Inhibitory signaling in mammalian olfactory transduction potentially mediated by G_{α_0}

Elizabeth A. Corey¹, Kirill Ukhanov², Yuriy V. Bobkov³, Jeremy C. McIntyre⁴, Jeffrey R. Martens⁵, Barry W. Ache⁶

¹Whitney Laboratory, and Center for Smell and Taste, University of Florida, Gainesville FL 32610
²Dept. of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida, Gainesville FL 32610
³Whitney Laboratory, and Center for Smell and Taste, University of Florida, Gainesville FL 32610
⁴Dept. of Neuroscience, and Center for Smell and Taste, University of Florida, Gainesville FL 32610
⁵Dept. of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida, Gainesville FL 32610
⁶Whitney Laboratory, Depts. of Biology and Neuroscience, and Center for Smell and Taste, University of Florida, Gainesville FL 32610

Corresponding Author

Barry W. Ache: bwa@whitney.ufl.edu
Abstract

Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the G\(\alpha_s\) family member G\(\alpha_{olf}\). Here we tentatively associate a second G protein, G\(\alpha_o\), with inhibitory signalling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of G\(\alpha_o\). We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its functionality in native ORNs. Our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs.

Keywords

Olfaction, olfactory receptor neurons, inhibition, modulation, combinatorial coding

Introduction

ORs comprise the largest family of mammalian GPCRs (Buck and Axel, 1991). Ligand (odorant) binding to ORs results in the cyclic nucleotide-dependent excitation of ORNs through G\(\alpha_{olf}\), a member of the G\(\alpha_s\) subfamily (e.g., Belluscio et al., 1998). It has been known for some time that olfactory perception shows ‘mixture suppression’ and ‘mixture synergism’, in which one odorant either reduces or enhances, respectively, the
percept of another (e.g., Cain, 1974; Laing et al., 1984), and that at least some of this perceptual modulation can be assigned to the olfactory periphery (e.g., Bell et al., 1987; Laing and Wilcox, 1987). Receptor-driven modulation has since been studied directly (see following paragraph) and was recently shown to be widespread across ORs, indicating that it makes a fundamental contribution to the peripheral olfactory code (Xu et al., 2019). Thus, it is important to understand the processes that modulate cyclic nucleotide-dependent excitation in the dynamic range of activation.

Receptor-driven ‘mixture suppression’, also referred to as inhibition, antagonism, or masking, has received the most attention. Pharmacological, physiological, and computational evidence ascribe odor-evoked inhibition to competitive antagonism (e.g., Firestein and Shepherd, 1992; Kurahashi et al., 1994; Oka et al., 2004). The implication is that ‘mixture suppression’ results from a reduction in cyclic nucleotide-dependent excitation due to odorants competing for a common binding site on the OR. Both physiological (Rospars et al, 2008) and computational (Reddy et al., 2017) evidence ascribe odorant-evoked inhibition to non-competitive antagonism in addition to competitive antagonism. Multiple non-competitive processes can result in odorant-evoked inhibition. Some, such as ‘odor masking’ involving the non-specific action of the antagonist on the cyclic nucleotide gated (CNG) output channel (e.g., Takeuchi et al., 2009), cannot account for the broad ligand specificity of odor-evoked inhibition seen across ORNs (Xu et al., 2019). A non-competitive process linked to odorant-evoked inhibition that is consistent with the ligand specificity seen across ORNs involves phosphoinositide 3-kinase (PI3K)-dependent signaling (Spehr et al., 2002; Ukhanov et al., 2010, 2011, 2013; Yu et al., 2014). Interestingly, the primary product of PI3K-
dependent signaling \textit{in vivo}, PtdIns (3,4,5)P3 (PIP3), competitively competes with cAMP-dependent activation of the CNG channel (Zhainazarov et al., 2004; Brady et al., 2006), potentially confounding a simple mechanistic understanding of receptor-driven 'mixture suppression'. Pharmacological evidence that PI3K-dependent, odorant-evoked inhibition is mediated by a G\(\beta\gamma\) subunit implicates a G protein complex in this process (Ukhanov et al., 2011), as does earlier evidence that in heterologous systems at least, the function of an odorant (agonist, antagonist) depends on the G protein used (Shirokova et al., 2005).

Implicating a G\(\beta\gamma\) subunit in PI3K-dependent, odorant-evoked inhibition raises the question of the associated G\(\alpha\) protein. While G\(\alpha_{olf}\), the most abundant G\(\alpha\) isoform expressed in the cilia of mammalian ORNs, could mediate activation of PI3K signaling through the release of G\(\beta\gamma\), other isoforms occur in cilia-enriched membrane preparations from the olfactory epithelium (OE) (e.g., Schandar et al., 1998; Wekesa and Anholt, 1999; Mayer et al., 2009). These other G proteins may function in processes as diverse as adaptation and cell survival (Watt et al., 2004; Mashukova et al., 2006; Kim et al., 2015a,b), but have also been implicated in signal transduction (e.g., Scholz et al., 2016b). If two different G protein complexes are involved in olfactory signal transduction, it is important to understand whether both are activated by the same OR.

Here, we provide evidence potentially linking PI3K-mediated inhibitory signaling pathway to G\(\alpha_{o}\). We demonstrate that odor-evoked PI3K-dependent inhibitory signaling is no longer detectable in mice carrying an OMP-Cre conditional deletion of G\(\alpha_{o}\). We show that fluorescently-tagged G\(\alpha_{o}\) is trafficked to the cilia of native ORNs using viral-
mediated ectopic expression, and that G_α_o expression is reduced in the ORNs of mice carrying the OMP-Cre conditional deletion of G_α_o using IHC. We then use single cell RT-PCR to identify an OR expressed by mammalian ORNs that were activated by octanol and inhibited by citral in a PI3K-dependent manner. The functionality of the identified OR (Olr1845) persists in a HEK293T-based pCRE-SEAP assay. Using the same expression system we then implicated G_α_o in odor-dependent activation of PI3K by that OR using an ELISA. Collectively, our results are consistent with, although do not prove, that mammalian ORs can interact with at least two different G proteins in a functionally identified, ligand-dependent manner.

Methods
Animals
Experiments were performed on adult female Sprague-Dawley rats, adult CD1 mice, adult M71-SR1-IRES-tauGFP mice, as well as adult C57BL/6 and $cGna_o^{-/-}$ mice. All animal procedures were performed in accordance with the University of Florida animal care committee’s regulations. Animals were euthanized by inhalation of carbon dioxide and decapitated immediately prior to dissection. All experiments were performed at room temperature (22–25°C) unless otherwise noted. $cGna_o^{-/-}$ animal breeding, genotyping, and genomic DNA analyses were performed using published protocols and primers (Chamero et al., 2011; Choi et al., 2014).

In situ hybridization and immunolabeling of cryosections
Tissue fixation and cryo-sectioning were performed using published protocols. Briefly, the OE was fixed in 4% paraformaldehyde and then the tissue soaked in 30% sucrose at 4°C before embedding in optimal cutting temperature medium. 12 μM sections were collected under RNase-free conditions and stored at -80°C until use. In situ hybridization was performed using a modification of published methods (Ishii et al., 2004; Choi et al., 2016a). Briefly, tissue sections were hybridized with digoxigenin-labeled riboprobes for Gnao and OMP detection. After washing to remove unbound probe, the sections were then incubated with anti-digoigenin-HRP antibody (Roche) and labeling was detected with NBT/BCIP (Sigma). The sections were cover-slipped with Fluormount with DAPI (Southern Biotechnology) and visualized with a 10x and an oil immersion 60x lens on an Olympus BX41 microscope.

Immunostaining was performed using modifications of published protocols (e.g., Choi et al., 2016). Briefly, antigen retrieval was performed by incubating the slides with 10 mM sodium citrate buffer (pH 6.0) at 60°C for 30 min. After blocking with 10% (vol/vol) normal goat serum, 1% BSA, and 0.1% Triton X-100, sections were incubated with primary antibodies overnight at 4°C. The antibodies included Gαo (rabbit, 1:200; Santa Cruz Biotechnology) and OMP (goat, 1:500; Wako). The slides were washed with PBS containing 0.1% Triton X-100 and then with secondary antibodies conjugated with Alexa Fluor 488 (Invitrogen). Slides were coverslipped with Fluoromount DAPI (Southern Biotech) and labeling was visualized with 10x and oil immersion 60x lenses.

Calcium imaging
Acutely dissociated rat or mouse ORNs were imaged using standard published approaches. Briefly, olfactory epithelia were dissected in ice-cold modified artificial cerebrospinal fluid (ACSF) saturated with 95% O₂ and 5% CO₂ that contained (in mM): 120 NaCl, 25 NaHCO₃, 5 KCl, 1.25 Na₂HPO₄, 1 MgSO₄, 1 CaCl₂, 10 glucose. The tissue was transferred in low-Ca²⁺ (0.6 µM free Ca²⁺ buffered with 5 mM EGTA) ACSF supplemented with 0.5 mg/ml papain (Sigma-Aldrich) and, in some cases, 10 units/ml TurboDNAse (Promega). After incubation for 20 min at 37°C in 5% CO₂, the tissue was gently washed with normal oxygenated ACSF several times, minced with a razor blade and triturated with a large bore fire polished glass pipette. The resulting suspension was filtered through a 40 µm cell strainer (BD BioSciences). An aliquot of the suspension was mixed with 10 µM Fluo-3 or Fluo-4 containing 0.04% Pluronic F127 and placed on a glass coverslip coated with concanavalin A (Sigma-Aldrich) in a recording chamber (RC22, Warner Instruments). The volume of the chamber was 200 µL, allowing for complete exchange of the solution during application of odorant and/or inhibitors. In some experiments cells were placed and imaged in 35mm tissue culture dishes with cover glass bottom (FluoroDish, WPI) treated with concanavalin A. Odors were applied using a multi-channel rapid solution changer (RSC-160, Bio-Logic). The cells were illuminated at 500 nm and the emitted light was collected at 530 nm by a 12-bit cooled CCD camera (ORCA-R2, Hamamatsu). Both the illumination and image acquisition were controlled by Imaging Workbench 6.0 software (INDEC BioSystems). Each cell was assigned a region of interest (ROI) and changes in fluorescence intensity within each ROI were analyzed. Continuous traces of multiple responses were compensated for slow drift of the baseline fluorescence when necessary. All recordings were...
performed at room temperature (22-25°C). Single odorants were of highest purity obtained from Sigma-Aldrich and were prepared fresh as used from 0.5M DMSO stocks kept at -20°C. The complex odorant Henkel-100 was dissolved 1:1 in anhydrous DMSO as a working stock solution.

Viral expression of fluorescently tagged Ga_o

GFP and mCherry were inserted into the coding sequence of mouse Ga_o using site directed mutagenesis to create EcoRI cut sites within the Ga_o coding sequence followed by restriction enzyme digestion and T4 ligation. GFP and mCherry were amplified by PCR with primers designed to allow in frame insertion as previously described (Hynes et al., 2004). All constructs were fully sequenced prior to use.

Ga_o:GFP adenovirus (AdV) and Ga_o:mCherry adeno-associated virus (AAV2/5) were produced using previously described methods (e.g., Zolotukhin et al., 2002; McIntyre et al., 2015). For expression using AV in native tissue, recombinant GFP-fused cDNA was cloned into the vector p-ENTR by TOPO cloning methods. The inserts were then recombined into the adenoviral vector pAD/V5/-dest using LR Recombinase II (Life Technologies, Carlsbad CA). Viral plasmids were digested with PacI and transfected into HEK293 cells. Following an initial amplification, a crude viral lysate was produced, and used to infect confluent 60-mm dishes of HEK293 cells for amplification according to the ViraPower protocol (Life Technologies). AdV was isolated with the Virapur Adenovirus mini purification Virakit (Virapur, San Diego, CA), dialyzed in 2.5% glycerol, 25 mM NaCl and 20 mM Tris-HCl, pH 8.0, and stored at −80°C until use. For ectopic expression in native tissue using AAV, the Ga_o:mCherry fusion was cloned into the
pTR-UF50-BC plasmid vector and virus was propagated in HEK293 cells using the pXYZ5 helper plasmid. For viral transduction of ORNs, mice were anesthetized with a Ketamine/Xylazine mixture and 10-15 µL of purified viral solution was delivered intranasally as a single injection per nostril. Animals were used for experiments at 10 days post-infection. The entire turbinate and septum were dissected and kept on ice in a petri dish filled with oxygenated ACSF. For imaging a small piece of the OE was mounted on the stage of the microscope in a perfusion chamber with the apical surface facing down. High resolution en face imaging of freshly dissected OE was performed on an inverted confocal microscope Leica SP5. Images were processed using ImageJ (NIH http://imagej.nih.gov/ij/) and assembled in CorelDraw13 (Corel).

Single Cell RT-PCR

Rat ORNs functionally characterized by calcium imaging were collected with a sterile glass micropipette directly into RT buffer for lysis. Cells were immediately frozen at stored at -80°C. Single cell RT-PCR was performed using a modified approach based on previously described methodology (Touhara et al., 1999). Briefly RT was performed using a Verso RT kit (Thermo Fisher) with an anchored oligo dT primer for 60 minutes at 42°C. RT was followed by PCR detection of OMP and beta actin to exclude cells that were not ORNs and samples contaminated with genomic DNA. PCR with degenerate primers designed to amplify OR genes was performed as follows. The first round of amplification of OR genes was performed in a solution containing 0.4 µM each of the published degenerate primer and an adapter primer targeting the oligo d(T)18-anchor used for the RT, 0.2 mM dNTP, and PrimeSTAR HS Taq (Clontech) and the second
amplification used a nested set of primers targeting ORs. Each PCR consisted of 5 min at 95°C followed by 40 cycles at 95°C for 1 min, an annealing temperature dependent on primers for 3 min, and 72°C for 2 min. The PCR products were subsequently cloned into pGEM-T Easy (Promega) followed by sequencing (McLab) of multiple clones for each PCR product.

OR expression constructs

Rat ORs identified by single cell RT-PCR were amplified from genomic rat DNA and mOR261-1 was amplified from genomic mouse DNA. The ORs were cloned into a pME18S-based Lucy-Rho vector (denoted here as pLucy-Rho-OR) (Shepard et al., 2013) for mammalian expression. All constructs were sequenced prior to use.

Culture and transfection of HEK293T cells

HEK293T cells (ATCC) were grown in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum, penicillin (100 U/ml), and streptomycin (100 mg/ml) in 5% CO₂ at 37°C. Before transfection, the cells were seeded into 35 mm tissue culture treated dishes and incubated for 24 hours. For pCRE-SEAP and PI3K assays, cells were transfected at 70% confluency using X-treme-GENE HP (Roche) at a ratio of 3:1 with plasmid DNA following the manufacturer’s instructions.

pCRE-SEAP assay

cAMP production was measured as previously described (Durocher et al., 2000). HEK293T cells were transfected with the expression vectors pcDNA3.1 Ric-8b (50 ng;
generously provided by Dr. Bettina Malnic, Universidade de São Paulo, Brazil),

pcDNA3.1(+) Gaolf (50 ng; Missouri S&T cDNA Resource Center), pcDNA3.1(+) RTP1s
(100 ng; subcloned from construct purchased from Thermo Fisher) and pLucy-Rho-OR
(1.5 μg). For control experiments cells were transfected as above, however, the pLucy-
Rho-OR construct was omitted. Cells were also transfected with 1.5 μg of a pCRE-
SEAP, where the expression of the secreted alkaline phosphatase (SEAP) is under
regulation of the cAMP responsive elements, (pCRE-SEAP) or a pTAL-SEAP, where
the cAMP responsive elements are not present (Clontech; Durocher et al., 2000). Cells
were also transfected with 50 ng pcDNA5/TO/LACZ (Invitrogen) to assess transfection
efficiency. At 24 hr post-transfection the cells were re-seeded for SEAP analysis and
odorants were added at the indicated dilutions at 48 hours post-transfection. Cells and
supernatants were collected 20 hr later and centrifuged for 5 min at 5000 g. The
supernatants were incubated for 30 min at 65°C and then frozen until analysis. SEAP
activity was measured by mixing 100 μl of supernatant with an equal amount of
BluePhos substrate (KPL). Samples were monitored for color development at 630 nm in
a microwell plate reader. Mean SEAP activity was determined after subtracting the
response of cells that were not expressing an OR and is reported in OD630 arbitrary
units +/- SEM. Each experiment was repeated in triplicate with three replicates each.
The data were analyzed using GraphPad Prism.

PI3K assay

HEK293T cells were transfected with 1.5 μg of pME18s Lucy-Rho-OR, 100 ng of
pcDNA3.1(+) RTP1s and 100 ng of the indicated G protein construct, as well as with 0.5
μg of pBTK-PH-YFP (generous gift from Dr. Tamas Balla; (Balla et al., 2009).

pcDNA3.1(+)–based constructs for Gαo, Gαolf, and GαoG203T were obtained from the Missouri S&T cDNA Resource Center. At 24 hours post-transfection, cells were split into 35 mm dishes for analysis. After 24 hours, cells were incubated for 1 hour in 0.5% fetal bovine serum in DMEM including phosphatase inhibitors (Boston Bioproducts). For PI3K activation, cells were treated with odorant or DMSO (odorant carrier) for 30 sec and then immediately lysed with ice cold 5% TCA. Cells were scraped from dishes and the lysates were stored immediately at -80°C until analysis. For analysis, lipids were extracted following a chloroform:methanol protocol and used immediately in a PIP3 ELISA following the manufacturer’s instructions (Echelon Biosciences). Each experiment was performed in triplicate. Mean PIP3 production was determined by subtracting the response to DMSO and is presented as ΔPIP3 (pM). The data were analyzed using GraphPad Prism.

Results

Gαo is required for PI3K-dependent inhibitory signal transduction in mouse ORNs

Given varied lines of evidence that Gαo is expressed in mammalian ORNs (Mayer et al., 2009; Keydar et al., 2013; Heron et al., 2013; Nickell et al., 2012; Omura and Mombaerts, 2014; Saraiva et al., 2015; Scholz et al., 2016a, Choi et al., 2016; Wang et al., 2017; Zhang et al., 2016) and that Gαo can physically interact with mammalian ORs (Scholz et al., 2016b), we looked for functional evidence to implicate Gαo in PI3K-dependent inhibitory signal transduction in mature mouse ORNs. Mice carrying a global deletion of the Gnao gene display a variety of defects that include behavioral issues and
motor control deficiencies likely resulting from impaired neurogenesis and olfactory
system development (Jiang et al., 1998; Choi et al., 2016). Therefore, to test the impact
of deletion of Gnao1 on olfactory signal transduction without possible confounds
resulting from widespread issues with olfactory system development, we used a
conditional Cre-based knockout (KO) model in which inactivation of Gnao1 through
deletion of exons 5 and 6 is restricted to OMP-positive cells, referred to as cGnao1−/−
mice (Chamero et al., 2011; Oboti et al., 2014). Given that OMP expression is
restricted to mature ORNs, the OE should develop normally and the impact of GaO
deletion on signaling should be restricted to these cells.

We asked whether depletion of the GaO protein altered the odor-evoked activity
of ORNs by monitoring the responses of acutely dissociated ORNs from C57BL/6J and
cGnao1−/− mice to a complex odor mixture (H100) in the presence and absence of the
PI3K blocker LY294002 (10 μM) (Fig 1A, 1st and 2nd columns, showing type results for
24 ORNs). We predicted that the response evoked by H100 will reflect excitation
evoked by one or more components of the mixture that is tempered by inhibition evoked
by one or more other components, and that pharmacologically blocking PI3K will result
in an increase in the net response magnitude in instances where PI3K-based inhibitory
signaling occurs. All cells were also tested with a higher concentration of H100 than the
test concentration (Fig 1A, 3rd column). Only those cells showing a 10% or greater
response to the higher concentration of H100, indicating their response was not
saturated at the test concentration, were subsequently analyzed. The responsiveness
of all the ORNs to an IBMX/ forskolin mixture (Fig 1A, 4th column) confirmed the
functional integrity of the isolated ORNs.
Our data confirmed the results of previous studies suggesting that ORNs of cGnao1^{−/−} mice maintain their odor responsiveness (Chamero et al., 2011; Oboti et al., 2014). H100 (1:100,000 dilution) evoked a mean response amplitude from ORNs isolated from cGnao1^{−/−} mice of 0.25 ± 0.03 (n = 79 ORNs from 4 mice) (Fig. 1C, 1st bar). The mean response amplitude of the ORNs from cGnao1^{−/−} mice was significantly larger than that observed in the ORNs from WT mice (0.18 ± 0.02, n = 78 ORNs from 5 mice) (Fig. 1C, 2nd bar) (P = 0.04, 1st bar vs 2nd bar), consistent with the inhibitory PI3K signaling pathway not being activated in ORNs from cGnao1^{−/−} mice.

On incubating the ORNs from both the cGnao1^{−/−} and B6 mice with the PI3K blocker LY294002 (10 μM) prior to treatment with H100, no enhancement of the response was observed in the ORNs from cGnao1^{−/−} mice, evoking a normalized mean response amplitude of 0.24 ± 0.03 (n = 79 ORNs from 4 mice) (Fig 1C, 3rd bar) (P = 0.07, 3rd bar vs 1st bar). The lack of change from baseline recordings would be consistent with the inhibitory PI3K signaling pathway not being activated in ORNs from cGnao1^{−/−} mice. In contrast, the response of 39 of 78 (50%) ORNs from WT mice was significantly enhanced by PI3K blockade, evoking a normalized mean response amplitude of 0.39 ± 0.04 (n = 78 ORNs from 5 mice) (Fig 1C, 4th bar) (P = 0.001, 4th bar vs 2nd bar). The significantly smaller mean response of the ORNs from cGnao1^{−/−} mice (P = 0.002, 3rd bar vs 4th bar) than that observed in the ORNs from WT mice would be consistent with the inhibitory PI3K signaling pathway not being activated in ORNs from cGnao1^{−/−} mice. Presumably odor stimulation should not have activated PI3K signaling in either group of cells treated with LY294002. Thus, finding that blockade of PI3K in WT ORNs resulted in a normalized mean response that was significantly larger
than that of ORNs from the cGnao1/− mice (Fig. 1C, 4th bar vs 3rd bar) could potentially indicate Gαo-independent activation of PI3K. However, that is not likely since blockade of PI3K had no effect on the response of ORNs from the cGnao1/− mice (Fig. 1C, 3rd vs 1st bars), suggesting the magnitude of the response in WT ORNs post-blockade reflects the dynamics of action of the drug when PI3K is activated. Collectively, these findings are consistent with the hypothesis that Gαo is functionally upstream of PI3K in the context of inhibitory transduction in mature ORNs.

Gαo expression in the OE in mice carrying an OMP-Cre based deletion of Gnao1

The loss of PI3K-based inhibition of excitatory signaling in odorant sensitive ORNs in the cGnao1/− mice implies that Gαo localizes to the olfactory cilia where transduction occurs and that it is reduced in the cGnao1/− mice. A previous study validated reduced Gnao1 gene expression in the cGnao1/− mice, but did not find reduced Gnao1 gene expression the total OE (Chamero et al., 2011). Here we show deletion of exons 5 and 6 occurs in the OE at the genomic level using PCR with primers spanning this region (Fig 2A; Choi et al., 2016). The recombinated Gnao1 gene is present as a smaller fragment amplified from DNA isolated from the OE and VNO, but is at low to undetectable levels in the olfactory bulb where there is no OMP expression. Recombination is absent in B6 mice. *In situ* hybridization targets Gnao1 expression to the mature ORN (OMP-expressing) layer of the OE (Fig 2B; Heron et al., 2013; Saraiva et al., 2015; Choi et al., 2016). Since Gnao1 mRNA is abundant in ORNs (Heron et al., 2013; Omura and Mombaerts, 2014; Saraiva et al., 2015; Wang et al., 2017), at least some of the recombination potentially could be ascribed to mature ORNs. Immuno-
labeling cryosections of the OE localized expression of the α_o protein to the axon
bundles mature (OMP-expressing) ORNs but was unable to localize expression of the
α_o protein to the distal compartments and/or cilia (data not shown).

We instead determined whether ectopically expressed α_o can be trafficked to
the cilia (McEwen et al., 2008; McIntyre et al., 2015). Mice were intra-nasally injected
with adeno-associated virus carrying fluorescently tagged α_o (Hynes et al., 2004)
(AAV α_o:mcherry). *En face* imaging revealed α_o:mCherry in the cilia of transduced
ORNs (Fig 3A). In ORNs transduced with adenovirus carrying α_o:GFP, GFP
expression co-localized with the ciliary protein Arl13b (Fig. 3C), indicating that these
results are not dependent on the identity of the fluorescent tag inserted into α_o or on
the viral vector used for infection. Given that the OE is composed of multiple types of
chemosensory cells (e.g., Munger, 2009), we then asked whether α_o could localize to
the cilia of ORNs expressing ORs known to couple to α_{olf}. Using mice expressing
tauGFP under the control of the SR1 OR gene, we found AAV expressed α_o:mCherry
localized GFP+ to the cilia (Fig. 3B), suggesting it is not excluded from canonical ORNs

α_o enhances odorant-evoked coupling of a mammalian OR isolated from native
ORNs responsive to an identified opponent odorant pair in HEK293T cells

PI3K dependent inhibitory signaling has been demonstrated in both rats and
mice (e.g., Brunert et al., 2010; Ukhanov et al., 2010). Several opponent
(excitatory/inhibitory) odorant pairs have been identified for rat ORNs (e.g., Ukhanov et
al., 2010; 2011), and here use one of those pairs to assess whether a single
mammalian OR can activate both PI3K signaling through G\(\alpha_o\) and ACIII signaling through G\(\alpha_{olf}\).

We first measured the calcium signal in acutely dissociated rat ORNs evoked by octanol (OOL, 50 \(\mu M\)) both alone and in combination with citral (CIT, 100 \(\mu M\)). In a subset of OOL-responsive cells, co-application of CIT reduced the peak Ca\(^{2+}\) response by 5-fold on average (Fig, 4A). Pre-incubation of the cells with the PI3K\(\beta\) and -\(\gamma\) isoform specific blockers TGX221 and AS252424 (200 nM each) rescued the Ca\(^{2+}\) response (Fig, 4A), indicating that the antagonism was not the result of direct competition of the odorants for the binding site, but rather activation of the opponent inhibitory PI3K signaling pathway. Individual ORNs with this response profile were collected (Fig, 4B) for single cell RT-PCR using degenerate primers based on conserved regions of mammalian OR sequences (Touhara et al., 1999). Prior to OR amplification, the samples were tested for olfactory marker protein (OMP) expression to ensure that they were mature ORNs (Barber et al., 2000) and with \(\beta\)-actin primers to avoid testing those with detectable genomic DNA contamination (Chan et al., 1997). From a total of ten functionally delimited rat ORNs that met these requirements, we recovered three rat ORs (Olr1845, two ORNs; Olr1479, two ORNs; Olr1231, one ORN; no OR amplified, five ORNs) and cloned the full length sequences for heterologous expression under the control of a CMV promoter with Lucy and Rho tags to enhance their surface expression (Shepard et al., 2013).

We then tested the function of the receptors in a pCRE-SEAP assay by co-expressing them with G\(\alpha_{olf}\), RTP1s and Ric8b in HEK293T cells along with a cAMP reporter gene (Durocher et al., 2000; Zhuang and Matsunami, 2007). The cAMP
reporter plasmid pCRE-SEAP expresses secreted alkaline phosphatase (SEAP) in response to cAMP binding to cAMP response elements (CRE). Odorants were added at 48 hours post transfection and SEAP activity was measured 20 hours later. All results represent at least three independent replicate experiments. We focused on Olr1845, which responded consistently to OOL in a dose-dependent manner (Fig 5A). The other receptors did not respond consistently and will require further optimization to determine whether they show similar ligand profiles. Olr1845 did not produce measurable responses to other single odorants tested (250 μM) including vanillin, eugenol, and isovalaric acid (data not shown). Olr1845 did not respond to 75 μM CIT alone, but 75 μM CIT suppressed the response to OOL in a graded manner (Fig 5B). Control experiments in which cells were transfected with all of the signaling co-factors, except, Olr1845, and tested in parallel did not show changes in SEAP activity when stimulated with OOL alone or in combination with CIT (Fig. 5B, inset). We then tested the mouse OR OR261-1 (Olfr447), known to respond to OOL (Saito et al., 2009), and confirmed its response to OOL in a dose-dependent manner (Fig 5C). In contrast to Olr1845, OR261-1 responded to 75 μM CIT alone (Fig 5D), which was not affected by increasing concentrations of OOL. This result indicates that not all receptors that respond to OOL respond to CIT, or a mix of CIT and OOL, in the same manner. The experimental results with Olr1845 also serve as a positive control, allowing us to assign the effects seen with Olr1845 to that receptor and not one inherent in the heterologous cell.

To determine whether Gαo enhances the odorant-evoked coupling of Olr1845 to PI3K, we used an ELISA specific for PIP3, the primary product of PI3K activation in vivo (Ukhanov et al., 2010). We first co-expressed Olr1845 with RTP1s in HEK293T cells,
relying on the endogenous G proteins and associated chaperones. At 48 hours post-
transfection, a 30 sec treatment of the cells with CIT or OOL (500 μM), increased the
level of PIP3 by 49.52 ± 3.71 pmol and 25.78 ± 7.02 pmol, respectively, (n = at least 3
independent replicates) above that in response to carrier (DMSO) treatment alone. This
indicates that Orl1845 can activate the PI3K pathway in the heterologous system and
that CIT is a stronger PIP3-dependent agonist. The response to CIT is significantly
higher than that to OOL (Fig. 6, 1st pair of bars, P=0.04).

We then independently co-expressed three different Gα subunits together with
Orl1845, each with at least three independent replicates. Gαo overexpression
significantly enhanced the increase in PI3K activation in response to CIT, resulting in a
PIP3 level of 64.16 ± 1.44 pmol (Fig. 6, 1st bars in the 1st and 2nd pair of bars, P= 0.02).
This suggests that Gαo plays a role in mediating PI3K activation in the heterologous
system. Again, the response to CIT was significantly higher than that to OOL (Fig. 6,
2nd pair of bars, P=0.001). To test whether the increase in PI3K signaling resulted from
the functional activity of Gαo, we co-expressed a Gαo gene carrying a G203T mutation
that is predicted to decrease the ability of the protein to turn over GDP and GTP (Slepak
et al., 1993) and attenuate its ability to activate downstream signaling. Unlike native
Gαo, the mutated G protein subunit resulted in a lower level of PI3K activation by CIT
(10.54 ± 3.46 pmol) in comparison to cells expressing only endogenous G proteins,
actually significantly decreasing it, and no change in the level of PI3K activation by OOL
(25.29 ± 7.62 pmol), indicating that the activity of Gαo is required for this process (Fig. 6,
3rd pair of bars vs 1st pair of bars, P = 0.002; 0.97, respectively). Gαolf co-expression,
which enhances the cAMP response of ORs (Zhuang and Matsunami, 2007), also
resulted in lower levels of PI3K activation by both CIT and OOL (21.60 ± 4.17 pmol and
3.75 ± 1.24 pmol, respectively) in comparison to cells expressing only endogenous G
proteins, actually significantly decreasing them (Fig. 6, 4th pair of bars vs 1st pair of bars,
P = 0.007; 0.04, respectively). This latter effect potentially reflects sequestration of the
necessary Gβγ subunits from endogenous G proteins (Hippe et al., 2013).

Discussion

Our findings potentially associate a second G protein, Gaαo, with inhibitory
signalling in mammalian olfactory transduction by first showing that odor evoked
phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent
in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gaαo.
Finding that conditional Gaαo deletion eliminates odor evoked, PI3K-dependent inhibition
in dissociated ORNs argues that Gaαo is functionally upstream of PI3K. We then identify
an OR from native rat ORNs that are activated by octanol through cyclic nucleotide
signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR
activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its
functionality in native ORNs. Collectively these findings raise the interesting possibility
that a mammalian OR can interact with two different G proteins in a functionally
identified, ligand-dependent manner.

We argue that functional data obtained in acutely dissociated ORNs implicate
Gaαo in mediating inhibitory olfactory signal transduction. Acutely dissociating ORNs
destroys the normal polarity of the cells, exposing the entire cell to odors and allowing
that Gaαo-dependent activation of PI3K is not related to transduction per se. Two
findings counter this possibility. First, odorant sensitivity is predominately, if not entirely, localized to the cilia/dendritic knob in dissociated vertebrate (salamander) ORNs (Lowe and Gold, 1991) and the dissociated mammalian ORNs typically retain at least part of their ciliary complement in our hands. Second, the pharmacological effect of blocking PI3K-dependent inhibition seen here in the dissociated ORNs occurs with the same dynamics in ORNs in the intact OE where the normal polarity of the cells targets signaling to the cilia/dendritic knob, and where patch-clamping dendritic knobs shows that PI3K-dependent inhibition acts with msec resolution, setting the peak frequency and the latency of the train of action potentials evoked by an odor mixture (Ukhanov et al., 2010). Thus, we have no reason to assume the functional data are biased by using acutely dissociated ORNs. However, given we did not use littermate controls the possibility remains that the functional data reflect strain differences, which will require further experimentation to resolve.

Implicating G_α_o in the activation of PI3K is consistent with evidence that PI3K signaling is sensitive to pertussis toxin, which is indicative of $G_{i/o}$-dependency in other systems (e.g. Orr et al., 2002; Banquet et al., 2011; Hadi et al., 2013), as well as with evidence that G_α_o can signal through interactions of its associated $\beta\gamma$ subunits with downstream effectors (Wettschureck, 2005; Steiner et al., 2006; Bondar and Lazar, 2014). Published evidence shows that class 1B PI3Kγ is expressed in mouse ORNs, that PI3Kγ-deficient mice show almost a complete lack of odorant-induced PI3K activity in their OE, and that the ORNs of PI3Kγ-deficient mice show reduced sensitivity to PI3K mediated inhibition (Brunert et al., 2010). The γ catalytic subunit is thought to exclusively associate with the regulatory subunits that mediate binding to the $G\beta\gamma$
subunit of heterotrimeric G proteins (e.g., Rameh and Cantley, 1999), which in our case would be G_α_o activated by the OR.

G_α_o also mediates PLC signaling in mature ORNs (Schandar et al., 1998), as well as extracellular-signal-regulated kinase (ERK) signaling by a heterologously expressed OR (Bush et al., 2007) that is associated with cell survival and apoptosis. Since both the PLC and ERK pathways have been associated with PI3K-dependent signaling networks in other systems, temporally distinct waves of G_α_o activated PI3K (e.g., Jones et al., 1999; Goncharova et al., 2002) in ORNs could potentially mediate transduction as well as slower activation of cell survival and/or apoptotic pathways.

There has been a published report for a G_α_o-mediated alternate, cyclic nucleotide-independent, PI3K-independent signaling pathway in mammalian ORNs that targets a downstream Cl$^-$ conductance and presumably leads to an excitatory efflux of Cl$^-$ (Scholz et al., 2016b). The functional significance of this pathway is unclear, but as the authors suggest, this pathway may be developmentally important since it appears to be associated with immature ORNs. Further work will be required to relate this finding to the G_α_o-mediated inhibitory signaling in mature ORNs proposed herein.

We show that excitation and PI3K-dependent inhibition can be mediated by the same OR when expressed heterologously, and that the antagonism is not the result of direct competition for a common binding site. As in the native ORNs from which the rat OR Olr1845 was cloned, OOL acts as an excitatory ligand and CIT as an inhibitory ligand for Olr1845 in a cAMP assay when heterologously expressed. This does not occur when the cells were transfected with the co-factors in the absence of the OR, nor when the cells were transfected with a different OR responsive to the same two ligands.
We also show that CIT is a stronger activator of PI3K than is OOL in a PIP3 assay when Olr1854 is heterologously expressed. Heterologous readouts of OR activation are slow in comparison to transduction, but similar assays reflect the ligand specificity of other ORs tested in vivo (Tsuboi et al., 2011), supporting our argument that Olr1845 appears to be capable of directing the pattern of activation elicited by an opponent pair of ligands through two different signaling pathways. This finding for a mammalian OR is consistent with the ability of single insect olfactory receptors to similarly direct the pattern of activation of an ORN in studies using the ‘empty neuron’ approach (Hallem et al., 2004). Whether all ligands in the molecular receptive range of a given OR can activate PI3K, only to different extents, with the stronger PI3K-dependent agonists being the effective inhibitory ligands for the OR in question, as potentially suggested by Fig. 6, remains for future research. We focused on Olr1845, which allows that our finding could be idiosyncratic for Olr1845 or the OOL/CIT odorant pair, but evidence that α_o can interact with other mouse ORs (Scholz et al., 2016b), as well as evidence that PI3K-dependent inhibition can be activated by a wide range of conventional odorants in native rat ORNs (Ukhanov et al., 2013), including other opponent odorant pairs (Ukhanov et al., 2011), argues for the generality of this finding across at least a subset of ORs.

Assuming the OR and α_o interact, the assumption would be they interact in the transduction (ciliary) compartment. As noted, both immature and mature ORNs express α_o (Mayer et al., 2009; Keydar et al., 2013; Heron et al., 2013; Nickell et al., 2012; Omura and Mombaerts, 2014; Saraiva et al., 2015; Scholz et al., 2016a, Choi et al., 2016; Wang et al., 2017; Zhang et al., 2016). It remains to be determined, however,
whether the protein routinely localizes to the ciliary compartment, notwithstanding limited evidence for positive IHC staining for α_o in the distal compartments of OMP$^+$ ORNs in $Gnao1^{+/+}$ mice (Choi et al., 2016) and $Olfr73$-positive ORNs (Scholz et al., 2016a). The fact that we could show there appears to be no barrier excluding α_o from the ciliary compartment is consistent with ciliary expression since cilia are known to largely exclude non-resident proteins (McEwen et al., 2008; McIntyre et al., 2015), although this demonstration leaves open the question of constitutive expression of α_o in the ciliary compartment. While α_o is expressed in sustentacular cells (SUSs) (unpublished observations), the possibility that it interacts with signaling in ORNs via ephaptic coupling (Su, et al., 2012) is not consistent with our physiological results obtained in acutely dissociated ORNs. Nor is it consistent with the absence of any evidence that mammalian ORNs and SUSs are grouped in stereotyped functional combinations that would be required to explain the observed ligand specificity.

GPCRs are increasingly appreciated to sequentially activate multiple G proteins such that the outcome of activation does not depend solely on the receptor identity but rather is influenced by extracellular factors such as the range of ligands present, as well as by intracellular factors including the abundance and localization of the G proteins present (e.g., Mashuo et al., 2015 and reviewed in Lohse and Hofmann, 2015; Latorraca et al., 2016). Such ‘functional selectivity’ (e.g., Luttrell, 2014; Smrcka, 2015) is a key characteristic of allosteric modulation in GPCRs (Christopoulos, 2014). Given that OR-ligand interaction is thought to be ‘fast and loose’ (Bhandawat, 2005) and growing evidence for loose allosteric coupling of the agonist binding site and the G protein coupling interface in GPCRs (e.g., Lohse and Hofmann, 2015; Manglik et al.,
2015; Wingler et al., 2019), a given OR could interact with both G protein isoforms without implying concurrent activation by a given odorant or the need for simultaneous coupling of the OR to both $G_{\alpha \text{olf}}$ and $G_{\alpha \text{o}}$. Brief activation of the OR by a PI3K-dependent inhibitory ligand, for instance, could release pre-bound $G_{\alpha \text{olf}}$ while resulting in a more favorable structure for binding to $G_{\alpha \text{o}}$. The fact that not all G proteins work in vivo by having the heterotrimers physically dissociate (e.g., Digby et al., 2006) could provide specificity for signals mediated by the $\beta\gamma$ dimer, as in the present context, and avoid confound in the origin of the $\beta\gamma$ dimer. However, the idea that ligand-bound GPCRs interact with and activate G proteins (e.g., Audet et al., 2012) is being replaced by emerging evidence that the GPCR and G protein are preassembled into protein complexes in which the G protein influences ligand affinity (e.g., DeVree et al., 2016; Venkatakrishnan et al., 2016). Thus, a subset of the OR expressed by a given cell could be primed for activation of $G_{\alpha \text{o}}$, and in turn PI3K inhibitory signaling. Understanding how functional selectivity in ORs could play out at the molecular level awaits further understanding of GPCR signaling in general.

In summary, our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs. Going forward, the primary challenge will be to understand the expression pattern of $G_{\alpha \text{o}}$, and potentially other G proteins, in addition to $G_{\alpha \text{olf}}$ in the transduction compartment. If $G_{\alpha \text{o}}$ is present in cilia, but perhaps at lower levels or not in all neurons, this may be better approached through genetic methods to label and visualize the endogenous protein. The possibility that ORs can interact with multiple G proteins in a functionally identified,
ligand-dependent manner in the context of transduction would be a paradigm-shift in our understanding of how the olfactory periphery sets the combinatorial pattern considered to be the basis of odor recognition and discrimination.

Acknowledgements

We thank Drs. Frank Zufall and Trese Leinders-Zufall (Saarland U., Homburg, Germany) for kindly providing the breeding stock for the cGnao1/-/ mice, Dr. Sergei Zolotukhin (U. Florida) for assistance and guidance with adeno-associated virus infection, Dr. Hanns Hatt (Ruhr U., Bochum, Germany) for kindly providing the odorant mixture Henkel 100, and Leanne Adams (U. Florida) for technical assistance.

Funding Sources

This research was supported by the National Institute on Deafness and Other Communication Disorders through awards DC005995 and DC001655 to BWA, DC103555 to JCM and DC009606 to JRM.

Author Contributions

EAC, KU, YUB, JCM, and JRM designed the experiments. EAC, KU, YUB carried out the experiments and analyzed the data. EAC, BWA, and JCM prepared the manuscript. All authors discussed and contributed to writing the manuscript.

Conflict of Interest

The authors declare no competing financial interests.
References

Cain WS. (1974) Odor intensity – mixtures and masking. B Psychonomics Soc 4:244-

Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the

Heron PM, Stromberg AJ, Breheny P, McClintock TS (2013) Molecular events in the cell
types of the olfactory epithelium during adult neurogenesis. Mol Brain 6:49.

RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J

Ellison G, Birnbaumer L (1998) Multiple neurological abnormalities in mice deficient

an early and a late wave of PI 3-kinase activity, and only the late wave is required

Keydar I, Ben-Asher E, Feldmesser E, Nativ N, Oshimoto A, Restrepo D, Matsunami H,
sensitivity database (GOSdb): candidate genes and their genomic variations. Hum
Mutat 34:32–41.

Phosphoinositide and Erk signaling pathways mediate activity-driven rodent
olfactory sensory neuronal survival and stress mitigation. J Neurochem 134:486–
498.

Kim SY, Yoo S-J, Ronnett G V, Kim E-K, Moon C (2015b) Odorant stimulation promotes
survival of rodent olfactory receptor neurons via PI3K/Akt activation and Bcl-2

in olfactory receptor cells. Science 265:118-120.

Latorraca NR, Venkatakrishnan AJ, Dror RO (2016) GPCR dynamics: Structures in
motion. Chem Rev:acs.chemrev.6b00177.
coupled receptors. Mol Pharmacol 88.

currents in salamander olfactory receptor cells. J Gen Physiol 442:147-68.

Luttrell LM (2014) Minireview: More than just a hammer: ligand “bias” and

Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS,
Thian FS, Hubbell WL, Prosser RS, Kobilka BK (2015) Structural insights into the

Distinct profiles of functional discrimination among G proteins determine the actions

McEwen DP, Jenkins PM, Martens JR (2008) Olfactory cilia: our direct neuronal

1945.

Obotti L, Pérez-Gómez A, Keller M, Jacobi E, Birnbaumer L, Leinders-Zufall T, Zufall F,
Chamero P (2014) A wide range of pheromone-stimulated sexual and reproductive

Omura M, Mombaerts, P (2014) Trpc2-expressing sensory neurons in the ain olfactory

Orr AW, Pallero MA, Murphy-Ullrich JE (2002) Thrombospondin stimulates focal
adhesion disassembly through Gi- and phosphoinositide 3-kinase-dependent ERK

stimulation enhances survival of olfactory sensory neurons via MAPK and CREB.

Legends

Figure 1. Gαо is required for PI3K-dependent inhibitory signal transduction in mouse ORNs. A. Representative odor-evoked calcium responses of 23 ORNs acutely dissociated from the main olfactory organ of wild type (W) (left panel) and 23 ORNs from knockout (K/O, cGnaо1−/−) (right panel) mice, before (column 1) and after (column
2) incubation with the PI3K inhibitor LY294002 (LY). Stimulus: Henkel 100 (H100, 1/100,000 dilution). Column 3, responses to a tenfold higher concentration of H100 (1/10,000). Column 4, responses to a mixture of IBMX (50µM) and Forskolin (50µM).

The fluorescence intensity traces were normalized to the maximum fluorescent intensity generated in response to IBMX/Forskolin, and then color coded from blue (minimum fluorescent intensity) to yellow (maximum fluorescent intensity). Stimulus pulse duration was 5s for columns 1, 2, and 3, and 10s for column 4. B. Representative time/intensity plots of the calcium responses of W type ORN # 21 in A (top row) and K/O type ORN # 6 in A (bottom row). C. Bar graph comparing the average amplitude of the odor-evoked calcium responses of 79 ORNs from K/O mice and 78 ORNs from W mice before and after incubation with LY. Statistical comparisons based on the Mann-Whitney Rank Sum Test.

Figure 2. OMP-Cre mediated Gnao1 deletion in the olfactory epithelia of cGnao1−/− knockout mice. A. Genomic DNA extracted from the OE, VNO, and OB was examined by PCR for recombination of floxed alleles. C57BL/6 WT (WT) mice were used for comparison. In the KO mice, both the WT and OMP-Cre (Cre) alleles are detected. The recombined Gnao1 (ΔGαo) allele is detected in the OE and VNO of the KO mice as indicated by the smaller fragment in the lower panel. B. Comparison of Gnao1 (Gαo) and OMP expression in the OE of B6 mice by in situ hybridization of cryosection from B6 mice. OMP expression is restricted to the mature ORNs.
Figure 3. Ectopically expressed α_o can enter the cilia of mammalian ORNs. *En face* imaging of ORNs expressing α_o internally tagged with mCherry or GFP. A. Three examples of AAV infected ORNs ectopically expressing α_o:mCherry. B. α_o:mCherry can be co-localized to SR1-GFP+ ORNs. mCherry expression is found throughout infected ORNs including in the dendritic knobs and cilia. Scale bars represent 10 μM. C. AV infected ORNs of C57BL/6 mice ectopically expressing α_o:GFP and Arl13b:mCherry. α_o expression overlaps with that of Arl13b indicating that ciliary localization of the ectopically expressed protein does not depend on the vector or tag.

Figure 4. Identification of ORNs responsive to the antagonistic odorant pair octanol and citral for single cell RT-PCR. A. Fluo-3 calcium imaging of dissociated rat ORNs was used to identify single cells for RT-PCR. Representative recording of the somatic Ca2+ response from one of ten rat ORNs activated by octanol (OOL; 50 μM) in which citral (CIT; 100 μM) inhibited the response and pretreatment with PI3K inhibitors TGX221 and AS252424 (TGX/AS; 200 nM each) partially relieved the antagonism. B. Image of an ORN identified by calcium imaging prior to collection for single cell RT-PCR.

Figure 5. α_{olf} and ACIII activation by rat Olr1845 in response to octanol and citral. A. Line graph showing that rat Olr1845 responds in a dose dependent manner to OOL in a pCRE-SEAP assay. Response to OOL is denoted by open circles. B. Bar graph showing that the cAMP response of rat Olr1845 to OOL at the concentrations indicated (dark bars) was reduced in a graded manner when the odorant was presented...
in a binary mixture with CIT at the concentration indicated (light bars). Inset: Bar graph showing the response of cells not expressing an OR tested in the same experimental paradigm. C. Line graph showing that a different mouse OR (mOR261-1) also responds in a dose dependent manner to OOL in a pCRE-SEAP assay (open circles).

D. Bar graph showing that in contrast to B, the cAMP response of mouse OR261-1 to OOL at the concentrations indicated. (dark bars) was actually enhanced, i.e., shows additivity, when the odorant was presented in binary mixture with CIT at the concentration indicated (light bars). Data are presented as SEAP activity (OD630) +/- SEM representing at least three independent replicate experiments. Response of cells to DMSO has been subtracted in all cases.

Figure 6. PI3K activation by rat Olr1845 in response to octanol and citral. Bar graph showing the elevation of endogeneous PIP3 in HEK293T cells transfected with rat Olr1845 in response to citral (CIT; 500 μM) and octanol (OOL; 500 μM). PI3K activity was measured by a PIP3 ELISA at 48 hours post-transfection in response to a 30 sec odorant exposure. The PIP3 level in DMSO-treated control cells is subtracted in all instances. The receptor was either expressed alone (endogeneous, 1st pair of bars), with Go (2nd pair of bars), with GoG203T (3rd pair of bars), or with Goolf (4th pair of bars). Data are presented as change in pmol PIP3 ± SEM, representing at least three independent replicates. Probabilities for the various comparisons listed in the text are indicated by the horizontal lines. Statistical comparison based on the Student’s t test.
A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>Cre</th>
<th>ΔGαo</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>OMP</td>
<td>OMP</td>
<td>OMP</td>
</tr>
<tr>
<td>OE VNO OB</td>
<td>OMP</td>
<td>OMP</td>
<td>OMP</td>
</tr>
<tr>
<td>C57BL/6 WT</td>
<td>OMP</td>
<td>OMP</td>
<td>OMP</td>
</tr>
<tr>
<td>Gαo KO</td>
<td>OMP</td>
<td>OMP</td>
<td>OMP</td>
</tr>
</tbody>
</table>

B

Anti-sense

Gαo

OMP

Sense

Gαo

OMP