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Abstract

The discovery of the CRISPR-Cas9-based gene editing method has opened un-
precedented new potential for biological and medical engineering, sparking a growing
public debate on both the potential and dangers of CRISPR applications. Given the
speed of technology development, and the almost instantaneous global spread of news,
its important to follow evolving debates without much delay and in sufficient detail, as
certain events may have a major long-term impact on public opinion and later influ-
ence policy decisions. Social media networks such as Twitter have shown to be major
drivers of news dissemination and public discourse. They provide a vast amount of
semi-structured data in almost real-time and give direct access to the content of the
conversations. Such data can now be mined and analyzed quickly because of recent
developments in machine learning and natural language processing. Here, we used
BERT, an attention-based transformer model, in combination with statistical methods to
analyse the entirety of all tweets ever published on CRISPR since the publication of the
first gene editing application in 2013. We show that the mean sentiment of tweets was
initially very positive, but began to decrease over time, and that this decline was driven
by rare peaks of strong negative sentiments. Due to the high temporal resolution of
the data, we were able to associate these peaks with specific events, and to observe
how trending topics changed over time. Overall, this type of analysis can provide valu-
able and complementary insights into ongoing public debates, extending the traditional
empirical bioethics toolset.

Keywords CRISPR, Natural Language Processing, Sentiment Analysis, Digital Methods,
Empirical Bioethics, Social Media

1 Introduction

Genome editing has many potential applications, ranging from gene therapy [1] to crop
enhancement [2] and production of biomolecules [3, 4]. While it has been possible to
modify the genomes of eukaryotic cells since the 1980s, traditional methods have proven
to be rather impractical, inaccurate or impossible to use at scale [5, 6, 7, 8]. Accurately
targeted gene editing has only become possible within the last decade [9, 10] using a
CRISPR-Cas9 based method. In 2013, the method was further developed to be used on
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human cells [11, 12], which allowed for the first successful experiment to alter the human
germline DNA of non-viable embryos in April 2015 [13]. The experiment, conducted by a
group of Chinese scientists, raised ethical concerns among researchers and the general
public about the potential far-reaching consequences of introducing germline modifica-
tions [14, 15]. Such ethical concerns include unexpected side effects on the evolution of
humans, as well as cultural and religious arguments. In November 2018, Jiankui He an-
nounced the genetic editing of two viable human embryos with the goal of introducing HIV
resistance [16]. The work came to be known to a global public under the term “CRISPR
babies”, and was condemned by the scientific community as unethical, unnecessary and
harmful to the two babies [17, 18].

As the costs of the technology drop further and usage becomes more widespread,
governments and policy makers are faced with the challenging task of posing adequate
ethical restrictions to prevent misuse. In order to gain time to introduce appropriate ethical
frameworks, some scientists have called for a moratorium on genetically editing the human
germline [19, 20, 21]. Previous studies on opinion towards GMO plants highlight how
certain events or scandals (e.g. with respect to food safety) may have a major long-term
impact on public opinion and later drive policy decisions [22, 23, 24, 25]. Understanding
the public attitudes towards topics such as CRISPR is therefore of paramount importance
for policy making [26, 27].

Several surveys have been conducted with the goal of evaluating the publics percep-
tion of CRISPR and genetic engineering in general [28, 29, 30, 31, 32]. Such surveys
have found that participants are largely in favor of the technology used for somatic pur-
poses (e.g. in the context of treatment) but less so for germline editing, especially if this is
not for clearly medical purposes. Additionally, the studies underline certain demographic
correlations, e.g. that women, people belonging to ethnic minorities, and religious com-
munities are more critical about the potential applications of CRISPR [30, 28]. Somewhat
unsurprisingly, the surveys also show that public views are not always aligned with ex-
pert opinions [32]. A recent study that explored coverage of news articles on CRISPR in
North America between 2012 and 2017, found CRISPR to be overwhelmingly portrayed
as positive and potentially overhyped in news media compared to the publics views [33].

In this study, we provide the first analysis of a complete dataset of all tweets about
CRISPR published over a six and a half year period. The analyzed timespan includes the
first experiment of CRISPR on human cells in 2013 but also recent events, such as the
first genetic editing of viable human babies in November 2018. Furthermore, we make
use of recent advances in text classification models, such as BERT [34], which use semi-
supervised machine learning to generate a high-resolution temporal signal of the sentiment
towards CRISPR over the observed timespan. By combining multiple text classification
methods, we obtain results which can also be linked back to previous studies conducted
with traditional methods, such as surveys.

2 Methods

Our analysis consists of four different, explorative approaches, all of which build upon
the sentiments of the tweets. Therefore, sentiment analysis represents the core of our
analysis. In order to determine the sentiment for the entirety of tweets published over the
last six and a half years, we trained a predictive model on a previously manually annotated
subset of the data. The process can be divided into five main tasks: Data collection,
preparation, annotation, training, and analysis, which we describe in the following (see
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Figure 1 for an overview of the process).
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Figure 1: Overview of the data processing pipeline. Raw data is preprocessed by multiple filtering
steps f0−2 into different forms, denoted as D0−2. From these data sets, a sample S0 is drawn and
subsequently annotated into A0−2. Finally, three models (MR, MS, and MO) are trained on the
annotated data and used to predict the data set D1, resulting in predicted data P0−2. Please refer to
the text for details and a description of all filtering steps f0−7.

2.1 Data collection

The data set (denoted as D0 in Figure 1) for our analysis consists of all tweets (includ-
ing retweets, quoted tweets, replies, and mentions) that match the character sequence
CRISPR (in any capitalization), have been detected to be in English language and were
published between January 1, 2013 and May 31, 2019. We retrieved this data either
through the Twitter Streaming API or through GNIP, a Twitter subsidiary which allows ac-
cess to historical data which was not retrievable through the Twitter Streaming API. The
three filtering conditions mentioned above were used as parameters in the retrieval through
Twitter APIs (denoted as f0) as well as for the requested data from GNIP.

The number of tweets varies greatly over time, ranging from 4818 in 2013 up to 445 723
in 2018, totaling 1 508 044 tweets by 348 502 distinct users (also refer to Table A.1). Since
the focus lies on the overall evolution of the discourse provided by aggregated information,
the study considers only the text in the tweet objects and ignores user-related information
(such as location) or media content (such as photos or videos). In addition, any occur-
rences of Twitter handles and URLs in the text were anonymized (replaced by @<user>
and <url>) to protect individuals.

2.2 Preparation

In a preparatory step, tweets suitable for annotation were selected from D0. As an inclusion
criterion, only tweets with at least three English words (after removal of stop words) were
considered (f1).

Although a tweet with less than three non-stop-words may express a sentiment, we
chose this threshold to ensure that the annotators had at least a minimal context to deter-
mine if the tweet was in fact relevant to the topic, and what sentiment it expressed. The
word count was determined by the help of NLTKs TweetTokenizer and English word and
stop word corpora [35]. The resulting dataset D1 (n = 1334 114) was used as the basis
for the subsequent analysis. In order to avoid the annotation of duplicates, all retweets,
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quoted tweets, and other duplicates of tweets with the same text were removed, leading to
dataset D2 (n = 433 930).

Next, we selected a random sample S0 (n = 29 238), so that we obtained a more or
less evenly distributed number of tweets over the observed timespan. This was achieved
by binning the data by all 77 months and selecting a constant number of tweets from each
monthly bin. In contrast to a fully random sample, our sampling scheme contained no
oversampling bias with regard to very recent content. Therefore, the generated sample
was more representative of the whole observation period and accounted for the possibility
that the nature of the tweets changed notably over time.

2.3 Annotation

After generating the sample, the selected tweets were annotated through the Crowd-
breaks platform1 [36], which uses crowdsourcing to annotate social media data. The
platform allows for the creation of a question sequence that is then submitted in combi-
nation with a tweet as a task to Amazon Turk (MTurk)2. The question sequence contained
three questions for each task: The first question was on the relevance of the tweet to
the topic of CRISPR-Cas9, allowing “relevant” and “not relevant” as possible answers.
The second question was on the sentiment (“positive”, “negative”, or “neutral”), and the
third question was on the organism (“humans”,“human embryos”,“animals (other than hu-
man)”,“plants”,“bacteria”,“multiple”,“not specified”).

Before submitting the task to MTurk, the availability of the tweet was automatically
checked. This was done in order to respect the users right to either delete their content or
set it to private after the time of data collection. Filtering by tweets which were still available
yielded the sample S1 (n = 22 513), which was subsequently annotated. In order to reach
a consensus, each tweet was annotated by multiple annotators on multiple questions,
resulting in an annotation data set A0 of 226 670 individual answers on 22 492 unique
tweets.

On both the question of relevance as well as the sentiment, the resulting Fleiss kappa
agreement scores [37] were 0.81 and 0.28, respectively (0 denotes chance agreement,
and 1 denotes perfect annotator agreement). In order to detect workers with questionable
performance, the annotators raw agreement was calculated, which denotes the fraction
of the number of actual agreements over the number of possible agreements an annota-
tor had with other annotators. An annotator was considered an outlier if this value was
smaller than three standard deviations from the mean, the annotator had at least 20 pos-
sible agreements with other annotators, and was involved in at least 3 separate tasks. All
annotations by outlier annotators were subsequently removed. Annotations of tweets for
which a unanimous consensus of at least 3 independent annotators could be found were
then merged into a dataset A1 (n = 17 090) containing one label per tweet for each of
the 3 questions. Dataset A1 was used as a training dataset for the relevance classifier.
Annotations belonging to tweets which were labelled as relevant were then exported into
dataset A2 (n=16 822). Dataset A2 was then used as a training dataset for all other trained
classifiers.

1https://www.crowdbreaks.org
2https://www.mturk.com/
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2.4 Training

In order to classify the data with regard to relevance, sentiment and organism, we con-
structed three classifiers, MR, MS and MO, respectively. The classifiers tried to predict
the respective labels from the text of the tweet alone. In the process, we analyzed the
performance of four different classifier models: Bag of Words, Sent2Vec sentence em-
beddings [38] coupled with Support Vector Machines (SVMs) [39], FastText [40], and
BERT [34]. The tokenization and word character encoding process was different for each
model class. In order to evaluate the models, the cleaned annotation data was shuffled and
split into a training (80%, n=4250) and test set (20%, n=1063). After an extensive model
selection process, a fine-tuned version of BERT-large was selected as the best performing
sentiment model with a macro-averaged F1-score of 0.727 (F1positive = 0.827, F1neutral =
0.715, F1negative = 0.639). BERT was also found to be the best performing model for the rel-
evance and organism classifiers, resulting in a macro-averaged F1-score of 0.91 (F1related

= 0.997, F1unrelated = 0.823) and 0.89 (F1humans = 0.873, F1embryos = 0.762, F1animals = 1,
F1plants = 0.889, F1bacteria = 0.909, F1not specified = 0.902).

2.5 Prediction

For the analysis, the best performing model (BERT) for relevance MR was used to predict
dataset D1 and yield the predicted dataset P0 (n=1 334 114) of same length containing
a label for relevance. Next, all tweets predicted as not relevant were removed from P0,
yielding dataset P1 (n=1 311 544). This dataset was then used to predict sentiment and
organism using the models MS and MO, resulting in the final dataset P2.

2.6 Analysis

In our analysis, we used the sentiments in relation to tweet activity (number of tweets),
topics of the tweets (hashtags), organisms the tweets were talking about (predicted), and
themes identified from previous studies on CRISPR mentioned earlier (through regular ex-
pressions), to gain different kinds of insights. Wherever we used sentiments for numerical
calculations, we used +1 for positive, 0 for neutral, and −1 for negative sentiment. Further,
we extrapolated the numbers for 2019 where applicable for better comparison since we
only had data until May 31, 2019. The different parts of the analysis are explained below
in more detail.

The first part of the analysis is concerned with the development of the sentiment in
relation to the number of tweets over time. The detection of temporary deviation from the
general sentiment was of particular interest. While we included all tweets for the analysis
of activity, we excluded tweets with neutral sentiment for the analysis of sentiment to make
deviations more visible. We aggregated activity and sentiments on a daily basis. For
the sentiments however, the sentiment value of a specific day was determined by taking
the mean value of all positive and negative sentiments within a sliding seven day window
centered around that day (± 3 days). We then used scipys module for peak detection [41]
in order to detect events of interest, using a relative prominence cut-off of 0.2. In order to
identify potential sources for the change in sentiment, we manually identified major events
that relate to CRISPR.

In the second part, we used the predictions of the model MO and the sentiments to
compare the development of the sentiment for different organisms. We calculated the
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mean sentiments over a month and excluded all months that did not have at least 100
tweets for the respective organism.

Third, we analyzed hashtags as a proxy for the topics a user was talking about in his
or her tweet. The hashtag CRISPR was excluded from the analysis since CRISPR was
the overarching topic all tweets had in common. We counted the occurrences of every
hashtag per year. We used the exact hashtags and did not group similar hashtags. For
example, the hashtags “crisprbaby” and “crisprbabies” were treated as different hashtags.
We did this due to the difficulty of automatically matching similar hashtags, since they can
be a composition of multiple words that made strategies like stemming not straightforward.
For each hashtag and year, we then calculated the mean sentiment and selected the 15
most common hashtags for each year for further analysis. We then manually compared
how these top 15 topics per year increased and decreased in popularity throughout the
years, as well as how the sentiments for these topics changed.

In the fourth and last part of our analysis, we based our analysis on the earlier con-
ducted studies. We conducted a literature search in scientific databases according to a
predefined search strategy (see SI text C). The search was conducted in the Fall of 2017.
We reviewed the resulting studies and identified the themes where people had a positive
or negative attitude towards CRISPR, or that concerned them. Additionally, we added
themes based on publications and events that occurred between Fall of 2017 and Summer
2019. In order to see if these themes were also present in the tweets, we derived reg-
ular expressions representing the themes (see Table A.2 for the themes and the regular
expressions derived from them). The regular expressions then allowed to automatically
check for matches on the entire data set as a proxy for the presence of a certain theme.
The results of the analysis are presented in the next section.

3 Results

Figure 2 shows a temporal analysis of the predicted sentiments in relation to key historical
events surrounding CRISPR. A sentiment of zero indicates an equal portion of positive and
negative tweets, and the values 1 and −1 indicate a signal with only positive or negative
tweets, respectively. Figure 2A shows the sentiment s between July 2015 and June 2019.
The time period before July 2015 was excluded, as activity was too low for a high-resolution
sentiment signal. The sentiment remains mostly positive with an average of 85% positive
tweets and only 15% negative tweets. Especially over an initial time period until March
2017, the sentiment shows little variation. After that, the sentiment reveals a series of
sharp negative spikes, on two occasions dropping below zero. Over the observed time
period, the sentiment shows a slight negative trend (slope of −0.06 y−1), as indicated by
the linear trend line in orange.

We then compared the sentiment curve to the observed activity surrounding CRISPR
in the same time span, as shown in Figure 2B. Shown are the mean daily counts of the
sample P1 over a sliding window of 7 days. Activity varies considerably with an average
baseline of 1000 tweets per day and peaks of up to 6000 tweets per day.

We detected eight peaks of interest. They are marked with dashed lines in Figure 2B.
When comparing peaks of high activity to the sentiment, it can be seen that peaks of high
activity before mid 2018 did not result in a negative sentiment response. Peaks of strong
negative sentiment started to appear in 2017 but it was not accompanied by the same level
of activity until after 2018.

In a second step, major news events were manually mapped to coinciding peaks (for a
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Figure 2: A) Predicted sentiment towards CRISPR between July 2015 to June 2019. The blue
curve denotes the sentiment s, which is calculated as the mean of the weighted counts of positive
and negative tweets over a centered rolling window of 7 days. The orange curve denotes a linear
fit of the sentiment s. Up until May 2017, the sentiment towards CRISPR was mostly positive with
minor variations. After that, the signal included multiple peaks of negative sentiment, at times with
more negative than positive tweets. Overall, the orange line shows a slight negative trend, with a
slope −0.06 y−1. B) Daily counts of all analyzed tweets. The blue area shows the daily sum of
positive, negative and neutral tweets as the mean within a 7-day centered rolling window. All peaks
above a relative prominence of 0.2 are marked with dashed lines. The peaks a-f denote peaks
which coincide with certain events, which are referenced throughout the main text. The controversy
commonly referred to as “CRISPR babies” marks the event associated with the highest average daily
counts and a strong negative sentiment response (marked as peak e).

full list see Table A.3). A subset of these peaks were marked with letters a-f in Figure 2,
for illustrative purposes. In all cases the most retweeted tweet within days of the peak was
linking a news article describing the event. The events include the first use of CRISPR in
humans by a group of Chinese scientists in November 2016 (peak a), and the US Patent
Office deciding in favor of the Broad Institute (peak b). Both of these events did not lead to
a significant change in sentiment. Peak c coincides with the publication of a study which
reported the correction of a mutation in human embryos [42], causing widespread media
attention and, as before, did not cause a drop in sentiment. However, in July 2018, a
study by the Wellcome Sanger Institute warned about serious side effects, such as can-
cer, which CRISPR could have when used in humans [43] (peak d). This peak led to a
clear negative response in the sentiment index, and marks the first negative peak with
high media attention. When researcher He Jiankui revealed to have created the worlds
first genetically edited babies in November 2018 [16] (peak e), the highest activity was
recorded. Although Hes revelation caused a strong negative signal, the strongest negative
sentiment was recorded shortly after in February 2019 (peak f). This event coincides with
the re-emergence of a news story from August 2017 when biohackers managed to encode
a malware program into a strand of DNA [44].

In order to improve our understanding of the sentiment signal, the data was predicted
with respect to which organism each tweet was about (see methods section 2.6). All
relevant data (n=1 311 544) was predicted by organism into the classes animals (7.6%),
bacteria (2.4%), embryos (4.3%), humans (3.0%), plants (4.9%) and not specified (50.6%).
As expected, more than half of all tweets do not specifically refer to an organism in context
with CRISPR. Animals (e.g. mice for animal testing) are the second largest group, whereas
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human and embryos combined make up for the third largest group. Tweets specifically
mentioning CRISPR in the context of bacteria were rather rare.
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Figure 3: A) Heatmap of monthly sentiments by predicted organism. The sentiments were calcu-
lated as the mean of the weighted counts by sentiment (the weights include −1, 0 and 1 for negative,
neutral and positive tweets) for each month and organism class. Blue and red colors indicate posi-
tive and negative sentiment values, respectively. The sentiments of heatmap cells with less than 100
tweets of that month and organism were left transparent. Tweets classified as relating to animals,
bacteria and plants showed mostly a positive sentiment throughout the observed timespan. For the
human category the sentiment was positive up until November 2018, at which it began to drop. The
sentiment with respect to embryos was much lower and further declined after November 2018. B)
Monthly counts by predicted organism. The counts serve as the basis for the sentiment calculated in
panel A. The monthly counts increased throughout the years for all organisms. A majority of tweets
were of class unspecified. For the classes “human” and “embryo”, occasional months of high activity
was observed.

Figure 3A shows the monthly sentiment for each organism class, which are based on
the monthly counts shown in Figure 3B. Out of all classes, embryos exhibited the most
negative leaning sentiment (with a mean sentiment —s of 0.13). Embryos was also the
class with the strongest variations of sentiment based on the monthly standard deviation
(ffs=0.28). A relatively high sentiment was measured for the classes animals (—s=0.70),
bacteria (—s = 0.64), and plants (—s = 0.61). For the class humans, the average sentiment
was relatively high (—s=0.58) but showed a clear dip in sentiment in the months following
November 2018. The class unspecified showed a slightly lower mean of 0.45 compared to
other classes.

The most frequent hashtags of every year revealed the topics of highest interest and
how they evolved over time (see Figure 4). Naturally, the occurrences of individual hash-
tags increased over the years along with the total number of tweets. Certain very common
hashtags such as #dna, #science, #biotech, or #geneediting and #genomeediting, ap-
peared as top hashtags in multiple years. When relating the hashtags with the sentiment
of the text they appeared in, we can see that most of these common hashtags were used
in the context of a positive or very positive sentiment. The three hashtags with the most
positive sentiments and more than 100 occurrences wer #cancer with a mean sentiment
of 0.85 in 2015, #hiv with 0.90 in 2016, and #researchhighlight with 1.0 in 2019. It is also
notable that #science was among the five most common hashtags in every year except for
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Figure 4: Visualization of the sentiment associated with the most frequent hashtags every year.
For every year, the 15 hashtags with the highest counts for that year are included (the hashtag
#crispr was excluded). The hashtags are sorted by yearly counts (indicated by the bar height) where
the hashtag with the highest count is at the top. The color represents the average sentiment for
the respective hashtag, blue color representing a very positive, and red color representing a very
negative sentiment. If a hashtag is listed in multiple years, the occurrences are linked with a gray
band. The number of tweets with the hashtag is indicated in parentheses next to the respective
hashtag. For the year 2019, the counts were extrapolated from the months until June to the full year.

2013, and was consistently related to a positive sentiment between 0.52 and 0.74.
Only a few hashtags were related to negative sentiments (#crisprbabies in 2018 and

2019, #gmo in 2019, #bioethics in 2015, and #geneeditsummit in 2018). The most promi-
nent was #crisprbabies with a mean sentiment of −0.30 for 2018, and −0.13 in 2019 (see
Table A.4 for a full list of the counts and sentiments of the most used hashtags by year). It
is worth noting that the hashtag #geneeditsummit only appeared in 2015 and in 2018, and
that its associated sentiment dropped from 0.20 to −0.01. The hashtag refers to the two
summits on Human Genome Editing, which were held in Washington D.C. in 2015 and in
Hong Kong in November 2018, coinciding with the first gene editing of viable human em-
bryos. Similarly, the hashtag #gmo became slightly more negative in 2018, with a mean
sentiment of 0.09 compared to the years before with 0.24 in 2016, and 0.14 in 2017, and
even dropped to −0.11 in 2019. The hashtag #bioethics only appeared in 2015 and was
associated with a relatively low sentiment of −0.02. This may highlight the various ethical
concerns raised during the 2015 Human Genome summit.

In comparison to the hashtags, the themes derived from previous studies can relate
the Twitter discussion to known themes of interest to the public (see methods section 2.6
for a description of the analysis). The six themes that were matched most are presented
in Figure 5 and grouped by positive, neutral, and negative sentiments. The themes in-
clude “genome” (with a total count of 526 612), “baby” (68 269), “disease” (64 180), “em-
bryo” (49 085), “treatment” (35 864), and “mutation” (34 884). Unsurprisingly, the theme
“genome” was matched most frequently, occurring in 35% of all tweets. Themes have
distinct occurrence patterns for each sentiment and reveal spikes in certain years. The
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Figure 5: Yearly occurrences of themes. Multiple themes with distinct regex patterns were matched
to the text of tweets, and the six most frequent themes were selected. Panels A, B, and C show the
yearly counts of themes when grouped by negative, neutral and positive sentiment, respectively. The
reported themes show distinct occurrence patterns depending on sentiment, yielding an aggregated
picture of the discussion surrounding CRISPR throughout the years. Most counts increase over the
years as the number of tweets increases overall. For the year 2019, the counts were extrapolated
from the months until June to a full year.

most significant change in occurrences happened for the theme “baby” which increased
substantially from 2017 to 2018, likely associated with the “CRISPR babies” scandal in
November 2018. While a spike could be observed for all three sentiments, the increase
was far more pronounced in the neutral and negative class (panels 5A and 5B). The theme
“mutation” was clearly negatively connotated, showing a negative peak in 2017 when risks
about potential side effects of CRISPR surfaced. Relative to other themes, the themes
“disease” and “treatment” were major themes in a discussion correlated with a positive
sentiment.

4 Discussion

We have generated the first high-resolution temporal signal for sentiments towards CRISPR
on Twitter, spanning a duration of more than 6 years. Our results suggest that, overall, the
CRISPR technology was discussed in a positive light, which aligns well with a previous
study which considered the coverage of CRISPR in the press [33]. However, more re-
cently the sentiment reveals a series of strong negative dips, pointing to a more critical
view. The frequency and magnitude of these dips has increased since 2017, which is un-
derlined by the overall declining sentiment. It is noteworthy that the dips usually coincide
with high activity, meaning that most people are only exposed to the topic of CRISPR when
it is discussed in an unfavorable way.

As shown in the breakdown of sentiment by organism, the negative sentiment was
stronger in the embryo and human class, but stayed mostly positive towards other or-
ganisms. The data therefore reflects the many ethical issues related to human germline
editing. However, criticism may not be targeted at the use of CRISPR in humans per se:
Hashtags such as #hiv or #genetherapy were connected to very positive sentiments, which
suggests a positive attitude towards developing CRISPR for the use in medical treatment.
This aspect is further confirmed when considering the sentiment of themes such as treat-
ment or disease. These observations are in line with several surveys in which participants
demonstrated a strong support of CRISPR for the use in medical treatment, but were criti-
cal regarding modifications of human germline cells [28, 29, 30, 31, 32]. Themes such as
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“mutation” were discussed intensely for a few months in 2017, but then declined in activity.

4.1 Limitations

Although the predicted sentiment index seems to overlap well with survey results, it can-
not be directly used as a substitute for an opinion poll. Polling allows for the collection of
answers to specific questions of interest instead of inferring them from public statements.
Furthermore, the Twitter community is not necessarily representative of the whole popu-
lation of a country. However, sentiment analysis avoids downsides of traditional methods
such as response bias, and provides more detailed insights through access to fine grained
data of the online discussion.

We acknowledge that most peoples opinions might not fit into the positive, neutral and
negative classes presented in this study. We therefore tried to counteract this problem by
not only categorizing the data by sentiment, but also by relevance and organism, allowing
for a better understanding of the measured sentiment. Furthermore, we recognize the
challenging nature of deducing someones true opinion based on a short message alone
and the fact that it is only possible within a statistical margin of error. We believe however
that by employing extended preprocessing, filtering, and state of the art machine learning,
we can capture certain trends on a larger scale.

4.2 Conclusions and future direction

We have demonstrated that the sentiment analysis of tweets provides a high resolution
picture of the ongoing debate on CRISPR, allowing us to study the evolution of the dis-
course while extending the capacity of traditional methods. Further, the presence of the
same themes that have been identified in existing studies confirms the validity of our sig-
nal. Therefore, our approach offers an additional method to surveys and encourages the
combination of both methods to get richer data at a higher sample size and higher temporal
resolution.

Future work can go beyond the deduction of sentiments and shed more light on the
nature of discussions and arguments raised and how they influence each other, giving a
better idea of the reasoning behind peoples opinions. Furthermore, specific topics, such
as the discussion surrounding a potential moratorium of CRISPR, may be analyzed in
more detail and provide actionable outcomes.

Since the presented analysis can automatically process a large amount of data in al-
most real-time, it extends the traditional toolset of empirical methods for discourse analysis.
It may therefore help analyzing public opinion and support policy and decision making.

5 Data Availability Statement

All data and code for this analysis can be found in our public repository https://gitlab.ethz.ch/digitalbioethics/crispr-
sentiment-analysis.
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A Appendix

A.1 Yearly counts

Year Number of tweets
2013 4818
2014 20 003
2015 131 268
2016 304 751
2017 437 928
2018 445 723
2019 392 527
Total 1 508 044

Table A.1: Number of tweets per year since January 1, 2013, until May 31, 2019. A steady increase
in volume can be observed. For the year 2019 the number was extrapolated from 163 553 until May
31, 2019.

A.2 Model performance
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Figure A.1: Classification scores for different models. Subfigures A, B and C correspond to three
different classifiers trained for sentiment, relevance and organism, respectively. They y-axis shows
best corresponding model after hyperparameter search was performed for a specific model type.
The model types are random (pick a class at random), majority (always pick the most frequent
class), bag of words, fastText, BERT and a fine-tuned version of BERT-large (denoted as BERT ft).
The x-axis denotes the test performance scores of accuracy (green), and macro-averaged precision
(blue), recall (orange) and F1 scores (red). The fine-tuned BERT model was the best performing
model for all three classification problems irrespective of the metric used.
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A.3 Preliminary literature review search strategy and databases

Databases used: PubMed, Scopus, Web of science. Matching query in articles title only:
(( crispr OR gene-editing OR "genome editing" ) AND ( attitudes OR opinions OR
perspectives OR believes OR reactions OR public ))
103 publications were identified by the search (24 PubMed, 41 Scopus, 38 Web of Sci-
ence). A total of 4 articles were included in the full-text analysis after duplicate removal
and exclusion through abstract screening based on exclusion criteria:

• The article is not focussing on CRISPR

• The article is not referring to human subjects

• The article is not considering public opinions/attitudes

• The article is not an empirical study

Resulting documents:

• Blendon, R. J., Gorski, M. T., & Benson, J. M. (2016). The public and the gene-editing
revolution. New England Journal of Medicine, 374(15), 1406-1411.

• McCaughey, T., Sanfilippo, P. G., Gooden, G. E., Budden, D. M., Fan, L., Fenwick, E.,
... & Liang, H. H. (2016). A global social media survey of attitudes to human genome
editing. Cell stem cell, 18(5), 569-572.

• Scheufele, D. A., Xenos, M. A., Howell, E. L., Rose, K. M., Brossard, D., & Hardy, B.
W. (2017). US attitudes on human genome editing. Science, 357(6351), 553-554.

• Weisberg, S. M., Badgio, D., & Chatterjee, A. (2017). A CRISPR New World: Atti-
tudes in the Public toward Innovations in Human Genetic Modification. Frontiers in
Public Health, 5.
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A.4 Themes and regex patterns

Theme Regular expression
disease diseases?
health restore
therapy therapy|therapeutic
germline germline|heritable|stem[\s-]cell|heritage
somatic somatic
enhancement enhanc(e|ement|ing)
improvement improv(e|ement|ing)
treatment treat(ment|ing)?
reducing (lower(ing)?|reduc(e|ing))\s.*risk
prevention prevent(ion|ing)?
risk risks?
cure cur(e|ing)
progress scientific progress
traits traits?
abilities abilit(y|ies)
intelligence intelligence
appearance appearance
price expensive
discovery discovery?|anticipat(e|ion)
privacy privacy
accuracy accuracy
reliability reliability
mutation mutations?
eugenic eugenic
trust trust
children child(ren)?
genome genome|genomics?|genes?|genetic
embryo embryo(nic)?
baby bab(y|ies)

Table A.2: Derived themes and corresponding regex patterns from preliminary literature review.
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A.5 Identified events

# Mark Peak time Event time Event Prominence
1 2015-12-03 2015-12-01 First summit on human gene

editing in Washington D.C.
0.21

2 2016-06-24 2016-06-22 U.S. proposal for human trials
passes safety reviews

0.26

3 a 2016-11-18 2016-11-15 First time use of CRISPR on
humans in China

0.34

4 b 2017-02-17 2017-02-15 Broad Institute prevails in
patent conflict

0.33

5 2017-08-04 2017-08-02 CRISPR successfully fixes a
gene in viable human embryos

0.44

6 2018-01-21 2018-01-19 Study on advances in CRISPR
technology

0.37

7 d 2018-07-19 2018-07-16 Study shows the potential for
side effects (e.g. deletions) of
CRISPR

0.29

8 e 2018-11-29 2018-11-26 "CRISPR babies" scandal 0.97
9 f 2019-02-04 2017-08-10 Biohackers encode a malware

program into DNA
0.29

Table A.3: Selected events with a peak prominence above 0.2. The marks correspond to the se-
lected events in Figure 2. Peak times have been automatically detected as described in the methods
section. The corresponding events have been inferred from visual inspection of the data.

A.6 Top hashtags counts and sentiments

Year Hashtag Count Sentiment
2013 genome 94 0.81

dna 48 0.92
cas9 44 0.32
drosophila 41 0.41
crisp 38 1.00
genetics 38 0.82
synbio 38 0.42
btoty 34 1.00
science 31 0.74
rna 30 0.47
editas 28 0.96
genomics 28 0.43
gblocks 23 0.00
cell 22 0.82
biotech 20 0.50
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Year Hashtag Count Sentiment
2014 genomics 368 0.80

dna 273 0.63
synbio 244 0.68
cas9 225 0.60
science 222 0.71
genome 195 0.77
biotech 177 0.64
genetics 175 0.73
nbthighlight 165 0.35
sciwri14 118 0.29
ashg14 115 0.39
rna 110 0.53
nbtinthenews 91 0.92
genetherapy 90 0.54
drosophila 86 0.36

2015 geneeditsummit 3337 0.20
science 2096 0.56
crisprfacts 1322 0.36
dna 1148 0.33
geneediting 1088 0.34
genetics 1045 0.23
genomeediting 963 0.49
genome 962 0.55
biotech 938 0.49
genomics 848 0.47
bioethics 797 −0.02
cas9 781 0.53
synbio 722 0.51
gene 610 0.21
cancer 441 0.85

2016 science 4479 0.62
geneediting 3920 0.42
tech 2163 0.46
biotech 2132 0.45
genetics 1748 0.47
cancer 1671 0.69
dna 1626 0.66
news 1551 0.43
gmo 1518 0.24
genomics 1496 0.50
hiv 1459 0.90
obesity 1172 0.47
gene 1057 0.64
patent 1038 0.02
cas9 972 0.57
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Year Hashtag Count Sentiment
2017 geneediting 12 648 0.38

genomeediting 9747 0.36
science 5190 0.60
biotech 3374 0.53
tech 3322 0.63
dna 2894 0.56
genetics 2546 0.54
genomics 2294 0.51
cancer 2003 0.68
health 1883 0.79
news 1804 0.62
ai 1743 0.47
technology 1679 0.58
sntop10 1533 0.25
gmo 1504 0.14

2018 geneediting 13 000 0.37
genomeediting 7765 0.40
science 5210 0.52
biotech 5052 0.41
genetics 4468 0.52
dna 4206 0.49
crisprbabies 4020 −0.30
gmo 3886 0.09
cancer 3547 0.57
ai 3421 0.63
genomics 3272 0.43
geneeditsummit 2504 −0.01
synbio 2289 0.58
gmos 2139 0.03
cas9 2009 0.45

2019 geneediting 10 764 0.42
genomeediting 5950 0.40
biotech 4778 0.55
science 4097 0.57
dna 3734 0.54
genetics 3720 0.53
technology 2657 0.68
genomics 2590 0.48
cancer 2306 0.68
gmo 2090 −0.11
cas9 1841 0.61
researchhighlight 1822 1.00
ai 1793 0.56
crisprbabies 1730 −0.13
genetherapy 1637 0.62

Table A.4: List of top 15 hashtags and corresponding counts and sentiments by year.
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