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Abstract—Summary: FuzzyVariantExplorer is a web interface
and a fuzzy search system for exploring richly annotated genomes
in a flexible way. The application allows combining vague
constraints in expressive logical queries to retrieve graded sets
of genes and their associated variants. Results can be further
refined in a visual way by selecting keywords and categories that
are extracted from the underlying annotations and weighted with
a statistical significance score; keywords can then be clustered
using Latent Dirichlet Allocation and explored visually. The
system has been applied to a set of Saccharomyces cerevisiae
genome annotations and a few variants.
Availability: FuzzyVariantExplorer source code is available at the
URL https://bitbucket.org/mfalda/fuzzyvariantsexplorer/src/ and
has been developed in Scala, TypeScript and R.
Contact: marco.falda@unipd.it
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I. INTRODUCTION

Imprecise knowledge is frequent in life sciences due, for
example, to the incomplete understanding of biological mech-
anisms, the uncertainty about normality ranges for test results,
the simultaneous presence of more than one condition or
missing information [1].

Traditional database models are not accurate in represen-
tation and manipulation of such knowledge. Fuzzy logic has
been proposed since [2] for enriching classical data models
and allow for processing with uncertain and imprecise data.
The same setting has also been proposed for modeling fuzzy
databases [3]. Life sciences need such sophisticated models
for manipulating complex objects and semantic relationships
arising from the vague entities involved in their processes.

The system described in this paper, named FuzzyVari-
antExplorer, does not try to add another theoretical setting
for modeling data in a fuzzy way, but uses a simple and
minimal layer for expressing queries in the database in a more
flexible way. Namely, it allows exploring annotated genomes
stored in traditional relational database management systems
(RDBMSs) by expressing a preference degree on various
criteria used to formulate the queries. This means that the
user can be less accurate when searching terms and expressing
numerical information, and that a possibility degree will be
associated to the results according to her initial preferences.

Additionally, results are summarized in a graphical way
according to different criteria, and the statistical significance
of the resulting categories is estimated. A Latent Dirichlet
Allocation (LDA)[4] can be performed on each criteria in order
to obtain a more general idea of the collected results.

II. THEORY

A. Fuzzy Logic

According to Zadeh [2], real world objects often do not
present a crisp membership; this is why classical logics has
difficulties to describe some knowledge (e.g. the concepts
of “tall”, “young”, etc.). Another problem is that common
information is affected by imprecision or vagueness.

He defined the notion of membership degree which allows
to express how much an element belongs to a set; this degree
is defined in the range [0, 1]. A fuzzy set F is defined on
the universe U by means of a membership function µF that
gives the degree of membership µF (u) ∈ [0, 1] of an element
u ∈ F . Depending on the application a membership degree
can be interpreted as:
• a similarity degree with respect to the typical members

of the fuzzy set;
• a preference degree that grade the elements of the fuzzy

set;
• an uncertainty degree which tells the possibility that an

element belongs to the fuzzy set.
The set of the elements which are fully possible, that

is CF (u) = u ∈ U : µF (u) = 1 is called “core” of F ; the
“support” of F is defined as the characteristic function of F ,
that is χF (u) = u ∈ U : µF (u) > 0.

An alternative definition of a fuzzy set F can be given in
terms of a set of sets associated to a threshold on the original
set. These sets are the α-cuts of F and are defined as

Fα(u) = u ∈ U : µF (u) ≥ α

If the universe U is equal to the real numbers set, each
fuzzy set defined on U is called a “fuzzy quantity”. A
membership function which is semi-continuous and has only
a fully possible element is called a “fuzzy number”.

Operations

The classical operations on sets are extended as follows:
• F is included in G if

∀u µF (u) ≤ µG(u)

• the complement of F in U , denoted as F̄ is

∀u µF̄ (u) = 1− µF (u)

• the intersection between F and G is

∀u µF∩G = min{µF (u), µG(u)}
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• the union between F and G is

∀u µF∩G = max{µF (u), µG(u)}

These extensions are not unique, they obey to the so-called
“max-min” theory. In this theory two properties of the classical
Boolean algebra are not satisfied: the law of the excluded
middle and the law of non contradiction. These two exceptions
are recovered when F and G are classical sets.

The exclusive or can be easily derived from its logical
equivalence: F⊕G is equivalent to F∨G∧¬(F∧G), therefore:

∀u µF⊕G = min{max{µF (u), µG(u)},
1−min{µF (u), µG(u)}

(1)

The logical implication has been defined in several ways in
the fuzzy logic field, for example:
• Lukasiewicz: ∀u min{1, 1− µF (u) + µG(u)}
• Kleene-Dienes: ∀u max{1− µF (u), µG(u)}
• Mamdani: ∀u min{µF (u), µG(u)}
The latter has a more intuitive meaning for rule sets and

has been selected.

B. Fuzzy SQL

Expressions are processed through one-token look-ahead
left-to-right rightmost derivation parsers LARL(1) [5] and
transformed in traditional SQL queries enriched with fuzzy
operators (see Subsection III-B about User Defined Functions
or UDFs). As depicted in Figure 2a, the query is optimized by
first filtering on the support of the formula and then applying
the fuzzy operators. Three parsers have been defined that
correspond to the three optimization steps above: the logical
parser for the support, the logical threshold parser for α-cuts
and the fuzzy parser for translating fuzzy formulas in SQL
expressions and UDFs.

There are currently three main classes of operators, one for
each class of data: fuzzy order operators for numerical data,
fuzzy choice operators (discrete possibility distributions) for
categorical data and operators for mapping scores into fuzzy
preference degrees, typically used for textual data. Numerical
operators are based on trapezoidal t-norms [6], for example a
fuzzy interval is given by the following function (Figure 2b):

µF,δ,ϕ,τ (u) =



1
if u > A− τ · δ
∧u 6 A+ τ · δ

1
ϕ·δ · u
+[ϕ+τ

ϕ − A
ϕ·δ ]

if u > A− (ϕ+ τ) · δ
∧u 6 A− τ · δ

− 1
ϕ·δ · u

+[ϕ+τ
ϕ + A

ϕ·δ ]
if u > A+ τ · δ
∧u 6 A+ (ϕ+ τ) · δ

0 otherwise
(2)

where δ represents the uncertainty, ϕ the fuzziness of the
statement and τ the tolerance.

Categorical data are modeled as a graded set, that is a set
in which each element is associated with a preference degree
(Figure 2c). Textual data are retrieved using the sophisticated
PostgreSQL full text search (FTS) facility [7] (Figure 1):
documents are segmented in tokens and then these are reduced

  

Documents Parser Tokens

Stemmer Indexer Index
Lexemes

Fig. 1. Steps for full-text search indexing in PostgreSQL.

to a form common to all word variations (stemming) in order
to increase search effectiveness; finally, the resulting lexemes
are indexed in the database using a generalized inverted index.

To ensure the equivalence between fuzzy and classical
operators whenever the α-cuts set is reduced to a binary set,
the following function is applied to the scores coming from
categorical and textual data:

µF,ϕ(u) =

{
(1− ϕ) + ϕ · u if u 6= 0

0 otherwise
(3)

In the case of the two latter data types, the tolerance is
more difficult to model because it can be seen as a sort of
imprecision on the uncertainty intervals. It could be treated as
suggested in [8], where an orthogonal idea of “coarseness”
is combined with the fuzzy preference degrees: tolerance
could be seen as an uncommitted choice among neighboring
concepts or categories, for example “canine” would mean
“dog” or “wolf” or “fox” et c. with a lower preference degree
depending on an information content metric.

C. Natural Language Processing

Simply taking single words could miss some interesting
characterizations given by the association of adjectives or
attributive nouns, the so called “nominal phrases” (NP); for
this reason all words in the textual data are first categorized
according to their part of speech (POS tagging) using the
Stanford NLP toolkit [9] in Scala.

Tags belong to the Penn Treebank English POS tag set [10]
and, as a first simple criterion, types “NN”, “NNP”, “NNS”
and “JJ” have been aggregated together.

III. IMPLEMENTATION

FuzzyVariantExplorer is a web application, developed in
Scala using the Play2 MVC framework. TypeScript has been
adopted to increase the safeness and the scalability of client
side code; the application is organized in three intuitive
sections: the query interface, the results page and the reports
for individual genes or variants. The results page presents three
sub-sections containing a table with the matching genes, a set
of charts and word clouds for a visual overview and a graphical
interface for the LDA topics (see Subsection III-D).

In the first section queries can be composed by the user
in a visual way by choosing from a hierarchical menu of
criteria. Criteria are incrementally added to the formula by
means of logical connectives and can be negated or moved
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Fig. 2. a) the LARL(1) parsers involved in the mapping from a fuzzy query to
SQL. b) a trapezoidal t-norm for numerical data. b) a possibility distribution
for categorical data.

into inner priority levels. More than one query can be built
and it will be executed concurrently in order to allow for suc-
cessive comparisons. Another advantage of using two levels of
formulas is to pre-compute possibly over-constrained criteria,
that would otherwise get no results, and in a later step inspect
the conflicting sets.

A. A schema for INI files

FuzzyVariantExplorer interface has been designed to be
quite configurable as far as new criteria and statistics are
concerned. To add new criteria it is in fact sufficient to provide
database views that link the data with the IDs of genes (or
whatever entity the application is currently applied at) and the
fields with the criteria. The same goes for new report sections
and statistics.

Once these new views have been provided, they have to
be notified to the system by writing new sections in a INI
file, which is a very simple and clear file format. However,
a limit of the INI file format is that there is not a way to
check its consistency by means of a schema, like for example
in the case of XML. For this reason, a INI validator has been
created in Scala and then integrated in FuzzyVariantExplorer;
it is able to identify spurious or missing keys and also to ensure
the existence of schemata, tables and fields in the database.
A general standalone version has been implemented in Rust
language [11].

B. User Defined Functions in PL/pgSQL

In order to express in SQL the possibility distributions,
seven user defined functions for PostgreSQL have been written
(see Table I). They have been defined using the integrated
PL/pgSQL language, since their implementation in C as shared
objects did not offer a significant increase in performance,
therefore a more flexible way of development has been pre-
ferred.

TABLE I
USER DEFINED FUNCTIONS ADDED TO POSTGRESQL.

Name Distribution
fuzzy_pos(x, center, delta, fuzziness, tol) trapezoidal
fuzzy_lt(x, center, delta, fuzziness, tol) <
fuzzy_le(x, center, delta, fuzziness, tol) ≤
fuzzy_ne(x, center, delta, fuzziness, tol) 6=
fuzzy_ge(x, center, delta, fuzziness, tol) ≥
fuzzy_gt(x, center, delta, fuzziness, tol) >
fuzzy_distr(cat, preferences, fuzziness) discrete

C. Compile-time query generation with Quill

Several SQL queries in the source code have been written
in Quill [12] a quoted domain specific language created by a
Twitter software engineer. It has been inspired by a paper about
language-integrated queries [13] and it allows for compile-time
query generation and asynchronous execution, a modality well
accepted in the Play2’s share-nothing architecture based on
actors.

The model definition is simply a Scala case class:
case class User(id: Long, name: String,

isActive: Boolean)

Queries are prepared by quoting Scala-like expressions
def byId(id: Long) = quote {

Users.filter(_.id == lift(id))
}

and execution returns a future:
def find(id: Long): Future[Option[User]] =

db.run(byId(id)).map(_.headOption)

D. Statistical tests and Rserve

The implemented tool has been designed to be used with
huge genomic data, therefore a useful feature is to filter the
most meaningful results by applying statistical tests to them.
The general principle underlying all types of data (categorical,
textual, numerical) is to compute the frequency of all labels,
nominal phrases or intervals in the data associated to a given
criterion and then determine the p-values for the filtered
entities using a proportions test adjusted by a Benjamini-
Hochberg method [14].

To have an even more abstract view of the results, LDA [4]
is applied and the topics are then rendered using the interactive
LDAvis tool, which provides a global view and how they
differ from each other, while at the same time allowing for
a deep inspection of the terms most highly associated with
each individual topic [15].

Since all these statistical tests and procedures have already
been provided in R packages, they have been implemented as
R functions and called by sending them to Rserve [16].

IV. EXAMPLE APPLICATION

The system has been applied to a set of Saccharomyces
cerevisiae genome annotations collected from the SGD Project
[17] using programs written in GO language [18]. Several
types of data have been collected about the cited sequences:
numerical data regarding the starting and ending coordinates
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Fig. 3. Example of a criteria for categorical data: “microtubule” is preferred
w.r.t. “actin”.

Fig. 4. Word cloud for Biological Process sub-ontology.

in the chromosomes, molecular weights, isoelectric points;
categorical data about protein domains and ontological terms;
textual data referring to several descriptions.

By searching the word “tubulin” in gene descriptions, the
word clouds shown in Figure 4, Figure 5 and Figure 6 have
been obtained from descriptions of Biological Process (BP),
Molecular Function (MF) and Cellular Component (CC) sub-
ontologies respectively. In the left parts of each figure there is
the unfiltered distribution, in which it is easy to recognize the
most typical terms of each sub-ontology. On the other hand,
in the right parts of the figures there are more specific terms
that the system has been able to extract taking into account
the original query, such as “microtubules” in BP, “actin” in
MF and “tubulin” in CC.

In Figure 7 the LDA analysis on words belonging to gene
descriptions has been reported; this analysis tries to cluster
the entities in meaningful concepts, for example cluster n.3 is
labeled by words like “Alphatubulin”, “F-actin” and so on.

V. CONCLUSION

Modern genomic annotation systems rely on huge amounts
of data, therefore to ensure a rapid access and a maintainable

Fig. 5. Word cloud for Molecular Function sub-ontology.

Fig. 6. Word cloud for Cellular Component sub-ontology.

Fig. 7. Latent Dirichlet Analysis of gene descriptions.

infrastructure the traditional RDBMSs are still a valid solution.
Independently of the underlying data storage model,

database systems are designed with the assumption that pre-
cise information will be stored. Whenever the knowledge of
the reality to be modeled is imperfect their power becomes
less relevant. In such cases tools for describing uncertain or
imprecise information have to be applied.

FuzzyVariantExplorer provides a novel query interface that
on one hand allows for composing complex queries in a simple
way and on the other hand adds more flexibility by exploiting
fuzzy operators. Moreover, since genomic annotation data are
vast, results can be summarized graphically and the most
relevant topics extracted for several criteria.
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