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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1 | Sample QC & exclusion prior to SV discovery. We performed quality 

control (QC) on all 14,891 samples in the gnomAD-SV cohort prior to structural variant (SV) discovery, 

excluding a total of 513 samples (3.45% of the cohort) that failed to meet baseline sample or WGS 

quality thresholds for at least one of 10 features considered. A description of this filtering process and 

the definitions of the 10 filtered features is provided in Methods. The distributions, filter thresholds, and 
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sample exclusion statistics for 8/10 of these features are depicted here. Rows correspond to one 

filtered feature. Pairs of columns (those with distributions of the same color) correspond to all samples 

(left), PCR+ samples (center), and PCR- samples (right). Within each pair of columns, the left and right 

panels represent the distribution of the feature before and after sample exclusion, respectively. Orange 

lines indicate filter exclusion thresholds, and the orange portions of each distribution mark the fraction 

of samples that failed at least 1/10 filters applied. Labels above each vertical orange line indicate the 

exact value of filter threshold (orange text) and the number of samples failing this filter (black text). For 

the left pairs of columns, blue and red vertical lines correspond to the filter thresholds applied for PCR+ 

and PCR- samples, respectively. Features are ordered as follows: (a) median coverage per sample in 

100bp bins; (b) dosage bias score, ∂; (c) absolute difference between smallest and largest estimated 

copy number for across all 22 autosomes; (d) median absolute Z-score of number of 1Mb bins with 

estimated copy number < 1.5 or > 2.5; (e) fraction of chimeric read pairs; (f) pairwise read alignment 

rate; (g) percent of library estimated to be contaminant DNA; (h) inferred sex chromosome ploidy. Two 

filtered features (mean read length & inferred-reported sex concordance) are not pictured here. 
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Supplementary Figure 2 | Distribution of sample ages. We collated reported age metadata for all 

samples where available, rounded to the nearest whole year, for various subsets of the gnomAD-SV 

dataset, including (a) all samples included in this study, (b) all samples that passed all QC measures 

and were included in the final gnomAD-SV callset, (c) all unrelated samples in the final gnomAD-SV 

callset used for all analyses presented in this study, and (d) the unrelated subset of samples with 

appropriate permissions to release site-frequency data on the online gnomAD Browser 

(https://gnomad.broadinstitute.org). 
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Supplementary Figure 3 | Overview of gnomAD-SV discovery pipeline. We extended our 

previously described modular SV pipeline for multi-sample joint SV discovery & genotyping in the 

gnomAD-SV dataset.1 An overview of the pipeline is summarized here, but is outlined in detail in 

Methods. The gnomAD-SV discovery pipeline contains seven sequential modules (light beige boxes). 

The sequence of modules is listed in the top left panel and is also indicated by connections between 

light beige boxes. Each module contains multiple sub-modules (smaller, dark boxes) that operate on 

the per-sample (N=1), per-batch (N~400; see Methods for a description of sample batching scheme), 

or cohort-wide (N=14,891) level, as listed in the legend. This pipeline has been made available as a 

series of publicly accessible methods on FireCloud/Terra to permit cloud-based analyses of SVs across 

WGS studies.2  
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Supplementary Figure 4 | Whole-genome dosage bias quantification. We developed a model 

(“WGD”) to quantify non-uniformity of sequencing coverage (i.e., “dosage bias”) per sample, and used 

this model to perform sample-level QC prior to SV discovery (see Methods). (a) We observed antipodal 

patterns of genome-wide normalized coverage throughout the gnomAD-SV dataset, consistent with our 

previous observations from WGS analyses of other datasets.1,3 These patterns corresponded 

predominantly to PCR-amplified (PCR+) and PCR-free (PCR-) library protocols. All WGS samples in 

this dataset featured some degree of dosage bias, although the magnitude varied per sample. Two 

samples with strong dosage biases were arbitrarily selected to be shown here as examples. (b) To 

construct our model, we segmented the GRCh37 reference assembly into contiguous 100bp bins and 
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filtered these bins to a small subset of bins depleted for technical short-read mapping artifacts and with 

strong prior likelihoods on being diploid in the average healthy individual. (c) We identified statistically 

informative bins by evaluating the difference in mean copy number for three training sets of 50 samples 

each for PCR+ and PCR- (total n=300 training samples). Per-sample copy numbers for all training 

samples are shown at right for three example bins. (d) The distribution of bins per chromosome for 

candidate bins passing our filters from (b) and bins in our final WGD model were approximately 

consistent with each chromosome’s relative length. (e) Per-bin weights assigned during model training 

were strongly correlated with observed copy number (CN) differences between an independent pair of 

PCR+ and PCR- training sets (total n=100 samples). (f) Distribution of WGD scores (denoted ∂) for all 

14,891 samples in the gnomAD-SV cohort. (g-h) We generated raw cn.MOPS calls for chromosome 20 

across all 14,891 samples split by PCR status then batched randomly (g) and ranked by ∂ then batched 

sequentially (h). Ranking samples by ∂ prior to batching for read depth-based CNV discovery (g) 

improved the uniformity of raw CNV calls per sample, and better controlled outlier samples. From these 

data, we also learned minimum and maximum ∂ thresholds for sample-level QC prior to SV discovery 

(g) that maximized the number of cn.MOPS outlier samples excluded while minimizing the number of 

well-behaved samples lost. 
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Supplementary Figure 5 | Sample batching strategy. We devised a strategy for subdividing samples 

into smaller batches for joint discovery of SVs to control for technical variability between samples (e.g., 

dosage biases, PCR status, depth of coverage) and to leverage increased parallel computation in the 

cloud. (a) Overview of the batching procedure, which is described in detail in Methods. (b) Annotation 
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of number of samples per split point in the batching procedure as applied to the full gnomAD-SV cohort 

after preliminary sample QC (see Supplementary Figure 1). (c-d) Distributions of metadata & 

sequencing metrics per (c) cn.MOPS batch and (d) gnomAD-SV pipeline batch. Populations 

correspond to population assignments inferred from the final gnomAD-SV callset (see Methods). 
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Supplementary Figure 6 | Hardy-Weinberg Equilibria of SVs across major continental 
populations. Despite being an imperfect measurement to assess genotyping accuracy, we computed 

Hardy-Weinberg Equilibrium (HWE) statistics for all biallelic autosomal SVs documented in this study 

for each of the four major populations considered: (a) African/African-American, (b) East Asian, (c) 

Latino, and (d) European. These data are presented here as De Finetti diagrams,4 where each point is 

a single biallelic autosomal SV projected onto HWE ternary axes corresponding to its ratio of 

homozygous reference (0/0), heterozygous (0/1), and homozygous alternate (1/1) genotypes across all 

samples in the indicated population. The distance of a point to a vertex indicates the fraction of samples 

with that genotype. Points are colored based on their adjusted p-value compared to HWE expectations 

(1 = p2 + 2pq + q2). Green points are SVs within bounds defined for HWE based on the number of sites 

documented in each population, and purple points are SVs outside of these p-value bounds. The 

proportion of SVs corresponding to each p-value cutoff is provided at the right of each panel. Plots were 

generated using the “HardyWeinberg” package in R.5 See Extended Data Figure 2b for a combined 

HWE ternary plot across all samples.  
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Supplementary Figure 7 | Patterns of linkage disequilibrium between SVs and SNVs/indels. We 

computed linkage disequilibrium (LD) between common (allele frequency [AF] ≥1%) autosomal SVs 

and all SNVs/indels within ±1Mb from a subset of 5,353 African/African-American (AFR; n=3,470) and 

European (EUR; n=1,883) samples overlapping between this study and a sister study.6 (a) Maximum R2 

values for SVs and nearby SNVs/indels, stratified by population and repeat coverage. Points reflect 

medians and vertical black bars reflect interquartile range. Repetitive primary sequence contexts, 

including segmental duplications (SD) and simple repeats (SR), had a strong influence on LD between 

SVs and nearby SNVs and indels, which was likely due to a combination of the complex haplotype 

structures in these regions as well as the increased technical difficulty of genotyping variants in 

repetitive sequences from short reads. To account for this, we restricted all subsequent analyses of LD 

between SVs and SNVs/indels to SVs that were <30% covered by annotated SD and SR elements. (b-

c) Maximum R2 between common SVs and SNVs/indels, stratified by population and (b) global SV AF 

or (c) SV size, after restricting on SD/SR coverage as described above.  
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Supplementary Figure 8 | Site-level comparison of SVs to the 1000 Genomes Project. We 

compared the gnomAD-SV callset to the SVs from the 1000 Genomes Project phase III release.7 We 

considered two ‘directions’ of comparison: (a-c) the fraction of SVs reported by the 1000 Genomes 

Project that were also observed in gnomAD, and (d-f) the fraction of SVs discovered in gnomAD-SV 

that were also reported by the 1000 Genomes Project. For each comparison, we further stratified 

across three dimensions: (a & d) SV class, (b & e) SV size binned by decile, and (c & f) AF, binned 

into quintiles after holding out singletons as their own bin (marked with an “S”). We evaluated these 

comparisons across all samples (“ALL”), as well as when matching on four major populations 

considered in both studies (AFR, AMR, EAS, and EUR). Sites matching with strict criteria are marked 

with dark colors, whereas sites matching with looser criteria are marked with lighter colors (see 

Methods for details).  
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Supplementary Figure 9 | Allele frequency comparisons to SVs from the 1000 Genomes Project. 
In addition to site-level comparisons (see Supplementary Figure 8), we also compared allele 

frequencies (AFs) between common (AF > 1%), biallelic, autosomal SVs discovered in both gnomAD-

SV and the 1000 Genomes Project phase III release.7 We found a positive correlation between AFs of 

SVs discovered in both studies, which was strongest when matching on population. We compared all 

pairs across four major populations considered in both studies (AFR, AMR, EAS, and EUR), as well as 

all samples across all populations (“ALL”). Comparisons where populations were matched are marked 

with a thick border and colored points; all other comparisons represent inter-population comparisons. 

Correlations were assessed with a Pearson correlation test.  
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Supplementary Figure 10 | Breakpoint accuracy estimates from long-read WGS. We estimated 

breakpoint accuracy in gnomAD-SV by comparing to Pacific Biosciences (“PacBio”) long-read WGS-

derived SV callsets produced by the same assembly & SV calling algorithms for two samples also 

present in gnomAD-SV.8,9 For insertion and deletion SVs with long-read support for their breakpoints 

(see Extended Data Figure 3), we calculated the distance between reported breakpoints from short-

read and long-read WGS separately for the left (i.e., lower) and right (i.e., higher) coordinate 

(abbreviated “coord.”). (a, c, e) Absolute breakpoint accuracy estimated vs long-read WGS for the left 

and right coordinates per breakpoint, split by SV class. (b, d, f) Breakpoint accuracy normalized to the 

overall size of each SV, split by SV class. 
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Supplementary Figure 11 | Distribution of variant quality scores. Distributions of quality scores 

(“QUAL” scores in VCF format) stratified by AF (columns) and variant size (shading) for all five major 

SV classes, including (a) deletions, (b) duplications, (c) insertions, (d) canonical inversions, and (e) 

complex SV. MCNVs and reciprocal translocations are not pictured here, as both variant classes are 

sparse and/or QUAL scores are uninformative. 
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Supplementary Figure 12 | Validation of variant quality score calibration. We sought to assess 

whether our variant quality scores (“QUAL” scores in VCF format; see Supplementary Figure 11) were 

consistent with available orthogonal measurements of variant confidence. We considered three 

independent analyses: (a-b) apparent de novo rates for heterozygous SVs across 970 parent-child trios 

(also see Extended Data Figure 2a), (c-d) in silico variant confirmation by Pacific Biosciences 

(PacBio) long-read WGS on a subset of samples (also see Extended Data Figure 3 and 
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Supplementary Figure 10), and (e-f) patterns of linkage disequilibrium (LD) between common SVs 

and nearby SNVs or indels (also see Supplementary Figure 7). For each analysis, we stratified 

variants by SV class, then partitioned each into sequential, non-overlapping bins by increments of +50 

QUAL score from the global minimum score (QUAL=0) to the global maximum score (QUAL=1000). 

Given the requirements for in silico long-read WGS confirmation, we uniformly restricted all analyses 

presented here to SVs with breakpoint-level read support (i.e., “split-read” evidence; includes ~93% of 

all SVs) and SVs with breakpoints not localized to annotated segmental duplications and/or simple 

repeats. After applying these filters, for each QUAL score bin, we either computed the (a-b) mean 

heterozygous de novo rate, (c-d) the fraction of SVs confirmed by long-read WGS, or (e-f) the median 

peak LD between SVs and SNVs/indels within ±1Mb. Panels (a), (c), and (e) represent these data as 

the marginal performance for each metric within each QUAL score bin; i.e., the variants included in 

each bin in these panels are not included in any other bins within the same graph. Panels (b), (d), and 

(f) represent these data as the cumulative average of all SVs either above (green) or below (purple) a 

specified minimum QUAL threshold for theoretical post hoc filtering of the gnomAD-SV callset, and 

solid lines sliding window averages over 5 bin windows (corresponding to windows of 250 on the QUAL 

score scale, in steps of 50). 
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Supplementary Figure 13 | Principal components analysis of common SVs. We performed a 

principal component (PC) analysis of common (AF>1%), high-quality SVs across all samples in the final 

gnomAD-SV callset before pruning related individuals. The top three principal components from this 

analysis clearly stratified samples into continental ancestry groups. Show here are all three pairwise 

combinations of the top three principal components, colored by population assignment (also see Figure 
1d). 
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Supplementary Figure 14 | Development of the adjusted proportion of singletons (APS) metric. 
We observed that the singleton proportion for an arbitrary set of SVs was highly dependent on SV size, 

class, contributing evidence supporting event (e.g., read depth, split reads), and genomic context. To 
account for these relationships in our analyses, and to permit comparisons of frequency spectra across 

SV classes, sizes, and contexts, we fit a nonlinear least-squares regression model separately to each 

of 14 SV categories, including: deletions contributed by RD callers with (a) ≤5% or (b) >5% coverage 

by annotated segmental duplications and simple repeats (SD/SR); deletions not contributed by RD 

callers with (c) ≤5% or (d) >5% SD/SR coverage; (e) inversions; duplications contributed by RD callers 

with (f) ≤5% or (g) >5% SD/SR coverage; duplications not contributed by RD callers with (h) ≤5% or (i) 
>5% SD/SR coverage; (j) complex SVs; insertions annotated as mobile element insertions (MEIs) with 

(k) ≤5% or (l) >5% SD/SR coverage; insertions not annotated as mobile elements with (m) ≤5% SD/SR 

coverage or (n) >5% SD/SR coverage. The left side of each panel displays the unadjusted relationship 

between SV size and singleton proportion after dividing all SVs into 100 uniform bins based on SV size, 

and the grey line indicates the nonlinear least-squares fit to those data. The right side of each panel 

displays the same data after adjustment.   
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Supplementary Figure 15 | Comparison of allele frequencies per SV class by genic context. We 

compared the AF distributions across SV classes conditioned by their relationship to autosomal protein-

coding genes. Each panel corresponds to a single SV class, which we further decomposed into three 

categories based on their genic context: (i) predicted gene-altering SVs, which included predicted loss-

of-function (pLoF), whole-gene copy gain (CG), or intragenic exonic duplication (IED) SVs of at least 

one gene (see Supplementary Figure 17), (ii) SVs that overlapped genes but were not predicted to 

result in a disruptive functional consequence, which included intronic SV, gene-spanning inversions, or 

partial duplications not resulting in CG or IED, and (iii) SVs with no overlap with any protein-coding 

genes. 
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Supplementary Figure 16 | Genomic patterns and correlates of SV density. (a) We computed the 

density of SVs per autosome in 100kb sequential windows, represented here after being smoothed as a 

1Mb rolling mean. SV density varied by chromosome and position, with centromeres and telomeres 

being particularly enriched for SVs (also see Figure 3c-d). Unalignable regions of the GRCh37 

reference genome are masked with light grey. (b-g) Analyses of SV density versus classes of 

annotated repetitive elements. For each SV class, the left panel displays the mean number of SVs per 

100kb window divided into deciles based on coverage by annotated repetitive elements. Bars represent 

95% confidence intervals from 100-fold bootstrapping. The right panel displays regression coefficients 

from a multivariate linear model of SV density versus seven annotated repeat classes. Dark shaded 

bars indicate repeat classes that were significantly associated with SV density after Bonferroni 

correction, while light shaded bars are non-significant. LCR = low-complexity repeat; LTR = long 

terminal repeat; Seg. Dups. = segmental duplications. The relationships between SV density and 

repeat class inferred here are likely to be influenced in part by technical limitations of short-read WGS 

in low-complexity sequences. 
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Supplementary Figure 17 | Summary of SV annotations in coding sequences. We annotated all 

SV for multiple possible functional effects on the canonical transcripts of protein-coding genes (see 

Methods). The possible effects assigned per SV class are illustrated here, with example schematics of 

qualifying variants for each category. 
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Supplementary Figure 18 | Raw singleton proportions for selected findings. Here, we present 

multiple findings from this study on the scale of raw (unadjusted) singleton proportion, rather than on 

the APS metric scale. (a) Equivalent of Figure 4c. (b) Equivalent of Extended Data Figure 6c. (c) 

Equivalent of Extended Data Figure 6f. Refer to the legend of each referenced figure for more 

information. 
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Supplementary Figure 19 | Comparisons of SV depletion vs SNV pLoF and missense constraint. 
As described in Figure 4d, we compared a relative measure of rare SV depletion within genes to (a, c) 

pLoF SNV constraint and (b, d) missense SNV constraint.6 We performed this analysis separately for 

each of four possible SV-gene annotations: pLoF, CG, IED, and whole-gene inversion (INV), as 

described in Supplementary Figure 17. Panels are formatted as described in Figure 4d. Panels (a-b) 

include all SVs used in the main analyses presented in this study, whereas panels (c-d) restrict to 

canonical (i.e., non-complex) SVs with precise breakpoints (i.e., SVs with “split-read” evidence), with 

the second set of strict filters applied to exclude potential annotation errors either due to complex 

rearrangements or imprecise breakpoint coordinates. We found that the results were highly similar 

irrespective of filtering and conclude that these findings are relatively robust to the potential sources of 

technical confounding considered here. 

 

  



Collins*, Brand*, et al. Supplementary Information | 27 

 
Supplementary Figure 20 | Evidence for genomic disorder CNV carriers in gnomAD-SV. Here we 

provide normalized copy-number estimates for the 32 genomic disorders (GDs) with at least one non-

reference carrier predicted among the subset of gnomAD-SV samples after excluding cases of known 

neurological disease (also see Supplementary Table 6). Each panel represents the deviation from the 

median copy state across all samples at a single GD locus. Individual predicted CNV carriers are 
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shown with red or blue lines. The distribution of all predicted non-carriers is shown with grey shading: 

the dark grey line indicates the median across all samples, the medium grey shading indicates the 

middle 50% of all non-carrier samples, and the light grey shading indicates the middle 95% of all non-

carrier samples. Gain or loss of integer copy states are indicated with horizontal dashed grey lines, for 

reference. As many genomic disorders are mediated by non-allelic homologous recombination, 

segmental duplications are marked in orange below each plot. 
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Supplementary Figure 21 | Properties of genomic disorders evaluated in gnomAD-SV. (a) GD 

CNV frequencies were comparable across populations in gnomAD-SV, except for duplications at 2q13 

(NPHP1), where the frequency in East Asian samples was up to 5-fold greater than other populations 

(2q13 NPHP1 duplications marked with solid black outlines and arrows). (b) The odds ratios (ORs) for 

these 49 GDs in developmental disorder (DD) patients from Coe et al.10 were inversely correlated with 

the combined CNV frequencies in the gnomAD-SV and UKBB datasets (R2=0.28; P=1.18x10-3; 

Pearson correlation test). Solid grey line represents linear best fit. 
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Supplementary Figure 22 | Homozygous pLoF SVs. We compiled a list of genes predicted to be 

completely inactivated in at least one individual due to a homozygous pLoF SV. (a) Counts of SVs 

resulting in pLoF, with three tiers of filters as listed. (b) Percent of total SVs meeting each criterion 

listed in (a). (c) Counts of unique genes with at least one SV meeting the criteria in (a). (d) Percent of 

all autosomal, protein-coding genes with at least one homozygous pLoF SV. 
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Supplementary Figure 23 | Overview of post hoc filtering & final callsets. As described in 

Methods, we performed a series of post hoc filters and post-processing steps to clean the final callsets 

used in the analyses for this study. These steps involved excluding outlier samples, detecting lingering 

batch effects, inferring relatedness, assigning population labels, and calculating allele frequencies.  
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Supplementary Figure 24 | Evaluation of callset filtering on key results. We evaluated whether a 

variety of the principal findings in this study were sensitive to the callset filtering thresholds employed 

here. To examine this possibility, we reanalyzed the gnomAD-SV dataset at three quality thresholds, 

representing (i) relaxed filtering, where we included all SVs, even those that did not have a FILTER 

status of PASS, (ii) the same filtering thresholds as presented in this study, and (iii) stricter filtering, 

where we required all variants to have a QUAL score > 500 in addition to a FILTER status of PASS. For 

these three filtering thresholds, we assessed several callset properties, including (a) SV counts, (b) size 

distributions (see Figure 1f), (c) AF distributions (see Figure 1g), and (d) Hardy-Weinberg equilibrium 

rates (see Extended Data Figure 2b). Additionally, we reproduced multiple analyses presented in this 

study from these three callsets, including (e) mutation rate estimates (see Figure 3a), correlations 

between gene constraint and (f) pLoF SVs and (g) CG SVs (see Figure 4d), (h) carrier rates for rare 

pLoF SVs in medically relevant genes (see Figure 6c), and (i) carrier rates for large (≥1Mb) rare SVs 

(see Figure 6d). Across all analyses, we found that none of the principal conclusions of this study 

would have been meaningfully altered with either looser or stricter filtering, suggesting the findings as 

presented in this study are largely robust to the technical details of the gnomAD-SV dataset. 
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SUPPLEMENTARY TABLES 

Supplementary Table 1 | Sample QC thresholds & filtering 
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Supplementary Table 2 | Sample overlap with gnomAD SNV/indel analyses 

 
  

Analysis stage All PCR+ PCR- All PCR+ PCR- All PCR+ PCR-
Initial cohort 14,891 1,631 13,260 8,540 1,471 7,069 6,351 160 6,191
Passed phase I filters (before SV discovery) 14,378 1,403 12,975 8,176 1,246 6,930 6,202 157 6,045
Passed phase II filters (during SV discovery) 14,237 1,334 12,903 8,040 1,179 6,861 6,197 155 6,042
Passed phase III filters (after SV discovery) 12,653 1,055 11,598 7,626 979 6,647 5,027 76 4,951
Included in public VCF release 10,847 540 10,307 6,842 540 6,302 4,005 0 4,005

Please refer to Supplementary Table 1 and Supplementary Figure 23 for a description of sample filtering phases

Samples not in                 
Karczewski et al., 2019

Samples in           
Karczewski et al., 2019All Samples in gnomAD-SV
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Supplementary Table 3 | SV callset summary 
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Supplementary Table 4. | SV callset benchmarking 

 
FDR = false discovery rate; FNR = false negative rate; CMA = chromosomal microarray; HWE = Hardy-

Weinberg equilibrium; AC = allele count 
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Supplementary Table 5 | Common SVs in strong LD with SNV/indels 
Table too large to be reproduced here; provided separately as supplementary file 
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Supplementary Table 6 | Carrier frequencies of genomic disorder CNVs in gnomAD-SV  

 
Genomic disorder coordinates & UK BioBank frequencies obtained from Owen et al., 2018.11  

Chr Genomic Disorder CNV Samples Carriers Freq. Samples Carriers Freq.
1 145.39 145.63 TARdel DEL 396,725 69 0.017% 10,001 2 0.020%
1 145.39 145.63 TARdup DUP 396,725 408 0.103% 10,154 7 0.069%
1 146.53 147.39 1q21.1del DEL 396,725 106 0.027% 10,164 5 0.049%
1 146.53 147.39 1q21.1dup DUP 396,725 168 0.042% 10,164 10 0.098%
2 96.74 97.68 2q11.2del DEL 396,725 29 0.007% 10,164 1 0.010%
2 96.74 97.68 2q11.2dup DUP 396,725 26 0.007% 10,122 1 0.010%
2 110.86 110.98 2q13delNPHP1 DEL 396,725 2,330 0.587% 10,164 41 0.403%
2 110.86 110.98 2q13dupNPHP1 DUP 396,725 1,868 0.471% 10,164 118 1.161%
2 111.39 112.01 2q13del DEL 396,725 51 0.013% 10,162 1 0.010%
2 111.39 112.01 2q13dup DUP 396,725 71 0.018% 10,164 3 0.030%
2 131.48 131.93 2q21.1del DEL 396,725 40 0.010% 10,164 1 0.010%
2 131.48 131.93 2q21.1dup DUP 396,725 55 0.014% 10,164 5 0.049%
3 195.72 197.35 3q29del DEL 396,725 9 0.002% 10,164 0 0.000%
3 195.72 197.35 3q29dup DUP 396,725 5 0.001% 10,164 0 0.000%
7 72.74 74.14 WBSdup DUP 396,725 13 0.003% 10,164 1 0.010%
7 75.14 76.06 7q11.23dupdistal DUP 396,725 23 0.006% 10,164 0 0.000%
8 8.10 11.87 8p23.1dup DUP 396,725 5 0.001% 10,164 0 0.000%
10 49.39 51.06 10q11.21q11.23del DEL 396,725 56 0.014% 10,164 0 0.000%
10 49.39 51.06 10q11.21q11.23dup DUP 396,725 40 0.010% 10,164 1 0.010%
10 82.05 88.93 10q23dup DUP 396,725 7 0.002% 10,164 0 0.000%
13 20.98 21.10 13q12delCRYL1 DEL 396,725 363 0.091% 10,164 5 0.049%
13 20.98 21.10 13q12dupCRYL1 DUP 396,725 10 0.003% 10,164 0 0.000%
13 23.56 24.88 13q12.12del DEL 396,725 84 0.021% 10,164 0 0.000%
13 23.56 24.88 13q12.12dup DUP 396,725 212 0.053% 10,163 7 0.069%
15 23.68 28.39 PWSdup DUP 396,725 16 0.004% 10,164 0 0.000%
15 29.16 30.38 15q11q13delBP3BP4 DEL 396,725 14 0.004% 10,164 1 0.010%
15 29.16 30.38 15q11q13dupBP3BP4 DUP 396,725 50 0.013% 10,164 4 0.039%
15 29.16 32.46 15q11q13dupBP3BP5 DUP 396,725 9 0.002% 10,164 0 0.000%
15 31.08 32.46 15q13.3del DEL 396,725 37 0.009% 10,164 0 0.000%
15 31.08 32.46 15q13.3dup DUP 396,725 224 0.056% 10,164 2 0.020%
15 32.02 32.45 15q13.3delCHRNA7 DEL 396,725 10 0.003% 10,164 3 0.030%
15 32.02 32.45 15q13.3dupCHRNA7 DUP 396,725 2,843 0.717% 10,161 55 0.541%
15 72.90 78.15 15q24dup DUP 396,725 8 0.002% 10,164 0 0.000%
16 15.51 16.29 16p13.11del DEL 396,725 124 0.031% 10,164 1 0.010%
16 15.51 16.29 16p13.11dup DUP 396,725 783 0.197% 10,164 37 0.364%
16 21.95 22.43 16p12.1del DEL 396,725 235 0.059% 10,164 3 0.030%
16 21.95 22.43 16p12.1dup DUP 396,725 192 0.048% 10,164 8 0.079%
16 28.82 29.05 16p11.2distaldel DEL 396,725 54 0.014% 9,691 5 0.052%
16 28.82 29.05 16p11.2distaldup DUP 396,725 127 0.032% 10,164 2 0.020%
16 29.65 30.20 16p11.2del DEL 396,725 103 0.026% 9,548 2 0.021%
16 29.65 30.20 16p11.2dup DUP 396,725 131 0.033% 10,164 0 0.000%
17 14.14 15.43 17p12delHNPP DEL 396,725 219 0.055% 10,119 4 0.040%
17 14.14 15.43 17p12dupCMT1A DUP 396,725 116 0.029% 10,164 3 0.030%
17 16.81 20.21 PotockiLupski DUP 396,725 5 0.001% 10,164 0 0.000%
17 29.12 30.27 17q11.2delNF1 DEL 396,725 9 0.002% 10,164 0 0.000%
17 34.81 36.22 17q12del DEL 396,725 7 0.002% 10,095 1 0.010%
17 34.81 36.22 17q12dup DUP 396,725 99 0.025% 10,164 1 0.010%
22 19.04 21.47 22q11.2del DEL 396,725 10 0.003% 10,164 0 0.000%
22 19.04 21.47 22q11.2dup DUP 396,725 266 0.067% 10,164 0 0.000%

UK BioBank gnomAD-SVStart 
(Mb)

End 
(Mb)
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SUPPLEMENTARY NOTES 
Technical benchmarking and quality assessment of the gnomAD-SV callset 
After SV discovery in 14,237 samples as described in the Supplementary Methods, we next aimed to 

comprehensively assess the performance of our SV discovery pipeline and the technical qualities of the 

gnomAD-SV callset. Benchmarking SVs from short-read WGS remains a major challenge with no gold 

standard.12 As such, we evaluated the technical qualities of gnomAD-SV using seven orthogonal 

approaches, enumerated briefly here but also detailed in Extended Data Figures 2-3, Supplementary 
Figures 6-12, and Supplementary Tables 4-5. First, we assessed Mendelian inheritance in 970 

parent-child trios (2,910 genomes), finding an average Mendelian violation rate of 3.8% and an 

apparent heterozygous de novo rate of 3.0% per trio. Given that almost all SVs that violate Mendelian 

transmission patterns represent a combination of false positives and/or negatives, these estimates 

provide proxies for SV detection performance and genotyping accuracy. Second, we found 97.1% 

sensitivity to detect large CNVs (>40 kb) previously reported from microarrays in 1,893 individuals.13 

Third, we calculated that 86% of SVs across all populations were in Hardy-Weinberg Equilibrium. 

Fourth, we found that most common (AF≥1%) SVs were in linkage disequilibrium (LD) with a nearby 

SNV or indel (median best R2=0.85). Fifth, we observed that doubleton SVs overwhelmingly appeared 

isolated to specific populations, as expected (79.0% of doubletons were intra-population vs. 35.0% 

expected by chance; P<10-100, one-sided binomial test). Sixth, most (57%) SVs documented in the 

1000 Genomes Project were also found in gnomAD-SV, and the AFs of variants overlapping between 

the 1000 Genomes Project and gnomAD-SV were well correlated (R2=0.72);7 conversely, 86% of SVs 

in gnomAD-SV were novel compared to the 1000 Genomes Project, reflecting the ~7-fold increase in 

size, ~5-fold increase in average coverage, and improved sensitivity of gnomAD-SV. Seventh, we used 

long-read WGS data available for four individuals to perform an in silico confirmation of SVs predicted 

from short-read WGS in gnomAD-SV,8,9,14 estimating a positive predictive value of 94.0% for SV not 

with breakpoint-level read evidence (92.8% of all SVs). We also evaluated breakpoint accuracy among 

the SVs with long-read WGS support by comparing the coordinates reported in gnomAD-SV to 

preexisting SV calls generated directly from the long-read WGS data,8,14 finding that 59.8% of gnomAD-

SV breakpoint coordinates were accurate to within a single nucleotide and 75.9% were accurate to 

within ±10bp. Importantly, these estimates assume the long-read WGS SV calls represent absolute 

ground truth, which will not hold for 100% of SVs (e.g., spurious long-read misassembly, breakpoints 

with high homopolymer content, etc.). In conclusion, while the seven analyses listed above are 

imperfect measures of technical performance given the potential for confounding population 

substructure, admixture, recombination, recurrence, and other assumptions that will not universally hold 

true, they nevertheless establish the gnomAD-SV dataset as sufficiently sensitive and specific for most 

applications as a resource in contemporary human genomics.  
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METHODS 
WGS data aggregation 
We processed a subset of the WGS data collected from population genetics and common disease 

genomics sequencing projects as part of the Genome Aggregation Database (gnomAD; 

https://gnomad.broadinstitute.org). Details of sample collection are provided in Karczewski et al., 2019. 

Due to the availability of WGS BAM files at the time of SV callset generation, 8,540 genomes in this 

study overlap with those included in the gnomAD SNV and indel callset generation, and are described 

in Karczewski et al., 2019. In addition, we included 6,351 genomes from other studies, either for the 

purposes of quality control or for population-based analyses.1,15 These 6,351 additional genomes were 

collected primarily from three sources: (1) a subset of genomes (n=4,266) from the Multi-Ethnic Study 

of Atherosclerosis (MESA) cohort in the Trans-Omics for Precision Medicine (TOPMed) initiative, which 

has already been analyzed for common and rare variation;15-18 (2) a subset of genomes we had 

previously analyzed and published from the Simons Simplex Collection (SSC; n=2,076 genomes), 

which were included for family-based quality control and benchmarking analyses, disease association 

and population screening, but were not consented for public release of site-frequency data;1,13 and (3) 

nine genomes from the Human Genome Structural Variation (HGSV) consortium.19 Note that we 

excluded all affected individuals from the SSC cohort prior to all analyses presented herein, with the 

exception of callset benchmarking. All variant and individual-level data from the SSC can be accessed 

by qualified researchers in SFARIbase (http://base.sfari.org; see Data availability). The nine HGSV 

samples were sequenced to very deep (~75X) coverage, but were downsampled to ~30X prior to being 

included in this study. Supplementary Table 2 provides an explicit comparison to the WGS data also 

included in the gnomAD SNV and indel analyses.6 We jointly processed and analyzed these 14,891 

genomes, with the public release of genetic site-frequency data provided for 10,847 samples with 

appropriate consent, and the remaining samples released to appropriate repositories (see 

Supplementary Tables 1-2 and Supplementary Figure 23).  

  
Computational platform 
Most WGS processing, SV discovery, and downstream analyses for gnomAD-SV was conducted on the 

FireCloud platform (https://software.broadinstitute.org/firecloud/), recently renamed to “Terra” 

(https://terra.bio/), which is a secure open platform for collaborative genome analysis developed as part 

of the NCI Cloud Pilot program.2 Where relevant, all workflows and methods used in this study have 

been made publicly available via the FireCloud Methods Repository 

(https://portal.firecloud.org/#methods). 
 
SV discovery 
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We performed discovery of SVs using an extension of a previously described modular, multi-algorithm 

integrative pipeline,1 as integration of multiple independent algorithms has been shown to be an 

effective approach for SV discovery with balanced sensitivity and specificity.1,19 The gnomAD-SV 

discovery pipeline is segmented into eight sequential modules, an overview of which is depicted in 

Supplementary Figure 3. Each module is described in detail below. 

  

Module 00: Preprocessing 

The first module of the gnomAD-SV pipeline collects all data and metadata required for SV discovery 

during the subsequent seven modules. This process involves five steps: (1) ploidy estimation and sex 

inference, (2) sample QC, including sequencing dosage bias scoring, (3) sample batching, and (4) 

execution of SV discovery algorithms. These steps are described below: 

 

Ploidy estimation & sex inference 

We estimated per-chromosome ploidy (i.e., whole-chromosome copy number) and inferred genetic sex 

per sample using read depth in 1Mb sequential bins, excluding any bins where >5% of samples had 

zero observed coverage (e.g., N-masked heterochromatic regions). We next normalized coverage 

values for each sample by dividing the total coverage for each 1Mb bin by the median coverage value 

across all autosomal 1Mb bins. We assigned ploidy per chromosome per sample as two times the 

median normalized coverage per 1Mb bin (Extended Data Figure 1). For sex assignments, we 

rounded sex chromosome ploidy to the nearest integer copy state. Samples with predicted sex 

aneuploidies (not XX or XY) were assigned as “other”. Finally, we screened for particularly large 

unbalanced rearrangements, such as somatic or mosaic aneuploidy and extremely large CNVs  by 

assigning Z-scores and corresponding Benjamini-Hochberg (FDR) corrected q-values per 1Mb bin 

sample corresponding to the divergence of that sample’s estimated copy number compared to the rest 

of the samples in the dataset (Extended Data Figure 1b-e). 

 

Sequencing dosage bias scoring 

We have previously observed that CNV calling from WGS can be confounded in samples with highly 

non-uniform coverage, which we here term “dosage bias”, and that these dosage biases are antipodal 

between PCR+ and PCR- protocols (Supplementary Figure 4a).1,3,20 To control for dosage bias during 

SV discovery, we developed a model named Whole-Genome Dosage (WGD) to quantify the extent of 

bias per sample. The WGD model produces a single metric (∂) that summarizes the directionality and 

magnitude of bias per sample, which we used to inform sample QC and batching. In brief, we compute 

∂ by measuring the weighted mean of normalized coverage values per sample across 3,202 autosomal 

100bp bins throughout the genome. These bins were selected on the basis of three features: (1) they 

have a high likelihood of being copy number-invariant between samples (Supplementary Figure 4b), 
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(2) they can significantly discriminate between PCR+ and PCR- samples across multiple independent 

sequencing batches and centers (Supplementary Figure 4c), and (3) they are roughly representative 

of all 22 autosomes (Supplementary Figure 4d). We confirmed the selection and weighting of these 

3,202 bins by comparing to an independent test set of gnomAD-SV samples (Supplementary Figure 
4e), and provide these bins as a public resource for quality control in future WGS-based studies 

(https://github.com/RCollins13/WGD). As anticipated, this model was able to improve read depth-based 

CNV discovery by grouping samples with similar dosage bias profiles (Supplementary Figure 4g-h), 

and also identify outlier samples with extreme biases to be excluded during sample QC.  

 

Sample QC 

We assessed the WGS properties for all 14,891 samples prior to SV discovery to exclude samples 

likely to introduce excessive noise into downstream analyses and subsequently reduce the overall 

quality of the SV dataset. Based on a combined analysis of all available QC metadata, we applied filters 

to 10 features measured per sample (Supplementary Figure 1). Definitions for these features are 

provided below: 

  

● Median 100bp bin coverage: median sequencing coverage, measured in 100bp bins. 

● Dosage bias score (∂): measurement of uniformity of coverage (described above). 

● Autosomal ploidy spread: absolute difference between highest and lowest ploidy estimates for any 

two autosomes. 

● Z-score of outlier 1Mb bins: median absolute Z-score of number of 1Mb bins per chromosome with 

normalized copy number estimates < 1.5 or > 2.5. Z-scores were calculated separately for PCR+ 

and PCR- samples. 

● Chimera rate: chimeric read pairs as a percentage of total read pairs. 

● Pairwise alignment rate: fraction of all read pairs where both reads per pair aligned successfully. 

● Library contamination: the maximum value of either adapter contamination fraction or estimated 

sample contamination fraction. 

● Read length: mean read length. 

● Ambiguous sex genotypes: normalized copy number estimates for chromosomes X and Y; 

chromosome X and Y copy numbers were considered ambiguous if outside the interval (1.1, 1.9) 

and (0.1,0.9), respectively. 

● Discordant inferred and reported sex: samples where inferred and reported sex designations 

disagree, given that the sample had binary (male/female) sex assignments for both inferred and 

reported sex. 
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For quantitative features, we assigned filter thresholds separately for PCR-amplified (PCR+) and PCR-

free (PCR-) WGS library preparation protocols. Given that samples for this study were aggregated 

across sequencing projects, centers, and dates, 34.7% lacked information for at least one of the 10 

filtered features, though 99.8% had at least 9/10 filtered features. Filter thresholds and number of 

samples excluded per filter are provided in Supplementary Table 1. Any sample failing at least one 

filter was excluded from all SV discovery and downstream analyses. 

  
Sample batching 

We designed a batching scheme to subdivide the full cohort into smaller sample sets for raw SV 

discovery, and the final resolved SVs per batch were subsequently merged and re-genotyped across all 

samples (Supplementary Figure 5). This procedure was designed to control for potential batch effects 

and confounders, to leverage the opportunity of increased cloud-based parallelization, to surmount 

early computational challenges of simultaneous SV discovery in tens of thousands of genomes, and to 

mitigate the risk of decreased SV breakpoint accuracy due to large-sample joint SV discovery (i.e., 

“overclustering” of non-identical breakpoints across samples). This batching scheme was executed as 

follows: all samples passing all initial sample QC filters were first split by PCR status (PCR+/PCR-). 

Within each PCR status, samples were next split on chrX ploidy rounded to the nearest whole integer. 

Samples with ≥2 copies of chrX were assigned to one batch (“female”), and samples with <2 copies of 

chrX were assigned to another batch (“male”). Each of the four PCR-sex groups were further split into 

quartiles based on median 100bp binCov values, yielding a total of 16 smaller groups where all 

samples per batch were matched on sex, coverage, and PCR status. Next, within each of these 16 

groups, we ranked all samples by ∂ and split them into smaller groups of ~100 samples each. In the 

interest of keeping a uniform number of total batches of males and females, we optimized the number 

of ~100 sample groups based on all male samples, then split female samples into an equal number of 

batches. As is detailed below, we performed read depth-based CNV discovery with cn.MOPS on these 

~100 sample batches.21 This step was necessary because the computational requirements for 

cn.MOPS at sub-kilobase resolution become intractable for sets of >150-200 samples on most 

available servers. Finally, we merged every two batches of ~100 male samples with their corresponding 

two batches of ~100 female samples while maintaining ordering corresponding to both coverage and ∂. 

This last step yielded batches of ~400 samples (~200 male & ~200 female), which were matched for 

PCR status, coverage, and dosage biases. We intentionally did not include sample ancestry, 

sequencing project, or sample-sample relatedness as covariates in our batching scheme. We reasoned 

that having entire batches comprised of single ancestry groups, sequencing projects, or related 

samples would introduce unwanted batch-to-batch variability and technical artifacts in our final SV 

callset, so we aimed for a random distribution of these variables across all batches. 
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Execution of individual discovery algorithms for SVs 

We refined our previous SV discovery approach1 to incorporate four algorithms: Manta,22 DELLY,23 

MELT,24 and cn.MOPS.21 Collectively, these algorithms consider three primary raw signals present in 

WGS data that can be used for SV discovery, namely split reads (SR), anomalous paired-end (PE) 

reads, and read depth (RD).25 Each algorithm was selected with a specific rationale based on previous 

analyses:1,19 Manta had the best all-around single-algorithm performance among all PE/SR algorithms 

we evaluated, DELLY maximizes sensitivity for small and balanced SV when run with default 

parameters, MELT specifically captures mobile element insertions (MEIs) with high sensitivity, and 

cn.MOPS is a flexible RD-based algorithm designed for cohort-based analyses with high sensitivity for 

rare CNVs. All four algorithms were run on all 14,891 samples in the gnomAD-SV cohort as described 

below: 

  

Manta 

We executed Manta v1.0.3 in single-sample mode with default parameters for 7,075 samples on the 

FireCloud platform2 and 5,740 samples on a local cluster of 6,700 CPUs maintained by The Broad 

Institute. We also retrieved existing Manta calls we had previously generated for 2,076 samples as 

described in a recent publication.1 

 

DELLY 

We executed DELLY v0.7.7 in single-sample mode for deletions, duplications, insertions, and 

inversions for 7,075 samples on FireCloud and DELLY v0.7.6 for 5,740 samples on the local Broad 

Institute cluster. Like Manta, we retrieved existing DELLY calls for 2,076 samples analyzed as part 

of an earlier study.1 

 

MELT 

We executed MELT v2.0.5 in single-sample mode for 7,075 samples on FireCloud and 5,740 

samples on the Broad Institute cluster. As for Manta and DELLY, we retrieved existing MELT calls 

for 2,076 samples analyzed previously.1 

 

cn.MOPS 

We executed a custom implementation1 of cn.MOPS v1.20.1 on FireCloud for all 14,891 samples in 

~100-sample batches as generated during sample batching (see above). For each 100-sample 

batch, we composed coverage matrixes across all samples at 300bp and 1kb bin sizes per 

chromosome, excluded any samples with a median bin coverage of zero per contig, then ran 

cn.MOPS with R v3.3.3, split raw calls per sample, segregated calls into deletions (copy number < 

2) and duplications (copy number > 2), merged the 300bp and 1kb resolution calls per sample per 
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CNV type using BEDTools merge, and subtracted any N-masked bases from all CNV calls using 

BEDTools subtract.26 

  

After raw SV calls from all four algorithms were aggregated for each sample, we next standardized 

each VCF or BED file to match specifications expected by the downstream pipeline modules using svtk 

standardize (https://github.com/talkowski-lab/svtk).1 We stripped all raw SV calls on chrX and chrY for 

samples with non-canonical inferred sexes from our ploidy estimation procedure. 

  

During module 00, we also collected PE, SR, RD, and SNP B-allele frequency (BAF) evidence per 

sample. We collected discordant PE evidence and SR evidence using svtk collect-pesr, RD evidence 

using binCov, and BAF evidence from GATK HaplotypeCaller-generated VCFs using a custom script 

(vcf2baf) included in the gnomAD-SV pipeline codebase on FireCloud.27 We were unable to obtain 

GATK VCFs for 0.2% (32/14,891) of samples, and thus lacked BAF data for these samples. Following 

evidence collection per sample, we constructed PE, SR, RD, and BAF matrices merged across all 

samples in each 400-sample batch. 

  

All subsequent modules (modules 01-07) were executed in FireCloud unless otherwise specified. 

 

Module 01: Clustering 

The second module of the gnomAD-SV pipeline involves clustering of all variant calls per algorithm 

across all samples in each batch of samples. For each 400-sample batch (described above), we used 

svtk vcfcluster to cluster all calls for all samples per PE/SR algorithm (Manta, DELLY, and MELT) while 

requiring a maximum of 300bp distance between breakpoints and at least 10% reciprocal overlap by 

size. We excluded any variants whose breakpoints mapped within our PE/SR clustering blacklist, as 

previously described.1 In parallel, we clustered cn.MOPS calls for all samples per batch using svtk 

bedcluster while requiring 80% reciprocal overlap by size and no constraints on breakpoint distance. 

For both PE/SR and RD calls, where two or more calls met the above clustering criteria, we collapsed 

all clustered calls into a single record using the median coordinates across all clustered variants. The 

output of module 01 was three VCFs and one BED file per 400-sample batch, corresponding to one file 

each for each of the four SV algorithms used (Manta, DELLY, MELT, and cn.MOPS). 

  

Module 02: Evidence Collection 

The third module of the gnomAD-SV pipeline involves querying four modes of raw evidence present in 

the original aligned WGS BAM files for all samples per batch for each SV call. While this process is 

described in extensive detail elsewhere,1 we also briefly summarize it here. For each SV call, we collect 

the following information: 
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PETest & SRTest (all SVs except RD-only CNVs) 

We assess the number of discordant read-pairs and split-reads per sample that supports the called SV, 

and require the orientation of reads per pair to match the expected signatures for the corresponding SV 

class.25 The count of supporting discordant pairs or split-reads is tabulated per sample predicted to 

carry the SV, and also in a randomly selected background population of 160 samples predicted to not 

carry the SV. These counts are subsequently compared between predicted SV carriers and predicted 

non-carriers with a Poisson test to derive one P-value each for PE and SR evidence. 

 

RDTest (CNVs only) 

Like PETest and SRTest, we also assess the difference in RD between predicted CNV carriers and 

non-carriers. RDTest compares the median normalized coverage values between carriers and non-

carriers with a two-sample t-test or a one-sample Z-test, depending on the number of predicted CNV 

carriers, and emits a P-value and a RD separation metric for each putative CNV. 

 

BAFTest (CNVs only) 

Finally, we also compare the normalized BAF for heterozygous SNVs within predicted CNVs between 

carriers and non-carriers. The distribution of BAFs is compared between groups of predicted carriers 

and non-carriers with a Kolmogorov-Smirnov test for duplications or a Gaussian mixture model for 

deletions, which both produce a P-value and test statistic for each CNV.  

 

The output of module 02 is four matrices per batch, corresponding to one each for Manta, DELLY, 

MELT and cn.MOPS. Each matrix contains the test statistics and evidence for every SV call made by 

that algorithm in that batch, and this evidence matrix is fed directly into the random forest filtering step 

in module 03.  

  

 Module 03: Variant Filtering 

The fourth module of the gnomAD-SV pipeline filters predicted SV calls per batch based on the strength 

of raw evidence supporting each call. This step is essential to exclude the overwhelming number of 

spurious false-positive SV calls emitted from each algorithm and retain a subset of SV enriched for 

true-positive SVs. We perform this filtering with a series of random forest classifiers, which have 

already been described in detail elsewhere.1 In brief, this process uses the four modes of evidence 

produced in module 02 to assign each SV to one of three categories: predicted valid SV, predicted 

invalid SV, or uncertain. The predicted true SV and false SV are used for training in the random forest, 

which are then applied across all variants providing an estimated probability of being a valid SV. To 

correct for overfitting during random forest training we perform a series of ROC optimizations for all 
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evidence metrics produced by module 02, after which we compute a joint probability that each SV is a 

true variant across all available forms of evidence (PE, SR, RD, BAF). Next, we permanently exclude 

all SVs with an integrated probability < 0.5. These variants are categorized as false-positive SV calls by 

the initial algorithms, and are not considered for any subsequent analyses. Finally, we apply a strict 

heuristic cutoff of ≥5kb in size for CNVs discovered from read depth-based analyses alone, as we have 

previously observed the false discovery rate for CNVs uniquely detected by read depth increases 

dramatically below this threshold.1 We acknowledge that true mosaic and sub-integer copy-state SVs 

will likely also be filtered out at this stage, as they will exhibit suboptimal support despite being 

biologically valid SVs. Thus, we emphasize that the filtered SVs retained during module 03 are heavily 

biased towards germline SVs. Finally, we filtered samples from each batch that remained SV call count 

outliers even after random forest filtering of SV sites. To determine which samples were SV call count 

outliers, we counted the number of non-reference SV sites per SV type per algorithm for each sample 

per batch. Within each batch, we considered a sample to be an outlier if it was outside of six times the 

IQR for any SV type. Outlier samples were stripped from the cohort and excluded from all subsequent 

SV discovery and analyses (Supplementary Table 1). 

  

Module 04: Genotyping 

The fifth module of the gnomAD-SV pipeline assigns a genotype and quality score for each sample for 

every SV based on support from three forms of evidence (RD, PE, SR). Prior to genotyping, all 

nonredundant SVs discovered in any batch are collated to form a master set of all SVs across the full 

gnomAD-SV cohort, and each sample is genotyped for this master set of variants. This process is 

described below:  

  

RD genotyping (CNVs only) 

For each CNV, a median normalized RD value is calculated per sample by taking the median 

normalized RD value across all 100bp bins located within that CNV after excluding bins with mapping 

quality of zero, unless the removal of these unmappable bins would result in fewer than 10 eligible bins 

within the CNV. CNVs > 1Mb are restricted to the inner 1Mb as a proxy, consistent with the behavior of 

RdTest (see Module 02). RD genotyping thresholds are first trained on a set of 64 previously 

characterized multiallelic sites (available from: https://github.com/talkowski-lab/RdTest),28 which exhibit 

tight normal distributions of normalized RD values centered at each integer copy state. After 

determining the expected distributions of normalized RD values for each copy state, we next assign a 

copy state for each sample at every CNV based on a Z-test against each copy state distribution. 

Samples are automatically assigned homozygous reference genotypes if they do not exceed the 

minimum RD separation threshold determined by the random forest stage of module 03. Finally, 

genotype quality (GQ) is assigned as a Phred score based on the P-value from the most likely copy 
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state minus the Phred score for the second most likely copy state. GQ scores are capped at 999, 

similar to GATK.27  

 

PE/SR genotyping (all SVs except RD-only CNVs) 

For each SV, counts of discordant pairs and split reads supporting the SV are tallied per sample. 

Genotype assignment is carried out in two phases, as follows. First, a binary determination is reached 

for each sample as to whether or not that sample’s genome carries the SV by comparing the PE or SR 

evidence in that sample to the cutoffs determined by the random forest step of module 03. Second, for 

samples predicted to carry each SV, a genotype is assigned based on PE or SR distributions matched 

to genotyped copy states for CNVs > 1kb determined during RD genotyping (see above). Similar to RD 

genotyping, both PE and SR counts for predicted SV carriers are normally distributed at each integer 

copy state, and therefore a similar GQ can also be assigned per sample. For predicted non-carrier 

samples, GQs are assigned according to a Poisson test, given that PE and SR counts for non-carrier 

samples do not match those for predicted SV carriers. GQ scores are capped at 999, similar to GATK.27  

 

Consensus genotype integration 

After PE, SR, and RD genotypes have been assigned to each sample for every SV, an integrated 

genotype is composed according to SV class and size. For each SV, one of the three evidence types 

(PE/SR/RD) is considered “primary”, and the others are considered “secondary”. The primary evidence 

is used to assign the overall genotype, and the secondary evidence provides a bonus to GQ scores if 

concordant with the primary evidence: if the other pieces of evidence support the primary, a bonus of 

(999-GQprimary) x (0.5 x GQsecondary / 999) is added to the primary GQ. For CNVs > 5 kb, RD is primary 

and the better non-reference genotype between PE or SR is secondary. For CNVs between 1-5kb, the 

higher-quality non-reference genotype between PE or SR is primary and RD is secondary. For all other 

variants, the higher-quality non-reference genotype between PE or SR is primary, and the other is 

secondary. Once all samples are genotyped per SV, each variant is assigned a QUAL score based on 

the median GQ across all non-reference samples for that SV. 

  

Module 05: Batch Integration 

The sixth module of the gnomAD-SV pipeline involves the codification of genotyped SV calls across all 

batches in the cohort, merging of PE/SR and RD calls, and subsequent resolution of these merged SV 

calls into complete genomic variants. Components of this process have been described previously,1 but 

this module also includes multiple new and modified processes. This occurs in four steps, listed below: 

 

Cross-batch call clustering 
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The first step of module 05 clusters each genotyped VCF from module 04 across all batches. This is 

performed once for the three PE/SR algorithms and once for cn.MOPS. We first perform a column-wise 

join across all VCFs from each of the 36 batches, and subsequently run svtk vcfcluster on the new 

cohort-wide joined VCF to collapse overlapping variants.1 When clustering, we require a minimum of 

50% of samples with non-reference genotypes to overlap between records. For PE/SR algorithms, we 

additionally require a maximum breakpoint distance of ±300bp and a minimum reciprocal overlap of 

10% by size, whereas for cn.MOPS, we required a maximum breakpoint distance of ±500kb and a 

minimum reciprocal overlap of 50% by size. For instances of two or more variants being clustered, each 

sample retains the non-reference genotype (if any) with the highest genotype quality score among all 

variants in the cluster. The output of this step is two clustered VCFs for the entire cohort: one 

containing all PE/SR-based SV calls, and one containing all RD-based CNV calls. 

 

PE/SR and RD call merging 

The second step of module 05 merges the cohort-wide PE/SR-based and RD-based SV calls output 

from the previous step. In this merging, we first construct a graph of all overlapping PE/SR and RD SV 

calls while requiring 50% reciprocal overlap by size, matching SV classes, and at least 50% overlap 

among samples with non-reference genotypes. Each cluster in this graph is collapsed into a single 

record, where the SV coordinates from the PE/SR record are retained but the union of non-reference 

sample genotypes are assigned as in module 05i. The output of this step is a single VCF containing all 

SV calls across the full cohort. 

 

Variant resolution 

The third step of module 05 examines predicted alternate allele structures from individual breakpoints 

to construct SV consisting of multiple breakpoints. This process is performed twice in parallel: once 

while including all SVs, and once while restricting to inversion breakpoints alone to capture large 

inversion-mediated complex SV. Variant resolution is performed with svtk resolve, the framework for 

which has been described at length in two previous publications.1,3 For clarity, we also provide a brief 

description of this process here. In summary, svtk resolve first performs single-linkage clustering of all 

overlapping SV while requiring a maximum breakpoint distance of ±300bp and 50% overlap among 

samples with non-reference genotypes. It next compares the coordinates and SV classes of each 

cluster of SVs against a dictionary of known SV signatures, which resolves canonical translocational 

insertions, canonical inversions, canonical reciprocal translocations, and 11 complex SV subclasses 

(see Figure 2).1,3 Non-CNV SVs involved in a multi-SV cluster that are unable to be resolved are 

marked as unresolved, and are converted to BNDs to accordingly. This entire process is performed two 

times, sequentially: first when requiring the relatively strict (±300bp) breakpoint distance to capture 

easily resolved SVs, then a second time while considering any remaining unresolved variants with a 
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more relaxed breakpoint distance criteria of ≥2kb to capture complex SV with large (≥2kb) flanking 

CNVs. SVs that do not cluster with any other SV, or those that cannot possibly form a complex SV 

(e.g., two partially overlapping deletions), are left unchanged. The last step of this process is to resolve 

discrepancies between the outputs of svtk resolve when run on all variants and when restricted to only 

inversions: if an SV is incorporated into a resolved SV in one output but not the other, we retain the 

resolved SV and discard the unresolved alternative. The output of this step is one VCF one containing 

all variants, including resolved canonical SV, resolved complex SV, and unresolved BNDs. 

 

Complex variant regenotyping 

The final step of module 05 is to confirm predicted complex SV structures via RD regenotyping of 

predicted CNV intervals. To accomplish this, we perform RD genotyping for all 36 batches for all 

predicted CNV intervals involved in candidate complex SVs with the same procedure as described in 

module 04, collect the copy state predictions across all samples from all 36 batches, and compare the 

ratio of samples with expected copy states (i.e., copy state < 2 for a predicted complex deletion and 

copy state > 2 for a predicted complex duplication) between predicted carriers and non-carriers. For all 

CNVs > 1kb, we then compute the “confirmation rate” for predicted carrier and non-carrier samples as 

the fraction of samples with expected copy states divided by the total number of samples. We consider 

a CNV to be confirmed if the difference in confirmation rates between predicted carriers and non-

carriers is at least 40% than for non-carriers (e.g., at least 40% of carriers and 0% of non-carriers, or 

90% of carriers and 50% of non-carriers). We restrict this comparison to only consider female samples 

on chromosome X and male samples on chromosome Y. CNVs ≤ 1kb are assessed for confirmation, 

but a failure to confirm small CNVs in this size range does not count as a regenotyping failure. Once all 

CNVs involved in a candidate complex SV are labeled based on this regenotyping procedure, we 

consider the entire complex SV as confirmed unless any CNVs fail to regenotype (or are <1kb, as 

described above). Candidate complex SV with at least one involved CNV labeled as a regenotyping 

failure are rejected and converted to unresolved BND variants. 

 

Following the four steps above, the output from module 05 is a single cohort-wide genotyped VCF with 

resolved canonical SVs, resolved complex SVs, and unresolved SVs. This VCF is passed to the final 

VCF refinement step in module 06, described below. 

  

Module 06: VCF Refinement 

The seventh module of gnomAD-SV pipeline corrects inconsistencies in RD-based CNV genotyping 

that arise due to difficulties in predicting copy state for overlapping CNVs. Namely, the gnomAD-SV 

pipeline uses copy number as predicted by RD evidence as the primary source for assigning genotypes 

to CNVs > 5kb in size; however, in instances of overlapping CNVs, this approach can be confounded 
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without deconvolving each haplotype by phase. To account for this, we apply a correction to CNVs > 5 

kb that are not multiallelic (i.e., more than three distinct copy states observed) as follows: per sample, 

we first isolate pairs of CNVs with at least 50% overlap by size, using BEDTools coverage.26 The 

strength of evidence supporting each CNV is then assessed based on CNV size, where larger CNVs 

are considered to have stronger support, and type(s) of evidence with P ≥ 0.5 from the module 03 

random forest (e.g., RD, PE). For each pair, we then correct copy state and genotype for the CNV with 

weaker support. Concurrent with this overlapping CNV correction, we also explore nested compound 

heterozygous deletions and duplications, where one of the CNVs may have what appears to be a 

reference copy state due to the change in copy number being masked by the opposing CNV on the 

other allele. After correction of copy states, new genotypes are assigned for all samples, and a final 

multiallelic tag is assigned to CNVs > 5 kb with at least 1% of samples having copy states at least 2 

deviations away from expectation (e.g., a deletion call with a maximum copy number of four or more). 

CNVs tagged as multiallelic are relabeled as “MCNV”. In addition to the overlapping CNV correction, 

this module also handles sex chromosome genotype correction, which is evaluated in a sex-aware 

manner. For those individuals with a predicted sex chromosome abnormality (e.g., XXY; also see 

Extended Data Figure 1) genotypes are automatically assigned as null on sex chromosome.  

  

Module 07: Gene annotation  
The eighth and final module of the SV discovery pipeline annotates all SV against known protein-coding 

genes. We used protein-coding gene annotations from the Gencode v19 comprehensive annotation 

file.29 Where multiple transcripts were available for a single gene, we restricted analyses to the 

transcript matching the Ensembl definition of canonical transcript (see 

https://useast.ensembl.org/Help/Glossary?id=346). UTRs were defined as the elements designated as 

UTRs in Gencode v19 that also corresponded to the Ensembl canonical transcript. Promoters were 

defined as the 1kb window directly preceding each gene body in Gencode v19 on the transcribed 

strand. We annotated each canonical SV for a range of possible predicted effects on coding 

sequences, as is graphically outlined in Supplementary Figure 17 and described below: 

  

● Loss of function (pLoF): we predicted an SV to cause genic pLoF on a SV class-specific basis, as 

follows: 

○ Deletions: any overlap with at least one exon. 

○ Duplications: both breakpoints wholly contained within exons of the same gene. 

○ Insertions: insertion of any sequence directly into an exon. 

○ Inversions: any inversion where one breakpoint is contained within a gene (exon or intron) and 

the other breakpoint is outside of the same gene, or any inversion where both breakpoints are 

contained within the same gene and the inversion overlaps at least one exon from that gene. 
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○ Translocations: any translocation breakpoint that overlaps an exon or intron. 

● Copy gain (CG): we predicted an SV to cause a whole-gene CG if and only if the SV involved a 

duplicated segment that completely spanned an entire gene (defined as the first nucleotide of the 

first exon extending to the last nucleotide of the last exon from the canonical transcript). 

● Intragenic exonic duplication (IED): we predicted an SV to cause IED if and only if the SV involved a 

duplicated segment where both breakpoints were contained within the same gene, at least one 

exon was intronic, and the duplication overlapped at least one exon. 

● Partial gene duplications: we predicted an SV to result in a partial gene duplication if the SV 

involved a duplicated segment where one breakpoint was contained within a gene (exon or intron) 

but the other breakpoint was found outside that same gene. The functional consequence of these 

rearrangements is unclear, and likely to infrequently result in altered gene function; thus, for most 

analyses, these partial gene duplications were not considered to be gene-altering. 

● Whole-gene inversion: we predicted an SV to invert an entire gene if the SV involved an inverted 

segment that completely covered an entire gene, using the same definition as for CG annotations 

(see above). Given that we would not predict any direct alterations to coding sequence from whole-

gene inversions, we did not consider these whole-gene inversions as gene-disruptive in our 

analyses, although we cannot rule out the possibility that a subset of these variants might have 

context-specific positional effects on gene regulation in cis. 

● Multiallelic exon overlap: we noted all MCNVs that overlap at least one exon, but did not consider 

these SVs to categorically cause any one functional effect (per above). We did not count MCNVs 

towards any site-level analyses of genic effects, but instead evaluated the predicted effects of each 

MCNV on a per-sample basis according to each sample’s predicted copy state (i.e., genotype). 

Samples with a predicted copy state < 2 were treated as MCNV (pLoF), whereas samples with a 

predicted copy state > 2 were treated as MCNV (CG). We fully anticipate these MCNV designations 

are oversimplifying the true complexity of these MCNV haplotypes and their diploid arrangement; 

however, given the relative sparsity of MCNVs in the genome, and absent tedious manual curation, 

improved MCNV phasing methods, and/or other positional information, we used the generalization 

outlined here as a rough proxy for the genic effects of MCNVs. 

● UTR SVs: we labeled SVs as UTR-disruptive if at least one breakpoint was contained within a 

gene’s 5’ or 3’ UTR, but the gene did not meet any of the above criteria to otherwise be considered 

gene-disruptive. 

● Promoter SVs: we labeled SVs as promoter-disruptive if at least one breakpoint was contained 

within a gene’s promoter, but the gene did not meet any of the above criteria to otherwise be 

considered gene-disruptive. 
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● Intronic SVs: we labeled SVs as intronic if both breakpoints were contained within the same gene, 

but the SV did not meet any of the above criteria to otherwise be considered gene-disruptive 

(including promoter disruptions). 

● Intergenic SVs: all SVs not meeting any of the above criteria were considered intergenic. For these 

SVs, we also noted the gene with the nearest TSS by linear distance. 

 

Given their multiple interleaved distinct SV signatures, we treated complex SV separately from all 

canonical SV during gene annotation. For each complex SV, we first deconstructed the rearrangement 

into its component intervals (labeled as “CPX_INTERVALS” in the VCF INFO field), annotated each 

interval according to its SV class and coordinates, then composed a consensus annotation for the 

overall complex SV as the union of predicted effects from all of the component intervals. 

 

The output from this annotation process in module 07, the final module in the gnomAD-SV discovery 

pipeline, is a genotyped VCF containing all SVs across all samples, with functional genic annotations 

assigned to each SV (as above). 

  

Sample and variant QC after SV discovery 
Following SV discovery, we performed a series of per-sample and per-variant QC steps and filters, in 

the order described below. These post hoc callset adjustments are also outlined in Supplementary 
Figure 23. 

  
Optimizing per-sample genotype quality filters 

We first aimed to control false positive genotypes per sample by applying a series of conditional filters 

to the genotype quality (GQ) statistic for each genotype at each SV site. To accomplish this, we 

considered the rate of apparently de novo SVs among the 1,173 parent-child trios present in our SV 

callset, as we reasoned that a large fraction of apparently de novo SVs would represent spurious false-

positive genotypes in the child. Given that the SV genotyping procedure in module 04 relies on different 

combinations of evidence for different SV classes, we performed a GQ threshold optimization 

procedure separately for each PCR status (PCR+, n=203 trios; PCR-, n=970 trios) across six SV 

classes (DEL, DUP, INS, INV & CPX, BND, and all SV classes), four size ranges (<1kb, 1-5kb, ≥5kb, 

and all sizes), four allele frequency ranges (<1%, 1-10%, ≥10%, and all frequencies), five VCF filter 

statuses (PE/SR support for both sides of the breakpoint, high SR background rate, PESR genotyping 

overdispersion, everything else, and all filter statuses), and four per-sample genotype evidence 

categories (RD-only, SR-only, everything else, and all evidence categories), for a total of 1,448 distinct 

filter conditions tested for each PCR status after removing impossible combinations of filters (e.g., RD-

only balanced SVs).  
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For each filter condition, we executed a GQ threshold assignment procedure as follows: we first 

extracted genotypes and GQ metrics for every trio across all biallelic autosomal SVs where the child 

was genotyped as heterozygous and the SV matched the specified filter parameters. For trios where 

>1,000 SVs met the criteria for a given filter combination, we randomly downsampled to 1,000 SVs. We 

next titrated across a range of minimum GQ thresholds from 0 to 999 in increments of 10. At each 

candidate GQ threshold, we replaced all genotypes with GQ below this threshold with no-call 

genotypes (i.e. “./.”), and computed two metrics: (1) the fraction of heterozygous SV retained in the 

proband that had appeared as inherited prior to minimum GQ filter application, and (2) the percentage 

of heterozygous SVs retained per child appearing de novo among sites where all three members of the 

trio still retained non-no-call genotypes. We then computed the median for each of these statistics 

across all trios at each candidate minimum GQ threshold and performed a receiver operating 

characteristic (ROC) analysis to find the optimal GQ. We constrained this ROC analysis to find the 

lowest GQ cutoff such that we could maximize percentage of inherited heterozygous SV retained while 

also satisfying a maximum tolerated apparent de novo rate of 5%.  

 

After determining the optimal minimum GQ threshold for each of the 1,448 filter condition listed above, 

we discounted the results from any condition with a median number of heterozygous SVs per child less 

than 11. For these conditions with ≤10 heterozygous SVs per child, we adopted a minimum GQ 

threshold from a closely related condition that satisfied the minimum requirement of heterozygous SVs 

per child; this “closely related” condition was determined based on ascending a hierarchical tree of 

most-to-least effective filter combinations for each SV type, where filters were ranked on effectiveness 

by maximizing the fraction of inherited heterozygous SVs retained per child at the ROC-optimal 

minimum GQ threshold while also maintaining apparent de novo rate ≤5%.  

 

Once all minimum GQ thresholds were determined for each filter condition for PCR+ and PCR- 

samples separately, we replaced all homozygous reference or heterozygous biallelic genotypes to no-

call genotypes per SV for any sample with GQ below the corresponding threshold based on that 

sample’s PCR status. We did not apply any GQ filtering to homozygous genotypes, multiallelic sites 

(MCNVs), or chromosomal translocations. SVs without any remaining non-reference genotypes after 

minimum GQ filtering were dropped from the callset. Finally, we identified SVs that suffered significant 

shifts in AF after filtering by comparing allele counts and allele numbers before and after minimum GQ 

filtering with a chi-squared test, which was performed separately for PCR+ and PCR- samples. SVs 

with (i) at least 2% of samples with null genotypes and (ii) a significant P-value for the difference of 

allele counts before and after filtering were labeled as having an unstable AF estimate. We considered 

a P-value as significant only after Bonferroni correction for the total number of SVs evaluated. Variants 
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with unstable AF estimates in PCR+ samples had “UNSTABLE_AF_PCRPLUS” to the VCF info field 

and all PCR+ sample genotypes were assigned as null, while variants with unstable AF estimates in 

PCR- samples had “UNSTABLE_AF_PCRMINUS” added to the VCF filter field and all PCR- sample 

genotypes were assigned as null. 

  

Outlier sample exclusion 

After filtering genotypes on GQ (see above), we next evaluated whether any samples were outliers in 

terms of total number of SVs per genome. We counted the total number of non-reference autosomal 

biallelic SV observed per sample for each SV class with an average of more than 100 SVs per genome 

(DEL, DUP, INS, BND) after excluding SVs with the PESR genotype overdispersion VCF filter to 

protect against high rates of homozygous genotypes of these sites masking true outlier samples. We 

labeled samples as outliers if they had SV counts from any class that was either more than six times 

the inter-quartile range (IQR) more than the third quartile or less than first quartile across all samples 

for that SV class. We performed this process separately for PCR+ and PCR- samples. Outlier samples 

were pruned from the callset, and SVs without any remaining non-reference genotypes after outlier 

sample exclusion were also excluded outright from the callset. 

  

Assessment of batch effects 

We next assessed the concordance of SV calls between all pairs of the 36 batches used during SV 

discovery. We were particularly interested in identifying any SVs that may have been preferentially 

discovered in one or a subset of batches due to factors other than sex or ancestry, and thus may be 

unevenly represented across the full gnomAD-SV cohort and skew AF distributions. To accomplish this, 

we first computed batch-specific AF statistics for every variant for samples from each of four major 

populations (African/African-American, Asian, European, or Latino) based on unrefined preexisting 

sample labels corresponding to ancestry inferred from SNV analyses on the same samples (where 

available) or self-reported race or ethnicity (only when necessary).6 For MCNVs, we computed AF as 

the total count of non-diploid individuals divided by the total number of individuals genotyped at that 

site. We excluded all children from known parent-child trios from all batches when calculating AF to 

improve the accuracy of AF estimates. For each nonredundant pair of batches (n=630 pairs), we 

restricted to sites where at least one non-reference allele was observed in either batch and at least one 

population had at least 60 non-null (i.e., genotyped) alleles in both batches, or 30 individuals with non-

null genotypes for MCNVs. We controlled for differences due to ancestry by restricting to the same 

population on a per-variant basis, and further maximized the accuracy of these comparisons by 

restricting to the optimal population separately for each variant, where “optimal” was defined as the 

population with the largest minimum number of non-null alleles between both batches that also met the 

criteria above (≥60 non-null alleles in both batches & ≥1 non-reference allele in either batch). For each 
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SV, we tabulated the observed AF in the selected optimal population for both batches, and assessed 

the significance of any differences in AF between the two batches with a chi-squared test, and 

performed a Bonferroni correction on the resulting chi-squared P-values to control for the many 

thousands of sites being compared between any two batches. In parallel, we performed an identical 

analysis for batch-specific variants, where we compared the AFs for all sites observed in a single batch 

against the AF of those sites summed across all other 35 batches. We considered a variant to have 

evidence of batch effects if it had a Bonferroni-corrected P-value < 0.05 in at least 12/630 possible 

pairwise comparisons or any of the 36 batch-specific variant comparisons. For each variant with batch 

effects, we subsequently determined whether the batch effect was being driven predominantly by 

PCR+ or PCR- samples by calculating the fraction of batch-batch pairs with significant batch effects 

that involved a PCR+ batch. Since 4/36 batches (~11%) were PCR+, we used 11% as a cutoff to 

discriminate between PCR+ and PCR- batch effects. SVs with significant batch effects were handled as 

follows: 

  

● If at least 11% of failed comparisons involved a PCR+ batch, and the average AF was higher in 

PCR+ batches than in PCR- batches, that variant was marked with a “PCRPLUS_ENRICHED” tag 

in the VCF filter column. 

● If at least 11of failed comparisons involved a PCR+ batch and the average AF was lower in PCR+ 

batches than in PCR- batches, all genotypes from PCR+ samples were rewritten as no-calls and a 

“PCRPLUS_DEPLETED” tag was added to the VCF INFO field, but no new VCF filter status was 

assigned. Sites with zero non-reference alleles remaining after excluding PCR+ samples were 

dropped from the callset. 

● If less than 11% of failed comparisons involved a PCR+ batch, the variant was marked with a 

“VARIABLE_ACROSS_BATCHES” tag in the VCF info field. 

  

Assignment of final VCF filter labels 

Despite efforts to balance sensitivity and specificity throughout SV discovery and genotyping in this 

cohort, we nevertheless wanted to categorically partition the final SV callset into a high quality (i.e. 

analysis-ready) subset and a second subset corresponding to variants of lower quality. In particular, 

unresolved variants like BNDs can dramatically inflate variant counts both cohort-wide and per-sample, 

but do not have resolved structures and thus are largely uninterpretable for downstream analyses. We 

also noticed an enrichment of apparent false-positive deletions ranging from 350bp-1kb that were 

characterized by many samples being genotyped with low GQ. Therefore, our motivation for partitioning 

the gnomAD-SV callset into a high-confidence subset was twofold: first, for ease of use and clarity 

when distributed to the broader community, and second, for the formal analyses conducted in this 
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study. To this end, we labeled all variants with a final filter status as “PASS” in the VCF unless they met 

any of the following criteria: 

  

1. The variant was unresolved; or 

2. The variant had >15% of genotypes from PCR- samples masked during minimum GQ filtering 

as described above; or 

3. The variant was a deletion between 300bp and 1kb in size and had >5% of genotypes from 

PCR- samples masked during minimum GQ filtering as described above; or 

4. The variant had a VCF filter status including any of the following terms: 

“PCRPLUS_ENRICHED,” “UNSTABLE_AF_PCRMINUS,” or “MULTIALLELIC”. 

 

All analyses presented in this study were restricted to SVs with PASS or MULTIALLELIC filter statuses, 

unless otherwise specified. 

  

Variant quality score recalibration 

Following all post hoc genotype- and site-level adjustments described above, we recalibrated variant 

quality scores (i.e., “QUAL” values in the VCF) to reflect the median GQ among all samples with non-

reference genotypes for each variant, irrespective of FILTER status. For this purpose, samples with 

homozygous non-reference genotypes were treated as if they had a GQ of 999 to reflect the high 

probability of at least one non-reference allele (even if the exact genotype is correct). For MCNVs, we 

treated individuals with copy states of one or three (i.e., one copy different from diploid) as being 

heterozygous, and treated individuals with copy states of zero or at least four (i.e., at least two copies 

different from diploid) as homozygous during QUAL score recalibration. 

  

Population assignments 

We next assigned samples to one of four populations based on genetic similarity inferred from SV 

genotypes. We first restricted to autosomal SVs with a global AF ≥1%, a VCF filter status of “PASS,” a 

variant quality (QUAL) score ≥100, lacking VCF INFO tags of “PCRPLUS_DEPLETED,” 

“UNSTABLE_AF_PCRPLUS,” and “VARIABLE_ACROSS_BATCHES,” and non-null genotypes for 

≥99% of samples. We subsequently pruned SVs on a maximum linkage disequilibrium value of R2 ≤0.2 

over a rolling 1Mb window with BCFTools v1.9,30 and filled missing genotypes with the mean allele 

count per site. We performed a principal component (PC) analysis of allele dosage per sample for 

these filtered variants. We assigned samples to one of four population labels (African [AFR]; East Asian 

[ASN]; European [EUR]; and Latino [LAT]) based on the top four PCs as labeled by a support vector 

machine (SVM) with a Gaussian kernel and 10-fold cross-validation using the e1071 package in R. We 

trained this SVM classifier on known population labels inferred from SNV data for a subset of samples 
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(N=7,575) as part of the gnomAD SNV & indel analysis,6 and assigned each sample to a population if 

the SVM-estimated probability of membership for that sample was at least 0.8. Samples with 

membership probability below 0.8 for every population were assigned to an “other” [OTH] population 

category for purposes of analysis. 

  

Relatedness inference 

To infer genetic relatedness between samples, we filtered all SV to autosomal SVs with a global AF 

≥0.015% (i.e., observed in ≥2/14,000 samples), a VCF filter status of “PASS,” a variant quality (QUAL) 

score ≥100, lacking VCF INFO tags of “PCRPLUS_DEPLETED,” “UNSTABLE_AF_PCRPLUS,” and 

“VARIABLE_ACROSS_BATCHES,” and non-null genotypes for ≥98% of samples. Following 

preprocessing with PLINK v2.00a2LM,31 we calculated kinship coefficients and identity-by-descent 

(IBD) fractions between all pairs of individuals with KING v2.2.2.32 We filtered all 101 million 

nonredundant sample-sample pairs to the most likely related pairs of samples based on KING metrics, 

including HetConc > 0.2, IBS0 < 0.006, and Kinship > 0.1. From this subset, we trained an SVM on the 

KING results using ground truth family relationships available for a subset of samples with at least one 

known parent-child or sibling relationship to another sample in the cohort combined with 10,000 

randomly selected pairs of samples where neither sample was known to have a first-degree relative in 

the cohort. This classifier was able to perfectly discriminate between ground truth pairs of first-degree 

relatives from presumably unrelated sample pairs (i.e., zero sample pairs were misclassified), and also 

was able to distinguish between parent-child and sibling-sibling relationships with a near-perfect 

sensitivity and false positive rate: only 1/2362 ground truth parent-child relationship was misclassified 

as a sibling-sibling relationship, and reciprocally only 1/494 ground truth sibling-sibling relationships 

were misclassified as a parent-child relationship. We applied this SVM classifier to the KING metrics for 

all sample pairs passing our minimum KING thresholds to learn parent-child and sibling relationships. 

One sample from each pair of samples involved in relationships corresponding to predicted parent-child 

or sibling relationships were pruned from the dataset; we optimized this selection process to exclude 

the fewest possible samples such that all inferred sample pair relationships had at least one member 

excluded. Finally, we supplemented this agnostic, data-driven classification scheme with a list of 

children from known parent-child trios present in the dataset to account for rare situations where the 

above relatedness inference process did not optimally prioritize the exclusion of children over their 

parents. A breakdown of samples excluded at this step is provided in Supplementary Table 2. 

  

Final variant modifications and callset curation 

As the final step of callset curation, we performed multiple tiers of manual review. In some cases, this 

resulted in altered metadata and/or reclassifications for certain variants. These changes are 

summarized below: 
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● We assessed RD genotyping evidence for all autosomal CNVs ≥500kb, finding that 3/697 (0.4%) 

variants did not feature strong visual support for the expected copy number alterations. These three 

SVs were assigned the UNRESOLVED FILTER status in the final VCF. 

● We assessed RD genotyping evidence for all autosomal CNV intervals ≥50kb involved in complex 

rearrangements, finding that 1/326 (0.3%) CNV intervals (corresponding to 1/249 [0.4%] unique 

complex SVs) did not exhibit strong visual support for the expected copy number alterations. This 

one complex SV lacking clear RD support was assigned the UNRESOLVED FILTER status in the 

final VCF. 

● We reviewed all 120 SVs predicted to cause pLoF, IED, or CG of ≥10 different genes, and found 

that none were annotated incorrectly upon manual scrutiny of the affected genes and their positions 

relative to each SV. 

● We identified 362 SVs with opposing predicted effects on the same gene, such as pLoF and partial 

gene duplication. All of these SVs were duplication-associated complex SVs, where computational 

prediction of the genic consequence is more challenging given the possibility of preserving a fully 

intact endogenous copy of the genes within the SV’s associated duplications.33 We manually 

reviewed the predicted rearrangement intervals for all 362 variants, and modified as appropriate for 

96/362 (26.5%) of variants, while not modifying any predicted effects for genes without multiple 

conflicting annotations. 

● We identified 2,873 SVs that had ≥50% coverage by regions of somatic hypermutability, such as T-

cell receptor genes. These variants were excluded outright from the final VCF. 

● We identified 18 SVs that had ≥20% coverage by N-masked regions of the reference genome. 

These variants were assigned the UNRESOLVED FILTER status in the final VCF. 

● We identified 23 pairs of SVs that had identical coordinates and SV classes but were not merged 

due to sharing less than 50% of sample genotypes. We merged these variants in the final VCF, 

retaining the nonredundant union of non-reference sample genotypes in the merged record. 

● We identified 740 RD-only canonical CNVs with ≥80% coverage by CNVs of the same class 

involved in a complex SV with ≥50% shared sample genotypes. Most (77.6%; 76/98) of the complex 

SVs corresponding to these overlapping CNVs were paired-CNV-flanked inversions, and in general 

these complex SVs were also twenty-fold larger (median = 43.9kb) than the average complex SV in 

the rest of the callset (median = 2.1kb). Therefore, we concluded that these canonical CNVs were 

likely redundant variants that did not meet our prior CNV redundancy consolidation criteria (50% 

reciprocal overlap with any one complex CNV interval, rather than all CNV intervals within a 

complex SV), and were thus excluded from the final VCF. The complex SVs overlapping these 

CNVs were retained, and the nonredundant union of non-reference samples was retained between 

each complex SV and its corresponding RD-only canonical CNV(s). 
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● We identified 5,162 SVs with ≥80% reciprocal overlap, ±3kb breakpoint proximity, and ≥50% shared 

sample genotypes with at least one different SV of the same class. We retained a single modified 

SV for each cluster of overlapping SVs. This modified SV was based on the median coordinates 

and QUAL score, and the nonredundant union of all non-reference sample genotypes, FILTER 

assignments, and other variant metadata. We preferentially retained non-pass FILTER statuses and 

homozygous alternate genotypes for each sample if multiple records had discordant FILTER or 

genotype metadata. 

● We found examples where rare (AF<1%), RD-only CNVs were being apparently fragmented into 

multiple smaller, consecutive CNV calls. To correct these sites, we first identified all rare, RD-only 

CNVs that had ≥50% sample overlap with a different rare, RD-only CNV, and that these CNVs did 

not feature more than11 30% overlap by size and were not separated by more than the length of at 

least one of the CNVs (e.g., a 100kb CNV must be within at least ±100kb from a non-overlapping 

smaller CNV). We next processed each cluster of qualifying CNVs as follows: (1) we assigned the 

largest original CNV as the “index” CNV; (2) we computed the total fraction of bases affected by 

CNVs in the cluster per sample genotyped as non-reference for any CNV in the cluster; (3) all 

samples with at least one third of the total CNV bases in the cluster were assigned to the index 

CNV, and these samples were removed from all other CNVs in the cluster; (4) all samples with less 

than one third of the total CNV bases in the cluster were removed from the index CNV and 

assigned back to their original contributing CNVs; (5) all index CNVs (N=1,289) had their 

coordinates modified to reflect the minimum and maximum coordinates among all CNVs in the 

cluster, and had predicted genic effects reannotated with svtk annotate; (6) all non-index CNVs in 

the cluster with at least one remaining non-reference sample (N=1,049) were retained with no 

additional modifications; and (7) all non-index CNVs in the cluster with no non-reference sample 

genotypes remaining (N=1,764) were removed outright from the final callset. 

● We performed a targeted assessment of fragmented CNVs at known loci of recurrent, large CNVs.11 

This analysis followed the same procedure as above, with the following exceptions: we considered 

all CNVs, not just rare CNVs, to account for large blocks of segmental duplications that frequently 

flank these loci, and we required ≥33% sample overlap between pairs of putatively fragmented 

CNVs. This process identified an additional 139 CNVs requiring modification, including 39 extended 

index CNVs, 71 secondary CNVs with at least one remaining non-reference sample, and 29 CNVs 

to be excluded from the final callset due to having no remaining non-reference genotypes. 

● We identified 917 insertions within one read length (±150bp) of a CNV breakpoint where: (i) the two 

SVs shared ≥90% non-reference sample overlap, and (ii) both SVs were detected by a PE/SR 

algorithm (DELLY or Manta). Given the close proximity of breakpoints and the strong non-reference 

genotype concordance, we concluded that these insertions were either misclassified by their 

original PE/SR algorithms, or alternatively might represent “scarring” at CNV breakpoints. Given this 
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uncertainty in variant classification despite the strong genotype correlations, we did not remove 

these insertion calls outright from the final VCF, instead marking them with the UNRESOLVED 

FILTER status. 

We manually resolved 8 reciprocal translocations and 2 complex interchromosomal rearrangements 

that were initially incompletely resolved by the automated variant resolution step in module 05. 

 
 
Callset benchmarking 
To benchmark the technical properties and overall quality of the final gnomAD-SV map, we applied 

seven distinct analyses, as described below. 

  

Assessment of Mendelian violation rate from parent-child trios 

We counted the number of autosomal SV genotype combinations inconsistent with Mendelian 

segregation in 970 parent-child trios with PCR- WGS in this study. As we expected all inherited SVs to 

follow Mendelian segregation, and also expected less than one true de novo SV per generation (see 

Figure 3a),1,7 we reasoned that nearly all Mendelian violations represent a combination of false-positive 

and false-negative genotypes in the child and/or parents. Per trio, we first isolated all biallelic, 

autosomal SVs where the child and both parents had non-null genotypes and at least one member of 

the trio had a non-reference genotype, then computed the fraction of those SVs that qualified as a 

Mendelian violation. We considered the following three possible cases of Mendelian violations: 

• Apparent de novo: SVs where the child is heterozygous and neither parent carries any non-

reference alleles.  

• Spontaneous heterozygote: SVs where the child is homozygous for the alternate allele, and at least 

one parent is homozygous for the reference allele (i.e., it should be impossible for the child to inherit 

two copies of the SV, without invoking extremely rare phenomena like uniparental disomy). 

• Untransmitted homozygote: SVs where the child is homozygous for the reference allele, and at 

least one parent is homozygous for the alternate allele (i.e., it should be impossible for the child to 

not have inherited at least one copy of the alternate allele). 

 

For CNVs that were labeled as apparent de novo, we performed a secondary analysis of the child’s 

CNV based on coverage by CNV calls in either parent to account for infrequent circumstances where 

parents and/or their children were assigned to different overlapping CNVs calls that likely represent the 

same genomic variant. If a CNV had ≥50% coverage by a CNV of matching type (i.e., DEL or DUP) in 

at least one parent, that variant was no longer considered as an apparent de novo SV. To control for 

compound heterozygosity of large and small CNVs that might confound this analysis, we restricted 
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parent CNVs to <10kb for proband CNVs <1kb, but considered all sizes of parent CNVs for proband 

CNVs ≥1kb. 

 

For each trio, we computed the Mendelian violation rate to be the fraction of all qualifying SVs that met 

the above three criteria. We calculated the median across all 966 trios as the overall Mendelian 

violation rate for gnomAD-SV, and used these data to calculate other trio-based measurements of 

genotyping error rates as indicated in Supplementary Table 4.  

 

Comparison to chromosomal microarray data on matched samples 

We assessed the sensitivity of the gnomAD-SV discovery pipeline for large CNVs by comparing SVs 

from 1,893 samples in this study to existing CNV calls for those same samples from chromosomal 

microarray analysis in an earlier study.13 Among these 1,893 samples was a subset of ASD-affected 

samples; as described above, these individuals were included for callset benchmarking analyses such 

as microarray comparisons, but were subsequently excluded prior to all other analyses presented in 

this study. We first converted the coordinates of CNV from microarray to GRCh37 using UCSC 

liftOver,34 filtered to autosomal CNVs ≥ 40kb, and restricted to high-confidence calls by requiring pCNV 

< 10-9 per recommendation of the authors. Next, we computed the number of PCR- samples in this 

study expected to carry each microarray CNV, and the fraction of the expected samples that also had 

at least 50% of the CNV covered by either a canonical or complex CNV from the WGS analyses in this 

study. Coverage was computed using BEDTools.26 We considered each microarray CNV as captured in 

gnomAD-SV if the fraction of expected samples that had a matching WGS SV was at least 50%, and 

evaluated our sensitivity at two thresholds: one while considering all autosomal CNVs, and a second, 

more conservative threshold where we also excluded all microarray CNVs with ≥ 30% coverage by 

segmental duplications and/or simple repeats. We calculated overall sensitivity as the total number of 

microarray CNVs captured in this WGS analysis divided by the total number of eligible microarray CNV 

calls (Supplementary Table 4). 

  

Analysis of Hardy-Weinberg equilibrium across populations 

We evaluated the genotype distributions per SV under the null expectations set by the Hardy-Weinberg 

equilibrium (HWE; 1 = p2 + 2pq + q2). While there are many biological reasons why some variants might 

violate HWE, such as recessive selection, mutational recurrence, or population stratification, the rate at 

which sites violate HWE can be used as a rough proxy of genotyping accuracy. Thus, we tabulated 

genotype distributions per population for each biallelic, autosomal SV, and computed a HWE P-value 

using the “HardyWeinberg” package in R.5 We considered an SV to be in violation of HWE if its P-value 

was less than 0.05 following Bonferroni correction for the number of SVs tested per population. 
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Comparison to long-read WGS data on matched samples 

Four samples in this study had also previously undergone PacBio long-read WGS as part of separate 

studies.9,14,19 We used these data to assess the PPV of the gnomAD-SV discovery pipeline with an 

orthogonal long-read sequencing technology. SVs from this study for three of the four samples with 

long-read WGS were converted to hg38 coordinates via UCSC liftOver,34 a necessary step to match the 

hg38-based alignment of the available PacBio data. We assessed support for each SV individually from 

the raw PacBio with VaPoR, a software package designed to autonomously validate SV calls in silico 

by performing comparative local realignments of long-read WGS reads.35 Given that the performance of 

VaPoR is known to be sensitive to breakpoint coordinate precision (e.g., see Figure 4 from the original 

VaPoR publication),35 we restricted to biallelic, autosomal, FILTER “PASS” SVs from gnomAD-SV that 

were supported by SR evidence and lacked breakpoint overlap with annotated simple repeats, 

segmental duplications, or sites of somatic hypermutability. We also restricted the SVs considered here 

to the SV classes able to be evaluated by VaPoR, which included canonical, biallelic CNVs (i.e., 

deletions & duplications), insertions, and inversions. Given the modest dependency of VaPoR 

validation rate on PacBio sequencing depth, we computed a study-level estimate of PPV from long-

read WGS by averaging the PPV from each of the four samples analyzed here, and weighted each 

sample’s PPV by the square root of their average PacBio sequencing depth.  

 

We also estimated the accuracy of SV breakpoints reported in gnomAD-SV based on available long-

read WGS data. To accomplish this, we compared the gnomAD-SV calls validated by VaPoR (above) 

to publicly available long-read WGS-derived SV callsets generated using matched methods for two of 

the four samples used in the VaPoR analyses.8,9 We converted gnomAD-SV coordinates to hg38 where 

necessary using UCSC liftOver,34 and then identified matching SVs between gnomAD and these 

external callsets by requiring ±1kb breakpoint proximity for both deletions and insertions, and imposing 

a further 50% reciprocal overlap requirement for deletions. For each SV from gnomAD-SV where a 

candidate match was found in the corresponding long-read WGS callset, we next computed the 

difference in reported coordinates for the left/lower and right/higher breakpoint respectively. We pooled 

these estimates of breakpoint accuracy across both samples and reported overall study-wide 

breakpoint accuracy estimates based on the pooled dataset. 

 

Comparison to SVs from the 1000 Genomes Project 

We obtained the 1000 Genomes phase 3 SV VCF as described by its original publication,7 and 

converted it from VCF to BED format using svtk vcf2bed.1 We performed minimal additional curation of 

this dataset: we left all information as provided by the 1000 Genomes Project, except for summing the 

frequency of all alternate alleles at sites where multiple alleles were listed (e.g. MCNVs). We then 

compared the gnomAD-SV callset to the 1000 Genomes Project callset while requiring at least 50% 
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reciprocal overlap by size and/or both breakpoints within ±300bp using BEDTools intersect. We further 

evaluated this comparison at two different levels of stringency: “strict” criteria, which required SV 

classes to match between candidate overlapping variants, and “loose” criteria, which did not apply this 

same requirement. We reported overlaps in this study using the “loose” criteria, but provide results from 

both criteria in Supplementary Figure 8. Furthermore, for each SV from the 1000 Genomes Project, 

we noted the AF of the overlapping SV in gnomAD-SV, if any. Where multiple candidate SVs in 

gnomAD-SV matched one call from the 1000 Genomes Project, we retained the AF most similar to the 

1000 Genomes Project reported AF. We also performed these comparisons on a population-specific 

basis for the four populations matching between gnomAD-SV and the 1000 Genomes Project (AFR, 

AMR, EAS, EUR). 

 

Cross-population genotype analysis for doubleton SVs 

Fundamental population genetic principles dictate that most rare variants should be private to a single 

global population or subpopulation.36 Taken to the most extreme case, variants that appear as two 

heterozygous genotypes in the population (i.e., “doubleton” variants) should disproportionately appear 

within, rather than across, populations. Despite the many factors that might cause deviations from this 

expectation, such as recurrent mutation and admixture, we nevertheless assessed the cross-population 

concordance for doubleton SVs in gnomAD-SV. For this analysis, we remove individuals with 

nonspecific population assignments (i.e., “OTH”), and restricted to autosomal, resolved SVs appearing 

as heterozygous genotypes in exactly two unrelated individuals. We further restricted to SVs with ≤10% 

coverage by segmental duplications or simple repeats, as these genomic contexts are known to drive 

recurrent SV formation.37 We computed the intra-population concordance rate for doubleton SVs by 

counting the number of SVs passing the filters above where both observations occurred in the same 

population, and divided that count by the total number of all SVs passing the filters above. 

 

Analysis of linkage disequilibrium between SNVs/indels and SVs 

We explored patterns of genotype correlation, or linkage disequilibrium (LD), between SVs discovered 

in this study and SNVs/indels discovered in a matched set of samples from a sister study.6 As LD 

patterns are variable across populations, we restricted these analyses to the two populations (AFR and 

EUR) with at least 1,000 QC-pass samples overlapping between studies. Given the finer population 

substructure available for the SNV/indel callset (see Karczewski et al.),6 we restricted samples for 

SNVs/indels specifically to non-Finnish Europeans (NFE), and matched those to EUR samples in this 

study. These filters retained 3,470 AFR samples and 1,883 EUR samples for LD analyses. We next 

considered all SNVs/indels and SVs that were autosomal, biallelic, had at least 1,000 samples with 

non-null genotypes and appeared at AF≥0.5% per population in both datasets, and calculated genotype 

correlations between all qualifying pairs of SNVs/indels and SVs within ±1Mb. We discarded SVs 
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appearing in regions of low SNV/indel density (<2,000 SNVs/indels per 1Mb). After calculating LD 

between SNVs/indels and SVs, we subsequently restricted analyses to SVs with AF≥1% to avoid 

situations where slight discrepancies between SNV/indel and SV AFs might underrepresent the degree 

of LD for variants very near the AF~0.5% cutoff. 

 

Calculating adjusted proportion of singletons (APS) 
Given the strong dependence of SV size, class, genomic context, and WGS evidence on variant AFs 

and the proportion of singleton SVs (Figure 1h and Extended Data Figure 5), we aimed to develop a 

harmonized metric for comparing the proportion of singleton SVs across various subsets, annotations, 

or features. To accomplish this, we first stratified all autosomal SVs by mutational class. We further 

partitioned deletions & duplications based on whether an RD algorithm contributed to the CNV call or 

not, and partitioned insertions based on whether or not they were annotated as mobile element 

insertions. Third, we partitioned deletions, duplications, and insertions based on whether or not each 

variant had 5% coverage by annotated segmental duplications and simple repeats. We did not partition 

inversions or complex SVs given the relative sparsity of those variant classes. Thus, after including 

inversions and complex SVs as two separate categories, this process resulted in a total of 14 

independent variant partitions. Next, as a proxy for near-neutral variation, we restricted to SVs explicitly 

intergenic SVs, or those with a predicted consequence of whole-gene inversion but no other effects, 

including promoter/UTR disruption or intronic localization. We further subdivided each subset of filtered 

SVs into 50 uniform bins ranked by SV size and computed the mean proportion of singletons and mean 

SV size within each bin. For each binned SV subset, we fit a nonlinear least-squares regression to 

predict the probability of being a singleton as a function of binned SV size by calculating the 11-bin 

rolling weighted mean of proportion of singletons for each bin. Finally, we applied these estimated 

singleton probabilities to all SVs in the gnomAD-SV callset, irrespective of coding effects or gene 

annotations. For any given subset of SVs, we defined the adjusted proportion of singletons (APS) as 

the observed proportion of singletons minus the mean of the singleton probabilities for all SVs in that 

same subset. We restricted all analyses using APS to autosomal biallelic SVs unless otherwise stated. 

  

Chromosome-level analyses of SV density 
To compute the density of SVs per chromosome, we first segmented all 22 autosomes into sequential 

100kb windows, and excluded windows that overlapped centromeres. For each window, we tallied the 

number of SV per class that had any overlap with the window. For insertions, we only considered the 

insertion site in this analysis. This returned a matrix of SV counts per 100kb bin for all autosomes and 

SV classes. We computed the 11-window rolling mean per chromosome per SV class, yielding values 

per bin smoothed versus the surrounding 1Mb. Finally, we assigned each window to a percentile based 

on the position of that window on its respective chromosome arm relative to the chromosome’s 
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centromere where a value of -1 corresponded to the p-arm telomere, a value of 0 corresponded to the 

centromere, and a value of 1 corresponded to the q-arm telomere. To compute “meta-chromosome” 

averages, we segmented the range of normalized window positions (i.e., -1 to 1) into 500 uniform bins, 

and averaged all windows across all chromosomes based on their chromosome-normalized window 

positions. We considered normalized positions within the outermost 5% of each chromosome arm to be 

“telomeric”, the middle 90% of each arm to be “interstitial”, and the innermost 5% to be “centromeric” for 

purposes of comparing chromosome contexts. 

  

Annotated repetitive element correlations 
We assessed correlations between SV density and seven different classes of annotated repetitive 

elements. Using the same filtered set of 100kb bins as generated for the chromosome-level analyses of 

SV density (see above), we annotated each 100kb bin for coverage versus segmental duplications, 

LINE repeats, SINE repeats, long terminal repeats (LTR), satellite repeats, and simple repeats. We 

downloaded all repeat annotations from the UCSC Genome Browser in native hg19 coordinates, and 

calculated the fraction of each 100kb bin covered per repeat class using BEDTools coverage.26,34 We 

subsequently transformed each per-bin repeat coverage value into a Z-score within each repeat class 

across all bins. Next, for each SV class, we fit a generalized linear regression model to predict SV 

density based on the per-bin coverage for each of the seven annotated repeat classes considered here. 

We assessed the P-values of the fitted regression coefficients for each repeat class at a Bonferroni-

corrected significant threshold across all SV classes (n=6) and repeat classes (n=7) considered here; 

thus, P-values were corrected for 42 total independent tests.  

 
Estimating SV mutation rates 
We estimated the SV mutation rate using the Watterson estimator with an effective population size (Ne) 

of 10,000, consistent with precedent set by prior SV studies.7,38,39 Specifically, for each of the five major 

populations catalogued here, we first computed the Watterson estimator (ϴ) for each SV class as 

follows: 

 
Where K was the number of SV sites observed per population for a given SV class and n was the total 

number of chromosomes analyzed in each population. We then solved for mutation rate (µ) as follows: 

 
Finally, since the Watterson estimator is sensitive to differences in Ne, and the appropriate value of is 

known to be strongly influenced by population demographic history,40 we computed the mean mutation 
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rate across all five populations using the same estimate of to arrive at our global mutation rate estimate. 

We also computed a 95% confidence interval about the mean according to a t distribution. 

 

Comparisons of SVs to metrics of genic constraint against point mutations 
We constructed a simple statistical model to predict the number of rare SVs observed per gene for four 

different classes of gene-interacting SVs (pLoF, CG, IED, and whole-gene inversions). This approach is 

also described in the gnomAD SNV/indel study,6 but is reproduced here for clarity. For each SV class, 

we first tallied the number of rare SVs per gene for all autosomal protein-coding genes. To prevent 

genes under strong selection from biasing the fit of this model, we restricted to genes in the 5th-9th 

deciles of observed:expected ratios for rare pLoF SNVs as described in the gnomAD SNV/indel 

analyses.6 We fit a negative binomial regression model to predict the number of rare SVs per gene 

while including the following covariates: gene length, number of exons, median exon size, total number 

of nonredundant nucleotides in protein-coding exons, number of introns, median intron size, total 

number of nonredundant nucleotides in introns, and annotated overlap with segmental duplications. We 

applied this model to all protein-coding autosomal genes, which yielded expected counts of rare SVs 

per gene for each functional class. For comparisons to constraint against missense SNVs, we re-

trained these models based on genes in the 5th-9th deciles of observed:expected ratios for rare 

missense SNVs.  

 

We compared SVs in this study to constraint against damaging point mutations for both pLoF and 

missense SNVs. For each comparison, we first ordered all autosomal protein-coding genes based on 

the observed:expected measurement of SNV constraint, and subsequently grouped genes into 100 

bins based on SNV constraint percentile. Next, for each bin of genes, we summed the total number of 

rare SVs observed in gnomAD-SV for all genes in the bin and divided this total by the expected number 

of rare SVs based on the regression model (described above). This calculation produced an 

observed:expected ratio of rare SVs for each percentile of SNV constraint scores. We assessed the 

correspondence between SV and SNV constraint for all 100 bins of genes using a Spearman’s rank 

correlation test. Finally, we repeated this entire analysis while restricting to canonical SVs with precise 

breakpoints (i.e., SVs with split-read support) to confirm that the inclusion of balanced and complex 

SVs and/or inaccurate coding annotations weren’t unduly influencing these conclusions. We found that 

restricting to precise, canonical SVs had effectively no impact on the correlations between rare SVs and 

SNV constraint metrics, nor the conclusions drawn from those data. 

 

  



Collins*, Brand*, et al. Supplementary Information | 68 

Estimating noncoding selection against cis-regulatory annotation classes 
Independent of our gene-based annotations and analyses, we also conducted a series of analyses 

examining evidence for selection against noncoding SVs across a variety of cis-regulatory annotation 

classes. The relevant data and analyses are described below. 

 

Definition of noncoding CNVs 

We restricted all SVs in this analysis to canonical biallelic deletions or duplications that did not overlap 

any protein-coding exons. We also restricted all CNVs and elements in this analysis to relatively unique 

genomic regions, defined as any CNV or element with <30% coverage by segmental duplications, 

simple repeats, N-masked unalignable regions of the reference genome, and known somatically 

hypermutable regions. 

 

Curation of functional annotation classes 

We curated a set of 14 functional annotation classes to be considered in this analysis. For all 

annotation classes, we restricted to relatively unique autosomal regions as was performed for CNVs 

(see above). Additional curation steps for each functional annotation class are described below:  

• Topologically associated domain (TAD) boundaries: we downloaded a list of TADs as defined 

by Hi-C in a human fetal fibroblast cell line (IMR90) from GEO accession GSE63525.41 TAD 

boundaries were defined as the 10kb intervals (±5kb) centered on the start and end coordinates 

of each TAD. Overlapping TAD boundaries were collapsed with BEDTools merge.26 

• Chromatin loop anchors: we downloaded a list of chromatin loops as defined by Hi-C in IMR90 

cells from GEO accession GSE63525.41 Chromatin loop anchors were defined as the 10kb 

intervals (±5kb) centered on the start and end coordinates of each loop. Overlapping loop 

anchors were collapsed with BEDTools merge.26 

• DNAse1 hypersensitive sites (DHS): we downloaded the consensus set of clustered DHS peaks 

derived from 125 cell types by the ENCODE project (V3) from the UCSC Genome Browser in 

hg19 coordinates.34,42 We required all DHS clusters to have a score >500 and to have been 

discovered in ≥50% of cell types (>62/125). Overlapping DHS clusters passing these criteria 

were collapsed using BEDTools merge.26 

• Transcription factor (TF) binding sites (TFBS): we downloaded the consensus set of clustered 

TFBS data derived for 161 transcription factors in 91 cell types by the ENCODE project (V3) 

from the UCSC Genome Browser in hg19 coordinates.34,42 We required all TFBS to have a 

score >200 and to have been discovered in ≥5% of cell types (>4/91), which restricted this 

dataset to ~23% (37/161) of all TFs assayed. Overlapping TFBS meeting these criteria were 

collapsed with BEDTools merge.26 
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• Experimentally validated enhancers: we downloaded a list of enhancers with experimentally 

confirmed in vivo activity provided by the Vista database.43 We restricted to enhancers labeled 

as having “reproducible expression in the same [physiological] structure in at least three 

independent transgenic [mouse] embryos.” (https://enhancer.lbl.gov/aboutproject_n.html). 

• Computationally predicted enhancers: we downloaded a list of enhancers in 29 primary tissues, 

primary cells, or primary cell culture from the EnhancerAtlas database in hg19 coordinates.44 

We restricted to enhancers observed in ≥20% of tissues (≥6/29) based on 50% reciprocal 

overlap by size as calculated with BEDTools intersect.26 Overlapping enhancers passing these 

criteria were collapsed using BEDTools merge.26 

• Super enhancers: we downloaded all super enhancers predicted across 99 tissues from 

dbSUPER in hg19 coordinates,45 and retained all super enhancers observed in ≥5% (5/99) 

tissues based on 50% reciprocal overlap by size as calculated by BEDTools intersect. 

Overlapping super enhancers were collapsed with BEDTools merge.26 

• Chromatin states: we downloaded 15-state ChromHMM annotations in 200bp windows for 129 

tissues as provided by the Roadmap Epigenomics Project.46 For four chromatin states (genic 

enhancers, enhancers, bivalent enhancers, and polycomb repressed elements), we selected all 

200bp windows where at least one-third of tissues (≥43/129) matched that state, and 

subsequently merged these 200bp windows with BEDTools merge while allowing for up to ±1kb 

to separate adjacent windows prior to merging.26 

• Ultraconserved noncoding elements (UCNEs): we downloaded UCNEs in hg19 coordinates 

from UCNEBase on January 8, 2019.47 Overlapping UCNEs were collapsed with BEDTools 

merge.26 

• Human accelerated regions (HARs): we collected a list of HARs by taking the union of HARs 

reported by three previously published studies.48-50 For each study, a list of HARs was lifted over 

to GRCh37 using the UCSC liftOver tool (where necessary).34 Intervals across all three studies 

were collapsed into a nonredundant set using BEDTools merge.26 

• Recombination hotspots: we downloaded a recombination frequency map at 10kb resolution 

averaged across males and females from deCODE Genetics.51 We excluded bins with 

unsequenced bases, then defined any 10kb bin in the top 10% of all remaining recombination 

frequency scores as a recombination hotspot, and merged adjacent hotspots with BEDTools 

merge.26 Finally, we lifted over all recombination hotspots from hg18 reference assembly 

coordinates to GRCh37 with the UCSC liftOver tool while requiring at least 50% of the original 

locus to map to GRCh37.34 
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Calculation of APS for noncoding CNVs overlapping functional annotation classes 

For each of the 14 functional annotation classes defined above, we calculated APS for all noncoding 

deletions or duplications with any overlap with at least one element from that annotation class. APS for 

deletions and duplications was calculated separately. We also calculated APS for deletions or 

duplications that completely covered at least one element from that annotation class. Finally, we 

considered two additional annotation classes: one defined as “any annotation,” which was the union of 

all 14 annotation classes considered here, and one defined as “no annotations,” which was defined as 

the inverse intersection of deletions or duplications against the union of all 14 annotation classes. For 

each comparison, we assessed significant deviation from the expected APS value of zero for neutral 

variation using a two-sided one-sample t-test against an expected mean of zero. Finally, we adjusted P-

values for the 32 tests performed here using a Bonferroni correction. 

 

Intersection of gnomAD-SV and published genome-wide association studies 
We performed a series of analyses to understand the role that SVs documented in this study might play 

in genome-wide association studies (GWAS) of common SNVs in large cohorts for a spectrum of 

human traits and diseases. These analyses were performed in a series of steps, as follows. 

 
First, we combined two sources of publicly available GWAS results. Specifically, we collated GWAS 

results from the NHGRI-EBI catalog of published GWAS results (“GWAS Catalog”) v1.0.2 and a recent 

GWAS analysis of 4,023 phenotypes in 361,194 European samples from the UK BioBank (“UKBB”).52-54 

We lifted over the GWAS Catalog loci from hg38 to GRCh37 using UCSC liftOver prior to analysis.34, 

and restricted UKBB GWAS results to only genome-wide significant loci with a P-value < 10-8. 

 

Second, using the LD calculations between SVs and SNVs/indels for a subset of samples in gnomAD-

SV as described earlier, we next compared SVs in strong LD (R2≥0.8) against the GWAS results 

curated above. As there is an established bias toward Europeans in current GWAS databases,55 we 

restricted our comparison to SVs in strong LD with at least one SNV or indel specifically in European 

samples. SVs were considered to be overlapping a GWAS locus if the SV had at least one SNV in 

strong LD overlapping overlap the same nucleotide as the reported GWAS association. 

 

Finally, we computed enrichments for the set of common SVs in strong LD with at least one GWAS 

association across all gene-centric functional classes with at least one count, including pLoF, partial 

CG, promoter UTR, and intronic SVs, and also computed similar enrichments for intergenic SVs as a 

comparison group. We used a two-sided Fisher’s Exact test to compare the fraction of SVs for each 

functional class in strong LD with any SNV not reported as a significant GWAS association to the 
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fraction of SVs in strong LD with an SV that was reported as a significant GWAS association. 

Enrichments were reported as odds ratios, 95% confidence intervals, and unadjusted P-values. 

 

Analysis of genomic disorder loci 
We compared the frequency of CNVs at putatively pathogenic genomic disorder (GD) loci in gnomAD-

SV to their corresponding frequencies reported from CMA in a recent analysis of 396,725 participants 

from the UK BioBank (UKBB).11 We restricted these analyses to the subset of 10,047 samples in 

gnomAD-SV with no indication of neuropsychiatric disease. We collected UKBB CNV frequency data 

from the original publication for the 54 GD loci considered in the UKBB analysis, which required at least 

five UKBB participants to be GD carriers. We further excluded a total of five GDs: deletions and 

duplications of 22q11.2 [distal], deletions and duplications of 15q11.2, and deletions of NRXN1. We 

excluded the 22q11.2 distal GD and the 15q11.2 due to their proximity to (or direct overlap with) 

antibody part genes, which were blacklisted during the creation of gnomAD-SV, and excluded NRXN1 

due to this locus being a known nonrecurrent GD region corresponding to a well-described single-gene 

deletion syndrome.56 Per consultation with the authors of the UKBB analysis, we also imposed a 

restriction on the thrombocytopenia absent radius (TAR) GD locus by requiring CNVs in gnomAD-SV to 

span at least two of the three segmental duplication tracts within the region. After curation, we retained 

49 GDs for analysis. We intersected the coordinates of these 49 GD loci against all biallelic canonical 

and complex CNVs in the gnomAD-SV dataset using BEDTools intersect requiring CNVs in gnomAD-

SV to have 30% overlap of the GD locus, and computed the carrier frequency as the number of 

individuals with at least one non-reference SV allele. We determined 30% overlap to be the optimal 

parameter for this analysis by manual inspection of all GD loci, and to account for differences in 

breakpoint coordinates between WGS and CMA. Where one gnomAD SV matched multiple possible 

GD loci, we counted each gnomAD SV only once in total towards the GD that best matched the 

gnomAD SV based on reciprocal overlap. We compared carrier frequencies between UKBB and 

gnomAD-SV using Fisher’s exact text, and significance was assessed after Bonferroni correction for 

multiple comparisons. We also computed odds ratios and 95% confidence intervals for these CNVs in 

developmental disorders (DDs) by counting the number of DD patients carrying CNVs matching these 

GD loci from a large, previously published DD cohort with CNV data from chromosomal microarray,10 

followed by a Fisher’s Exact Test. 

 

gnomAD-SV callset downsampling analyses 
Several of our investigations in this dataset involved either projecting the properties of SV datasets 

hypothetically attainable from larger sample sizes, or estimating what fraction of the current SV callset 

would have been obtained had we sequenced fewer individuals. To accomplish this, we first performed 

a single, standardized set of iterative callset downsamplings, and used this series of downsampled 
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callsets in all pertinent analyses. We randomly downsampled the gnomAD-SV VCF to contain 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 25, 50, 75, 100, 250, 500, 750, 1,000, 2,500 5,000, 7,500 or 10,000 samples, 

respectively, and generated five independent downsampled VCFs at each sample size. This 

combination of 22 sample sizes performed five times each yielded a total of 110 downsampled VCFs, 

each with a distinct subset of samples from the full gnomAD-SV callset. For each downsampled VCF, 

we retained variant information exactly as it appeared in the full callset, except for excluding all 

individuals not selected to be part of that downsampling and subsequently removing all sites that no 

longer had at least one non-reference allele in the downsampled VCF due to all non-reference allele 

carriers being excluded during downsampling. As with all per-sample analyses, we restricted this 

analysis to only include PCR- samples. 

 

Predicting the rate of clinically reportable incidental findings from SVs 
We estimated the rate of clinically reportable incidental findings in gnomAD-SV to derive a population-

based estimate for SV analyses from WGS. We first restricted the gnomAD-SV callset to very rare 

(AF<0.1%), biallelic, autosomal SVs resulting in pLoF of one of 57 autosomal genes marked as 

clinically reportable for incidental findings per recommendations by the American College of Medical 

Genetics (ACMG)57 and classified variants following the ACMG guidelines for the interpretation of 

sequence variants.58 All heterozygous SVs that disrupted a gene associated with an autosomal 

recessive disorder and/or only have evidence for a gain-of-function (GoF) pathogenic mechanism were 

classified as benign. We classified SVs that disrupted genes that predominantly have a GoF pathogenic 

mechanism, but there exists some evidence for a LoF pathogenic mechanism, as a variant of unknown 

significance (VUS). All SVs that disrupted a gene known to be associated with disease through a LoF 

mechanism were classified as pathogenic or likely pathogenic, depending on the strength of evidence 

available from the existing literature. SVs were determined to be clinically reportable for the purposes of 

this study if they met criteria to be pathogenic or likely pathogenic. 

 

Evaluation of callset filtering on key results 
We examined the quality of filtering thresholds used in this study and assessed their impact on the 

results reported herein. We produced three VCFs, each corresponding to a certain set of filtering 

criteria. The first VCF, which represented a hypothetical callset with looser filtering, included all SVs 

irrespective of their FILTER status (i.e., included variants with failing FILTER statuses, which we 

excluded for our analyses presented in this study). The second VCF was the callset exactly as 

presented in this study. The third VCF, which represented a hypothetical callset with stricter filtering, 

included only SVs with a PASS FILTER status, and additionally required all SVs to have QUAL > 500 

(also see Supplementary Figures 11-12 for the justification of this additional criterion). For each of 

these three VCFs, we repeated all analyses exactly as described in the main study and methods, with 
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the single exception being that all BND variants were excluded from all analyses. The outcomes of 

these analyses are provided in Supplementary Figure 24. 

 

Compliance with ethical regulations 
We have complied with all relevant ethical regulations. This study was overseen by the Broad Institute’s 

Office of Research Subject Protection and the Partners Human Research Committee, and was given a 

determination of Not Human Subjects Research. Informed consent was obtained from all participants. 

 

Data availability 
All gnomAD-SV site-frequency data for appropriately consented samples (N=10,847) have been 

distributed in VCF and BED format via the gnomAD Browser 

(https://gnomad.broadinstitute.org/downloads/), as well as from NCBI dbVar under accession nstd166. 

Furthermore, these SVs have been integrated directly into the gnomAD Browser.59 The architecture of 

the gnomAD Browser is described in the main gnomAD study,6 as well as instructions for how to 

access and query the data hosted therein. Refer to Extended Data Figure 10 for a highlight of the SV-

related features. All VCFs for the analyses of ASD families for disease association comparisons will be 

deposited in SFARIbase (https://base.sfari.org/) and are available to qualified researchers by applying 

online. 

 

Code availability 
The overall structure and availability of code used in this study is outlined on the home page of the 

main gnomAD-SV github repository (https://github.com/talkowski-lab/gnomad-sv-pipeline). The 

gnomAD-SV discovery pipeline is publicly available via a series of methods configured for the 

FireCloud/Terra platform (https://portal.firecloud.org/#methods) under the methods namespace 

“Talkowski-SV”. The svtk software package used extensively in the gnomAD-SV discovery pipeline is 

publicly available via gitHub (https://github.com/talkowski-lab/svtk). Most custom scripts used in the 

production and/or analysis of the gnomAD-SV dataset are publicly available via gitHub 

(https://github.com/talkowski-lab/gnomad-sv-pipeline). All code is made available under the MIT 

License, unless stated otherwise. 
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