
term memory 7 days later by covering the target hole with a lid. The mouse was allowed to 

explore the position of target hole for 90 s and the number of pokes in each hole was measured 

using TopScanLite version 2. 

 

Grip strength test, treadmill test and lactate measurement  

To measure muscular strength, a mouse was held by the tail and allowed to grip a mesh grip 

with the front paws (BIO-G53, BIOSEB) then pulled backward until grip was released. After a 10 

min break, the experiment was repeated. Maximum exercise endurance was assessed with a 

treadmill system (TSE). Mice were trained for 3 d prior to recording the performance to 

familiarize the mice to the equipment. An electrical stimulation grid was adjusted as 1 mA and 

slope was set at 15 degrees. The first day of the training, mice walked on the treadmill at 10 

m/min speed for 10 min, with a 10 min break, then walked at 10 m/min speed for 10 min. On the 

second and third day, the initial two steps were the same as first day, then walking was started 

at 10 m/min and the speed was increased by 1 m/min every minute to a maximum speed of 20 

m/min. On day 4, maximum exercise endurance was measured. Six mice were placed on the 

treadmill and the belt speed was started at 5 m/min for 5 min to allow the mice warm up. The 

speed was increased by 1 m/min up to 20 m/min. After running for 5 min, the speed was 

increased from 20 m/min to 21 m/min for 10 min. Mice were then forced to run at 22 m/min until 

they remained on the electrical stimulation grid for 10 seconds. Details are available upon 

request. The tail blood at pre-exercising and post-exercising was taken and serum lactate level 

were measured with a lactate meter (Nova Biomedical). 

 

Ambulatory activity  

Animals were maintained in specific-pathogen-free (SPF) facility and single-housed in 

instrumented individually ventilated cages (IVC) (Digital Smart House, Vium, San Mateo, CA, 

and Innovive, San Diego, CA) containing corncob bedding with access to Innowheel and 

Innodome (Innovive, San Diego, CA), Bed-r'Nest (Andersons Lab Bedding, Maumee, OH), and 

foraging mix (Veggie Relish, LabDiet). Animals had unrestricted access to food (Pico Rodent 

Diet 5053, Lab Diet, St. Louis, MO) and acidified, sterile water (Innovive, San Diego, CA).  

Vium Digital Smart Houses slotted in Vium’s proprietary rack system were outfitted with sensors 

and a high-definition (HD) camera that enables continuous, 24/7 monitoring of animals and 
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streams data to a secure cloud-based infrastructure. As described elsewhere (Lim et al., 2019; 

Lim et al., 2017), video is processed using computer vision algorithms to produce a digital 

history of motion (mm/sec). Motion (mm/s) was averaged across 1 hr bins to produce 1 hr 

averages. All 1 hr averages from 6am to 7am across 55 days were averaged and repeated for 

each hour of the day. 

 

Whole genome sequencing (WGS) 

Genomic DNA was isolated from snap frozen tissues using a DNeasy blood & tissue kit and 

fragmented with a Covaris ultrasonicator at 500 bp peak. TruSeq DNA PCR-free library 

preparation kits were used to add DNA adaptors to dsDNA following manufacturer’s instructions 

(Illumina). Deep whole genome sequencing (50X) on an Illumina Hiseq X10 platform was 

performed at BGI (China). 

  

Treadmill Gait Analysis  

Gait patterns were measured using forced walking on a treadmill (Columbus Instruments; 

Columbus, OH). A high-speed digital video camera recorded images of the ventral side of the 

mouse through a transparent treadmill belt reflected off a mirror. Mice for approximately 24 sec 

at speeds of 13, 19, and 25 cm/s. TreadScan® software (CleverSys, Inc, Reston, VA) identified 

each individual paw of the mouse in each frame as it walked on the treadmill and measures of 

stance and swing duration, among other measures, were assessed. 

 

COX and capillary density staining 

Freshly isolated quadriceps and gastrocnemius muscles were mounted in OCT (Tissue-Tek), 

placed in an isopentane bath, and slowly cooled in liquid nitrogen. Transverse sections (20 mm) 

were sectioned on a cryostat (Leica). Sections were fixed in pre-cooled acetone (-20°C) for 10 

min, washed with PBS, then blocked with BlockAid (Invitrogen) for 1 h at RT, and then 

incubated with CD31 (ab56299, Abcam), Laminin (L9393, Sigma) antibodies diluted in blocking 

buffer overnight at 4°C. Slides were washed with PBST, then incubated with anti-rat Alexa Fluor 

488-conjugated (Life Technologies) and anti-rabbit Alexa Fluor 594-conjugated (Life 

Technologies) diluted to 1:500 in blocking buffer for 2 h at RT. Slides were washed again with 

PBST and mounted with Fluoroshield with DAPI mounting medium (Sigma). Images were 
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acquired using a confocal fluorescence microscope (Nikon A1). COX staining was performed 

according to a protocol (Ross, 2011). Briefly, 20 μm cryostat sections was dried at room 

temperature for 1 hr and media containing 1X DAB, 100 μM cytochrome c, 2 μg/ml bovine 

catalase was added to sections and slides were incubated at 37°C for 40 min. Quantification of 

capillary number and density were performed using ImageJ. 

 

Electron microscopy 

Mice at 15 months of age were anesthetized with isoflurane and sacrificed by cervical 

dislocation or decapitation, in accordance with available ethical permits. Muscle was collected 

and fixed in electron microscopy fixative (consisting of 3% glutaraldehyde, 2.5% 

paraformaldehyde, 2 mM calcium chloride, 2% sucrose in 0.1 M cacodylate buffer) and tissue 

was processed as previously reported (Le Couteur et al., 2001). Two blocks from different parts 

of the muscle were used and from each section 10 images were taken at 5000X on a Jeol 1210 

transmission microscope and photographed using a Gatan US 4000MP digital camera. 

Mitochondrial network, size and number were quantified blindly using FUJI ImageJ. 

 

Quantitative real-time PCR for transcription of repetitive elements 

Total RNA was isolated from 30-50 mg of tissue using Trizol reagent (ThermoFisher) according 

to the manufacturer's instructions. Prior to the synthesis of cDNA, total RNA was digested with 

27.2 Kunitz units of RNase-free DNase (Qiagen) for 45 min at room temperature and further 

cleaned up on RNeasy columns (Qiagen) (De Cecco et al., 2013). The effectiveness of the 

digestion was assessed using controls that omitted reverse transcriptase (RT). Digestion with 

DNase was repeated until the control lacking RT was negative for γ-satellite sequences. RNA 

integrity was determined using an Agilent Bioanalyzer 2100 and an RNA-nano chip. Total RNA 

(1 μg) of was transcribed into cDNA in 50 μl reactions using the TaqMan Gold RT-PCR kit 

(Applied Biosystems) and random hexamers, according to the manufacturer's protocol. This 

reaction (1.0 μl) was used in subsequent qPCR reactions, performed using the SYBR Green 

system (Applied Biosystems) on the ViiA 7 Real Time System (Applied Biosystems), according 

to the manufacturer's specifications. Primers were used at a final concentration of 300 nM. 

Tissue from 6 individual animals was analyzed in triplicate. Statistical analysis was determined 

using Student’s t-test and SigmaPlot 12.5 (Systat Software). 
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Design of PCR primers for repetitive elements 

All primers used in this study are listed in Table S1. For expression analysis of LINE-1, MusD 

and pericentromeric γ-satellite sequences (MSAT) we used primers described by Changolkar et 

al. (Changolkar et al., 2008). Primers for the SINE elements B1 and B2 were designed using the 

consensus sequence from Repbase (Genetic Information Research Institute, 

www.girinst.org/repbase/index.html) and Primer-Blast software 

(www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers against GAPDH and β-actin, used as 

normalization controls, were designed with Primer-Blast using NCBI reference sequences 

NC_000072.6 and NM_007393.3, respectively. Primer sequences were analyzed using the 

UCSC genome browser in silico PCR tool (genome.ucsc.edu/cgi-bin/hgPcr) to determine the 

number of genomic elements that contribute to the amplification products (De Cecco et al., 

2013). All primers were tested with serial dilutions of cDNA to ensure they amplified their target 

sequences quantitatively.  

 

Muscle RNA-seq analysis 

Paired-end reads from gastrocnemius muscle RNA-Seq were mapped to the UCSC mm10 

genome build using HISAT2 version 2.1.0 (Kim et al., 2015). The featureCounts function from 

the Rsubread package (Rsubread 1.32.2) was used to collect read counts for genes. DESeq2 

(DESeq2 1.22.2) was applied for differential expression analysis to all genes with rowSums >= 

10.  

To compare gene expression in gastrocnemius muscles of ICE, Cre, and WT, a table of 

normalized read counts was exported from a combined DESeq dataset with all replicates and 

conditions. The 200 genes with the smallest adjusted p-value for differential expression between 

Cre and ICE were selected and ordered by the log2-fold-change difference between Cre and 

Ice. The heatmap.2 (gplots 3.0.1) R function was used to produce a plot of Z-score values for 

each gene. 

 

Epigenetic clock (DNAme age) 

Tissue samples were immediately preserved in DNA/RNA Shield™ (Zymo Research; Cat. No. 

R1100-50) and genomic DNA were purified using Quick-DNA Plus Kit (Zymo Research; Cat. 
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No. D4068) according to manufacturer’s instructions. Sample library preparation and data 

analyses were performed by Zymo Research, CA. Briefly, genomic DNA (200 ng) was bisulfite-

converted using EZ DNA Methylation-Lightning™ Kit (Zymo Research; Cat. No. D5030). 

Bisulfite-converted DNA libraries for targeted bisulfite sequencing platform, called SWARM® 

(Simplified Whole-panel Amplification Reaction Method) were prepared according the to the 

manufacturer’s instructions, then sequenced on a HiSeq 1500 sequencer at >1,000X coverage. 

Sequence reads were identified using Illumina basecalling software and aligned to the reference 

genome using Bismark (http://www.bioinformatics.babraham.ac.uk/projects/bismark/), an aligner 

optimized for bisulfite sequence data and methylation calling . The methylation level of each 

sampled cytosine was estimated as the number of reads reporting a C, divided by the total 

number of reads reporting a C or T. DNA methylation levels of >500 age-related CpG loci were 

used for age prediction using epigenetic age algorithms. 

Supplemental Information 

Table S1. Primers used in this study, Related to Figures 1, 2 and 5  

Table S2. Differential genes from muscle RNA-seq, Related to Figure 7 

Table S3. DNA methylation values of epigenetic clock CpGs, Related to Figure 7 
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