{\mathrm{sim}}^{(i)}$.
2.4.3: Update the discrepancy $\kappa=\kappa+d\left(\mathbf{X}_{\mathrm{obs}}{ }^{(i)} \mathbf{X}_{\text {sim }}^{(i)}\right)$, where $d(\cdot, \cdot)$ is the discrepancy function.
2.4.4: If $\kappa>\varepsilon_{k}$, reject particle and go back to 2.1 . Else, move to next replicate by setting $i=i+1$ and repeat steps 2.4.1-2.4.4 until $i=9$.
2.5: Add $\boldsymbol{\theta}^{* *}$ to the population of particles $\boldsymbol{\Theta}^{(a)}(k)=\left\{\boldsymbol{\theta}_{j}(k)\right\}_{j=1}^{N_{\text {samples }}^{(a)}}$, and calculate its weight as

$$
w_{j}^{(a)}(k)= \begin{cases}1, & k=1 \\ \left(\sum_{j=1}^{N_{\text {samples }}^{(a)}} w_{j}^{(a)}(k-1) K\left(\boldsymbol{\theta}^{* *} \mid \boldsymbol{\theta}_{j}(k-1)\right)\right)^{-1}, & k>1 .\end{cases}
$$

2.6: Set $j=j+1$ and repeat steps $2.1-2.6$ until $j=N_{\text {samples }}$.
3. Set $k=k+1$ and normalise the weights within each model. Repeat step 2 until $k=T$.

2 Pilot ABC results

2.1 Pilot ABC to determine σ

In order to reduce the number of unknown parameters, we estimate and fix the kernel width parameter, σ. To do this, we perform a pilot ABC run where $\pi(\sigma)=U(2,30)$ using algorithm 1 , the results of which are shown in figure S1, These results show a posterior mode of approximately $\sigma \approx 12 \mu \mathrm{~m}$, and we fix this for the rest of the study. In this supporting material document, we reproduce some results in the case that $\sigma=24 \mu \mathrm{~m}$.

Figure S1: ABC rejection with σ as an unknown with $\pi(\sigma)=U(2,30)$.

2.2 Wider priors

We notice in figure S1e,f that the posterior support appears to cover the prior support. To investigate this, we widen the corresponding priors for γ_{p} and γ_{b} by a factor of two and perform ABC rejection. The results are shown in figure S2 These results suggest that γ_{p} and γ_{b} are non-identifiable.

Figure S2: Figure S1 with wider priors for γ_{p} and γ_{b}.

2.3 Excluding \mathcal{P} from inference

To investigate the amount of information contained in the pair correlation function, \mathcal{P}, we perform ABC rejection in the case \mathcal{P} is removed from the distance metric. The results are shown in figure S3 We see a large reduction in information in the posteriors infigure S3 compared tofigure S1. In particularly, the sign of γ_{m} is less clear in the case the pair correlation is excluded.

Figure S3: Figure S1 where summary statistics relating the the pair correlation, \mathcal{P} are excluded.

3 Quantile plots

To determine the appropriate ABC SMC sequence of thresholds, we produce a quantile plot of the distance metric obtained from 100,000 prior samples where $\sigma=12 \mu \mathrm{~m}$ (figure S4a) and $\sigma=24 \mu \mathrm{~m}$ (figure S4b). In each case, we choose the final discrepancy, ε_{U}, to correspond to an ABC rejection rate of approximately 1%. We choose the sequence base upon acceptance probabilities of approximately $50 \%, 25 \%, 12.5 \%, 6.25 \%, 3.125 \%, 1.5625 \%$ and 1% [2]. The sequence of thresholds for results in the main document where $\sigma=12 \mu \mathrm{~m}$ is $\{9.6,7.3,6.3,5.5,4.9,4.6,4.4\}$; and the sequence of thresholds for results in this supporting material document where $\sigma=24 \mu \mathrm{~m}$ is $\{11.8,9.7,8.4,7.5,6.8,6.3,6.0\}$.

Figure S4: Quantile plot of the distance metric from 100,000 prior samples with (a) $\sigma=12 \mu \mathrm{~m}$; and, (b) $\sigma=12 \mu \mathrm{~m}$. The final discrepancy, ε_{U}, is indicated by a horizontal line in each case.

4 Considering $\gamma_{p}=0$

	$\boldsymbol{\theta}_{k}$	Density Dependence
Model 1	$\left(m, p, \gamma_{m}, \gamma_{p}, \gamma_{b}\right)$	Proliferation, Motility and Direction
Model 2	$\left(m, p, \gamma_{p}, \gamma_{b}\right)$	Proliferation and Direction
Model 3	$\left(m, p, \gamma_{m}, \gamma_{p}\right)$	Proliferation and Motility
Model 4	$\left(m, p, \gamma_{p}\right)$	Proliferation only (Fisher-Kolmogorov)
Model 5	(m, p)	None (Skellam's model [3])
Model 6	$\left(m, p, \gamma_{m}, \gamma_{b}\right)$	Motility and Direction
Model 7	$\left(m, p, \gamma_{b}\right)$	Direction only
Model 8	$\left(m, p, \gamma_{m}\right)$	Motility only

Table 1: In the supporting material, we consider three additional models: Models 6, 7 and 8 correspond to Models 1, 2 and 3, where $\gamma_{p}=0$.

Figure S5: Figure 4 of the main document where we consider three additional models: Models 6, 7 and 8 correspond to Models 1,2 and 3 where we set $\gamma_{p}=0$ to remove the proliferation interaction from the model.

	$\pi_{\varepsilon_{T}}\left(M_{k} \mid \mathcal{X}_{\text {obs }}\right)$	$\mathcal{B}_{k 1}$
Model 1	$\mathbf{0 . 3 1 9 4}$	$\mathbf{1 . 0 0 0}$
Model 2	0.0852	0.2668
Model 3	0.1490	0.4665
Model 4	0.000	0.000
Model 5	0.000	0.000
Model 6	0.2820	0.8829
Model 7	0.0572	0.1791
Model 8	0.1072	0.3356

Table 2: In the supporting material, we consider three additional models: Models 6, 7 and 8 correspond to Models 1, 2 and 3, where $\gamma_{p}=0$. The two other variables, m and p, are always unknown.

5 Model selection for $\sigma=24 \mu \mathrm{~m}$

Here, we reproduce results from figure 5 of the main document, in the case we fix $\sigma=24 \mu \mathrm{~m}$.
Results in figure S6a differ from those in the main document, in that Model 2 now has the highest posterior density. As such, we show the marginal distributions for each parameter in Model 2 in figure S6b-f. These results are consistent with the main document in showing that models without a density dependent motility mechanism (Models 4 and 5) are unable to simultaneously match data from all nine experiments. Examining results inffigure S10 shows that $\sigma=24 \mu \mathrm{~m}$ is not able to match the spatial structure in the experimental data as closely as $\sigma=24 \mu \mathrm{~m}$, results for which are shown in figure S 8 .

Figure S6: Reproduction of results in figure 6 of the main document, with $\sigma=\varphi=24 \mu \mathrm{~m}$. (a) Posterior for the model index, $\pi\left(M_{k} \mid \mathcal{X}_{\text {obs }}\right)$, showing that Model 2 (density-independent motility) as the posterior mode. (b)-(f) Marginal posterior distributions for each parameter in Model 2, shown as weighted histograms.

6 Results for all nine experiments

In the main document, we show results for experimental replicates $1,3,6$ and 9 at $t=36 \mathrm{~h}$ in figure 6 . Here, we reproduce figure 6 and show results for all nine experimental replicates at both $t=18 \mathrm{~h}$ and $t=36 \mathrm{~h}$.

In section 6.1 we show these results for $\sigma=12 \mu \mathrm{~m}$, the value from the main document. In section 6.2 we show these results for $\sigma=24 \mu \mathrm{~m}$.
6.1 Full results for $\sigma=12 \mu \mathrm{~m}$

Figure S7: Reproduction of results in figure $6 a-l$ of the main document, for all replicates, for $\sigma=12 \mu \mathrm{~m}$.

Figure S8: Reproduction of results in figure $6 m-x$ of the main document, for all replicates, for $\sigma=12 \mu \mathrm{~m}$.

6.2 Full results for $\sigma=24 \mu \mathrm{~m}$

$N(0)=299$

$N(0)=354$

$N(0)=404$

$N(0)=427$

$N(0)=522$

$N(0)=692$

Figure S9: Reproduction of results in figure $6 a-l$ of the main document, for all replicates, for $\sigma=24 \mu \mathrm{~m}$.

Figure S10: Reproduction of results in figure $6 m-x$ of the main document, for all replicates, for $\sigma=24 \mu \mathrm{~m}$.

References

[1] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. 2009 Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6, 187-202.
[2] Filippi S, Barnes CP, Cornebise J, Stumpf MPH. 2013 On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo. Stat Appl Genet Mol Biol 12, 87-107.
[3] Skellam JG. 1951 Random dispersal in theoretical populations. Biometrika 38, 196-218.

[^0]: *Corresponding author. E-mail: ap.browning@qut.edu.au

