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ABSTRACT 
Accurate species delimitation impacts all biological inferences, but taxonomic studies often 
face conflicts within/among datasets or among species delimitation methods. Here we use a 
multi-tier analytical strategy to handle conflicts in species delimitation on a group of 
primitively segmented spiders, genus Heptathela endemic to Japanese islands. Tier 1 analysis 
uses a suite of quick species delimitation methods to test the initial species hypothesis (ISH) 
and to identify fully congruent lineages. Testing ISH of 19 species based on morphological 
taxonomic evidence presented elsewhere, tier 1 analysis subjects a molecular dataset of 180 
original Heptathela samples to distance- and tree-based species delimitation methods, and 
recovers 16 fully congruent species plus 3, 4 or 6 conflicting lineages. Given these conflicting 
lineages, tier 2 analysis tests, only within these lineages, alternative species hypotheses (ASH) 
via multi-locus, coalescent-based species delimitation methods on enriched dataset. We add 
additional molecular markers only for 35 samples from conflicting lineages, then evaluate 
three ASH using coalescent-based species delimitation methods (BP&P and BFD). While 
BP&P lacks delimitation power, BFD best supports 6-species without rejecting the 4-species 
hypothesis. Because incongruence persists, tier 3 analysis then uses additional operational 
criteria for identifying diagnosable lineages as valid species. Reevaluating morphological and 
DNA evidence for 4- vs. 6-species hypothesis, it reveals a DNA barcoding gap supporting 4-
species. Our multi-tier approach to resolving conflicts in species delimitation by enriching 
data selectively for conflicting lineages is a fast and efficient strategy to delimit species in an 
integrative taxonomic framework. 
 
Keywords: Integrative taxonomy, DNA barcodes, Liphistiidae, Heptathela, multi-tier species 
delimitation. 
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1. Introduction 
 
 Accurate species delimitation is a core assumption in biology that affects nearly every 
biological subdiscipline (Agnarsson and Kuntner, 2007; Camargo and Sites, 2013; Hedin, 
2015; Kress et al., 2015; Sites and Marshall, 2003; Wheeler et al., 2004). However, the 
accuracy of species delimitation is often impeded by divergent species concepts (De Queiroz, 
2007; Freudenstein et al., 2017) and varied practices, examples being models and assumptions 
in computational analyses (Carstens et al., 2013; Schlick-Steiner et al., 2014, 2010), as well as 
differing views on the reality and importance of cryptic species (Fišer et al., 2018; Heethoff et 
al., 2018; Struck et al., 2018). Sequence-based species delimitation methods may overcome 
some of these problems under an integrative taxonomic framework (Blair and Bryson, 2017; 
Cardoso et al., 2009; Carstens et al., 2013; Dayrat, 2005; Eberle et al., 2019; Karanovic et al., 
2016; Leaché et al., 2014; Pante et al., 2015; Rannala, 2015; Satler et al., 2013). DNA species 
delimitation is a particularly welcome arbiter in the study of taxa that are well differentiated 
genetically but not morphologically (Bickford et al., 2007; Bond et al., 2001; Derkarabetian 
and Hedin, 2014; Leavitt et al., 2015; Xu et al., 2017, 2015), or in those that are, conversely, 
well differentiated morphologically but not genetically, as is sometime the case in adaptive 
radiations (Moyle et al., 2009; Wagner et al., 2012). 

Species-level taxonomy has historically been often labeled to be a subjective biological 
discipline (but, see Agnarsson and Kuntner, 2007). This allegation may be due to the 
assumption that taxonomic species delimitation in many cases relies on one classical set of 
characters (usually morphology), and does not consider alternative species hypotheses (but, 
see Schlick-Steiner et al., 2010). This is an acute problem considering the commonly 
encountered conflict in evidence between morphological species and those delimited based on 
molecular data (Eberle et al., 2016; Ortiz and Francke, 2016; Vitecek et al., 2017). Even when 
alternative species hypotheses are considered from differing data sources or from different 
delimitation methods on the same data set, the resolution of conflicts is often haphazard and 
effectively devoid of stringent hypothesis testing (Derkarabetian and Hedin, 2014; C. A. 
Hamilton et al., 2014).  

Numerous studies have not arrived at a general consensus how to handle conflicts, 
particularly when adding dense samples or more molecular markers or genomic data for all 
the taxa/specimens is not feasible (e.g., Abdelkrim et al., 2018; Jacobs et al., 2018; Satler et 
al., 2013). After detecting conflicts among single-locus delimitation methods, increasing 
sample size by adding as many taxa/individuals per taxon and loci as possible is considered as 
a general “good practice” of mitigating conflicts in delimitation (Abdelkrim et al., 2018; 
Blaimer et al., 2015; Carstens et al., 2013; Lemmon and Lemmon, 2013; McCormack et al., 
2013; Ruane, 2015).  However, increasing taxa and individuals may not be possibe for the 
understudied and/or hyperdiverse taxa (Abdelkrim et al., 2018; Lim et al., 2012; Xu et al., 
2017, 2016). Furthermre, increasing loci, for example, genomic scale data, is still time-
consuming and expensive, and computationally demanding (Flouri et al., 2018; Leaché et al., 
2018; Noguerales et al., 2018). For these reasons, empirical studies, especially those dealing 
with taxa with no clear apriori taxonomic hypotheses, often start with DNA barcoding 
analyses. When such studies face the difficulty of conflicted species delimitation results 
among methods, rarely do they handle conflicts by increasing taxon and data coverage for the 
conflicted lineages.  

In this paper, we focus on an empirical approach towards resolving such conflicts via a 
multi-tier analytical strategy using combinations of species delimitation schemes. First, we 
briefly overview recent methodologies in sequence-based species delimitation, a rapidly 
evolving field, then propose a multi-tier analytical strategy to handle conflict in species 
delimitation schemes. We then outline how the results from multiple data sources and multi-
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tier analytical approaches can be fast and effectively evaluated against the background 
hypotheses based on classical sources. We use our multi-tier analyses to delimit species 
boundaries in a group of primitively segmented spiders, Heptathela (Mesothelae: 
Liphistiidae) endemic to Japanese islands that are known for their low vagility and inclination 
towards population structuring at relatively small to moderate geographic scales.   

DNA species delimitation methods are numerous and can be divided into single- versus 
multi-locus techniques, or into genetic distance- versus tree-based techniques (Carstens et al., 
2013; Goldstein and DeSalle, 2011). DNA barcode gap, the most commonly used single-locus, 
distance-based technique (Barrett and Hebert, 2005; Čandek and Kuntner, 2015; Hamilton et 
al., 2014; Hebert et al., 2004, 2003; Hebert and Barrett, 2005; Toussaint et al., 2015; Xu et al., 
2017, 2015), uses threshold or cut-off values to differentiate inter- from intraspecific 
divergences. Although such a straightforward analysis of COI barcodes is fast and cost-
effective, it may suffer from inaccuracy, or may even lead to erroneous results (Barrett and 
Hebert, 2005; Elias et al., 2009; Hamilton et al., 2014; Hebert et al., 2003; Hebert and Barrett, 
2005; Hedin, 2015; Moritz and Cicero, 2004; Prendini, 2005; Rubinoff and Holland, 2005; 
Song et al., 2008; Spooner, 2009). Furthermore, a clear cut-off DNA barcode gap between 
intra- and interspecific genetic distances, which are used as a threshold to delimit species 
boundaries (e.g., Barrett and Hebert, 2005; Hebert et al., 2004; Meyer and Paulay, 2005; 
Weigand et al., 2011), may be elusive. Instead, substantial overlap is often detected between 
intra- and interspecific divergences in diverse taxonomic groups (Čandek and Kuntner, 2015; 
Dang et al., 2016; Hickerson et al., 2006; Kvist, 2016; Meier et al., 2006; Meyer and Paulay, 
2005). Because of this challenge, researchers have developed other single-locus, distance-
based species delimitation methods, including the automatic barcode gap discovery (ABGD) 
algorithm (Puillandre et al., 2012). However, as is true for barcoding gap analyses, ABGD 
ignores the phylogenetic utility of barcodes, relying instead on an automatically identified gap 
to delimit species (Hamilton et al., 2011; Hebert and Gregory, 2005).  

Single-locus, tree-based species delimitation methods, in contrast, combine population 
genetics and phylogenetics to delimit evolutionary lineages. Among single-locus methods are 
the general mixed Yule-coalescent (GMYC) methodology (Pons et al., 2006), the species 
delimitation plugin P ID(Liberal) (Masters et al., 2011), the Bayesian Poisson tree processes 
(bPTP) (Zhang et al., 2013), and the multi-rate Poisson tree processes (mPTP) (Kapli et al., 
2017). GMYC uses likelihood to test for species boundaries by detecting the transition point 
of interspecific versus intraspecific rates of lineage coalescence. There are the single 
(GMYCs) and multiple (GMYCm) threshold models (Monaghan et al., 2009; Pons et al., 
2006). Since GMYC often overestimates species in the primitively segmented spiders (Xu et 
al., 2017, 2015) and in other taxa (Esselstyn et al., 2012; Hamilton et al., 2014; Miralles and 
Vences, 2013; Paz and Crawford, 2012; Talavera et al., 2013), we exclude it from our 
analysis in this study. P ID(Liberal) tests different species boundary hypotheses by enabling 
the user to a priori assign taxa to putative species groups on a phylogenetic tree (Masters et al., 
2011). The bPTP model, an updated version of the original PTP with Bayesian support values, 
requires a rooted input tree. It assumes two independent exponential distributions (one for 
speciation and another for coalescence) to model branch lengths (Zhang et al., 2013). bPTP 
seems simplistic because it may ignore stochastic variation among species that differ in 
population sizes and demographic histories (Blair and Bryson, 2017). The newly developed 
mPTP, on the other hand, accounts for among-species stochastic variation by fitting multiple 
independent exponential distributions to each delimited species (Kapli et al., 2017). Both 
bPTP and mPTP seem to be consistent methods (Ortiz and Francke, 2016; Song et al., 2018; 
Zhang et al., 2013), but are sensitive to the accuracy of the input tree, population size, 
divergence time, or the ratio of population size to divergence time, and to ongoing gene flow, 
and tend to oversplit species (Luo et al., 2018; Tang et al., 2014).  
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  Alternatively, Bayesian Phylogenetics and Phylogeography (BP&P, Yang, 2015), and 
Bayes Factor Delimitation (BFD, Grummer et al., 2014) are multi-locus, coalescent-based 
methods. These methods are often used to resolve deeper species complexes and to test 
alternative models of species delimitation. BP&P needs a resolved guide tree, and it is 
reported to be effective in delimiting closely related species using information gleaned from 
gene tree information (Flouri et al., 2018; Luo et al., 2018; Rannala and Yang, 2013; Yang, 
2015; Yang and Rannala, 2017, 2010). However, BP&P may be prone to error when the guide 
tree is inaccurate (Rannala and Yang, 2013) or when the ratio of population size to divergence 
time is relatively high (Luo et al., 2018). Furthermore, BP&P tends to detect population splits 
rather than species divergence, thus potentially introducing taxonomic error (Jackson et al., 
2017; Leaché et al., 2019; Sukumaran and Knowles, 2017). BFD that compares different 
species-tree models does not require a prior guide tree. It estimates the marginal likelihood 
(MLE), measured as log likelihoods, of each species delimitation model using path sampling 
(PS, (Lartillot and Philippe, 2006) Lartillot & Philippe, 2006), stepping stone (SS, Xie et al., 
2011), harmonic mean estimation (HME, Newton and Raftery, 1994), and smoothed 
harmonic mean estimation (sHME, Newton and Raftery, 1994). After ranking competing 
models based on MLEs, the Bayes factors (BF) calculated for competing models are 
evaluated. However, BFD may be prone to over-splitting, especially if the BFD is designed 
and tested using the same data (Grummer et al., 2014; Leaché et al., 2014). In addition, 
missing data can cause a potential problem with BFD (Noguerales et al., 2018). 

Combining both fast, single-, or two-locus species delimitation methods (DNA 
barcoding gap, GMYC, P ID(Liberal), ABGD, bPTP, mPTP, BP&P) for the full data matrix 
with multi-locus coalescent-based methods (BP&P and BFD) for only those conflicting 
lineages essentially delimits or “identifies” population structure. This strategy requires 
interpretation alongside morphological, ecological, and genetic data (Sukumaran and 
Knowles, 2017; Luo et al., 2018) to make informed decisions about which lineages should be 
regarded formally as nominal species.  

Results from numerous species delimitation approaches often conflict, leaving it to 
researchers to justify using the results from one method over the others. This is more often 
than not a subjective decision, although several papers have proposed more objective and 
repeatable approaches (Andújar et al., 2014; Bond and Stockman, 2008; Goldstein and 
DeSalle, 2011; Kekkonen and Hebert, 2014; Schlick-Steiner et al., 2010). We outline a multi-
tier, integrative taxonomic approach (Fig. 1) where species, defined as diagnosable lineages, 
are considered as hypotheses engaged in a process of validation or modification (Barberousse 
and Samadi, 2010; De Queiroz, 2007). This context allows simultaneous tests of any number 
of initial species hypotheses (ISH) and their alternatives suggested by species delimitation 
methods by adding more data only for the conflicting lineages, and envisions additional tiers 
of refined hypothesis testing only for the incongruent lineages revealed from preceding tier 
analysis that also revisit the species diagnostic evidence for the alternative species hypothesis 
(ASH). 

Using this approach, we explore the species delineation in the genus Heptathela. A 
parallel study outlines how morphological diagnostics arrives at the hypothesis (ISH) of 19 
Heptathela species (Xu et al., accepted). In this paper, we use original data from the 
mitochondrial (COI) and the nuclear genomes (ITS2) from the Japanese islands’ endemic set 
of species of the primitively segmented spider genus Heptathela. We first test ISH using a 
number of quick species delimitation methods using COI or/and ITS2 (the full data matrix) in 
tier 1 analysis. Fully recovered congruent lineages are directly included within the final 
species counts. Upon recovering conflicting lineages, we add more molecular makers only for 
the samples of those conflicting lineages and perform tier 2 analysis using multi-locus species 
delimitation methods to test the validity of competing species hypotheses derived from tier 1 
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analysis. Tier 3 analysis then reevaluates diagnostic evidence. Multi-tier hypothesis testing 
and re-diagnosis outlined in Figure 1 allow us to arrive at a plausibly corroborated species 
taxonomy.  
 
2. Materials and methods 

 
2.1. Taxon sampling 

 
We carried out three extensive collection trips to Japanese islands, from Kyushu to the 

central Ryukyus (Fig. 2a). Our sampling is described in detail in the parallel study (Xu et al., 
accepted). Here, we select 180 Heptathela specimens as ingroups, and choose two species of 
the liphistiid genus Ryuthela, R. nishihirai (Haupt, 1979) and R. shimojanai Xu, Liu, Ono, 
Chen, Kuntner, & Li, 2017, also endemic to Japanese islands (Xu et al., 2017), as outgroups 
(Supplementary Table S1).  

 
2.2. Molecular protocols and phylogenetic analyses 

 
From leg muscles of specimens preserved in absolute ethanol we extracted genomic 

DNA using the Animal Genomic DNA Isolation Kit (Dingguo, Beijing, China). For 182 
samples (in tier 1 analysis), we amplified and sequenced COI and ITS2 using the primer pairs 
LCO1490/HCO2198 (Folmer et al., 1994) and ITS-5.8S/ITS-28S (White et al., 1990), 
respectively. For 35 selected Heptathela samples of the incongruent lineages revealed in tier 1 
analysis (see Results), we amplified and sequenced three more gene fragments, 16S rRNA, 
28S rRNA, and histone 3 (H3), using the primer pairs 16Sar/16Sbr (Huber et al., 1993), 28S-
O/28S-C (Hedin and Maddison, 2001), and H3aF/H3aR (Colgan et al., 1998), respectively. 
We followed previously reported standard protocols for all the gene fragments (Xu et al., 
2015). We manually edited and aligned sequence data in Geneious v6.1.8 (Biomatters Ltd., 
2012). 

For phylogenetic inference using the data combined from both loci for 182 samples (tier 
1 analysis), we produced two matrices, one partitioned by gene only, and the other by gene as 
well as codon position for COI. According to the greedy algorithm based on Akaike 
Information Criterion (AIC) in PartitionFinder v1.1.1 (Lanfear et al., 2012), the best 
substitution model for all partitions was GTR + I + G. For 37 samples (in tier 2 analysis), the 
best substitution models were HKY + G (16S), GTR + I + G (COI and ITS2), SYM + I + G 
(H3), and SYM + G (28S). For both datasets, we performed Bayesian-inference (BI) analyses 
in MrBayes v3.2.1 (Ronquist et al., 2012) by running Markov chain Monte Carlo (MCMC) 
for 50 million generations, and sampling trees every 5000 generations. We used TRACER 
v1.6 (Rambaut et al., 2014) to monitor stationarity, and FigTree v1.4.0 (Rambaut, 2012) to 
visualize and manipulate trees. Because both data partitions resulted in the same phylogenetic 
topology and comparable support values, we only used the matrix partitioned by gene in 
subsequent analyses. 

We inferred phylogenetic trees using BI in MrBayes (as above), as well as maximum 
likelihood (ML) with autoMRE bootstrapping and a full ML search under the GTRGAMMA 
model in RAxML v8.2.11 (Stamatakis, 2014).  
 
2.3. Multi-tier integrative taxonomic framework 
 
2.3.1. Initial species hypothesis 

 
Our parallel study provided the initial, 19-species hypothesis for all 180 specimens of 
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Heptathela species (for morphological details, see Xu et al., accepted). Alternatives to ISH 
are ASH from DNA species delimitation analyses (below). 
 
2.3.2. Tier 1 analysis — single- or two-locus DNA species delimitation 

 
In tier 1 analysis, we tested the initial hypothesis (ISH) using DNA barcoding, ABGD, 

P ID(Liberal), bPTP, mPTP and BP&P.  In the DNA barcoding gap analysis, we used both 
Kimura two-parameter (K2P) and uncorrected p-distance (p-distance). In Mega v6.0.6 
(Tamura et al., 2013) we calculated pairwise K2P and p-distances, mean intra- and 
interspecific K2P and p-distance for each putative species. Unlike DNA barcoding gap 
analysis, ABGD (Puillandre et al., 2012) does not require assigning terminals to putative 
species. ABGD calculates all pairwise distances in the dataset, evaluates intraspecific 
divergences, and then sorts the terminals into candidate species with calculated p-values. We 
performed ABGD analyses online (http://wwwabi.snv.jussieu.fr/public/abgd/), using three 
different distance metrics: Jukes-Cantor (JC69) (Jukes and Cantor, 1969), K2P (Kimura, 
1980), and p-distance (Nei and Kumar, 2000). We analysed the data using two different 
values for the parameters Pmin (0.0001 and 0.001), Pmax (0.1 and 0.2), and relative gap 
width (X = 1 or 1.5), with other parameters at default values (see, Xu et al., 2017, 2015).  

We obtained P ID(Liberal) statistical values from the species delimitation plugin 
(Masters et al., 2011) in Geneious v6.1.8 (Biomatters Ltd., 2012) as in our prior study (Xu et 
al., 2015). We used BI tree from the COI matrix as guide tree to calculate the mean 
probability of Intra/Inter genetic distance ratio for the initial 19 Heptathela species hypothesis. 

We implemented bPTP analysis on its online server (http://species.h-its.org/ptp/; Zhang 
et al., 2013). This method is based on the model of Poisson tree processes, which relies on the 
intra- and interspecific substitution events (Zhang et al., 2013). BI tree from the COI matrix 
were input as guide tree and default parameter settings were used to explore the species 
hypotheses. We ran the analysis for 500,000 generations with a thinning of 500 and burn-in of 
0.1, both with and without the outgroups (R. nishihirai and R. shimojanai). We performed 
mPTP analysis on ML tree from the COI matrix, and based on both ML and MCMC 
delimitations using the mPTP v0.2.4 (Kapli et al., 2017). Both analyses used the default –
multi option, which incorporates differences in rates of coalescence among species, and the 
default minimum branch length of 0.0001. We ran MCMC analyses for 100 million 
generations, sampling every 10000, burn-in of the first 2 million generations. Analyses started 
from the ML species delimitation estimate, random delimitation and null delimitation, gave 
the same result. 

BP&P v3.3 (Yang, 2015; Yang and Rannala, 2010) uses reversible-jump Markov chain 
Monte Carlo (rjMCMC) to calculate the posterior probabilities (PP) of different species 
delimitation models under a multispecies coalescent model (MSC) using the prior parameter 
settings, population size (theta, θ) and divergence times (tau, τ). The topology of the BI trees 
of 180 samples based on COI and COI + ITS2 were input as the guide tree in the rjMCMC 
species delimitation method. For 19 species hypothesis, we explored four different prior 
distributions for both two genes and single locus on the ancestral population size θ and root 
age τ0 following Leaché and Fujita, 2010: (1) large population size, θ ~ G(1,10), and deep 
divergence time, τ0 ~ G(1, 10); (2) small population size, θ ~ G(2, 2000), and shallow 
divergence time, τ0 ~ G(2, 2000); (3) large population size, θ ~ G(1,10), and shallow 
divergence time, τ0 ~ G(2, 2000); (4) small population size, θ ~ G(2, 2000), and deep 
divergence time, τ0 ~ G(1, 10). We used the rjMCMC algorithm 0 with the fine-tuning 
parameter ε = 15, and alternatively algorithm 1 with α = 2 and m = 1 to check for 
convergence (Hime et al., 2016). Analyses were run for 100,000 generations, with sampfreq = 
5 and burnin = 20,000. Species tree nodes with PP > 0.95 were considered as evidence for 
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supporting species delimitation, whereas those with PP < 0.95 were considered as evidence 
for collapsing a species tree node.  
 
2.3.3. Tier 2 analysis — testing competing species hypotheses derived from tier 1 analysis  

 
In tier 2 analyses, we used two independent multi-locus coalescent-based species 

delimitation methods, BP&P (Yang, 2015; Yang and Rannala, 2010) and BFD (Grummer et 
al., 2014) to validate the incongruent lineages containing 35 Heptathela samples among 3-, 4- 
and 6-species hypotheses using five genes. BP&P analyses based on five gene fragments were 
used to validate these three competing species hypotheses as described above.  

We performed BFD analyses in *BEAST v1.8.4 (Drummond et al., 2012). *BEAST 
analyses were run with a relaxed lognormal molecular clock, a yule process was set for 
species tree prior and piecewise linear & constant root for population size model, the 
lognormal priors for species.popMean and species.yule.birthRate (Starrett et al., 2018). 
Analyses were run for 50 million generation sampling every 10,000 generations, and the first 
10% of trees were discarded as burn-in. We used TRACER v1.6 (Rambaut et al., 2014) to 
access convergence. We estimated the marginal likelihood (MLE) for each of three competing 
species models using PS and SS, as PS and SS outperform HME and sHME (Baele et al., 
2012; Grummer et al., 2014). MLEs of both PS and SS were estimated with a chain length of 
1000,000 generations and 100 path steps. We ranked the competing models by their MLEs, 
and used 2lnBfs, as calculated as 2 × the difference in MLE between the best-fitting and 
alternative models, to assess the support for each model relative to the model with the highest 
ranking. We evaluated the models following Kass & Raftery, 1995: a 2lnBf = 0-2 means “not 
worth more than a bare mention”, 2lnBf = 2-6 means “positive” support, 2lnBf = 6-10 means 
“strong” support, and 2lnBf > 10 provides “decisive” support in distinguishing between 
competing species delimitation hypotheses. Grummer et al. (2014) recommended a 2lnBf > 
10 for distinct lineages and we followed these guidelines in this study.  
 
2.3.4. Tier 3 analysis — integrative taxonomic framework 

 
Our framework (Fig. 1) allows for multi-tier testing of species hypotheses within an 

integrative taxonomic framework to redefine species diagnoses. Because in our test case some 
delimitation methods suggested ASH (20, or 22 species corresponding to 4-, or 6-species 
hypothesis in tier 2 analysis) to the ISH (19-species, or 3-species hypothesis in tier 2 analysis), 
an additional tier of testing simultaneously evaluated three competing hypotheses only within 
the recovered incongruent lineages from tier 2 analysis. 
 
3. Results 
 
3.1. Tier 1 analysis 
 

Our original COI matrix of 180 Heptathela individuals of 676 bp had 248 variable and 
239 parsimony informative sites, and ITS2 matrix of 359 bp had 20 variable and 19 
parsimony informative sites. The Bayesian analyses on the concatenated data using both 
partition schemes agree on the topological details (Fig. 2b).  

Barcoding gap analysis, ABGD, P ID(Liberal), bPTP, and mPTP were done on COI 
only. Most of these approaches (though not bPTP and mPTP) support ISH (i.e., 19 species) 
(Fig. 2b). A distinct gap between intra- and interspecific genetic distances for 19 hypothetical 
Heptathela species was detected, ranging from 4.2 to 5.7% for K2P and from 4.0 to 5.4% for 
p-distance (Fig. 3). The lowest mean interspecific and highest mean intraspecific distances 
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were 6/5.7% and 2.1/2.0% (K2P/uncorrected p-distance), respectively. ABGD analyses 
corroborated 19 species partitions based on different parameter combinations (Fig. 2b; Table 
S2). P ID(Liberal) also supported 19 species based on COI gene tree (Table S3 in 
supplementary). However, both bPTP and mPTP produce conflicted results: bPTP supported 
22 species, whereas mPTP supported 20 species. Both methods with or without outgroups 
gave the same results. 
 BP&P, based on both COI and COI + ITS2 datasets, supported the 19-species 
hypothesis with very high support (PP > 0.95) of speciation events for most of nodes under 
small population size prior regardless whether divergence time was shallow or deep (i.e., the 
second and fourth prior settings), except when using the condition of large population size 
and deep divergence time (i.e., the first and third prior settings) (Table S4). The analyses 
using empirically estimated priors of two genes yielded similar results as the second prior 
setting, and the analyses using empirically estimated priors of single locus produced similar 
results as the second and fourth prior settings. 

 Despite the conflict among the various species delimitation methods in tier 1 analysis, 
16 putative species were recognized by all the methods, supported by morphological 
diagnosis in our parallel taxonomic study (Xu et al., accepted). Three, four or six putative 
species were incongruent among different methods, deriving three ASH (Fig. 2b). 
 
3.2. Tier 2 analysis 
 

BP&P and BFD were used to test three competing species hypotheses and the results 
showed that BP&P supports all three species hypotheses (Table S4), indicating the lack of 
power of that method to delimit species within our dataset. Species delimitation analyses 
using BFD showed that the rankings based on MLEs of both PS and SS were in exact 
agreement with one another (Table 1). Both PS and SS determined that the 6-species model 
was best supported and significantly better than the 3-species model (2lnBf: 90.55 and 92.53), 
but was only marginally better than the 4-species model (2lnBf:  0.44 and 2.29).  
 
3.3. Tier 3 analysis 
 

Our tier 3 analysis ⎯ the diagnostic stage (Fig. 1) — is a reevaluation of morphological 
and/or DNA barcode diagnostic evidence for validating 4- or 6- species model supported by 
BFD. In our case, additional scrutiny revealed no additional morphological species 
diagnostics in the problem set of terminals (these are marked as spp. 17-19 under ISH in Fig. 
2b). However, a closer examination of the COI barcode gaps within this set of 35 terminals 
rejected the 6-species hypothesis (barcoding gap: 1–1.51% based on K2P model), but 
supported the 4-species hypothesis (barcoding gap: 3.93–4.11% based on K2P model). 
Because the alternative hypothesis (20 species: 16 species delimited in tier 1 analysis, plus 4 
species in tiers 2 & 3 analyses) is diagnostically supported, the species taxonomy is resolved 
under the assumption that DNA barcode diagnostic differences warrant species delimitation. 
 
4. Discussion 
  

Integrative taxonomy is a quickly evolving field, and many studies use innovative 
approaches (reviewed by Schlick-Steiner et al., 2010). Our multi-tier analysis strategy 
combines fast, single- or two-locus delimitation methods based on large, full data matrix, with 
multi-locus coalescent-based methods to validate only incongruent lineages revealed from tier 
1 analysis by adding more molecular markers only for those conflicting lineages. Our results 
confirm the taxonomic utility of the COI barcoding region by detecting no conflict with the 
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equivalent two-locus analyses. Despite the theoretical advantages of using multi-locus, tree-
based methods for more accurate species delimitations compared with single-locus 
approaches, the field has not arrived at any single species delimitation method that would be 
preferred for its reliability, cost-effectiveness, robustness, and congruence. Because this 
conflict among the approaches also emerges from our analyses, this gives the credibility to 
our approach to use as many methods as possible simultaneously, then objectively choose 
among them. 
 Single-locus, distance- and tree-based species delimitation methods are routinely used 
to delimit taxa, which are well differentiated genetically but not morphologically such as 
liphistiid and mygalomorph spiders (Derkarabetian and Hedin, 2014; Giarla et al., 2014; 
Satler et al., 2013; Xu et al., 2017, 2015). However, as phylogenetics widely acknowledges 
potential discordance among gene and species trees due to incomplete lineage sorting (e.g., 
Harrington and Near, 2012; McGuire et al., 2007), species inferences based on a single locus 
alone can be misleading. Therefore, tree-based species delimitation methods on multiple loci 
can overcome the difficulties encountered in single-locus, tree-based species delimitation 
methods as they uncouple gene trees and species trees, and furthermore allow gene tree 
coalescences to be older than species tree coalescences. Our results from all different 
analytical approaches suggest that this may not be a problem when using COI in species 
delimitation in tier 1 analysis to quickly test the initial hypothesis, at least in liphistiid spiders. 
Because all the methods in tier 1 analysis produced the same results using a single- versus 
double-locus datasets, we can conclude that COI may be informative enough, confirming its 
overall utility in arthropod taxonomy. One can and should of course use additional markers, 
however, ITS2 does not seem to be the best choice, in tier 1 analysis, at least for liphistiid 
spiders. 

A comparison of the performance of the six sequence-based species delimitation 
approaches in tier 1 analysis is not trivial. Our prior studies on liphistiid species limits in other 
genera (Xu et al., 2017, 2015) have largely relied on the outcomes of three, DNA barcoding 
gap, ABGD, and P ID(Liberal). In this study, they all support the initial, morphology-based 
hypothesis (ISH, 19 species). On the other hand, mPTP supports more species (20) and bPTP 
even more (22). BP&P, designed to take the data of multiple genes and coalescent based, is 
used here based on both COI and COI + ITS2 also support 19 species in tier 1 analysis. BP&P 
is also used in tier 2 analysis to test the validity of three competing hypotheses using five 
genes, but it lacks the power to delimit as it supports the three alternative hypotheses derived 
from tier 1 analysis. Theoretical studies have shown that species delimitation using BP&P 
may capture population splits rather than species divergences (Jackson et al., 2017; 
Sukumaran and Knowles, 2017), thus leading to oversplitting when the amount of data (the 
number of loci) increases (Leaché et al., 2019). Therefore, more research is needed to 
evaluate the performance of this method relative to the others.  

Although the phylogenetic approach applied to the sub-dataset composing of five genes 
for 35 samples of incongruent lineages from tier 1 analysis is unable to delimit these 
conflicting lineages (i.e., 3-, 4- or 6 species), the BFD method is not decisive as it best 
supports 6-species hypothesis but does not reject 4-species hypothesis based on the sub-
dataset. One possible explanation is that the additional loci are not informative for a reliable 
test in this group of liphistiid spiders because there are very few unique nucleotides among 
the samples. Thus, more informative loci or genomic data are needed for the use of 
coalescent-based delimitation methods such as BFD in delimiting Heptathela and other 
liphistiids. As shown in a few theoretical and empirical studies, perhaps BFD is also prone to 
over-splitting, especially if the BFD is designed and tested using the same data (Grummer et 
al., 2014; Leaché et al., 2018, 2014). Given our sampling design and the propensity of BFD to 
over-splitting, our species delimitation results should be retested using informative, genomic 
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data in the future. Integrating all lines of evidence is also appropriate to avoid overestimation 
of species number.        

In conclusion, our paper formalizes the necessary tiers of species delimitation analyses 
within an integrative taxonomic framework (Fig. 1). Our empirical study on primitively 
segmented spiders of the genus Heptathela endemic to Japanese islands confirms that our 
multi-tier approach is sufficiently effective and robust to delimit species accurately, but 
stresses the need to evaluate numerous lines of taxonomic evidence for an objective, 
repeatable test of species limits. This multi-tier approach can apply to species delimitation in 
many other domains of life. 
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Table 1.  Comparison of the three species models in tier 2 analysis using Bayes factor species 
delimitation (BFD). 
 
Species models MLE (SS) rank 2lnBF MLE (PS) rank 2lnBF 
3-species model -5288.039 3 92.53 -5286.996 3 90.55 
4-species model -5241.994 2 0.44 -5242.867 2 2.29 
6-species model -5241.773 1 

 
-5241.722 1 
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Fig. 1. A multi-tier species delimitation approach within an integrative taxonomy framework. 
Any number of initial species hypotheses (ISH) may derive from detailed morphological 
examination, DNA diagnostic features, geographical data, and topology from a specimen 
phylogeny. ISH is tested in tier 1 analysis using a variety of fast, single- or two-locus species 
delimitation methods. Fully congruent putative species supported by all the methods are 
included in the final species counts. If some of lineages are incongruent among these analyses, 
in tier 2 analysis, more molecular markers are added only for the samples of these conflicting 
lineages to form a new sub-dataset, which is subjected to multi-locus coalescent-based 
delimitation to validate the competing species hypotheses derived from tier 1 analysis. A 
species taxonomy can be finalized if one outcome is favored. In the case of further 
incongruence, a reevaluation of morphological or DNA barcode diagnostic evidence for 
alternative hypotheses (ASH) is performed in tier 3 analysis.  
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Fig. 2. A case study on the primitively segmented spiders. (a) Map showing representative 
sampling localities for species of Heptathela on Kyushu and Ryukyu archipelagos. (b) 
Bayesian specimen phylogeny on concatenated dataset for 180 Heptathela specimens and 2 
Ryuthela outgroup specimens. Clades are color coded to match the map in A, clade supports 
are posterior probabilities for two different data partitions. ISH: initial species hypothesis (19 
species), based on morphology, phylogenetic topology, and geographic information. Vertical 
bars corresponding to species numbers are estimations based on morphology, as well as on 
partial results of species delimitation methods. In tier 1 analysis, 16 species (spp. 1 – 16) are 
fully supported by all the delimitation methods, but three competing species hypotheses (i.e., 
3, 4 or 6 species models) reflect conflicted clades. In tier 2 analysis, BP&P supports all three 
competing species hypotheses while BFD supports the 6- species hypothesis while not 
rejecting the 4-specices hypothesis. In tier 3 analysis, reevaluation of morphological and 
DNA barcode diagnostic evidence supports the 4-species hypothesis, which brings the total 
species taxonomy to 20 species. ASH: alternative species hypothesis. 
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Fig. 3. DNA barcoding gap for 19 hypothetical Heptathela species.  
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