SUPPLEMENTARY INFORMATION

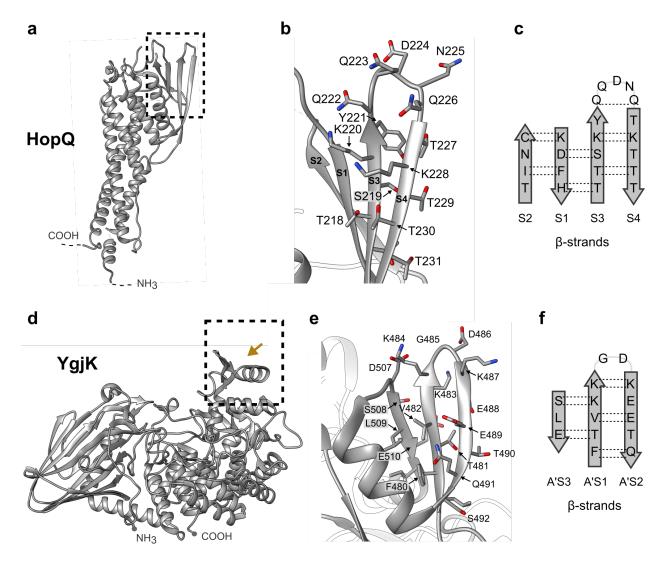
Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM

Tomasz Uchański^{1,2}, Simonas Masiulis³, Baptiste Fischer^{1,2}, Valentina Kalichuk^{1,2}, Alexandre Wohlkönig^{1,2}, Thomas Zögg^{1,2}, Han Remaut^{1,2}, Wim Vranken^{1,2,4}, A. Radu Aricescu^{3,5,*}, Els Pardon^{1,2} & Jan Steyaert^{1,2,*}

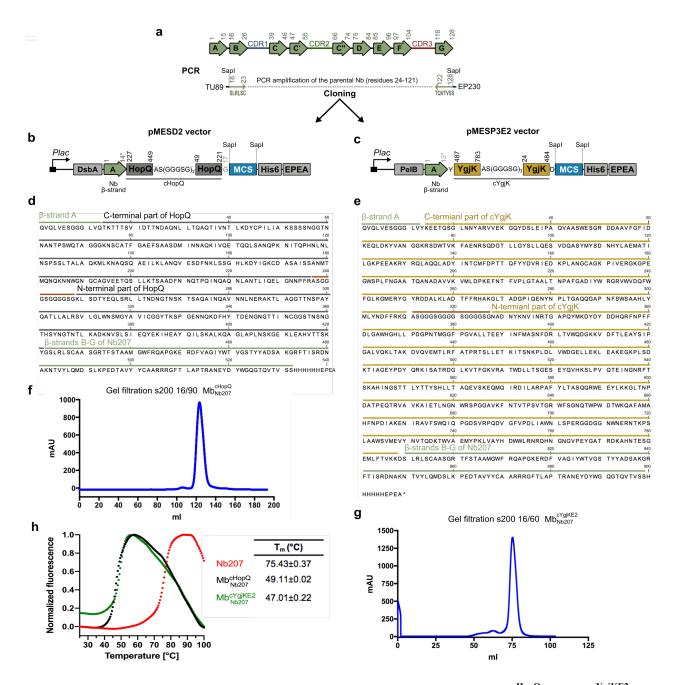
AFFILIATIONS

¹ Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium

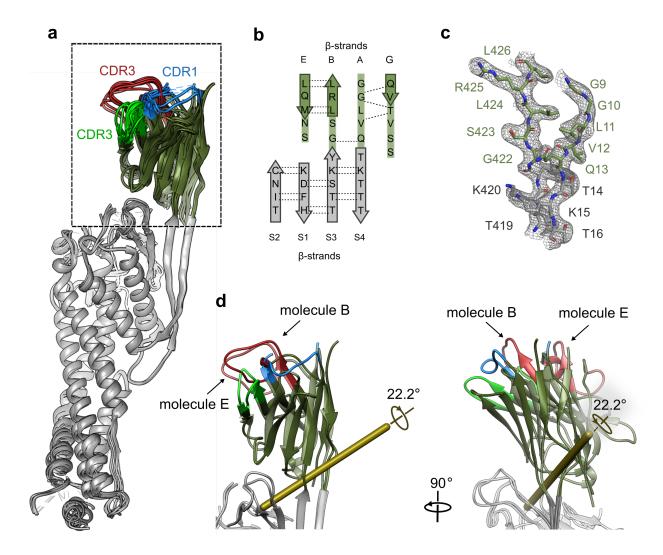
² VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.

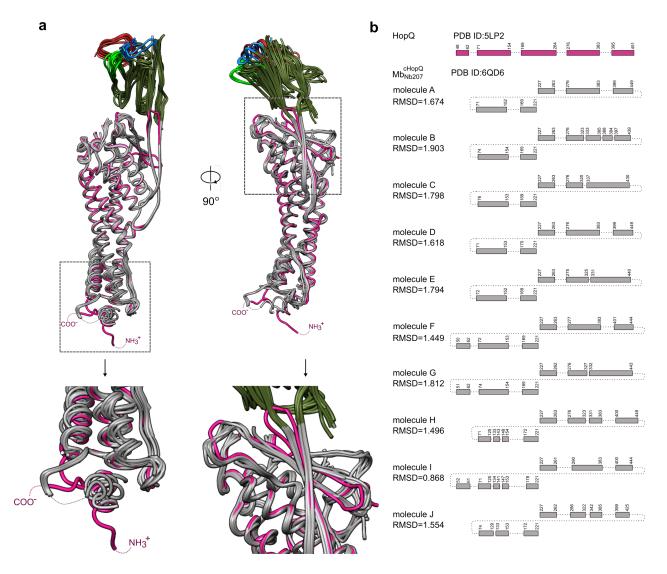

³ MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.

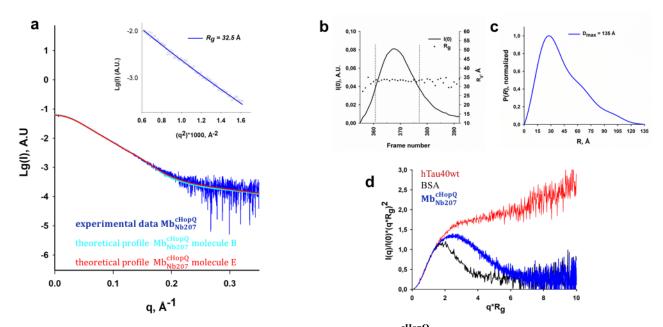
⁴ Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, 1050 Brussels, Belgium

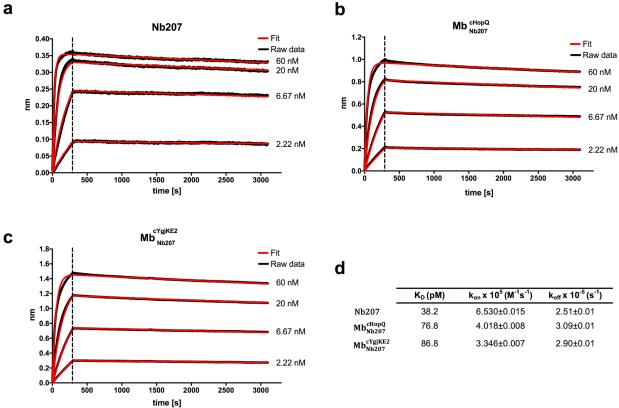

⁵ Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

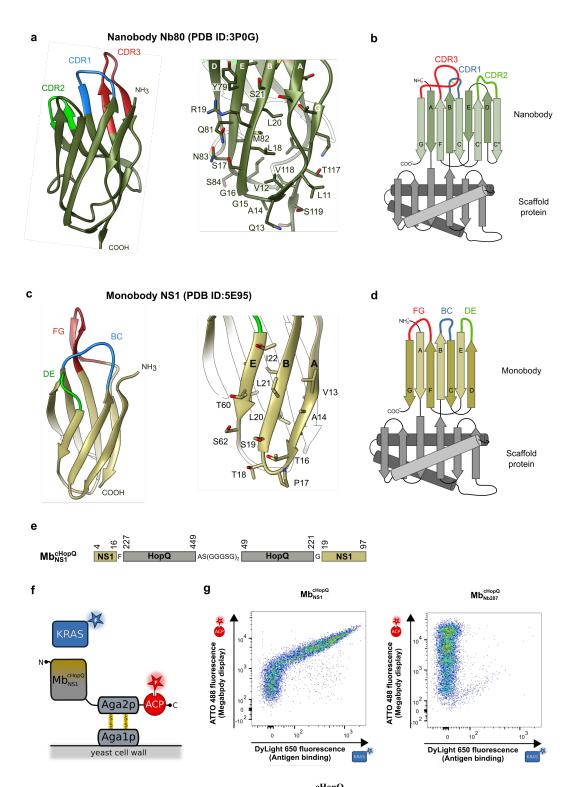
* Corresponding authors

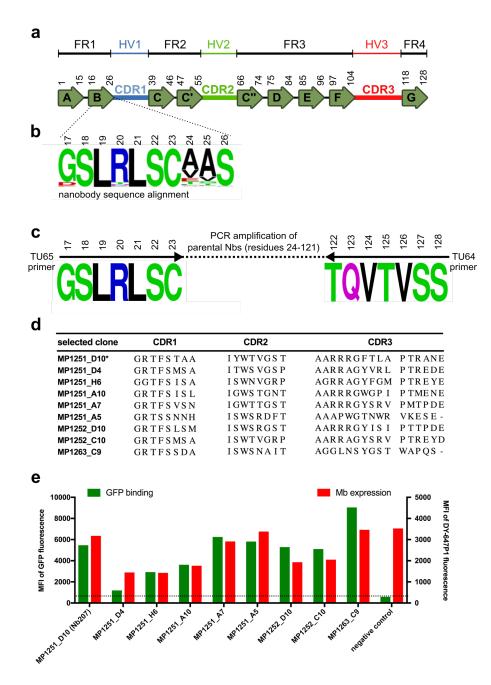

Keywords: megabody, nanobody, single-particle cryo-EM


Supplementary Figure 1. Structures of the scaffold proteins HopQ and YgjK. a-c, Cartoon representation of the extracellular adhesin domain of *H. pylori* crystal structure (HopQ, PDB ID: 5LP2). **a**, The flexible N- and C-terminal regions are invisible in the electron density and are indicated by dashed lines. The boxed region is enlarged in (**b**). Residues are numbered according to UniProtKB B5Z8H1. **c**, Secondary structure of the solvent-exposed S3-S4 β -turn. Hydrogen bonds between the backbone atoms are indicated by dotted lines. **d-f**, Cartoon representation of the *E. coli* K12 Glucosidase crystal structure (YgjK, PDB ID: 3W7T). **d**, N- and C-termini are indicated by dots. The boxed region is enlarged in (**e**). Residues are numbered according to UniProtKB P42592. **f**, Secondary structure of the solvent-exposed A'S1-A'S2 β -turn.

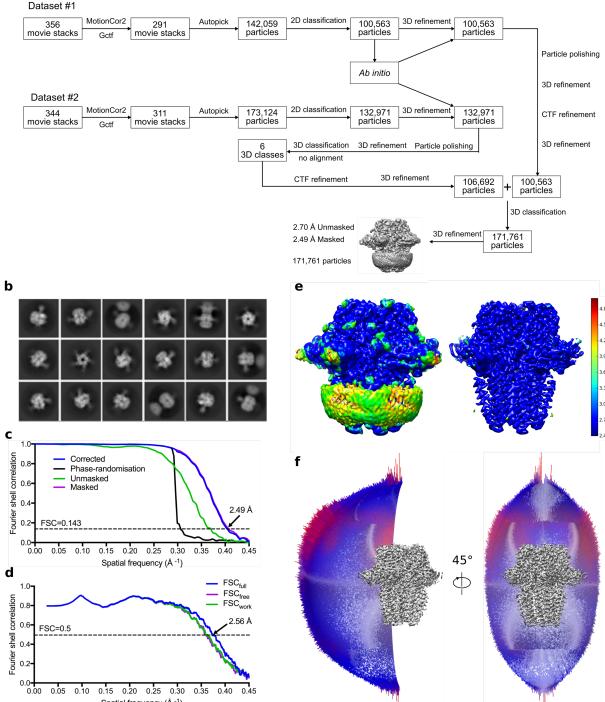

Supplementary Figure 2. Cloning, expression and purification of megabodies Mb_{Nb207}^{cHopQ} and $Mb_{Nb207}^{cYgjKE2}$. a, Gene fragments encoding β -strands B to G of a nanobody are amplified by PCR using TU89 and EP230 primers and cloned into pMESD2 (b) to turn a nanobody into the cHopQ-megabody format or cloned in pMESP3E2 (c) for the cYgjK format. The residues of nanobody, HopQ and YgjK are numbered according to IMGT, UniProtKB B5Z8H1 and UniProtKB P42592. d-e, Amino acid sequences of Mb_{Nb207}^{cHopQ} (d) and $Mb_{Nb207}^{cYgjKE2}$ (e). f-g, Size exclusion profiles (Superdex 200 PG 16/90) of Mb_{Nb207}^{cHopQ} (f) and $Mb_{Nb207}^{cYgjKE2}$ (g), purified from the periplasm of *E. coli* by Ni-NTA affinity chromatography. h, Representative melting curves of Nb207, Mb_{Nb207}^{cHopQ} and Mb_{Nb207}^{cYgjK} measured by thermal shift assays using the partition hydrophobic-binding dye SYPRO[®] Orange. Experiments were performed in triplicates and the raw data were fitted to the Boltzmann's equation using Prism 7 software (GraphPad) to calculate melting temperatures (T_m).


Supplementary Figure 3. Crystal structure of megabody Mb_{Nb207}^{cHopQ} . **a**, Comparison of the ten Mb_{Nb207}^{cHopQ} molecules present in the asymmetric unit (PDB ID: 6QD6). Molecules were aligned using the C α atoms of the scaffold protein (cHopQ, grey) manifesting minor bending of the Nb207 part (green). **b**, Schematic representation of the β -sheet topology within the region connecting Nb207 to the scaffold. Hydrogen bonds between backbone atoms are indicated by dotted lines. **c**, 2Fo–Fc electron density map (contoured at 1.0 σ) containing the peptides connecting Nb207 (green) to cHopQ (grey) in molecule F. **d**, Structural comparison of molecules B and E that possess the most distinct bending of the nanobody part (residues 1-13 and 422-532 of Mb_{Nb207}^{cHopQ}). The rotation axis (gold stick) and angle are calculated for the nanobody part.

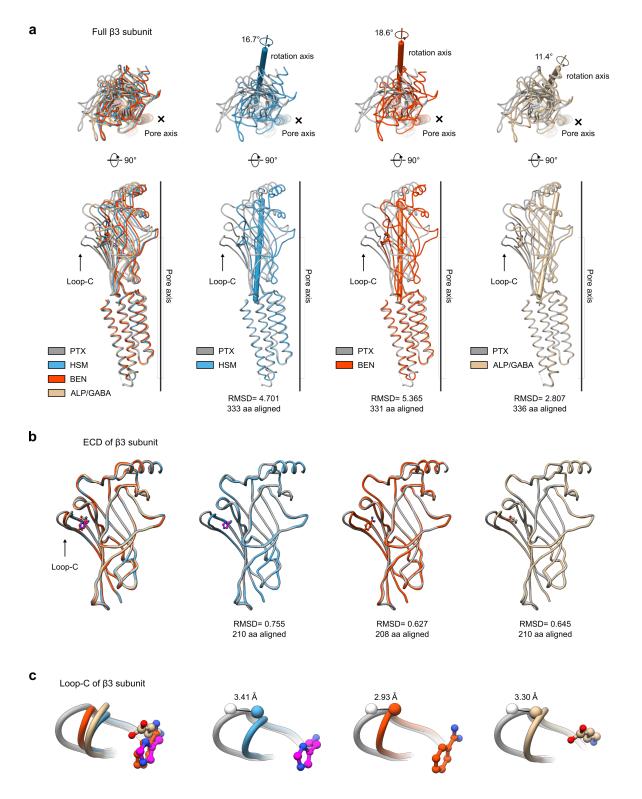

Supplementary Figure 4. Structural comparison of the parental *H. pylori* adhesion domain to the circularly permutated scaffold in Mb_{Nb207}^{cHopQ} . a, Alignment of each molecule of Mb_{Nb207}^{cHopQ} in the asymmetric unit (coloured in grey-green, PDB ID: 6QD6) onto the *H. pylori* adhesin domain (coloured in magenta, PDB code:5LP2). b, The RMSD values between the *H. pylori* adhesin domain (magenta) and the different Mb_{Nb207}^{cHopQ} molecules in the asymmetric unit (grey) were calculated from all corresponding C_{α} atoms that are refined in the respective electron density maps. The block diagrams describe the segments that are visible/invisible in the adhesin crystal structure and ten megabody molecules in the asymmetric unit, taking into account the circularly permutated arrangement of the scaffold protein.


Supplementary Figure 5. SEC-SAXS analysis of megabody Mb_{Nb207}^{cHopQ} . **a**, Superposition of the experimental scattering profile of Mb_{Nb207}^{cHopQ} (blue) on the theoretical profiles of molecule B (cyan) and molecule E (red) calculated from the X-ray structure (PDB ID: 6QD6) using CRYSOL ($\chi^2 = 1.699$ for molecule B and $\chi^2 = 2.033$ for molecule E). The inset figure shows the linear Guinier region from the experimental scattering curve and is indicative of a non-aggregated protein sample. The respective R_g value is given. **b**, Elution profile of a SEC-SAXS experiment (black line, frame range of the peak 361-377). A stable R_g is observed over the entire elution profile (black squares). **c**, Normalised P(r) profile with derived D_{max} value. **d**, Dimensionless Kratky plot for Mb_Nb207 (blue) in comparison with two reference proteins: the highly flexible hTau40wt (red) and the globular BSA (black).

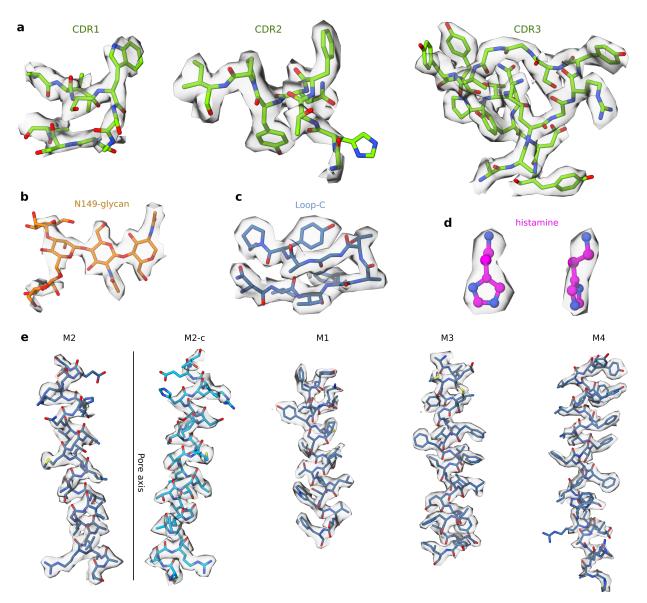
Supplementary Figure 6. Nb207, Mb_{Nb207}^{cHopQ} and $Mb_{Nb207}^{cYgjKE2}$ bind to the cognate antigen with similar affinities. Sensograms of the association and dissociation of Nb207 (a), Mb_{Nb207}^{cHopQ} (b) and $Mb_{Nb207}^{cYgjKE2}$ (c) onto immobilized GFP. Biotinylated GFP was immobilized on a Streptavidin (SA) bio-sensor and the binding kinetics were monitored by biolayer interferometry (BLI) on OctetRED96 (ForteBio). The measured responses (black lines) were fitted to a monophasic 1:1 binding model (red lines). d, Calculated kinetic parameters are shown as mean standard error of the mean (s.e.m.) from n = 3 independent experiments.



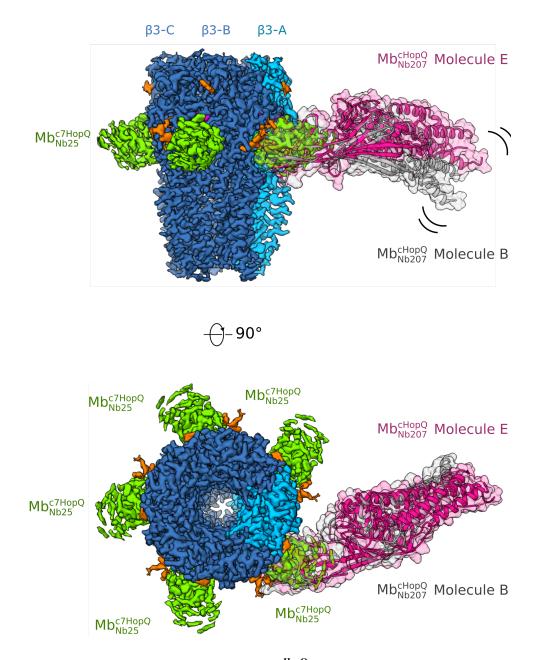
Supplementary Figure 7. Yeast surface display of megabody Mb_{NS1}^{cHopQ} built from the NS1 monobody that was grafted onto cHopQ. a, Tertiary structure of a nanobody, based on crystal structure of Nb80 nanobody (PDB ID: 3P0G). The side chain conformations of β -strand A and β -strand B are indicated. b, Molecular design of a megabody that is assembled from a nanobody and a scaffold protein. c, Crystal structure of monobody NS1 (PDB ID: 5E95). The side chain conformations of β -strand A and β -strand B are shown. d, Molecular design of a megabody that is assembled from a monobody and a scaffold protein. e, Schematic representation of the primary structure of Mb_{NS1}^{cHopQ} . f, Mb_{NS1}^{cHopQ} was displayed on the surface of yeast as a Mb_{NS1}^{cHopQ} -Aga2p-ACP fusion, and orthogonally stained with CoA-488 (red star) to monitor the display level. Binding of the antigen was monitored by incubating the yeast cells with 100 μ M KRAS-DyLight 650 (blue star). g. Comparison of flow cytometric dotplots representing yeast cells displaying Mb_{NS1}^{cHopQ} (right panel).


Supplementary Figure 8. Sequences and binding properties of a representative set of GFP-specific megabodies selected by yeast-display a, Schematic representation of a rearranged gene encoding a VHH domain (nanobody) in camelids. Conserved framework (FR, black) and hypervariable (HR, blue, green and red) regions are indicated and encode nine β -strand and three CDR regions, respectively. CDRs and β -strands of nanobodies are defined according to IMGT numbering. **b**, Alignment of β -strand B sequence, originated from 600 nanobody sequences available inhouse (three different animals). **c**, PCR product of the *in vivo* maturated nanobody immune libraries amplified using TU65 and TU64 primers (**Supplementary Table 3**). **b**, CDRs composition of the nine megabodies selected by yeast display. CDRs are defined according to IMGT. Selected megabody clone MP12551_D10 contains the same CDRs composition as the nanobody Nb207, which was discovered by phage display (data not shown). **c**, Flow cytometric analysis of GFP binding for i yeast clones displaying nine selected megabodies. Individual yeast clones were orthogonally staining with Co-647 and incubated with 100 nM GFP. For each clone, the mean fluorescent intensities (MFI) of the DY-647P1 fluorescence (display level, red bars) and the GFP fluorescence (antigen binding, green bars) were calculated using the FlowJo software and compared to a cell displaying Mb^{cHopQ}_{MP1031_F2} (the nanobody MP1031_F2 binds human coagulation Factor IX⁸, negative control). The MFI of GFP fluorescence of a negative control is indicated as a dotted line.

а



Supplementary Figure 9. Cryo-EM image processing procedure for high resolution reconstruction of β 3 GABA_AR in complex with to Mb^{c7HopQ}_{Nb25}. a. Graphical overview of cryo-EM data collection and image processing (see Methods). b, 2D class averages used for cryo-EM map reconstructions. Aligned micrographs were obtained using FEI Titan Krios, Falcon3 detector and VPP (box size of 256 Å). c, FSC curves for the 3D reconstruction using gold-standard refinement in RELION. Data is shown for the phase randomisation, unmasked, masked and phase-randomisation-corrected masked maps. d, FSC curves for the atomic model refinement. Data is shown for model versus summed map (FSC_{full}), model refined in half-map 1 versus half-map 1 (FSC_{work}), and model refined in half-map 1 versus half-map 2 (FSC_{free}). e, Unsharpened cryo-EM map colored by local resolution (estimated using ResMap) shown at a lower contour level (left) and at a higher level (right). f, Angular-distribution histogram of particles used in calculating the final 3D reconstruction for the of histamine bound β 3 GABA_A receptor in a complex with Mb^{c7HopQ}_{Nb25}.


Spatial frequency (Å -1)

Supplementary Figure 10. Structural analysis of β 3 subunits of PTX-bound, ALP/GABA-bound α 1 β 3 γ 2L GABA_A receptor and BEN-bound, HSM-bound β 3 GABA_A receptor structures. a-c Superposition of full β 3 subunits (a), ECD (b) and Loop-C (c) of PTX-bound α 1 β 3 γ 2L GABA_A (grey, PDB ID: 6HUG), ALP/GABA-bound α 1 β 3 γ 2L GABA_A (khaki, PDB ID: 6HUO), BEN-bound β 3 GABA_A (orange, PDB ID: 4COF) and HSM-bound β 3 GABA_A (blue, PDB ID: 6QFA) receptors. a Superposition of full subunits on the basis of the global TMD alignment reveals the relative β 3 ECD motions upon binding to PTX, ALP/GABA, BEN and HSM where rotation axis (sticks) and angles are indicated. The RMSD values are shown for full β 3 subunits. b Superposition of ECDs (residues 1-217), where RMSD values are shown for ECDs. c Superposition of Loop-C, where differences in distances (Å) between the selected Thr202 C_{α} atoms (shown as spheres) are indicated with lines. The bound histamine (HSM), benzamidine (BEN) and GABA are indicated in magenta, orange and khaki, respectively.

Supplementary Figure 11. Histamine-bound β 3 GABA_A receptor model-map validation and electron microscopy density. a-e, Electron microscopy density segments of Mb^{c7HopQ}_{Nb25} CDRs (a) and β 3 GABA_A receptor N149-glycan (b), Loop-C (c), histamine (d), α -helices of TMD regions (e) (EMDB ID: 4542, PDB ID: 6QFA). Sharpened density maps are contoured at 0.08.

Supplementary Figure 12. Molecular docking of the Mb_{Nb207}^{cHopQ} crystal structure onto the cryoEM map of the $\beta 3$ GABA_A receptor in a complex with Mb_{Nb25}^{c7HopQ} . The two most distinct Mb_{Nb207}^{cHopQ} molecules from the asymmetric unit of the crystal structure (molecules B and E, PDB ID: 6QD6) are coloured in grey and magenta, respectively. They were aligned to the part of Mb_{Nb25}^{c7HopQ} that was refined in the cryo-EM structure of the $\beta 3$ GABA_AR in a complex with Mb_{Nb25}^{c7HopQ} (EMDB ID: 4542, PDB ID: 6QFA).

Nb207

QVQLQESGGGLVQAGGSLRLSCAASGRTFSTAAMGWFRQAPGKERDFVAGIYWTVGSTY YADSAKGRFTISRDNAKNTVYLQMDSLKPEDTAVYYCAARRRGFTLAPTRANEYDYWG QGTQVTVSS

Supplementary Table 2. Data collection and refinement statistics.

	Mb ^{cHopQ} _{Nb207}
Data collection	
Space group	P1
Cell dimensions	
<i>a, b, c</i> (Å)	71.17, 92.92, 244.22
α, β, γ (°)	92.05, 96.93, 112.15
Resolution (Å)	41.45-2.84 (2.90-2.84) *
R _{meas}	0.05 (0.66)
Ι/σΙ	11.65 (1.45)
Completeness (%)	95.6 (94.5)
Redundancy	1.78 (1.77)
Refinement	
Resolution (Å)	38.85-2.84 (2.90-2.84)
No. reflections	230255 (13649)
$R_{\rm work} / R_{\rm free}$	0.225/0.251
No. Atoms	
Protein	33077
Ion Cl ⁻	1
Water	114
B factor	
Protein	99.9
Ion Cl ⁻	91.9
Water	91.7
R.m.s. deviations	
Bond lenghts (Å)	0.02
Bond angles (°)	1.87

*Values in parentheses are for highest resolution shell.

Supplementary Table 3. Cryo-EM data collection, refinement and validation statistics.

β 3 GABA _A R - Mb _{Nb25} ^{c7HopQ} complex
EMDB: 4542
PDB: 6QFA
Krios-II, MRC-LMB
75,000
300
Falcon 3EC with VPP
30
60
1.07
0.4
75
-0.7 to -0.5
700
602
315,183
171,761
C5
2.49
0.143
2.25-5.95
2.25-5.95
4COF, 508F
2.56
0.5
2.56
-68
2,270
18,755
18,240
375
40
0.005
0.761
1.28
5.3
0
v
98.17
1.83
0

^aLocal resolution range. ^bResolution at which FSC between map and model is 0.5.

Supplementary Table 4. Primer list.

	5' – 3' sequence
EP230	AGGACTGCTCTTCCACTGGAGACGGTGACCTGGGT
TU64	CCCTCCACCAGAGCCACCTCCCAAGCTTGAGACGGTGACCTGGG
TU65	GCATGTAACCACATCAAAGTATGGATCCCTGAGACTCTCCTG
TU89	CCTTGAGCTCTTCGTCCCTGAGACTCTCCTG