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Functional connectivity is derived from inter-regional correlations in spontaneous fluctuations of
brain activity, and can be represented in terms of complete graphs with continuous (real-valued) edges.
The structure of functional connectivity networks is strongly affected by signal processing procedures
to remove the effects of motion, physiological noise and other sources of experimental error. However,
in the absence of an established ground truth, it is difficult to determine the optimal procedure, and
no consensus has been reached on the most effective approach to remove nuisance signals without
unduly affecting the network intrinsic structural features. Here, we use a novel information-theoretic
approach, based on von Neumann entropy, which provides a measure of information encoded in
the networks at different scales. We also define a measure of distance between networks, based
on information divergence, and optimal null models appropriate for the description of functional
connectivity networks, to test for the presence of nontrivial structural patterns that are not the result of
simple local constraints. This formalism enables a scale-resolved analysis of the distance between an
empirical functional connectivity network and its maximally random counterpart, thus providing a
means to assess the effects of noise and image processing on network structure.

We apply this novel approach to address a few open questions in the analysis of brain functional
connectivity networks. Specifically, we demonstrate a strongly beneficial effect of network sparsifica-
tion by removal of the weakest links, and the existence of an optimal threshold that maximizes the
ability to extract information on large-scale network structures. Additionally, we investigate the effects
of different degrees of motion at different scales, and compare the most popular processing pipelines
designed to mitigate its deleterious effect on functional connectivity networks.
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1. INTRODUCTION

Complex networks theory provides a robust frame-
work to study the structural and functional organization
of brain connectivity, which can be naturally represented
as a graph, a collection of nodes (anatomical brain re-
gions) and edges (functional or structural coupling be-
tween nodes) [1] (Figure 1).

Several foundational concepts have been borrowed
from network theory and have become part of the neu-
roscience parlance. By way of example, properties like
small-worldness [2], scale-freeness [3] and modularity [4–
6] have been demonstrated in brain networks, providing
insight into their complex topological organization and
its bearing on the dynamical processes underlying brain
function in health and disease [7].

However, despite its increasing popularity, this ap-
proach is still the subject of debate, and a number of
seemingly simple, yet critically important questions re-
main open. For example, a widely accepted measure of
the distance between graphs, e.g. to compare empirical
networks with an appropriate null model, is still miss-
ing, and so is a measure of the information encoded in
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a network. This problem is exacerbated by the lack of a
ground truth structure for empirical brain networks.

Neuroimaging methods, like functional MRI (fMRI),
electroencephalography and magnetoencephalography
(EEG, MEG) are often used to assess brain functional con-
nectivity; the resulting networks depend tremendously
on data processing and experimental parameters, but
the lack of an established reference makes it challenging
to determine the optimal procedures univocally. Glar-
ing examples of this problem include the ongoing de-
bate regarding the use of Global Signal Regression [8] in
resting-state functional connectivity, or the application
of thresholds for network sparsification [9–11].

Specific network metrics (such as node degree distri-
bution or modularity) have often been used for network
comparison, but they do not capture the intrinsically
multiscale structure of brain networks, focusing only on
specific local or global features. Moreover, such measures
describe properties that may also be present in random
networks. By way of example, large values of modularity
have been observed in random networks [12] as well as
in natural networks. Hence, a measure of the distance
between a given brain network and an appropriate null
model, i.e., a random counterpart that satisfies certain
constraints, would be essential to address the fundamen-
tal question: how far from random are brain networks?

Information-theoretic measures based on the Shannon
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Figure 1. Examples of a resting state functional brain network.
In Panel A., nodes represent brain regions, connected by links
whose value is obtained by averaging Fisher transformed Pear-
son correlations over many subjects. Radius of nodes indicates
the degree, while their colors indicate the modular member-
ship as overlaid on a surface template in Panel B. The partition
entails four communities and is found with the Louvain algo-
rithm [13], modularity value Q ≈ 0.4.

entropy would appear to be a natural choice to address
this issue, but an extension of this formalism to complex
networks has proven challenging, although useful in
specific contexts [14, 15].

Recently, pioneering work by De Domenico and Bia-
monte [16] has demonstrated the use of spectral entropies
to define distances between pairs of complex networks.
Specifically, those authors recognized that the Laplacian
of the adjacency matrix describing a given network can
be used to construct a matrix that satisfies the same math-
ematical properties of quantum mechanical density ma-
trices, thus enabling the extension of von Neumann en-
tropy to complex networks. Several implications of this
elegant development may be useful for the analysis of
brain networks. Differently from other methods, this
approach does not rely on a subset of network descrip-
tors [17], but provides an information-based measure
that takes into account the entire network structure at all
scales. The strength of this formalism lays in the dynami-
cal description of a diffusion process taking place over
the network, with the characteristic time described by a
parameter β that determines the diffusion scale. Hence,
spectral entropies provide a scale-resolved, information-
based metric to define and optimize network models.

The same framework enables measuring the distance
between networks that can be rigorously defined in
terms of quantum relative entropy, or information diver-
gence [18]. This quantifies the information gain when a
model is used to explain an empirical observation. More-
over, minimization of relative entropy can be used to
optimize model parameters [16, 19], or to select different
models based on their ability to reproduce the data.

Here, we extend the novel formalism to the study of

brain functional connectivity, and demonstrate its poten-
tial to address a few open problems in the analysis of
resting-state connectivity networks.

Firstly, we implement two new models of maximally-
random networks with specific local or global properties
to evaluate their deviation from empirical counterparts
at different scales. We also propose computationally effi-
cient procedures to fit them to empirical networks. The
simpler model describes a class of networks where the
total number of links and total weight are constrained to
match those of the empirical network. The latter model
addresses the more general case in which both degree
and strength sequence are preserved upon randomiza-
tion of the edges. As an important point of novelty,
these models are applicable to networks with contin-
uous weights, like functional connectivity networks, and
can be optimized constraining their density to that of the
empirical network.

A most contentious methodological issue in graph
analysis, as applied to the study of brain connectivity,
is the one of network sparsification. Functional connec-
tivity networks are generally derived from pairwise cor-
relations of spontaneous fluctuations extracted from each
pair of brain regions, resulting, by definition, in a fully
connected weighted matrix. However, dense networks
are computationally demanding, and weak links, which
represent the overwhelming majority of edges, might
contain spurious correlations. Network sparsification is
then an essential step to recover the network structure.

A number of different thresholding techniques have
been proposed [9–11, 20–22] but the choice of the thresh-
old, which strongly affects the topological features ex-
tracted from the network, remains somewhat arbitrary.
Adding to this, it is now argued that the sparsification
procedure itself might actually inject artifactual struc-
tures within the network of interest. A recent study,
indeed, revealed the introduction of some complex fea-
tures in random networks as a sole result of threshold-
ing [23]. Altogether, given the lack of agreement on the
best thresholding level, and the uncertain significance
of the weakest and negative links, there is a trend to
completely avoid the application of a threshold, and to
work with fully connected networks [24–27]. Starting
from the above considerations, here we apply the novel
formalism of spectral entropies to investigate the effects
of thresholding on resting-state networks, with the aim
to assess whether this practice is beneficial for the extrac-
tion of information on the large-scale organization of the
network, and whether an optimal threshold that maxi-
mizes separation between the empirical network and its
random counterpart exists.

Other open issues in the functional connectivity field
relate to more basic aspects of image processing. For ex-
ample, it is well known that small head movements dur-
ing the resting-state fMRI scan can substantially impact
the subsequent functional connectivity analysis [28–30].
Motion artifacts are a significant cause of spurious corre-
lations that can substantially affect the structure of func-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2019. ; https://doi.org/10.1101/813162doi: bioRxiv preprint 

https://doi.org/10.1101/813162
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

tional connectivity networks derived from functional MR.
The search for an optimal strategy for the correction of
motion-related noise has become a center of attention in
the field [31, 32]. Moreover, non-neural physiological ac-
tivity, like cardiovascular pulsation, respiratory cycle and
autonomic fluctuations can inject spurious correlations
across multiple frequencies [33, 34]. A plethora of dif-
ferent noise correction techniques have been introduced,
all aiming at the reduction or removal of the impact of
in-scanner motion effects [31, 35]. However, a consensus
on the most effective approach to removing motion ef-
fects without substantially affecting the network intrinsic
structural features is still lacking. For example, a ma-
jor debate revolves around the application of a global
signal regression (GSR) [36, 37]. The aggressiveness of
approaches based on GSR, and the subsequent introduc-
tion of negative correlations in the network following
its application, has made it the object of concern in the
neuroscientific community, despite its apparent efficacy
in removing spatially correlated spurious fluctuations.
Here, we seek to demonstrate the potential use of the
spectral entropy formalism to study the effects of some
of the most popular motion correction procedures on
network structure. To this end, we assess the effects of
motion on the information contained in the network at
different scales, and compare the efficacy of various data
processing pipelines for the recovery of structural infor-
mation in the presence of different degrees of motion.

2. MATERIALS AND METHODS

2.1. Theoretical framework

In this theoretical section we introduce the notation
and describe the formalism of maximum entropy random
graph models that is central to this manuscript. Firstly,
we describe it in the context of classical entropy, as a
means to fit network models to empirical networks. We
then introduce two null models, the Continuous Weighted
Thresholded Enhanced Random Graph Model (CWTERG), a
real-valued version of the Erdős-Renyi model, and the
Continuous Weighted Thresholded Enhanced Configuration
Model (CWTECM), which also includes constraints on the
node degree distribution. Finally, we introduce the for-
malism of spectral entropy and define a rigorous measure
of network distance based on spectral relative entropy.

We summarize here a few definitions that are neces-
sary to make this paper self-contained. We consider undi-
rected weighted graphs G = (V, E) with |V| = N num-
ber of nodes, |E| = L number of links and W total edge
weight. We denote the weighted adjacency matrix as
W = {wij}, the binary adjacency matrix A = aij and the
weighted graph Laplacian as L = D−W, where D is a
diagonal matrix of the node strengths. We indicate the
degree and strength as ki = ∑i 6=j aij and si = ∑i 6=j wij,
respectively. The Heaviside step function is indicated as
Θ(x).

2.2. Classical Maximum entropy random graph models

We let G denote a network in a random graph ensem-
ble G, and G? an observed empirical network. The en-
semble G consists of all networks with the same number
of nodes N and of the same type (undirected, weighted
etc.) as G?, including G? itself. Our goal is to find an
analytical description of the random graphs G that share
the same network descriptors of G?, and to eventually
be able to sample networks from the ensemble. In other
words, we look for the functional form of the probability
distribution P(G) over the ensemble G, for which the
values of descriptors are on average as close as possible
to those of the empirical network. We denote the chosen
descriptors by C? = C(G?). These are network-related
quantities, like the number of links, the total weight, or
the node and strength sequences, and are instrumental
in shaping the analytic form of the ensemble. By stan-
dard probability arguments, the expected value of the
descriptors C(G) over the ensemble G are found as

〈C(G)〉 =
∫

G∈G

C(G)P(G). (1)

The functional form of P(G) can be obtained by Shan-
non entropy maximization subjected to the constraints
represented by C. This procedure is rooted in Jaynes’s
Maximum Entropy formalism [38], a statistical mechan-
ics principle that leads to exact expressions for the prob-
ability of occurrence of any graph model. A standard
derivation [17, 39] shows that the solution of constrained
entropy maximization problem is found by introducing
a vector of Lagrange multipliers θ, one for each of the
constraints in C. The resulting conditional probability
reads:

P(G|θ) = e−H(G,θ)

Z(θ)
(2)

where H(G, θ) is the graph Hamiltonian, defined as a
linear combination of constraints:

H(G, θ) = ∑
a

θaCa(G) = θ · C(G) (3)

and the denominator Z(θ) is a normalizing quantity
called partition function, defined by marginalization over
all networks G in the ensemble G:

Z(θ) =
∫

G∈G

e−H(G,θ). (4)

The above results show that the graph probability P(G|θ)
depends on the Lagrange multipliers θ, and that it is a
function of the constraints considered.

For model fitting purpose, it can be shown [17] that
the log-likelihood

L(θ) = log P(G?|θ) = −H(G?|θ)− log Z(θ) (5)
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is maximized by the particular value θ? such that the
ensemble average 〈C〉θ? of each constraint equals the
empirical value C(G?) measured on the real network:

〈C〉? =
∫

G∈G

C(G)P(G|θ?) = C(G?). (6)

For maximum-entropy ensembles, the maximum likeli-
hood principle indicates the choice of parameters that
meet the constraints, and defines a procedure for model
fitting: either by maximizing the log-likelihood from
Eq. 5 by means of gradient based numerical optimization
methods [40], or alternatively by solving the system of
nonlinear equations defined by Eq. 6.

In the following, we show a practical application of
this approach to a class of null models suitable for the
description of resting-state brain connectivity.

2.3. Null models for continuous (real-valued) thresholded
networks

In network science, and in the study of statistical prop-
erties of graphs, a null-model is a mathematical entity
representing a family of graphs that match some of the
properties of a network, while remaining maximally non-
committal with regard to properties not explicitly spec-
ified [17, 38, 39]. Null models provide a powerful way
to test whether observed nontrivial structural patterns
are emerging from simpler local constraints, or they are
genuinely present in the empirical network.

Desirable null models do not trade complexity for suf-
ficiency or redundancy [41]: two constraints leading to
the same ensemble should be merged into one. More-
over, null models should be neither too complicated nor
too simple. Too many parameters and the null model
no longer represents the state of maximal agnosticism
as overfitting the data precisely displays all its features.
Conversely, too few parameters and the picture it con-
veys is oversimplified, hence lacking explanatory power.

In this sense, we are looking for a model of rs-fMRI
networks that is complex enough to match simple local
features of the network, but remaining completely unin-
formative over higher-order patterns. Local constraints
such as the number of links or the degree sequence may
already fully contain all the information conveyed by
the network. Networks of this kind have no statistical
patterns or regularities [41, 42] beyond those described
by local properties: local features explicitly enforced rep-
resent a null hypothesis that we can use as a reference to
quantify significant deviations or patterns.

In designing a null model for resting-state fMRI net-
works, we should take into account the continuous na-
ture of link weights, the binary backbone and weighted
structural patterns.Importantly, here we deal only with
positive link weights.

Here we extend previous random graph models [43–
46] to networks with real-valued links distributed over

a connectivity backbone modeled by the degree and
strength sequence. These local variables are the opti-
mal trade-off to shape the irreducible and unavoidable
complexity needed to accommodate the heterogeneous
structure of real networks. Nonetheless, we also de-
scribe a simpler model with only two global constraints,
namely the total number of links and weight. In the
next section we will show that the the former model
captures most of the long-range connectivity and meso-
scopic structure, while the latter describes adequately
local features but remains uninformative of larger-scale
structure. Hereby, we embrace the Exponential Random
Graph formalism [1, 39] and analytically build the maxi-
mally random counterpart of empirical networks where
only specific features are reproduced, on average. We
first describe the model where the number of links and
total weight are constrained and then move to the more
general case where both the degree and the strength
sequences of the network are considered. Most impor-
tantly, both models include a hard thresholding proce-
dure [10, 22, 47] that is often used in analysis pipelines.

2.3.1. Random networks with fixed links number and weight

We introduce the random graph model that fixes the
average total number of links L? and the average total
weight W?, together with an external threshold param-
eter t with the name of Continuous Weighted Thresholded
Enhanced Random Graph Model. This model is obtained
by a Hamiltonian that explicitly enforces these two con-
straints:

HCWTERG(G|α, β) = ∑
i<j

αΘ(wij − t) + βwijΘ(wij − t),

(7)

where the Lagrangian multipliers θ of the problem are
the two scalars, α and β. This Hamiltonian is designed
to weight the contribution of binary links with the term
α and the contribution of weighted links with the term β.
The role of the threshold parameter t becomes clear if a
dense network is fed in the model, and its null network
is sought for as a function of the threshold. Degrees of
a network are sum of binary variables, and the Heavi-
side function Θ is exactly centered at t, taking values one
or zero if the edge weight exceeds the cut-off threshold.
Similarly, the threshold t shapes the sequence of nodes
strength, by contributing with a factor ∑j wij for weights
greater than the cut-off t. For notation clarity, a change of
variables can be performed and the original Lagrangian
multipliers are replaced by their exponentiated counter-
parts, namely the variables x = e−α and y = e−β.

The partition function ZCWTERG is obtained from the
marginalization over all networks in the ensemble as in
Eq. 4. A simple calculation for this case (see ref. [17])
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yields:

ZCWTERG =
∫ ∞

0
e−HCWTERG(G)dw′ (8)

= t +
e−α−βt

β
=
−xyt + t log y

log y
(9)

The expected number of binary links is found by taking
the derivatives of the free energy [39], F = − log Z with
respect to α, the Lagrangian multiplier pertaining the
binary links. Similarly, the expected total weight is the
derivative with respect to β of the free energy. As a
result for the CWTERG we get the expressions for the
link probability and expected weight, relatively:

∂F
∂α

= 〈L〉 = 1
βteα+βt + 1

=
xyt

xyt − t log y
(10)

∂F
∂β

= 〈W〉 = βt + 1
β(βteα+βt + 1)

=
xyt (−t log y + 1)

(−xyt + t log y) log (y)
(11)

Fitting the CWTERG model to empirical networks re-
quires one to simultaneously solve a system of two
nonlinear equations, and finding the values of the La-
grangian multipliers x, y such that:L? = xyt

xyt−t log y

W? =
xyt(−t log y+1)

(−xyt+t log y) log (y)

(12)

Alternatively, and in a completely complementary fash-
ion, one can maximize the log-likelihood of the model
LCWTERG, calculated as the logarithm of the conditional
probability P(G|x, y):

LCWTERG(G|x, y) =L(G) log x + W(G) log y

−
(

N
2

)
log
(

t− xyt

log y

)
. (13)

2.3.2. Random networks with fixed degrees and strengths

The CWTERG model describes the ensemble of net-
works whose total weight and number of links are con-
strained to some empirical values. Hence it can be con-
sidered an extension of the Erdős-Renyi random graph
model to thresholded weighted networks. However, this
model only describes networks with uniform connectiv-
ity patterns, as it is not considering the heterogeneity of
the degrees and strengths.

The Continuous Weighted Thresholded Enhanced Con-
figuration Model (CTWECM) overcomes this problem by
defining a Hamiltonian

HCWTECM(G|α, β) = ∑
i<j

(αi + αj)Θ(wij − t)+

(βi + β j)wijΘ(wij − t). (14)

where αi, βi are the Lagrangian multipliers. The struc-
tural form of the Hamiltonian of the CWTECM is the
same as the one of the CWTERG, but now the probability
P(G|α, β) can be factorized over all pairs of nodes as
follows:

P(G|α, β) = ∏
i<j

e−[αi+αj+wij(βi+β j)]θ(wij−t)

ZCWTECM
(15)

where here ZCWTECM = t + e−αi−αj−t(βi+βj)
βi+β j

.

With the change of variables xi = e−αi , yi = e−βi the
expected link probability and expected link weight have
the same form found in Eq. 10, and are obtained by the
first derivatives of the free energy with respect to the
Lagrange multipliers αi and β j as follows:

∂F
∂αi

= 〈aij〉 =
xixj

(
yiyj

)t

xixj
(
yiyj

)t − log
(
yiyj

)t (16)

∂F
∂βi

= 〈wij〉 =
xixj

(
yiyj

)t
[
log
(
yiyj

)t − 1
]

[
xixj

(
yiyj

)t − log
((

yiyj
)t
)]

log
(
yiyj

) .

(17)

The expected degree and strengths are found by sum-
ming the link probability and the expected link weights
over all remaining nodes:

〈ki〉 = ∑
i 6=j
〈aij〉 (18)

〈si〉 = ∑
i 6=j
〈wij〉 (19)

and at the optimal parameters α?i , β?
i they equal their

empirical counterparts 〈ki〉α? ,β? = k?i and 〈si〉α? ,β? = s?i .
Similarly to the CWTECM, the optimal parameters can
be found by maximization of a log-likelihood function
that reads:

LCWTECM(G|x, y) =∑
i

si(G) log yi + ki(G) log xi+

∑
i<j

log

(
log(yiyj)

t
(
log(yiyj)

)
− xixj

(
yiyj

)t

)
.

(20)

2.4. Spectral entropies

Classical maximum entropy methods are a tool for de-
scribing the ensemble of networks that show on average
the same desired descriptor. However, when considering
the problem of comparing two networks at all scales on
a wide variety of metrics, classical maximum entropy
methods fail in providing a statistically reliable tool, as
one should design and solve a specific maximum entropy
problem for every specific descriptor [16, 39].
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However, it is possible to extend the maximum entropy
approach to networks represented as quantum mechani-
cal systems, by replacing the Shannon entropy with the
von Neumann entropy [16, 19]:

S(ρ) = −Tr [ρ log ρ] , (21)

where ρ is the von Neumann density matrix, a Hermi-
tian and positive definite matrix with unitary trace, that
admits a spectral decomposition as:

ρ =
n

∑
i=1

λi(ρ) |φi〉 〈φi| (22)

for an orthonormal basis {|φi〉} and eigenvalues λi(ρ).
By application of the maximum entropy principle where
the networks in the ensemble are constrained to have on
average the same Laplacian matrix, one finds that the
role of classical probability in this case is replaced by the
following density matrix:

ρ =
e−βL

Tr
[
e−βL

] (23)

that describes the result of constraining the diffusion
properties on the networks, and is in the form of a quan-
tum Gibbs-Boltzmann distribution. The denominator
Z = Tr

[
e−βL] is the so-called partition function of the

system (to be distinguished from Z in Eq. 4 of the null
models), which can also be expressed as the sum of the
eigenvalues of the matrix e−βL as follows:

Z = Tr
[
e−βL

]
=

n

∑
i=1

e−βλi(L) (24)

with λi(L) the eigenvalues of the Laplacian L. The von
Neumann density matrix defined in Eq. 23 is based on
exponentially scaled eigenvalues of the graph Laplacian,
and contains contributions at different scales of patterns
in the network. Yet, the role of the Lagrangian multi-
plier β is far from trivial [19]. The β parameter can be
interpreted as an inverse temperature (in classical statis-
tical mechanics) or a normalized time [19] in modeling
heat diffusion over the network. In the β→ 0 limit, the
density matrix can be expanded linearly as ρ ∼ I − L
and carries information about local connectivity patterns.
On the other hand, for β → ∞, the diffusive behaviour
is governed by the smallest non-zero eigenvalue of the
Laplacian λ2, hence ρ ∼ e−βλ2 |φ2〉 〈φ2|, where |φ2〉 is
the eigenvector associated to λ2. This eigenvector is also
called the Fiedler eigenvector and embodies the large
scale structure of the graph [48].

The Laplacian spectrum encloses several critical topo-
logical properties of graphs [49–52]. For instance, the
multiplicity of the zero eigenvalue corresponds to the
number of connected components, while the multiplicity
of each eigenvalue is related to graph symmetries [51–53],
and the concept of expanders and isoperimetric number

are connected to the first and second-largest eigenval-
ues [54, 55]. Moreover, the graph Laplacian appears often
in the study of random walkers [56, 57], diffusion [58],
combinatorics [59], and a large number of other applica-
tions [51, 59]. For this reason, the spectral entropy, which
is ultimately based on Laplacian eigenvalues, describes a
large number of typical properties of the network, aggre-
gated in a single quantity.

For the sake of comparing two different networks rep-
resented by the density matrices ρ and σ here we use
the notion of von Neumann relative entropy [16, 18] that
reads:

S(ρ‖σ) = Tr [ρ(log ρ− log σ)] (25)

This definition encloses the concept of network similarity,
as the relative entropy is a positive quantity, and is zero
if and only if ρ = σ. For this reason, and in the rest of
this manuscript, we quantify the similarity between a
network and its randomized counterpart by means of
von Neumann relative entropy S(ρ‖σ). Additionally, it
is straightforward [16, 19] to show that the minimum
of relative entropy corresponds to the maximum of a
log-likelihood functional, logL, defined as

logL = Tr [ρ log σ] . (26)

Similarly to Eq. 5, in the spectral framework it is pos-
sible to decompose the log-likelihood into the sum of
Hamiltonian and free energy. This happens in equilib-
rium conditions where the density matrices ρ and σ are
in the form of a Gibbs distribution like specified in Eq. 23.
In particular, denoted ρ and σ as the density matrices of
the empirical network G? and of its randomized coun-
terpart G with Laplacian L, respectively, the resulting
spectral log-likelihood from Eq.26 takes the following
form:

logL = −Tr [ρL]− log Tr
[
e−βL

]
. (27)

Here we compare networks with their randomized
counterparts sampled from the maximum entropy mod-
els CWTERG and CWTECM using spectral entropies.
We leverage spectral entropies, in order to resolve differ-
ences between networks at different scales governed by
the diffusion parameter β. Indeed, graph models that
preserve the local features (like nodal strength and de-
gree) exhibit comparatively similar spectral entropies to
those of the empirical network in the regime β→ 0. Con-
versely, mesoscopic structures that cannot be modeled by
solely constraining local features, will result in different
von Neumann entropy S in the large β regime.

This concept is illustrated in Figure 2, where a highly
regular network and its randomized counterpart are de-
picted, together with their von Neumann entropies, over
a large range of the β parameter. The orange line in
Figure 2A, describes the entropy S of the modular net-
work. A large plateau indicates the tendency of a ran-
dom walker to remain trapped in medium-size highly
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dense subset of nodes: its height is indicative of the log-
arithm of the number of modules B. On the other hand
in the two extreme β regimes, entropy tends to its max-
imum or minimum attainable values, log n or log C re-
spectively, where C is the number of weakly connected
components. A degree-preserving randomized network
has more uniform diffusion properties instead, as testi-
fied by the sharply falling blue dashed curve, where no
specific mesoscopic pattern can be found. In the β→ 0
limit, diffusion is only limited to the local neighborhood
of nodes, hence, the orange and blue curves look similar.
With a physical metaphor, random walkers spend more
time at increasingly larger and isolated structures of the
modular network, from small clusters to larger modules
(Figure 2B). Finally, at steady-state β→ ∞ both the two
curves converge to the global structure, only specified by
the number of connected components.

The concepts and models exposed in this section are
implemented in the open source package networkqit, writ-
ten in Python.

3. DATA AND PREPROCESSING

For the purpose of this study we selected publicly
available resting-state empirical networks as benchmarks
to test this new theoretical framework.

3.1. Resting-state network

To evaluate the effects of different thresholding on
the network structure, we have chosen a resting-state
network computed as a group average of 27 healthy vol-
unteers (mean age 24 yrs.) and described in Ref. [60],
alongside with the ethical statements. This functional
connectivity network is a popular benchmark for test-
ing graph-theoretical methods, and was chosen to en-
able direct comparison with previous literature. The
connectivity matrix is available at Ref [61]. Functional
data were acquired with a Siemens Tim Trio 3T scanner,
with a TR=2 s, TE=31 ms, voxel size 3.5× 3.5× 3 mm,
for a total of 153 volumes recorded for 5 minutes and
6 seconds. Regional time-series were extracted for 638
nodes using Crossley’s parcellation scheme [60] , head
rotations and translations together with their derivatives
and mean cerebrospinal fluid time series were regressed
and band-passed (0.01–0.1 Hz). The functional connec-
tivity matrix was derived computing pairwise Pearson
correlations, normalized by the Fisher transform, and
finally across subjects. The network corresponds to the
unthresholded version made publicly available through
the Brain Connectivity Toolbox (BCT, [62]). To assess the
effect of thresholding, we applied a range of different
absolute thresholds, from t = 0.1, to the point where
the network remains fully connected.Above this thresh-
old, nodes start detaching from the main largest con-
nected component, reflecting the hierarchy of modules

comprised in the network [63]. Here, absolute threshold-
ing corresponds to the removal of all edges with weight
wij < t where t is a real positive number. The point
where the network breaks apart is dubbed percolation
point. Thus, with the term percolation threshold we
mean the highest value of absolute threshold t? such that
the undirected network remains connected, i.e. it com-
prises a single connected component. The percolation
analysis of the Crossley network is shown in Figure 3.

3.2. Motion and motion correction

To study the effects of motion, we selected neu-
roimaging data from the MPI - Leipzig Study for Mind-
Body-Emotion Interactions project (LEMON, [64]), ob-
tained from the OpenfMRI database, accession number
ds000221. Ethical statements are present in the original
references by the groups who performed the experiments.
Given the growing concern in the neuroimaging litera-
ture regarding the effects of head motion on resting-state
functional connectivity data [65], and the impact of dif-
ferent motion-correction techniques [31], we decided to
explore the performance of the two null models over
matrices containing different degrees of motion and dif-
ferent preprocessing pipelines. Indeed, according to re-
cent findings, even very small head movements (0.2 mm)
can substantially affect functional connectivity networks,
increasing spurious correlations and altering its under-
lying topology [29, 65]. The use of this large data-base
has enabled us to select subgroups of subjects with dif-
ferent levels of motion and adequate size for a significant
between group comparison.

From this dataset, participants were selected according
to the age range; only participants ranging from 20 to
30 y.o. were included in our study, to avoid age effects
in subsequent analyses. All MRI data were acquired
with a 3T scanner (Magnetom Verio, Siemens Healthcare,
Erlangen, Germany), with the following parameters TR
= 1.4 s, TE = 39.4 ms, for a total of 657 volumes, resulting
in 15 minutes and 30 seconds of recording. A total of 117
subjects were selected. Structural and functional images
were preprocessed with FSL (v 5.0) [66]. High-resolution
structural images were registered to the MNI template
and segmented (fast segmentation), separating white
matter and ventricles masks. Functional preprocessing
included motion correction and realignment (mcflirt),
coregistration to the structural image using boundary
based registration (BBR) and then normalized to the MNI
template. For each participant, we extracted regional
mean time series from 638 parceled areas, based on the
same template employed for the other networks already
addressed in the present study. A Butterworth bandpass
filter between 0.01 and 0.1 Hz was applied to all the time
series.

For the purposes of the study, all participants were
divided into three groups according to their degree of
motion (Low, Medium, and high-motion), measured as
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Figure 2. Von Neumann spectral entropy of a highly-ordered network (orange), and its randomized, degree preserving counterpart
(blue). Panel A. For small values of β the spectral entropy reaches its maximum value S = log n, while in the large β limit it
tends to the logarithm of the number of connected components (log c, zero for weakly connected graphs with c = 1 components).
Intermediate values of β highlight mesoscopic structures. The height of the plateau is related to the overall modularity of the
network, while its positioning on the horizontal axis depends on network links density. Differently from the highly regular ring
of cliques (orange), the randomized network (blue) shows no structure at all scales, hence its von Neumann entropy decreases
rapidly. Panel B shows that low β correspond to local features while large β describes large scale features.

Figure 3. Percolation analysis for the healthy resting state
dataset of 638 nodes, described in Crossley et.al [60]. The gray
curve indicates the size of the largest connected component
as a function of the threshold. The blue lines correspond to
threshold values from 0.1 to 0.5, the orange line is the percola-
tion threshold, where the largest connected component starts
breaking apart.

the proportion of outlier volumes present within the
time series. To evaluate the motion level of each subject,
Framewise Displacement (FD) was computed according
to Power [65]. Timepoints were flagged as outliers af-
fected by motion when FD > 0.3mm. Criteria for group
subdivision, decided after careful inspection of the data,
were the following:

• Low-motion (N = 39): less than 1% data affected.

• Medium-motion (N = 39): data affected between
1% and 5%.

• High-motion (N = 39): more than 5% data affected.

The three groups were balanced for age and sex, but
different for in-scanner motion.

Based on the growing debate related to the best noise-
correction technique to apply on resting-state data, we
tested two different pipelines, plus one pipeline where
no de-noising strategy was applied. We selected and
analyzed the results on the following pipelines:

• P0: no motion-correction technique applied be-
side rigid image realignment carried out with
mcflirt [67];

• FIX: based on the FMRIB trained classifier of Inde-
pendent Component Analysis, components related
to noise (FIX, [68]), extracted from single-subjects
time series;

• 9P: a common method that requires the regression
of different factors, such as 6 movement parame-
ters, the average signal extracted from white matter
and cerebrospinal fluid, plus the regression of the
global signal (GSR), measured as the average of
all the voxels of the brain extracted from subject-
specific brain masks.

Before the regression of all the confound parameters
from subjects’ time series, a Butterworth bandpass fil-
ter of 0.01 and 0.1 Hz was applied to all the regressors,
avoiding reintroduction of signal related to nuisance co-
variates [69].
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Altogether, we specifically selected pipelines based
on different principles. One strategy relies on indepen-
dent components classification (FIX), the second includes
the regression of the global signal (9P), a controversial
practice. As a reference, for the simple evaluation of
pure effects of motion over the architecture of the func-
tional network, we considered a pipeline where only the
mandatory image preprocessing steps (realignment, nor-
malization, coregistration, filtering) have been applied
(P0).

Differences among groups in terms of connectivity
strength were measured by means of simple t-tests. Over-
all functional connectivity strength in every network was
addressed as the mean of all positive links [10]. From
an effective pipeline we would expect a reduction in the
differences induced by motion in the three groups. At the
same time, we would expect that the attenuation of these
differences would not alter the topological structure of
the functional network. Conversely, an excessively ag-
gressive motion-correction approach may also remove
genuine correlations, thus erasing large-scale network
structure.

4. RESULTS AND DISCUSSION

4.1. Null model fitting

As a first application of the models and framework
exposed in the previous sections, in Figure 4 we report
the results of the maximum likelihood estimation of the
Continuous Weighted Enhanced Configuration and of
the CWTERG models in the network of healthy subjects
(Crossley, [60]) described in section 3 3.1.

The fully-dense network was thresholded at perco-
lation level, corresponding to a links cut-off value of
t = 0.55 (Figure 4A). The maximization of log-likelihood
resulted in the optimal parameters x?, y? defining the
link probability pij (Fig. 4B) and the expected link weight
〈wij〉 (Figure 4C), as defined in equations 16 and 17.

The empirical degree and strength sequences are de-
picted in Fig. 4E,F compared to the reconstructed degrees
and strengths from the model. In order to quantitatively
assess the level of reliability of the estimated parameters,
we fitted a linear model between empirical and model
networks. The results are shown in the insets of Panels E
and F of Figure 4. The regression slope of the degrees is
very close to identity α = 0.99 with a very high R2 coeffi-
cient. The strength reconstruction is also very accurate
with a regression slope of 1. Panels G and H of Figure 4
demonstrate the difference between the optimal models
(CTWERG and CWTECM) in terms of spectral entropies
curves and relative entropies as a function of the scale pa-
rameter β. The spectral entropy of the CTWERG model
fits that of the empirical network only at local scale, and
drops rapidly for larger betas. Conversely, the spectral
entropy of the optimal CTWECM closely matches its em-
pirical counterpart for a wide range of beta, with the

exception of the largest scales. This behaviour indicates
that fixing the degree and strength sequence represents a
strong constraint, which determines the network struc-
ture at the meso-scale. Spectral entropy at large scale
reflects the network’s modular organization, which can-
not be accounted for by local constraints.

4.2. Effects of thresholding

Here we use these null models within the theoretical
framework of spectral entropies to explore the effects
of network sparsification on the structure of functional
connectivity networks.

Specifically, we applied different levels of absolute
thresholds to the empirical network and to the models
(from t = 0.10 to the point where the network breaks
apart). Hence, we computed the spectral entropies of
thresholded networks and corresponding null models,
for different values of β. We then used relative entropy
to quantify the information-theoretic distance as a func-
tion of threshold. The hypothesis is that the distance
between the empirical network and its maximally ran-
dom counterpart depends on the sparsification threshold,
and that there may exist an optimal threshold value that
maximizes this distance, striking the optimal balance be-
tween removal of spurious correlations and undesirable
suppression of structural information.

The results are summarized in Figure 5, which shows
spectral and relative entropies for the empirical network
and both null models at various threshold levels. Firstly,
we observe that at lower threshold levels (depicted in
light blue, Fig. 5) the relative entropy decreases sharply
as a function of β, a result of faster diffusion time. Indeed,
lower threshold levels correspond to denser networks,
and consequently faster diffusion. Decreasing network
density results in a right-shift of spectral entropy curves
for all networks, as shown in Figure 5A,C. However,
the effects of thresholding are different in the empirical
network and in its null models, a result of the structure of
the functional connectivity network that is not accounted
for by its randomized counterparts.

Indeed, large-scale structures of the empirical network
emerge at higher thresholds (darker blue), as reflected in
Figure 5A by the presence of “information shoulders” i.e.,
plateaus in the spectral entropy curve. This phenomenon
is not equally present in the two null models. Should the
thresholding procedure highlight mesoscopic structures
only accounted by local constraints, we would expect
similar high values of S on both the thresholded ran-
dom counterparts of the empirical graph. However, the
CWTERG shows no indications of a high-level organiza-
tion at any threshold, as seen by the sharply falling en-
tropy within a very small range of β (Figure 5C). Indeed,
as previously demonstrated, the CWTERG destroys net-
work structure by completely shuffling nodes’ neighbor-
hoods. As a result, the diffusion process rapidly spans
the whole network, as every node has uniform probabil-
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Figure 4. Continuous Weighted Thresholded Enhanced Configuration Model fitted on a real functional network. Panel A.
The empirical functional connectivity matrix, thresholded at percolation with rows and columns reorganized by the maximum
modularity community structure, to highlight the community structure as overlaid on a brain in Panel D. Panels B,C. the link
probability and expected link weights as from Eqs. 16,17. Panels E,F. the reconstructed degrees and strength as sums over the rows
of the link probabilities and expected weights matrices. On the horizontal axis the empirical degrees (strengths), on the vertical
axis the model degrees (strengths): R2 and regression slopes are shown as inset. Panel G. the spectral entropy of the network (blue
line), CWTECM null model (orange dashed line) and CWTERG null model. Panel H. relative entropy of the network with respect
to CWTECM (orange line) and CWTERG (green line). Link probability and expected weights for the CWTERG are not shown, as
they are scalar numbers.

ity of being connected to every other node.
On the other hand, the spectral entropy of the

CWTECM closely corresponds to the one of the empir-
ical network over a broad range of β values. Signifi-
cant differences only appear at large scales for increasing
thresholds. This result shows that degree and strength
sequence constrain local and medium-scale structures.
In accordance with the results of reference [23], we ob-
served that the large-scale community structure is the
only feature that is not accounted for by local properties.

This same phenomenon is also reported in Figure 5B,D
where the relative entropies are shown for both models.
The relative entropy for the CWTERG attains a higher
maximum at slightly smaller values of β than for the
CWTECM. Intuitively, it takes less time for a random
walker to explore a random network than a complex net-
work where modules and local structures may hamper
the diffusion process. Moreover, for both cases, relative
entropies accentuate the effects of thresholding, as they
increase with increasing sparsity level, peaking around
the percolation point, just before the network starts break-
ing apart.

The results in Figure 5 demonstrate that, in both cases,
the maximal spectral entropy difference of the empir-
ical network from its null model is found around the
percolation threshold.

Taken together, these results demonstrate the beneficial

effects of sparsification to enhance and retrieve the net-
work’s modular structure. Importantly, we find that this
effect is maximal at percolation threshold, above which
the network starts breaking apart into unconnected sub-
units. At low threshold levels, the empirical network
is remarkably close to a random network with similar
local features. Only at higher thresholds its meso- and
large-scale structure emerges, and difference from the
null models become apparent. Interestingly, the pres-
ence of an optimal threshold appears to be independent
of the specific null model. These results are consistent
with previous empirical findings in model networks [70]
and provide a theoretical foundation to the use of spar-
sification methods to study the large-scale topology of
functional connectivity networks.

4.3. Effects of motion and motion correction

We have also applied the concept of an information-
based comparison with null models to investigate the ef-
fects of motion and motion correction pipelines typically
used in fMRI studies. A major debate in the resting-state
functional connectivity community concerns the effects
that different preprocessing pipelines can have over the
functional time series [31, 65]. Here, our goal is to inves-
tigate to what extent motion could render the network
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Figure 5. Spectral entropies and relative entropy of the Crossley’s functional connectivity network compared to its randomized
counterparts. Blue shaded lines represent networks thresholded at absolute values from 0.1 to 0.5. Orange lines denote the network
at percolation. Solid lines are referred to the empirical network. Dashed lines are referred to the randomized models. Panels A,B
show the results with respect to the CWTECM model. Panels C,D show the results with respect to the CWTERG model.

more or less similar to its random counterpart, and the ef-
ficacy of different pipelines and thresholding procedures
in mitigating the effects of motion. We used the same
atlas with 638 parcels that was used in the previous ex-
amples, and we applied the same model fitting and com-
parison techniques to resting-state dataset with different
degrees of motion and different motion-correction tech-
niques (see Data and Preprocessing, section 3). Specifi-
cally, we considered three pipelines: P0 with no motion
correction, a second pipeline based on FIX [68], and 9P, a
pipeline that includes global signal regression [31]. We
applied these pipelines on three motion groups: low,
medium, and high-motion (see Data and Preprocessing,
section 3). These three groups are defined on the basis
of Framewise Displacement (FD), a metric commonly
used to evaluate the amount of head motion in rsFC [28],
that is computed as the sum of the absolute values of
the derivatives of the six motion parameters. Power and
colleagues [71] showed that even small head movements
(FD > 0.15 mm) could cause significant changes affecting
all voxels in the brain. These movements can be visually
identified utilizing so called grayplots, as shown in Fig-
ure 6. Grayplots depict the signal intensity of every voxel
in the brain over time. Here, we report three examples
of how the magnitude of head movements impacts the

whole time series. In Figure 6 one can appreciate the
effects of motion as abrupt changes of voxel intensities
in correspondence of head movements. These artifacts
give rise to spurious correlations at different scales.

The three groups here evaluated are perfectly balanced
for age and gender, with exactly the same acquisition
procedures, but different for in-scanner motion. Thus, at
the group level, we would expect these participants to
share same global functional connectivity characteristics.
Possible differences should be driven by the presence of
motion.

Firstly, we evaluated the effects of motion on func-
tional connectivity strength. In line with previous re-
ports [31], we observed a substantial increase in func-
tional connectivity induced by motion in P0 (Figure 7).
Figure 7A shows that the distribution of link weights
for the medium and high-motion groups is right-shifted
compared to the low groups, reflecting higher correlation
strength. At the subject level this shift is highly signifi-
cant across all groups (medium > low: p < 10−5; high
> low: p < 10−4). Through the application of specific
denoising strategies we sought to investigate to what
degree this spurious difference in functional strength
between groups can be reduced. The histograms de-
picted in panels B and C of Figure 7 show that both
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Figure 6. Framewise displacements of the three motion groups together with the gray plots of the fMRI scans. The orange line at
FD 0.3mm represents the limit of outliers.

pipelines appear to significantly decrease the differences
in edge-weight distribution at the group level across
different motion conditions. Specifically, the pipeline
based on independent components classification (FIX)
substantially reduces the right shift of the medium and
high-motion groups that was apparent with P0. Impor-
tantly, in this condition the edge-weight distribution of
the medium-motion group almost completely overlaps
with the low-motion curve. Yet, at the individual level
the functional connectivity strength, measured as the
mean of all positive edges in the graph, shows statisti-
cal difference (medium > low: p = 0.007). In contrast,
the histogram representing the edge-weight distribution
extracted from the high-motion group still presents a
highly significant right shift reflecting higher functional
strength (high>low: p < 10−3). A different pattern is
revealed in the strength distribution after the application
of GSR. In this case, all curves are highly overlapping,
indicating similar functional connectivity across the three
groups. This is revealed by the lack of significant differ-
ences at the individual level in edge strength (high >
low: p = 0.8; medium > low: p = 0.48). As a matter
of concern, all three distributions are centered around
zero. Indeed, after GSR the number of negative corre-
lations dramatically increases, involving almost half of
the edges within the network. These observations are
in line with previous reports and concerns related to the
controversial application of this denoising approach [31].

In Figure 8 we show the spectral entropy curves and
relative entropies for the three pipelines considered. In
light of the previous findings, we present here only the
results related to the CWTERG, as the constraints im-
posed by the CWTECM also affect larger scales, and may
reduce sensitivity to the effects of motion at a mesoscopic
level. Panels A,B and C show the von Neumann entropy
curves of the differently pre-processed resting-state net-
works across three degrees of motion. In this specific
case, we applied a single threshold, namely the lowest
absolute threshold that guarantees connectedness in all
three motion groups within the same pipeline (t = 0.44
for P0, t = 0.29 for GSR, t = 0.25 for FIX). We can observe

that, when considered at the same absolute threshold, the
low-motion group always shows higher spectral entropy
across the entire β range. This is especially evident in
the P0 pipeline. It appears, indeed, that movement arti-
facts significantly affect the mesoscopic patterns within
the empirical network. This trend is confirmed by the
smaller entropy values of the high-motion group com-
pared to the medium and low-motion groups, which
is observed across all analysis pipelines. In Figure 8A,
this point is further highlighted by the lack of a clear-cut
modular structure in both the medium and high-motion
groups, whereas a shoulder present at medium scales
for the low-motion group denotes a different degree of
inter-modular density. A similar trend suggests that head
movements tend to make the network closer to its null
model, i.e. more random. Popular correction techniques
mitigate this confounding effect, decoupling functional
connectivity and motion.

Panels B,C of Figure 8 show spectral entropy curves
for the pipelines FIX and GSR, respectively. As already
discussed, both pipelines importantly reduce the differ-
ence in spectral entropy between the three groups. It is
noteworthy that the application of the FIX pipeline in
Figure 8B highlights the manifest presence of more promi-
nent shoulders in the entropy curve in all groups, again
a signature of mesoscopic organization. From this view,
the cleanup of resting-state data through independent
component analysis appears to emphasize the global
structure of the network, in presence of head movements.
The same cannot be appreciated in the groups prepro-
cessed with a GSR pipeline: differences in spectral en-
tropies are reduced, but no clear large-scale structure
seems to emerge from these curves.

From the relative entropies generated over several dif-
ferent absolute thresholds, we can appreciate a strong
effect related to the sparsification procedure. In Panels
D, E, F of Figure 8, the relative entropies of the high-
motion groups for all pipelines and their respective null
models are presented. In the interest of space, we re-
port here only the high-motion group, which is more
affected by head movements and shows more evidently
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the beneficial effects of the application of different prepro-
cessing pipelines and thresholds. With the application
of increasing thresholds, the distance of the empirical
network from its random counterpart with same density
gets larger, and it reaches maximum at percolation, de-
spite the presence of motion and independently of the
pipeline applied. Specifically, we can observe a higher
relative entropy at percolation for the pipeline based on
GSR (Figure 8F). This preprocessing technique notably
benefits from the thresholding procedure, considering
the substantial difference between the maximum rela-
tive entropy attained at percolation and its values for
denser networks. In line with previous studies [31], the
main effect of GSR is an increase in network modular-
ity, mirrored by greater values of relative entropies at
large scales, suggesting a well organized high-order ar-
chitecture. Yet, the lack of an “information shoulder” in
the spectral entropy curve suggests the presence of a
more uniform structure, with similar intra-modular den-
sity across different communities, and similar size of the
modules. Importantly, we note that thresholding empha-
sizes meso- and large-scale structure in combination with
FIX (Fig. 8F), but also in the absence of any motion cor-
rection (Fig. 8D). Indeed, network sparsification appears
to have a large effect per se, even for P0, in separating the
empirical network form its null model. Interestingly, rel-
ative entropy between empirical network and null model
increases with the threshold, and reaches its maximum
at percolation. This last observation further supports the
application of a thresholding procedure, in contrast with
recent literature that suggests that sparsification should
be avoided [24–27]. Our results demonstrate the impor-
tance of application of a threshold, irrespectively of the
pre-processing pipeline.

5. CONCLUSION

The nature of resting state functional MRI networks
based on pairwise association measures, like the Pearson
correlation, is of a dense square matrix. Several experi-
mental factors are involved in shaping the properties of
these matrices and no consensus exists in the literature
on the best practice for the definition and processing of
these matrices and the associated connectivity graphs. In
the present work we have introduced a novel theoreti-
cal framework than contributes to shed light on several
open issues in the analysis of brain functional connec-
tivity networks. Firstly, we define the CWTERG and
CWTECM null models, which enable extension of the
maximum entropy random graph formalism to networks
with threshold and real positive weights, as those en-
countered in fMRI. Secondly, we have shown that the
spectral entropies framework can be applied to the differ-
ences of networks with respect to their random versions
from local to global scales.

Leveraging this new approach, we studied the ef-
fects of thresholding procedures and motion-correction

pipelines. The application of a threshold to resting-state
networks is a contentious step debated in the field.

Here, by means of advanced information theory tools,
we found that complete functional connectivity networks
present a high degree of randomness, due to the contribu-
tion of spurious correlations to weak links, that conceals
their large scale structure. Sparsification of the network
is an essential step to differentiate networks from their
null model and is highly beneficial to study the large
scale architecture of real-world networks.

Further, we demonstrated from first principles the exis-
tence of an optimal thresholding point, where the empir-
ical network is maximally distant from random. Specifi-
cally, we found that application of a percolation threshold
strikes the optimal balance between the removal of spuri-
ous connections and genuine information, thus maximiz-
ing the information that can be extracted from the system.
The importance of sparsification can also be appreciated
through the evaluation of the effects of motion and differ-
ent preprocessing pipelines. Motion increases random-
ness and reduces spectral entropies across the whole β
domain, bringing the network closer to its random coun-
terpart. The effects of motion are mitigated by popular
motion-correction approaches. However, we found that
network sparsification has a beneficial effect irrespec-
tively of the specific denoising strategy applied, and that
the percolation threshold maximizes the distance of the
empirical network from its randomized counterpart.

In conclusion, the novel framework of spectral max-
imum entropy networks provides a new and powerful
approach that significantly extends the repertoire of tools
for the study of functional connectivity networks at mul-
tiple scales.
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Figure 7. Effects of motion and commonly applied motion-correction techniques over the distribution of functional connectivity
strength. Panel A depicts effects of motion as assessed by means of a pipeline where no motion correction strategies has been
applied (P0). As a consequence of motion, we observe strong changes in the functional connectivity strength across the three
groups (medium>low: p < 10−4; high¿low: p < 10−5). Panel B represents the effects of the application of FIX over edge-weight
distribution. Differences among groups are still present but attenuated (medium>low: p = 0.007; high>low=p < 10−3). Panel C
shows the effects of application of GSR. Differences among groups are not present (medium>low: p = 0.48; high>low: p=0.8).

Figure 8. Panels A,B,C show the spectral entropies of networks for the pipelines 0,FIX and GSR (solid lines), together with their
randomized counterpart (CWTERG, dashed lines) over all motion groups. The relative entropies of networks from the high-motion
group are shown in panels D, E, F where the blue shades correspond to increasing absolute thresholds, while the orange lines
correspond to percolation threshold, which has the maximum relative entropy at large scales.
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