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1 ABC algorithms

Here, we present the ABC rejection algorithm (algorithm 1) and ABC SMC algorithm
(algorithm 2).

1.1 ABC rejection algorithm

Algorithm 1 ABC rejection sampling algorithm.
1: Draw parameter samples from the joint prior θj ∼ π(θ).
2: Set discrepancy of jth sample κj = 0, experiment index i = 1.

2.1: Set agent locations, {xn}N(0)
n=1 , to match experimental data X(i)

obs at t = 0.
2.2: Simulate model with parameters θj for t ≤ 36, storing the agent locations at

t = 18 h and t = 36 h, denoted X(i)
sim.

2.3: Update the discrepancy κj ← κj + d(X(i)
obs, X(i)

sim), where d(·, ·) is the discrepancy
function.

2.4: Move to the next replicate by setting i = i + 1 and repeat steps 2.1–2.4 until
i = 9.

3: Repeat steps 1–2 until 105 samples {θj, ε j}105

j=1 are simulated.

4: Order {θj, κj}105

j=1 by κj such that κj < κj+1.

5: Retain the first 1% (α = 0.01) of prior samples θj, as posterior samples, {θj}105α
j=1 .
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1.2 SMC algorithm

We apply the SMC model selection algorithm of Toni et al. [1], given in algorithm 2. We
choose the perturbation kernel to be a multivariate Gaussian with independent compo-
nents and variances approximately equal to the ABC rejection posterior variances [2].

Algorithm 2 ABC SMC sampling algorithm for model selection with uniform priors [1].
1: Choose ε1, ..., εT such that εk > εk+1 and the desired total number of particles,

Nsamples. Set the population indicator k = 1.
2: Set the particle indicator j = 1.

2.1: Sample model indicator, M∗a ∼ π(Ma).
2.2: If k = 1, sample proposal θ∗∗ ∼ πa(θ) where πa(θ) is the prior given model

M∗a . Go to step 2.4.
2.3: If k > 1, sample θ∗ from the subset of the previous population of particles for

Ma, Θ(a)(k− 1). If population is empty, return to 2.1. Perturb θ∗∗ ∼ K(θ|θ∗),
where K(·, ·) is a symmetric perturbation kernel. If πa(θ∗∗) = 0, return to step
2.1.

2.4: Set discrepancy κ = 0, experiment index i = 1.

2.4.1: Set agent locations, {xn}N(0)
n=1 , to match experimental data X(i)

obs at t = 0.
2.4.2: Simulate model Ma with parameters θ∗∗ for t ≤ 36, storing the agent

locations at t = 18 h and t = 36 h, denoted X (i)
sim.

2.4.3: Update the discrepancy κ = κ + d(X(i)
obs, X(i)

sim), where d(·, ·) is the discrep-
ancy function.

2.4.4: If κ > εk, reject particle and go back to 2.1. Else, move to next replicate by
setting i = i + 1 and repeat steps 2.4.1–2.4.4 until i = 9.

2.5: Add θ∗∗ to the population of particles Θ(a)(k) = {θj(k)}
N(a)

samples
j=1 , and calculate

its weight as

w(a)
j (k) =


1, k = 1,(

∑
N(a)

samples
j=1 w(a)

j (k− 1)K(θ∗∗|θj(k− 1))

)−1

, k > 1.

2.6: Set j = j + 1 and repeat steps 2.1–2.6 until j = Nsamples.
3. Set k = k + 1 and normalise the weights within each model. Repeat step 2 until

k = T.
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2 Pilot ABC results

2.1 Pilot ABC to determine σ

In order to reduce the number of unknown parameters, we estimate and fix the kernel width parameter, σ. To do this,
we perform a pilot ABC run where π(σ) = U(2, 30) using algorithm 1, the results of which are shown in figure S1.
These results show a posterior mode of approximately σ ≈ 12 µm, and we fix this for the rest of the study. In this
supporting material document, we reproduce some results in the case that σ = 24 µm.
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Figure S1: ABC rejection with σ as an unknown with π(σ) = U(2, 30).
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2.2 Wider priors

We notice in figure S1e,f that the posterior support appears to cover the prior support. To investigate this, we widen
the corresponding priors for γp and γb by a factor of two and perform ABC rejection. The results are shown in
figure S2. These results suggest that γp and γb are non-identifiable.
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Figure S2: Figure S1 with wider priors for γp and γb.
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2.3 Excluding P from inference

To investigate the amount of information contained in the pair correlation function, P , we perform ABC rejection
in the case P is removed from the distance metric. The results are shown in figure S3. We see a large reduction in
information in the posteriors in figure S3 compared to figure S1. In particularly, the sign of γm is less clear in the case
the pair correlation is excluded.
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Figure S3: Figure S1 where summary statistics relating the the pair correlation, P are excluded.
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3 Quantile plots

To determine the appropriate ABC SMC sequence of thresholds, we produce a quantile plot of the distance metric ob-
tained from 100,000 prior samples where σ = 12 µm (figure S4a) and σ = 24 µm (figure S4b). In each case, we choose
the final discrepancy, εU , to correspond to an ABC rejection rate of approximately 1%. We choose the sequence base
upon acceptance probabilities of approximately 50%, 25%, 12.5%, 6.25%, 3.125%, 1.5625% and 1% [2]. The sequence
of thresholds for results in the main document where σ = 12 µm is {9.6, 7.3, 6.3, 5.5, 4.9, 4.6, 4.4}; and the sequence of
thresholds for results in this supporting material document where σ = 24 µm is {11.8, 9.7, 8.4, 7.5, 6.8, 6.3, 6.0}.
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Figure S4: Quantile plot of the distance metric from 100,000 prior samples with (a) σ = 12 µm; and, (b) σ = 12 µm. The final
discrepancy, εU , is indicated by a horizontal line in each case.
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4 Considering γp = 0

θk Density Dependence
Model 1 (m, p, γm, γp, γb) Proliferation, Motility and Direction
Model 2 (m, p, γp, γb) Proliferation and Direction
Model 3 (m, p, γm, γp) Proliferation and Motility
Model 4 (m, p, γp) Proliferation only (Fisher-Kolmogorov)
Model 5 (m, p) None (Skellam’s model [3])
Model 6 (m, p, γm, γb) Motility and Direction
Model 7 (m, p, γb) Direction only
Model 8 (m, p, γm) Motility only

Table 1: In the supporting material, we consider three additional models: Models 6, 7 and 8 correspond to Models 1, 2 and 3,
where γp = 0.
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Figure S5: Figure 4 of the main document where we consider three additional models: Models 6, 7 and 8 correspond to Models
1, 2 and 3 where we set γp = 0 to remove the proliferation interaction from the model.

πεT (Mk|Xobs) Bk1

Model 1 0.3194 1.000
Model 2 0.0852 0.2668
Model 3 0.1490 0.4665
Model 4 0.000 0.000
Model 5 0.000 0.000
Model 6 0.2820 0.8829
Model 7 0.0572 0.1791
Model 8 0.1072 0.3356

Table 2: In the supporting material, we consider three additional models: Models 6, 7 and 8 correspond to Models 1, 2 and 3,
where γp = 0. The two other variables, m and p, are always unknown.
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5 Model selection for σ = 24 µm

Here, we reproduce results from figure 5 of the main document, in the case we fix σ = 24 µm.
Results in figure S6a differ from those in the main document, in that Model 2 now has the highest posterior

density. As such, we show the marginal distributions for each parameter in Model 2 in figure S6b–f . These results
are consistent with the main document in showing that models without a density dependent motility mechanism
(Models 4 and 5) are unable to simultaneously match data from all nine experiments. Examining results in figure S10
shows that σ = 24 µm is not able to match the spatial structure in the experimental data as closely as σ = 24 µm,
results for which are shown in figure S8.
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Figure S6: Reproduction of results in figure 6 of the main document, with σ = ϕ = 24 µm. (a) Posterior for the model index,
π(Mk|Xobs), showing that Model 2 (density-independent motility) as the posterior mode. (b)–(f) Marginal posterior distributions
for each parameter in Model 2, shown as weighted histograms.

6 Results for all nine experiments

In the main document, we show results for experimental replicates 1, 3, 6 and 9 at t = 36 h in figure 6. Here, we
reproduce figure 6 and show results for all nine experimental replicates at both t = 18 h and t = 36 h.

In section 6.1 we show these results for σ = 12 µm, the value from the main document. In section 6.2 we show
these results for σ = 24 µm.
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6.1 Full results for σ = 12 µm

N(0) = 183 N(0) = 404 N(0) = 731N(0) = 692 N(0) = 692N(0) = 522N(0) = 427N(0) = 354N(0) = 299
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Figure S7: Reproduction of results in figure 6a–l of the main document, for all replicates, for σ = 12 µm.
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Figure S8: Reproduction of results in figure 6m–x of the main document, for all replicates, for σ = 12 µm.
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6.2 Full results for σ = 24 µm
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Figure S9: Reproduction of results in figure 6a–l of the main document, for all replicates, for σ = 24 µm.
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Figure S10: Reproduction of results in figure 6m–x of the main document, for all replicates, for σ = 24 µm.
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