
 

 

1 

 

 

 

Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome 

 

Rupam Bhattacharyya,1 Min Jin Ha,†,2 Qingzhi Liu,1 Rehan Akbani,3 Han Liang,3,4 

Veerabhadran Baladandayuthapani1 

 

1Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109 

2Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 

77030 

3Department of Bioinformatics and Computational Biology, The University of Texas MD 

Anderson Cancer Center, Houston, TX 77030 

4Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 

Houston, TX 77030 

 

†Corresponding author. Address: 1515 Holcombe Boulevard, Houston, TX 77030, USA. Phone: 

713-792-2843. Email: mjha@mdanderson.org. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/806596doi: bioRxiv preprint 

https://doi.org/10.1101/806596


 

 

2 

 

ABSTRACT 

Purpose 

Personalized network inference on diverse clinical and in vitro model systems across cancer 

types can be used to delineate specific regulatory mechanisms, uncover drug targets and 

pathways, and develop individualized predictive models in cancer. 

Datasets and methods 

We developed TransPRECISE, a multi-scale Bayesian network modeling framework, to analyze 

the pan-cancer patient and cell line interactome to identify differential and conserved intra-

pathway activities, globally assess cell lines as representative models for patients and develop 

drug sensitivity prediction models. We assessed pan-cancer pathway activities for a large cohort 

of patient samples (>7700) from The Cancer Proteome Atlas across �30 tumor types and a set of 

640 cancer cell lines from the M.D. Anderson Cell Lines Project spanning16 lineages, and �250 

cell lines’ response to >400 drugs. 

Results 

TransPRECISE captured differential and conserved proteomic network topologies and pathway 

circuitry between multiple patient and cell line lineages: ovarian and kidney cancers shared high 

levels of connectivity in the hormone receptor and receptor tyrosine kinase pathways, 

respectively, between the two model systems. Our tumor stratification approach found distinct 

clinical subtypes of the patients represented by different sets of cell lines: head and neck patient 

tumors were classified into two different subtypes that are represented by head and neck and 

esophagus cell lines, and had different prognostic patterns (456 vs. 654 days of median overall 
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survival; P=0.02).  The TransPRECISE-based sample-specific pathway scores achieved high 

predictive accuracy for drug sensitivities in cell lines across multiple drugs (median AUC >0.8).  

Conclusion 

Our study provides a generalizable analytical framework to assess the translational potential of 

preclinical model systems and guide pathway-based personalized medical decision-making, 

integrating genomic and molecular data across model systems. 

INTRODUCTION 

Precision medicine aims to improve clinical outcomes by optimizing treatment to each individual 

patient. The rapid accumulation of large-scale pan-omic molecular data across multiple cancers 

on patients (ICGC,1 TCGA,2 PCAWG,3 TCPA4,5) and model systems (GDSC,6 CCLE,7 MCLP8), 

along with extensive drug profiling data (NCI60,9 LINCS,10 CMAP,11-13 DepMap14) have 

generated information-rich and diverse community resources with major implications for 

translational research in oncology.15 However, a major challenge remains: to bridge anticancer 

pharmacological data to large-scale omics in the paradigm wherein patient heterogeneity is 

leveraged and inferred through rigorous and integrative data-analytic approaches across patients 

and model systems. 

Complex diseases, such as cancer, are often characterized by small effects in multiple genes and 

proteins that are interacting with each other by perturbing downstream cellular signaling 

pathways.16-18 It is well established that complex molecular networks and systems are formed by 

a large number of interactions of genes and their products operating in response to different 

cellular conditions and cell environment, i.e., model systems.19 To date, most, if not all 

approaches for mechanism and drug discovery have been constrained by the biological 

system20,21 (patients or cell-lines), specific cancer lineage,22,23 or by prior knowledge of specific 
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genomic alterations.24,25 Hence, there is a critical need for robust computational methods that 

integrate molecular profiles across large cohorts of patients and model systems from multiple 

lineages in an unbiased data-driven manner to delineate specific regulatory mechanisms, uncover 

drug targets and pathways, and develop individualized predictive models in cancer. 

We have recently developed a network-based framework called PRECISE (personalized cancer-

specific integrated network estimation model) to estimate cancer-specific networks, infer patient-

specific networks, and elicit interpretable pathway-level signatures.26 Using a large cohort of 

patients (>7700) from TCGA across 30+ tumor types, we have shown that PRECISE identifies 

pan-cancer commonalities and differences in proteomic network biology within and across 

tumors, allows robust tumor stratification that is both biologically and clinically informative, and 

has superior prognostic power compared to multiple existing approaches.26 In this paper, we 

present translational PRECISE (TransPRECISE, in short), a generalization of the PRECISE 

framework, to establish the translational relevance of these pathway signatures. Briefly, 

TransPRECISE uses a multi-scale Bayesian modeling strategy that infers de novo differential 

and conserved networks of intra-pathway circuitry between the two biological systems (patients 

and cell lines) for multiple cancers. Further, it identifies cell line “avatars” for patients based on 

pathway activities, and also develops machine learning based predictive models for drug 

sensitivity in both cell lines and patients to potentially guide pathway-based individualized 

medical decision-making. We also have developed an online, publicly available, comprehensive 

interactive database and visualization tool of our findings along with software code 

(https://rupamb.shinyapps.io/transprecise). 
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DATASETS AND METHODS 

Cancer patients’ proteomic data 

We used a dataset of 7714 patient samples across 31 different cancer types available from the 

Cancer Proteome Atlas (TCPA)4,5 (Supplementary Table (ST) S1). TCPA offers reverse-phase 

protein array (RPPA)-based proteomics datasets, profiled using extensively validated antibodies 

to nearly 200 proteins and phosphoproteins. The functional space of the antibodies covers major 

functional and signaling pathways relevant to human cancers. For this work, we used a total of 

12 pathways, including DNA damage response, EMT, hormone signaling, apoptosis, 

TSC/mTOR, and RAS/MAPK (ST S2). 

Cancer cell lines’ proteomic and drug sensitivity data 

We used RPPA-based protein expression data for cell lines available via the MD Anderson Cell 

Lines Project (MCLP).8 In set of 640 cancer cell lines spanning across 16 lineages, each cell line 

has RPPA expression data based on the same set of proteins as in the patient tumors (ST S3). 

Additionally, we used drug sensitivity data from the Genomics of Drug Sensitivity in Cancer 

(GDSC)6 database, with the sensitivity of 481 drugs assessed on a subset of 254 cell lines (ST 

S4). For the entirety of this paper, we denote cell line samples in lowercase and patient samples 

in uppercase letters. 

TransPRECISE framework 

The TransPRECISE implementation can broadly be classified into three modules (Figure 1). The 

first module takes as input the combined proteomics data from patients and cell lines (as 

described above). The second module implements the PRECISE modeling framework that 

consists of three steps. In Step 1, for a specific cancer type, TransPRECISE uses a Bayesian 

graphical regression model to estimate the population-level network structure among proteins 
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belonging to a particular pathway for a specific cancer type. In Step 2, these population level 

networks are then de-convolved to obtain sample-specific networks by evaluating the extremities 

of sample-specific protein expression densities; where-in nodes of the cancer-specific networks 

are labeled by patient-specific protein activity statuses evaluated under the cancer-specific 

network topologies. Finally, the sample-specific interaction structure of the proteins is further 

summarized to obtain TransPRECISE scores that quantify pathway activities corresponding to 

the pathway’s neutral, activated or suppressed status in an individual sample (both patient tumors 

and cell-lines). The model specific parameterization and inferential strategies are described in 

Supplementary Materials (SM) Sections S1.2-S1.5. 

 

RESULTS 

Differential and conserved rewiring and circuitry of cancer-specific networks 

Using the  de-novo cancer-specific population-level networks (from Step 1 of TransPRECISE),  

we evaluated intra-pathway edge rewiring across lineages of the two model systems to identify 

highly conserved and differential edges, and to link patient and cell line tumor types by 

measuring intra-pathway circuitry. 

Network rewiring across model systems We determined the extent to which protein-protein edges 

in each of the pathways were shared across tumor sites in the patients and the cell lines. We 

found highly conserved edges across lineages for both cell lines and patients (Figure 2 and 

Supplementary Figures (SFs) S1-S10). All of the 12 pathways had at least one link that was 

shared across more than 20 lineages among the patient cancer types, and 11 pathways (with the 

exception of hormone signaling) had at least one link that was shared across more than 8 lineages 

among the cell line lineages. The conserved edges were further classified into three categories: 
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(a) patients-cell lines, (b) patients only, and (c) cell-lines only. For category (a), we identified 

significant regulation of CCNE2-FOXM1 (10 cell line lineages, 17 patient cancer types) in a cell 

cycle, CTNNB1-SERPINE1 (8 cell line lineages, 17 patient cancer types) in EMT, and RB1-

RPS6 (8 cell line lineages, 20 patient cancer types) in TSC/mTOR pathways, respectively. 

Linking tumor types between model systems based on network circuitry We investigated the 

shared cross-signaling between cell line and patient tumor types. As a measure of the level of 

cross-signaling of a specific pathway network, we defined the connectivity score (CS) as the 

ratio of the observed number of edges in a given network to the total number of possible edges in 

the pathway, as more edges imply a higher level of cross-signaling within a pathway (ST S6). In 

addition, we quantified the level of significance for the observed CS value by comparing it with 

CS values obtained from random permutation of the network, called randomCS;  lower values of 

randomCS provide evidence against the observed CS value being obtained under random chance 

(SM Section S1.3). Based on the randomCS, we evaluated the similarity between cell line and 

patient tumor types in terms of network cross-signaling. Specifically, we declared two lineages 

were similar for a pathway if both of them showed high levels of cross-signaling (i.e., low 

randomCS proportions). Some key triplets of {cell line-pathways-patient} are summarized in 

Figure 3. Ovary and uterus cell lines were connected via the hormone signaling (breast) pathway 

with BRCA; lung, kidney, and stomach-oesophagus cell lines were linked together with two 

clusters of patient cancers (KICH, KIRP, PRAD, LGG and LUSC, UCEC, STAD) via the RTK 

pathway (Figure 3A). Further, there were some clear confirmations of conservation of activities 

across model systems within cancer tissues (Figure 3B), some specific examples being {bladder-

core reactive-BLCA}, {kidney-RTK-KICH & KIRP}, {kidney-hormone receptor-KIRC}, 

{ovary-hormone signaling-OV}, and {stomach-hormone receptor-ESCA & STAD}. 
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Pan-cancer stratification across model systems based on TransPRECISE scores 

We deconvolved the global population-level networks to obtain sample-specific pathway-level 

functional summaries of the proteomic crosstalk within a pathway—in other words, for a given 

pathway, each sample has three different scores for activated, neutral, and suppressed statuses of 

the pathway. For the tumor stratification, we used the network aberration score defined as the 

sum of the activated and suppressed TransPRECISE scores for each sample. 

For linking cell lines and patients, we computed the Pearson’s correlation for aberration score 

vectors (across twelve pathways) from each cell line-patient pair. Majority of the cell line-patient 

pairs for sarcoma-SARC (green), kidney-KIRC (light green), breast-BRCA (orange) and brain-

LGG and GBM (light green and yellow) (edge colors in Figure 4 parenthesized) showed absolute 

correlations >0.9. Interestingly, the pancreatic and brain cancers were highly correlated across 

model systems: 99% of pancreas-HNSC pairs, 93% of GBM-pancreas pairs (and also 92% of the 

PAAD-head&neck pairs) had absolute correlations >0.9. 

To find robust pan-cancer stratification across model systems, we applied hierarchical clustering 

using the complete linkage method27 on the correlations of the aberration scores. Among the 29 

optimal clusters across patients and cell lines (Figure 5 and ST S8), most of the cell lines have 

mixed membership with patient tumors in 8 clusters (C2, C3, C4, C9, C13, C14, C19, and C23), 

while cluster C29 includes only cell lines (48 out of 640 in total, 7.5%). The cluster C4 showed a 

high level of fidelity in lineages between cell line and patient tumor types; it includes 81% of 

ovary cell lines and 11% of OV patients, 72% of head&neck cell lines and 38% of HNSC 

patients, and 20% of pancreas cell lines (another 70% of them being located in C2 with notable 

aberration of RAS/MAPK pathway), and 80% of PAAD patients exhibiting high aberration in 

apoptosis and DNA damage response pathways (ST S9). Within cluster C4, we observed 
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significant correlations between the patient-cell line samples from ovary-PAAD, OV, BLCA, 

skin-PAAD, and head&neck-BLCA, HNSC (SF S11). More specifically, the HNSC samples 

were almost exclusively divided into the two clusters, C4 (n=78, 38%) and C15 (n=122, 60%), 

that include 38 (73%) head&neck cell lines and 5 (100%) oesophagus cell lines, respectively 

(Table S8). Patients with squamous cell carcinoma of the head and neck often have esophageal 

cancer.28 We found a significant difference in the survival outcome between HNSC patients in 

C4 and C15: the median survival was 456 days and 654 days for C4 and C15, respectively, with 

a p-value of 0.02 (Figure 5B). The patients in C15 that were represented by esophagus cell lines 

showed better survival than those in C4, which includes head&neck cell lines. This indicates that 

our TransPRECISE scores captured distinct prognostic information in HNSC patients. Moreover, 

the patterns of pathway activity and status were significantly different between the two clusters. 

The HNSC patients in C4 and C15 showed high aberration scores in apoptosis and PI3K/AKT 

pathways, respectively. While the aberration scores in the DNA damage pathway were high for 

both clusters, their PRECISE statuses were significantly distinct, with a Chi-squared test p-value 

<0.0001: 72% and 65% of the activated/suppressed patients in C4 and C15 showed suppression 

and activation, respectively.  

Drug response prediction using TransPRECISE scores 

Training drug response prediction models in cell lines For the subset of cell lines where drug 

sensitivity data are available (ST S4), we used Bayesian additive regression trees (BART),29 a 

machine learning method, to build predictive models from the network aberration scores for the 

12 pathways. For each cancer, we fit BART, with drug response (sensitive or resistant) as a 

binary outcome and TransPRECISE scores as predictors, for the drugs having profiles of �10 

cell lines for that cancer type. 
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We found that TransPRECISE scores conferred high predictive power, translating to high 

median test-set areas under the receiver operating characteristic curves (AUCs) across the 

lineages; all lineages had median AUCs >0.8, with lung, breast, and colon being the top three, 

having median AUCs >0.9 (SF S12). From the radar plot summarizing the top pathway 

predictors across all drugs for each lineage (Figure 6A), we observed some notable evidence of 

predictive affinity for certain pathways to specific lineages: hormone receptor in breast, core 

reactive, RTK and TSC/mTOR in colon, RAS/MAPK in liver, DNA damage response and 

PI3K/AKT in lung, apoptosis, cell cycle and EMT in ovary, and DNA damage response and 

TSC/mTOR in pancreas cell lines. Further, we investigated pathway interaction in predicting 

drug sensitivity (Figure 6B and SF S13). The breast cancer related pathways, breast reactive, and 

hormone receptor pathways were highly synergistic in predicting the responses of five drugs 

including ML311 in breast cancer cell lines.30 

Predicting drug sensitivity in patient tumors For each of the cell line cancer lineage, for which 

the training models were fitted with the TransPRECISE pathway scores (as above), we predict 

drug sensitivity in patient tumors within matched tissue type (total 10 lineages). We found drugs 

that had 100% response rate especially in BRCA, CORE, LIHC, PAAD and SKCM; some of 

which are under clinical investigations in their respective cancers (ST S10 and SM Section S1.5). 

For example, all BRCA patients were predicted to be responsive to Ibrutinib that targets Bruton 

tyrosine kinase (BTK) with RAS/MAPK, PI3K/AKT, EMT as the top predictive pathways (ST 

S10). 
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DISCUSSION 

The investigation of patient tumors and cell-line interactome offers insights into the translational 

potential of preclinical model systems. This requires development of analytical models that 

capture the molecular heterogeneity of a cancer type in an unbiased manner and accurate 

calibration of aberrant biological pathways. We propose TransPRECISE, a multi-scale Bayesian 

network modeling framework, whose overarching goals are three-fold: identify differential and 

conserved intra-pathway activities between two different model systems (patient tumors and cell 

lines) across multiple cancers; globally assess cell lines as representative in vitro models for 

patients based on their inferred pathway circuitry; and build drug sensitivity prediction models 

for both cell lines and patients to aid pathway-based personalized medical decision-making. To 

the best of our knowledge, TransPRECISE is the first computational approach that provides a 

conflation of these goals.  

As a proof-of-concept study, we illustrate the utility of  TransPRECISE using RPPA-based 

proteomic expression profiles from patients and cell lines across several functional pathways, 

and a subset of the cell lines’ response to a number of drugs. At a pan-cancer level, we identified 

edges that were either (a) present in both the model systems with high prevalence, or, 

analogously, (b) present in only one of the model systems with prevalence. Type (a) edges offer 

valuable insights into the shared pathway circuitry across model systems, which has potential 

translational utility to study the role of tumor microenvironment. For example, category (a) 

edges included the CCNE2-FOXM1 edge in the cell-cycle pathway (10 cell line cancers, 17 

patient cancers), which has been identified to have important implications in modulations of 

several cancers, such as breast,31 prostate cancer subtype 1,32 hepatocellular carcinoma,33 and 

osteosarcoma.34 At a cancer-specific level, we identified several {cell line, pathway, patient} 
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triplets (based on network connectivity scores) that exhibited high degree of fidelity to their 

histological sites. A few specific tissue-pathway pairs identified by TransPRECISE analyses 

already have established translational value, including the RTK pathway in kidney cancers,35,36 

and the hormone signaling pathway in ovarian cancers.37,38 

As further validation, TransPRECISE implicated the EMT pathway in SKCM, which is expected 

since TCGA SKCM cohort contains many metastatic samples.39 EMT was also implicated in 

TCGA UCEC, another expected finding since UCEC includes epithelial-like endometrioid 

samples as well as mesenchymal-like serous samples in the cohort.40 Interestingly, 

TransPRECISE implicated the hormone receptor pathway in lung cancer, which is another 

known observation that is being studied for its translational potential.41 Those validation results 

increase our confidence in the findings from TransPRECISE. 

The TransPRECISE-based sample-specific pathway scores can be used for identification of 

clinically relevant subtypes. Our robust pan-cancer stratification approach using the pathway 

scores provided subtypes within and across cancer that were represented by different cell line 

lineages (Figure 5) and contains distinct prognostic information. In particular, two different 

subsets of the head and neck cancer patients were included in two different clusters (C4 and 

C15), and had significantly different survival times, along with differing levels of activity in the 

DNA damage response pathway, potentially due to genomic aberrations in genes involved in that 

pathway.42 

Using Bayesian machine learning models, we evaluated the prediction performance of 

TransPRECISE sample-specific pathway scores in predicting drug sensitivity in cell lines. A 

five-fold cross-validation study yielded test-set AUCs that confirmed the models’ high prediction 

accuracies across drugs (median AUC >0.8 for all cancers). Further investigations into the fitted-
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training models suggested notable pathway activities in predicting drug response in specific 

cancer tissues, such as hormone receptor-breast,43 and TSC/mTOR-pancreas.44,45 We extended 

our drug sensitivity analyses to the patient samples by using the training models from the 

matched cancer tissue to predict patients’ responses. Some of our findings, interestingly, are 

concordant with past and ongoing clinical trials. For example, ibrutinib, which had high 

predicted sensitivity for all the BRCA samples, has been investigated for its impact on HER2-

amplified breast cancers.46 Similarly, lapatinib, in combination with trastuzumab, has recently 

been tested clinically for HER2-amplified metastatic colorectal cancer.47  

One of the key strengths of the TransPRECISE algorithm is its generalizability, as it can be 

applied to any disease system that has matched genomic or molecular data on model and primary 

samples.  

For example, the transition from RPPA to other advanced high-throughput platforms and 

development of databases, such as CPTAC,48 opens up the opportunity to include more proteins 

(thus, more pathways) in the network analyses: leading to a more global coverage of the 

proteomic crosstalk between model systems. Further, the PRECISE26 pipeline, which lies at the 

core of the TransPRECISE analyses, allows integration of upstream regulatory information and 

multi-omics layers such as mutations, copy number, methylation and mRNA expression. These 

modalities can be leveraged for better and holistic rewiring of pathway circuitry. Finally, our 

framework can be, in principle, applied to emerging model systems, such as patient-derived 

xenografts,49,50 and organoids,51 that allow better recapitulation of the human tumor 

microenvironment. In summary, TransPRECISE offers the potential to bridge the gap between 

human and pre-clinical models to delineate actionable cancer-pathway-drug interactions to assist 

personalized systems biomedicine approaches in the clinic. 
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DATA AND MATERIAL AVAILABILITY 

We have created an online, publicly available R shiny app (available at 

https://rupamb.shinyapps.io/transprecise) that is a comprehensive database and visualization 

repository of our findings. All codes used in generating our results are available, along with the 

documentation, on https://github.com/rupambh/TransPRECISE. 
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FIGURES 

 

Figure 1. Overview of the TransPRECISE framework. The first step of TransPRECISE 

involves running the PRECISE pipeline on two sets of RPPA protein expression data—namely, 

cancer patients (7714 samples across 31 different cancer types) and cancer cell lines (640 

samples across 16 different cancer tissues). For each combination of 47 cancer types across cell 

lines and patients and the 12 pathways, the PRECISE procedure is executed in three consecutive 

steps: fitting cancer-specific protein networks using Bayesian graphical regression, deconvolving 

these cancer-specific networks to fit sample-specific pathways networks, and aggregating the 

sample-specific networks to obtain calibrated TransPRECISE scores and pathway activity status. 

The obtained cancer-specific networks are then compared across patients and cell lines for each 

pathway towards a pan-cancer identification of differential and conserved pathway activities. 

The TransPRECISE scores are converted to sample-specific network aberration scores, and those 
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are used to identify avatar cell lines for patient tumors: both at a global pathway level and at a 

pathway-specific interaction level. Finally, the network aberration scores are also used alongside 

drug sensitivity data for the cell lines for in vivo drug sensitivity prediction training, and the 

trained models are used on the patient network aberration scores for in silico drug sensitivity 

prediction. 
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Figure 2. Pan-cancer summary of protein networks for apoptosis (A) and RAS/MAPK (B) 

pathways. i. Heatmap depicting strengths of all possible protein-protein edges within the 
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pathway, across all 47 patient and cell line tumor lineages, quantified by the posterior inclusion 

probabilities of the edges based on the fitted Bayesian graphical regression model. ii. Left panel 

exhibits a network with its edges weighted and labeled by the edge consistencies (ECs), which 

are quantified by the number of patient tumor types holding that particular edge with a posterior 

probability >0.5, also presenting the a priori known strength of the edge using the protein-

protein interaction score from the STRING database. The right panel is the corresponding 

network across cell line cancers. 
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Figure 3. Sankey diagrams for patient and cell line cancers with conserved pathway-

specific connectivity. A. The columns contain cell line cancers, pathways, and patient cancers 

from left to right, respectively. A cell line cancer tissue is connected to a pathway if the 

connectivity score (CS) for that cancer type-pathway pair (defined as the proportion of edges out 

of all possible undirected edges in the pathway that are held by that cancer type) is more than 

900 out of 1000 randomCS values computed for that cancer type, with repeated random selection 

of the same number of proteins as in the pathway from the pool of all proteins across the 12 

pathways. The connection between a patient cancer type to a pathway is also determined by the 

same rule. The length of the middle (pathway) column pieces indicate the participation of that 
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pathway in driving the conservation across the two model systems. B. The sankey diagram 

contains only the subset of cell line cancer (i.e., patient cancer pairs that have same tissue-

specific lineage), and the cutoff for CS values is higher than 800 of the 1000 randomCSs 

obtained using the random selection of proteins. 
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Figure 4. Circos plot summarizing high correlations of network aberration scores between

patient and cell line cancers. An edge exists between a patient cancer type and a cell line cancer

lineage if more than 75% of all possible patient-cell line pairs for that pair of cancers have a raw

(Pearson) correlation of magnitude 0.9 or higher between their sets of the 12 pathway network

aberration scores (sum of TransPRECISE sample-specific pathway activation and suppression
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scores). The edge strengths are determined by these percentages, as well. The edge colors 

indicate the patient cancers from which the edge originates, and the lengths of the innermost 

node pieces indicate the neighborhood size of the corresponding node. The two circular axes in 

the exterior indicate relative strengths of the edges originating from the same node, and the 

pieces here are colored by the opposite node to which that edge is connected, with the edges now 

arranged according to decreasing order of strength. 
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Figure 5. Avatar cell lines identification and selection of driving pathways using network 

aberration scores. A. Heatmap depicting network aberration scores (combined activation and 

suppression TransPRECISE pathway scores) after running unsupervised hierarchical clustering 

of the score matrix consisting of 8354 samples (7714 patients across 31 cancer lineages and 640 

cell lines across 16 cancer types) and 12 proteomic signaling pathways. 29 clusters are identified 

by gap statistic, consisting of a mixture of patients and cell lines. Out of the three annotation 

bars, the topmost one indicates tumor types, the middle one indicates whether the sample is a 

patient or a cell line, and the bottom one indicates cluster participation according to which the 

samples are grouped. B. Kaplan-Meier plot depicting difference between survival times of 

HNSC patients that are clustered in clusters C4 and C15 using the hierarchical clustering method 

on TransPRECISE network aberration scores. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/806596doi: bioRxiv preprint 

https://doi.org/10.1101/806596


 

 

30

 

Figure 6. Performance of pathways in drug response prediction for cell lines across cancer 

lineages, based on test-set AUC values evaluated from fivefold cross validation. A. For a 

tissue type, we only look at the subset of drugs for which we have at least 10 response profiles 
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from cell lines in that lineage and at least 0.85 test-set AUC using a five-fold cross-validation in 

the BART models. Then, for each pathway we compute the proportion of times it is the top 

predictor in models for such drugs. The radar plot shows these proportions in a log
�
�1�. 	-

transformed scale. The significance and ranking of each of the twelve pathways in a model are 

quantified by posterior probabilities of inclusion in such a final predictive model for drugs. B. 

Networks showing the number of times (within models satisfying the criteria in panel A) a pair 

of pathways are the top two predictive pathways in a BART model. Panel i is for the breast 

cancer cell lines and panel ii is for the lung cancer cell lines. 
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