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Abstract	11 

	 Object	recognition	relies	on	different	transformations	of	the	retinal	input,	ranging	from	local	12 

contrast	to	object	shape	and	category.	While	some	of	those	representations	are	thought	to	occur	13 

at	 specific	 stages	 of	 the	 visual	 hierarchy,	 many	 of	 them	 are	 correlated	 (e.g.,	 object	 shape	 and	14 

identity)	 and	 can	 be	 retrieved	 from	 the	 activity	 of	 several	 brain	 regions.	 This	 overlap	 may	 be	15 

explained	 either	 by	 collinearity	 across	 representations,	 or	 may	 instead	 reflect	 the	 coding	 of	16 

multiple	 dimensions	 by	 the	 same	 cortical	 population.	 Moreover,	 orthogonal	 and	 shared	17 

components	 may	 differently	 impact	 on	 distinctive	 stages	 of	 the	 visual	 hierarchy.	 We	 recorded	18 

functional	MRI	 (fMRI)	 activity	while	 participants	 passively	 attended	 to	 objects,	 and	 employed	 a	19 

statistical	 approach	 that	 partition	 orthogonal	 and	 shared	 object	 representations	 to	 reveal	 their	20 

relative	impact	on	brain	processing.	Orthogonal	shape	representations	(i.e.,	silhouette,	curvature	21 

and	 medial-axis)	 independently	 explain	 distinct	 and	 overlapping	 clusters	 of	 selectivity	 in	22 

occitotemporal	 (OTC)	 and	 parietal	 cortex.	 Moreover,	 we	 showed	 that	 the	 relevance	 of	 shared	23 

representations	 linearly	 increases	 moving	 from	 posterior	 to	 anterior	 regions.	 These	 results	24 

indicate	 that	 the	 visual	 cortex	 encodes	 shared	 relations	 between	 different	 features	 in	 a	25 

topographic	 fashion	 and	 that	 object	 shape	 is	 encoded	 along	 different	 dimensions,	 each	26 

representing	orthogonal	features.	27 

	28 

New	&	Noteworthy	29 

While	 we	 always	 have	 available	 a	 general	 sense	 of	 what	 ‘a	 shape	 is’,	 what	 is	 the	30 

computational	counterpart	of	this	immediate	percept?	Here,	we	employed	three	competing	shape	31 

models	to	explain	brain	representations	when	viewing	real	objects.	We	found	that	object	shape	is	32 

encoded	in	a	multi-dimensional	fashion	and	thus	defined	by	the	interaction	of	multiple	features.	33 

	34 
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	35 

Introduction	36 

Since	the	advent	of	neuroimaging,	much	effort	has	been	devoted	to	characterizing	object-37 

selectivity	 patterns	 in	 the	 human	 occipito-temporal	 cortex	 (OTC;	 Haxby	 et	 al.,	 2001).	 Several	38 

possible	organizing	principles	have	been	proposed	to	explain	the	 large-scale	topography	of	OTC,	39 

ranging	from	the	tuning	to	low-level	visual	features	(e.g.,	contrast	and	spatial	frequencies	-	Papale	40 

et	al.	2018;	Rajimehr	et	al.	2011;	Rice	et	al.	2014),	to	the	processing	of	broad	semantic	dimensions,	41 

such	 as	 object	 size	 or	 the	 animate-inanimate	distinction	 (Coggan	et	 al.	 2016;	 Julian	 et	 al.	 2017;	42 

Konkle	and	Caramazza	2013).	43 

There	 is	 little	 doubt,	 however,	 that	 these	 distinct	 visual	 dimensions,	 ranging	 from	 local	44 

orientation	to	identity,	may	equally	contribute	to	the	striking	coherency	of	our	object	perception	45 

(Figure	1A).	Thus,	to	establish	the	origins	of	the	intrinsic	organization	in	human	visual	cortex,	we	46 

would	need	to	understand	how	these	dimensions	are	coded,	and	how	they	mutually	interact.	47 

Nonetheless,	remarkable	evidence	from	previous	studies	suggests	that	visual	dimensions	in	48 

natural	vision	are	indeed	highly	correlated	(Bracci	and	Op	de	Beeck	2016;	Kay	2011;	Papale	et	al.	49 

2019).	 Thus,	 addressing	 the	 extent	 to	which	brain	 regions	 represent	 different	 dimensions	 along	50 

the	visual	hierarchy	has	so	 far	proven	challenging:	how	can	we	disentangle	 the	 role	of	different	51 

object	properties	(e.g.,	shape	and	category)	if	they	likely	covary	together?	52 

Notably,	Bracci	and	Op	de	Beeck	(2016)	employed	a	set	of	stimuli	in	which	shape	silhouette	53 

and	category	were	dissociated	(i.e.,	by	selecting	objects	similar	in	shape	but	pertaining	to	different	54 

categories),	and	demonstrated	that	object-selectivity	 in	OTC	cannot	be	merely	ascribed	 just	to	a	55 

specific	visual	property,	such	as	shape	silhouette.	Conversely,	Long	et	al.	(2018)	showed	that	mid-56 

level	features,	such	as	texture	and	curvature,	covary	with	high-level	semantic	dimensions,	and	are	57 

capable	 to	 explain	 the	 representations	 in	 OTC,	 even	 when	 using	 synthetic	 and	 unidentifiable	58 
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stimuli	that	hinder	object	recognition.	Hence,	even	if	we	acknowledge	that	visual	dimensions,	such	59 

as	shape	silhouette	(Bracci	and	Op	de	Beeck,	2016)	or	curvature	(Long	et	al.	2018),	are	relevant	to	60 

OTC,	what	is	their	relative	contribution	in	explaining	its	activity	patterns?	In	this	regard,	shape	is	61 

an	elusive	object	 property:	while	 a	 general	 sense	of	 ‘what	 a	 shape	 is’	 is	 always	 available	 to	 us,	62 

what	 is	 the	 computational	 counterpart	 of	 this	 immediate	 percept?	 For	 instance,	 silhouette	 and	63 

curvature	capture	different	features	of	object	shape,	as	exemplified	in	Figure	1B.	64 

Another	question	emerges	from	the	existing	literature.	Both	orthogonal	(Bracci	and	Op	de	65 

Beeck,	2016)	and	shared	(Long	et	al.,	2018)	representations	between	different	visual	dimensions	66 

explain	to	a	large	extent	the	patterns	of	brain	responses	evoked	by	viewed	objects.	However,	are	67 

different	brain	regions	encoding	more	orthogonal	or	shared	representations?	As	a	matter	of	fact,	68 

the	brain	focuses	on	specific	aspects	of	object	along	different	brain	regions	of	the	visual	hierarchy.	69 

Consequently,	high	 level	associative	regions	may	encode	shared	object	representations,	 in	order	70 

to	 integrate	 fragmented	 descriptions	 into	 coherent	 percepts,	 while	 the	 opposite	 may	 hold	 for	71 

early	sensory	regions,	aimed	at	representing	the	incoming	signal	with	the	highest	fidelity.		72 

To	answer	 these	questions,	we	recorded	 functional	MRI	 (fMRI)	activity	while	participants	73 

passively	 attended	 to	 object	 pictures.	 We	 employed	 a	 statistical	 approach	 that	 partitions	74 

orthogonal	and	shared	shape	representations	revealing	their	relative	impact	on	brain	processing,	75 

while	 controlling	 at	 the	 same	 time	 for	 low-	 and	 high-level	 confounds	 (Figure	 1;	 Lescroart	 et	 al.	76 

2015).	We	found	both	distinct	and	overlapping	clusters	of	selectivity	in	OTC	and	in	parietal	regions	77 

independently	 explained	 by	 different	 shape	 representations	 (i.e.,	 silhouette,	 curvature	 and	78 

medial-axis:	 Figure	 2-4).	 Moreover,	 we	 showed	 that,	 while	 the	 prominence	 of	 retinotopic	79 

processing	 on	 abstract	 information	 shifts	 abruptly	 moving	 from	 the	 occipital	 to	 the	 temporal	80 

cortex,	shared	representations	linearly	increase	from	posterior	to	anterior	regions	along	the	visual	81 

hierarchy	(Figure	5).	82 
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	83 

**	Figure	1	near	here	**	84 

	85 

Figure	1.	Schematic	of	the	shape	models	and	experiment.		86 
A)	 Five	 different	 object	 representations	 are	 employed:	 three	 shape	 models	 and	 two	 further	87 
controls.	 From	 left:	 silhouette,	medial	 axis,	 curvature,	 inked	 area	 (low-level	 control)	 and	 object	88 
identity	(high-level	control).	89 
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B)	 Different	 features	 capture	 specific	 aspects	 of	 object	 shape.	 For	 instance,	 silhouette	 and	90 
curvature	descriptions	of	the	same	shapes	may	be	orthogonal	to	each	other	(red-	and	blue-shaded	91 
areas)	or	vary	in	a	linear	fashion	(purple-shaded	area).	Thus,	our	brain	may	represent	object	shape	92 
by	extracting	one	specific	and	more	reliable	feature,	by	focusing	on	shared	representations	across	93 
multiple	features,	or	even	encoding	the	orthogonal	components	of	different	features.		94 
C)	Representational	dissimilarity	matrices	 (RDMs)	of	each	model:	 they	 represent	all	 the	possible	95 
pairwise	distances	between	the	stimuli.		96 
D)	Methodological	pipeline.	Brain	responses	were	recorded	while	subjects	maintained	fixation	on	97 
a	colored	fixation	cross,	paying	attention	to	color	switching	between	red	and	green.	Orthogonal	to	98 
the	task,	we	presented	42	grayscale	pictures	of	real	objects,	for	a	duration	of	500ms	each.	Activity	99 
patterns	were	used	to	test	the	association	between	the	five	model	RDMs	and	each	brain	activity	100 
RDM,	 computed	 combining	 a	 searchlight	procedure	with	 a	 variance	partitioning	 analysis:	within	101 
each	searchlight,	the	brain	activity	RDM	was	correlated	with	a	combination	of	the	 impact	of	the	102 
five	models	and	of	their	shared	variance.		103 
E)	Similarity	between	the	five	model	RDMs.	As	expected,	the	five	representations	are	correlated.	104 
However,	the	variance	partitioning	approach	control	for	the	effect	of	model	collinearity.	105 
	106 

Methods	107 

Subjects	108 

Seventeen	subjects	were	enrolled	for	the	study.	Two	subjects	participated	as	pilot	subjects	109 

with	 a	 different	 version	 of	 the	 experimental	 protocol	 and	 their	 data	 were	 not	 used	 for	 the	110 

subsequent	 analyses;	 data	 from	 a	 subject	 who	 abruptly	 terminated	 the	 experiment	 were	111 

discarded.	Fourteen	subjects	were	further	considered.	The	final	sample	comprised	six	females,	age	112 

was	24	±	3	years,	all	 subjects	were	 right-handed	with	normal	or	 corrected-to-normal	vision	and	113 

were	recruited	among	the	students	at	the	University	of	Pisa,	 Italy.	Signed	 informed	consent	was	114 

acquired	from	all	subjects	and	all	the	experimental	procedures	were	performed	according	to	the	115 

Declaration	of	Helsinki,	under	a	protocol	 (1616/2003)	approved	by	the	Ethical	Committee	at	the	116 

University	of	Pisa,	Italy.	117 

	118 

Task	119 

For	this	study,	an	event-related	design	was	adopted.	Stimuli	consisted	of	42	static	images	120 

of	grayscale	unfamiliar	 and	 common	objects,	presented	against	 a	 fixed	gray	background,	with	a	121 
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superimposed	fixation	cross	(size:	2x2°),	followed	by	a	baseline	condition	characterized	by	a	gray	122 

screen	with	a	red	fixation	cross	(Figure	1D).	123 

A	 set	 of	 stimuli	was	 selected,	 consisting	 of	 24	 common	 (animate	 and	 inanimate)	 and	 18	124 

unfamiliar	objects.	 The	 latter	 group	 represented	existing	objects	 that	 combine	 the	 function	and	125 

the	shape	of	two	of	the	common	objects	(e.g.,	a	fish-shaped	teapot).	Of	note,	a	similar	criterion	126 

has	been	employed	 for	 stimuli	 selection	also	 in	a	 recent	 study	 (Bracci	 et	 al.	 2019).	 To	build	 the	127 

final	 set	 of	 stimuli,	 pictures	 of	 existing	 objects	were	 found	 on	 Internet,	 resized,	 normalized	 for	128 

luminance	and	root-mean-square	contrast.	129 

Stimuli	were	presented	with	the	Presentation	software	(Neurobehavioral	Systems,	Albany,	130 

CA,	USA)	on	MR-compatible	goggles	(VisuaStim,	Resonance	Technology	Inc.,	CA,	USA),	with	a	LCD	131 

at	the	resolution	of	800x600	pixels	(32°x24°).	The	study	was	organized	in	six	runs,	comprising	56	132 

trials	which	 consisted	of	 500ms	of	 stimulus	 presentation	 and	7000ms	of	 inter-stimulus	 interval;	133 

each	 run	started	and	ended	with	15	seconds	of	 rest,	 to	estimate	baseline	 levels	of	BOLD	signal,	134 

and	 lasted	7:20	minutes.	 The	 total	 duration	of	 the	experiment,	 including	 anatomical	 scans,	was	135 

about	55	minutes.	136 

During	 the	 functional	 runs,	 subjects	were	 asked	 to	 fixate	 the	 cross	 at	 the	 center	 of	 the	137 

screen.	On	selected	trials,	the	cross	changed	its	color	from	red	to	green,	and	subjects	were	asked	138 

to	detect	such	changes	by	pressing	a	key	on	a	MR-compatible	keyboard	with	the	 index	finger	of	139 

their	dominant	hand.	Order	of	 trials	was	randomized	across	runs,	and	a	different	randomization	140 

schema	was	used	for	each	participant.	141 

	142 

Functional	MRI	data	acquisition	143 

Data	were	acquired	with	a	3-Tesla	GE	Signa	scanner	(General	Electric	Inc.,	Milwaukee,	WI,	144 

USA)	equipped	with	an	8-channel	phased-array	coil.	For	functional	images,	a	gradient-echo	echo-145 
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planar	imaging	sequence	(GE-EPI)	was	used,	with	TE	=	40ms,	TR	=	2500ms,	FA	=	90°,	160	volumes	146 

with	 four	 additional	 dummy	 scans,	 acquisition	 time	 6’50”;	 image	 geometry	 parameters	 were:	147 

Field-Of-View	258x258mm,	128x128	in-plane	matrix,	voxel	size	2.03x2.03x4mm,	37	axial	slices	for	148 

total	brain	coverage	(z-axis	extent	=	148mm).	To	acquire	detailed	information	of	subject	anatomy,	149 

a	 3D	 Fast	 Spoiled	 Gradient	 Echo	 T1-weighted	 sequence	 was	 also	 acquired	 (TE	 =	 3.18ms,	 TR	 =	150 

8.16ms,	FA	=	12°,	Field-Of-View	256x256mm,	256x256	matrix	size,	1mm3	isotropic	voxels,	256	axial	151 

slices,	z-axis	extent	256mm).	152 

	153 

Functional	MRI	data	processing	154 

Data	 preprocessing	 was	 carried	 out	 with	 AFNI	 (Cox	 1996)	 and	 FSL	 5.0	 (Jenkinson	 et	 al.	155 

2012).	 Preprocessing	 of	 functional	 data	 comprised	 slice	 timing	 correction	 with	 Fourier	 method	156 

(3dtshift),	 rigid-body	 motion	 correction	 using	 the	 first	 volume	 of	 the	 third	 run	 as	 reference	157 

(3dvolreg),	 spike	 removal	 (elimination	 of	 outliers	 in	 the	 functional	 time	 series,	 3dDespike),	158 

smoothing	with	 a	Gaussian	 filter	 (fixed	 FWHM	4	mm,	3dmerge),	 scaling	 of	 BOLD	 time	 series	 to	159 

percentage	of	the	mean	of	each	run	(3dTstat,	3dcalc).	Processing	of	anatomical	images	consisted	160 

of	 brain	 extraction	 (bet),	 segmentation	 for	 bias-field	 estimation	 and	 removal	 (FAST,	 fslmaths),	161 

linear	(FLIRT)	and	nonlinear	registration	(FNIRT)	to	MNI152	standard	space.	162 

For	each	subject,	data	 from	the	six	concatenated	 runs	 (960	 time	points)	were	used	 for	a	163 

GLM	analysis	(3dDeconvolve)	with	the	responses	for	each	stimulus	–	modeled	with	1	seconds-long	164 

block	 functions	 convolved	with	 a	 canonical	 HRF	 –	 as	 predictors	 of	 interest,	 and	 the	 six	motion	165 

parameters	plus	polynomial	trends	up	to	4th	order	as	predictors	of	no-interest.	166 

Responses	 for	 individual	 stimuli	 were	 converted	 to	 MNI152	 space	 by	 applying	 the	167 

transformation	 matrices	 estimated	 as	 explained	 above,	 and	 resampled	 to	 a	 resolution	 of	168 

2x2x2mm.	169 
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	170 

Shape	models	and	controls	171 

	 Five	 different	 representations	 of	 the	 42	 stimuli	 were	 developed:	 three	 shape-based	172 

descriptions	of	interest	and	two	further	controls.	For	each	model,	we	obtained	a	stimulus-specific	173 

feature	 space,	 and	 pairwise	 dissimilarities	 between	 stimuli	 were	 computed	 to	 obtain	 a	174 

representational	dissimilarity	matrix	(RDM).	Before	computing	shape-related	information,	stimuli	175 

were	binarized.	176 

For	the	silhouette	model,	pairwise	dissimilarity	was	computed	using	correlation	distance	(1	177 

–	Pearson’s	 rho).	For	 the	medial-axis	model,	pairwise	distance	between	skeletal	 representations	178 

was	 computed	 using	 the	 ShapeMatcher	 algorithm	179 

(http://www.cs.toronto.edu/~dmac/ShapeMatcher/;	 (Van	 Eede	 et	 al.	 2006)).	 In	 sum,	 the	180 

ShapeMatcher	 algorithm	 builds	 the	 shock-graphs	 of	 each	 shape	 and	 then	 estimates	 their	181 

dissimilarity	 as	 the	 deformation	 required	 to	 match	 different	 objects	 (Sebastian	 et	 al.	 2004).	182 

Curvature	 was	 computed	 as	 the	 chord-to-point	 distance	 (Monroy	 et	 al.	 2011)	 in	 a	 40-pixels	183 

window.	Pairwise	dissimilarity	was	computed	using	correlation	distance	between	the	histograms	184 

of	curvature	from	each	pair	of	stimuli.	Finally,	two	further	control	RDMs	were	built.	For	the	inked-185 

area	bias,	pairwise	dissimilarity	was	computed	as	the	Euclidean	distance	between	the	number	of	186 

pixels	covered	by	different	objects.	For	 identity,	a	binary	representation	was	employed	(Khaligh-187 

Razavi	 and	 Kriegeskorte	 2014;	 Kriegeskorte	 et	 al.	 2008).	 Unfamiliar	 stimuli	 were	 considered	 as	188 

belonging	to	categories	according	to	both	their	function	and	shape.		189 

	190 

Shape	selectivity	191 

A	 variance	 partitioning	 analysis	 (Lescroart	 et	 al.	 2015)	 was	 performed	 to	 determine	192 

whether	 the	 three	 shape	 models	 in	 this	 study	 significantly	 explain	 unique	 components	 of	 the	193 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 22, 2019. ; https://doi.org/10.1101/814251doi: bioRxiv preprint 

https://doi.org/10.1101/814251


 10 

variance	of	brain	representations	(computed	using	Pearson’s	correlation	distance),	as	computed	in	194 

6	 mm-radius	 spherical	 searchlights	 (Kriegeskorte	 et	 al.	 2006).	 To	 this	 aim,	 explained	 variance	195 

coefficient	(R2)	was	computed	for	each	model	RDM	in	independent	linear	regressions,	and	then	all	196 

the	different	combinations	of	models	were	tested	in	further	multiple	linear	regressions.	The	final	197 

statistic	 reporting	 the	partial	 goodness	of	 fit	 for	unique	and	 shared	 components	was	 computed	198 

following	the	work	by	Nimon	and	colleagues	(2008).	To	exemplify,	the	unique	variance	explained	199 

by	 the	 curvature	model	 in	 a	 specific	 searchlight	was	determined	as	 the	difference	between	 the	200 

full-model	R2	and	the	variance	explained	by	the	combination	of	all	other	models	(i.e.,	R2	curvature	=	201 

R2full	–	R2silhouette	+	medial-axis	+inked	area	+	identity).	In	the	context	of	multiple	linear	regression,	this	approach	202 

is	better	known	as	‘commonality	analysis’	(Nimon	and	Oswald	2013),	and	its	popularity	is	growing	203 

in	neuroimaging	(de	Heer	et	al.	2017;	Groen	et	al.	2018;	Lescroart	et	al.	2015).	204 

Correlation	 distance	 was	 used	 to	 compute	 the	 RDM	 of	 fMRI	 activity	 patterns	 in	 each	205 

searchlight	and	only	voxels	pertaining	 to	 the	cerebral	 cortex	with	a	probability	higher	 than	50%	206 

were	included	in	the	procedure.	The	z-scored	partial	correlation	coefficient	(de	Heer	et	al.	2017)	207 

for	 each	 component	 of	 unique	 and	 shared	 variance	 were	 then	 assigned	 to	 the	 center	 of	 the	208 

searchlight,	so	obtaining	a	map	for	each	subject	and	component.	For	each	model,	threshold	free	209 

cluster	 enhancement	 (TFCE:	 Smith	 and	 Nichols	 2009)	 was	 used	 to	 detect	 group-level	 clusters	210 

significantly	 explained	 by	 the	 corresponding	 unique	 variance	 component	 (5000	 randomizations	211 

with	 6mm	 variance	 smoothing,	 as	 implemented	 in	 FSL’s	 randomise:	212 

www.fmrib.ox.ac.uk/fsl/randomise).	Statistical	maps	were	then	thresholded	at	one-tailed	p	<	0.05,	213 

corrected	for	multiple	comparisons	across	gray	matter	voxels	(minimum	cluster	size	=	10	voxels;	214 

Figure	2).	215 

	216 

Orthogonality	and	complexity	testing	217 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 22, 2019. ; https://doi.org/10.1101/814251doi: bioRxiv preprint 

https://doi.org/10.1101/814251


 11 

	 Orthogonality	 was	 computed	 by	 dividing	 the	 group-averaged	 sum	 of	 variance	 explained	218 

uniquely	by	 the	 five	models	with	 the	group-averaged	sum	of	variance	explained	by	 their	 shared	219 

components	 for	 each	 searchlight;	 a	 higher	 value	 indicates,	 therefore,	 that	 a	 higher	 fraction	 of	220 

variance	 is	 explained	 by	 individual	 models,	 rather	 than	 being	 shared	 across	 them.	 We	 tested	221 

whether	 a	 linear	 trend	 between	 the	 Y	 coordinate	 and	mean	 orthogonality	 in	 each	 XZ-slice	was	222 

present	by	searching	for	abrupt	changes	in	the	slope,	as	high	as	50%	of	the	maximum	value.	As	we	223 

found	no	 significant	 changes,	 the	 strength	of	 the	 linear	dependency	between	orthogonality	and	224 

the	 posterior-to-anterior	 direction	 was	 calculated	 using	 the	 Spearman’s	 correlation	 (Figure	 5A)	225 

and	significance	was	then	computed	with	a	parametric	test.	226 

Following	(Vernon	et	al.,	2016),	two	different	groups	of	features	were	identified:	low-level	227 

representations,	 sensitive	 to	 retinotopic	 information,	 and	 abstract	 representations,	 that	 are	228 

independent	 of	 the	 extent	 of	 retinotopic	 cortex	 stimulated.	 Inked-area	 and	 silhouette	 were	229 

labeled	 as	 low-level	 models,	 and	 medial-axis,	 curvature	 and	 category	 as	 abstract	 ones.	 Then,	230 

complexity	was	measured	by	the	ratio	between	variance	uniquely	explained	either	by	low-level	or	231 

abstract	 models.	 Thus,	 within	 each	 searchlight,	 group-averaged	 sum	 of	 variance	 explained	232 

uniquely	by	the	low-level	models	was	divided	by	the	group-averaged	sum	of	variance	explained	by	233 

the	abstract	ones.	Linearity	was	tested	as	for	the	orthogonality	index.	234 

	235 

Surface	plots	in	Figures	3	and	4	were	produced	with	the	Pycortex	toolbox	for	Python	(Gao	236 

et	al.	2015).	Second-level	analyses	were	performed	using	custom-made	code	written	 in	MATLAB	237 

(MathWorks	Inc.).	238 

	239 

Results	240 
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	 Here,	 three	 competing	 shape	models	 were	 tested.	 A	 first	 description	 was	 computed	 by	241 

extracting	 the	 silhouette,	 consisting	 of	 a	 simple	 stimulus	 vectorization.	 The	 link	 between	 shape	242 

silhouette	 and	 OTC	 representations	 has	 been	 extensively	 investigated	 in	 neuroimaging	 studies	243 

(Bracci	and	Op	de	Beeck	2016;	Kaiser	et	al.	2016;	Khaligh-Razavi	and	Kriegeskorte	2014;	Proklova	244 

et	al.	2016).	Second,	a	skeletal	representation	of	each	stimulus	was	extracted	by	performing	the	245 

medial	axis	transform	(Blum	1973).	It	controls	the	spike	rate	of	IT	neurons	in	monkey	(Hung	et	al.	246 

2012),	 captures	behavioral	 ratings	of	 shape	similarity	 (Lowet	et	al.	2018)	and	 its	 spatiotemporal	247 

association	 with	 brain	 activity	 in	 humans	 has	 been	 described	 in	 several	 neuroimaging	 studies	248 

(Handjaras	et	 al.	 2017;	 Leeds	et	 al.	 2013;	 Lescroart	 and	Biederman	2013;	Papale	et	 al.	 2019).	A	249 

third	description	was	obtained	by	computing	the	curvature	distribution	for	each	object’s	contour.	250 

It	 has	 been	 showed	 that	 V4	 neurons	 in	monkey	 are	 selective	 to	 a	 specific	 degree	 of	 curvature	251 

(Cadieu	et	al.	2007;	Carlson	et	al.	2011;	Connor	et	al.	2007).	Moreover,	the	pivotal	role	of	contour	252 

curvature	in	object	perception	has	been	extensively	demonstrated	both	by	behavioral	(Elder	and	253 

Velisavljevic	2009;	 Lawrence	et	 al.	 2016;	 Long	et	 al.	 2017;	Wolfe	et	 al.	 1992)	 and	neuroimaging	254 

studies	 in	humans	(Caldara	et	al.	2006;	Long	et	al.	2018;	Vernon	et	al.	2016;	Yue	et	al.	2014).	 In	255 

addition,	the	area	(in	pixels)	of	each	stimulus	was	computed	to	account	for	the	inked-area	bias	–	a	256 

problem	that	is	almost	unavoidable	when	using	complex	objects	in	isolation	(but	see	Bracci	and	Op	257 

de	Beeck	2016	 for	 an	elegant	 stimulus	design).	 Finally,	 to	get	 rid	of	high-level	biases	 that	 could	258 

affect	 the	 performance	 of	 the	 three	 shape	 models,	 object	 identity	 was	 included	 as	 a	 further	259 

control	(Khaligh-Razavi	and	Kriegeskorte	2014;	Kriegeskorte	et	al.	2008).	260 

As	expected	from	both	theoretical	and	experimental	investigations	on	this	topic	(Kay,	2011;	261 

Bracci	 and	 Op	 de	 Beeck,	 2016;	 Papale	 et	 al.,	 2019),	 the	 five	 models	 show	 moderate-to-high	262 

degrees	 of	 collinearity	 (Figure	 1E).	 Consequently,	 we	 used	 a	 method	 that	 accounts	 for	263 

multicollinearity	before	considering	 the	 significance	of	 the	association	of	each	model	with	brain	264 
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representations.	 Combining	 the	 variance	 partitioning	 analysis	 (Lescroart	 et	 al.,	 2015)	 and	 a	265 

searchlight	procedure	 (whole	brain,	 6mm	radius:	Kriegeskorte	et	 al.	 2006),	we	 identified	group-266 

level	 clusters	 significantly	 explained	 by	 three	 physiologically-validated	 shape	 models	267 

independently	from	competing	representations	(Figure	1D).	268 

	269 

The	human	visual	cortex	encodes	multiple	orthogonal	shape	representations	270 

	 Group-level	results	show	both	distinct	and	overlapping	clusters	of	shape	selectivity	in	OTC,	271 

mildly	 extending	 also	 to	 posterior	 dorsal	 regions	 (p	 <	 0.05	 one-tailed,	 TFCE	 corrected).	 The	272 

silhouette	model	(Figure	2,	in	red)	shows	a	significant	association	with	brain	representations	along	273 

the	Calcarine	sulcus	 (CalcS),	 the	occipitotemporal	 sulcus	 (OTS),	 the	right	collateral	 sulcus	 (CollS),	274 

the	 right	 inferior	 temporal	 sulcus	 (ITS),	 the	 right	 fusiform	gyrus	 (FusG),	 the	 cuneus	 (Cun)	and	 in	275 

posterior	 portions	 of	 the	 middle	 temporal	 gyrus	 (pMTG)	 and	 intraparietal	 sulcus	 (pIPS).	 The	276 

medial-axis	(Figure	2,	in	green)	explains	a	significant	portion	of	unique	variance	in	the	right	lateral	277 

occipital	 area	 (LO)	 only.	 Finally,	 curvature	 (Figure	 2,	 in	 blue)	 significantly	 explains	 fMRI	278 

representational	 geometries	 in	 the	 left	 lingual	 gyrus	 (LinG),	 in	 the	bilateral	 FusG,	 along	 bilateral	279 

OTS	and	ITS,	along	the	right	CollS,	in	the	right	MTG,	bilaterally	in	the	Cun	and	along	the	right	IPS.	280 

The	significant	clusters	for	the	control	models	are	also	represented	in	Figure	2.	281 

	 As	 all	 orthogonal	 components	of	our	 tested	models	 show	at	 least	 a	 significant	 cluster	of	282 

selectivity,	 shape	 representation	 does	 not	 rely	 on	 a	 single	 feature,	 but	 on	 a	multi-dimensional	283 

coding	scheme.	284 

	285 

**	Figure	2	near	here	**	286 
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	287 

Figure	2.	The	human	visual	cortex	encodes	orthogonal	shape	representations.		288 
Group-level	maps	showing	significant	clusters	of	shape	selectivity	 in	OTC	and	 in	posterior	dorsal	289 
regions	(one-tailed	p	<	0.05,	TFCE	corrected).	Selectivity	to	orthogonal	components	of	silhouette	290 
(red),	medial-axis	(green)	curvature	(blue),	object	category	(orange)	and	inked	area	(purple).		291 
	292 

Selectivity	to	orthogonal	shape	representations	coexist	in	the	same	cortical	regions	293 

	 We	 looked	 further	 at	 the	 overlap	 between	 the	 selectivity	 to	 orthogonal	 shape	294 

representations.	Figure	 3	 depicts	 the	pairwise	 comparisons	between	 the	 three	 shape	models	 in	295 

our	study.	A	stronger	overlap	is	observed	in	LO	for	medial-axis	and	curvature,	and	in	IT,	right	FusG,	296 
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Cun,	 right	 pMTG	 and	 right	 pIPS	 for	 silhouette	 and	 curvature.	 Thus,	 those	 brain	 regions	 encode	297 

multiple	shape	features,	independently	from	the	shared	variance	between	them.			298 

	299 

**	Figure	3	near	here	**	300 

	301 
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Figure	3.	Coding	of	orthogonal	shape	components	overlap	in	the	human	visual	cortex	303 
Pairwise	 comparisons	 between	 group-level	 unthresholded	 T-maps	 of	 orthogonal	 shape	304 
components	show	that	several	regions	encode	more	than	a	single	orthogonal	description.	Colored	305 
voxels	have	high	T-value	 in	a	single	model.	Silhouette	 is	represented	in	red,	medial-axis	 in	green	306 
and	curvature	in	blue.	The	overlap	between	two	orthogonal	representations	is	indicated	by	white	307 
voxels,	while	brightness	 represents	 the	value	of	 the	T-statistic	 in	each	voxel	 (i.e.	 gray	and	black	308 
voxels	 have	 low	 T-value	 in	 both	models).	White	 lines	 enclose	 right	 OTC,	where	 all	 three	 shape	309 
models	are	significant.		310 
	311 

Topographic	organization	of	object	shape	in	right	OTC	312 

	 Of	note,	only	within	right	OTC	all	the	three	models	are	significant	(enclosed	by	a	white	line	313 

in	Figure	3).	Figure	4	depicts	right	OTC	in	isolation	with	greater	detail:	when	combining	the	three	314 

models	(Figure	4B),	a	topographic	organization	emerges.	Silhouette	coding	is	medial	with	respect	315 

to	 the	CollS,	 encompassing	 the	 LinG	and	parahippocampal	 gyrus	 (PHG,	 red	voxels	 in	 Figure	4B).	316 

Proceeding	 laterally,	 the	 silhouette	 and	 medial-axis	 coexist	 in	 the	 fundus	 of	 the	 CollS	 (orange	317 

voxels	 in	Figure	4B),	while	 the	medial-axis	extends	also	 to	 the	FusG	 (green	voxels	 in	Figure	4B).	318 

Finally	 silhouette	 and	 curvature	 are	 both	 encoded	 medial	 to	 the	 OTS,	 with	 curvature	 being	319 

encoded	also	in	the	fundus	of	the	OTS.		320 

These	 results	 return	 a	 complex	 picture	 on	 shape	 coding	 in	 the	 human	 brain.	 However,	321 

some	general	considerations	can	be	made	by	looking	at	the	interactions	between	features.		322 

	323 

**	Figure	4	near	here	**	324 
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	325 
Figure	4.	Topographic	organization	of	object	shape	in	right	OTC	326 
A)	 Pairwise	 comparisons	 between	 group-level	 T-maps	 of	 orthogonal	 shape	 components	 in	 right	327 
OTC.	Colored	voxels	have	high	T-value	in	a	single	model.	Silhouette	is	represented	in	red,	medial-328 
axis	 in	 green	 and	 curvature	 in	 blue.	 The	 overlap	 between	 two	 orthogonal	 representations	 is	329 
indicated	by	white	voxels,	while	brightness	represents	the	value	of	the	T-statistic	in	each	voxel	(i.e.	330 
gray	and	black	voxels	have	low	T-value	in	both	models).	331 
B)	Overlap	between	the	three	group-level	T-maps	of	orthogonal	shape	components	in	right	OTC.	332 
Silhouette	is	represented	in	red,	medial-axis	in	green	and	curvature	in	blue.	The	overlap	between	333 
two	 orthogonal	 representations	 is	 indicated	 by	 intermediate	 colors:	 pink	 for	 silhouette	 and	334 
curvature,	 orange	 for	 silhouette	 and	medial-axis,	 cyan	 for	medial-axis	 and	 curvature.	Brightness	335 
represents	the	value	of	the	T-statistic	in	each	voxel	(i.e.	gray	and	black	voxels	have	low	T-value	in	336 
all	models).	337 
	338 
	339 

Coding	of	orthogonal	object	representations	decreases	from	posterior	to	anterior	regions	340 

In	 a	 previous	 study,	 Vernon	 and	 colleagues	 (2016)	 explored	 the	 relationship	 between	341 

retinotopic	and	more	abstract	object	representations,	 including	contour	curvature.	They	defined	342 

two	orthogonal	components	enclosing	low-level	and	complex	features,	and	found	a	shift	between	343 

retinotopic	and	more	abstract	features	in	LO.	Here,	we	further	tested	this	aspect	by	looking	also	at	344 

the	 relative	 weight	 of	 orthogonal	 and	 shared	 components.	 Indeed,	 the	 tuning	 to	 increasingly	345 

complex	features	is	considered	as	the	cornerstone	of	hierarchical	object	processing	(Riesenhuber	346 

and	 Poggio	 2000).	 However,	 it	 has	 been	 proposed	 that	 interaction	 between	 features	 plays	 a	347 
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pivotal	 role	 in	 evolving	 reliable	 selectivity	 in	 the	 brain	 (Benjamin	 et	 al.	 2019).	 Thus,	 we	348 

hypothesized	 that	 shared	 information	 should	 become	more	 relevant	 along	 the	 visual	 hierarchy,	349 

moving	from	posterior	to	anterior	brain	regions.		350 

Similarly	to	Vernon	et	al	(2016),	we	defined	two	independent	components,	one	for	the	low-351 

level	 features	 and	 one	 for	 the	 abstract	 ones.	 The	 first	 comprised	 the	 orthogonal	 variance	 of	352 

silhouette	and	 inked-area,	since	both	are	 linked	to	the	 local	 retinotopic	arrangement	and	to	the	353 

extent	of	 retinotopic	 cortex	 stimulated.	The	 second	 includes	 the	orthogonal	 variance	of	medial-354 

axis,	curvature	(both	 insensitive	to	differences	 in	object	orientation	and	size)	and	object	 identity	355 

models.	We	computed	the	ratio	between	the	explained	variance	of	low-level	and	abstract	features	356 

(i.e.,	complexity):	values	higher	than	one	indicate	that	brain	representations	are	better	accounted	357 

for	 by	 retinotopic	 information,	while	 values	 smaller	 than	 one	 that	 abstract	 representations	 are	358 

more	relevant.	When	 looking	at	 the	slope	of	complexity	along	the	posterior-to-anterior	axis,	we	359 

observed	an	abrupt	 shift	 from	retinotopic	 to	abstract	 features	around	YMNI	 =	 -72	 (Figure	5A).	Of	360 

note,	 the	 shift	 occurs	 at	 the	 limit	 between	 occipital	 and	 temporal	 or	 parietal	 cortex.	 Indeed,	361 

previous	studies	on	ventral	temporal	cortex	selectivity	constrained	their	analysis	between	YMNI	=	-362 

70	and	YMNI	=	-20	(e.g.,	Haxby	et	al,	2001;	Rice	et	al.,	2014).	363 

Then,	we	 looked	at	 the	 ratio	between	orthogonal	 and	 shared	 variance	 components	 (i.e.,	364 

orthogonality).	 We	 summed	 the	 variance	 explained	 by	 the	 orthogonal	 components	 of	 the	 five	365 

models	and	divided	it	by	the	sum	of	the	shared	components	between	the	five	models:	here,	values	366 

higher	 than	 one	 indicate	 that	 brain	 representations	 are	 better	 explained	 by	 orthogonal	367 

components	 of	 variance.	 We	 found	 no	 shifts	 along	 the	 posterior-to-anterior	 axis,	 instead	368 

orthogonality	 linearly	 decreases	 (ρ	 =	 -0.83,	 p	 <	 0.001,	 parametric	 test;	 Figure	 5B).	 Thus,	 while	369 

orthogonal	information	is	always	more	represented	than	shared	variance	(min	=	2.15),	it	becomes	370 

less	relevant	proceeding	along	the	visual	hierarchy.	371 
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	372 

**	Figure	5	near	here	**	373 

	374 

Figure	5.	The	link	between	object	features	shapes	the	human	visual	hierarchy	375 
A)	The	 ratio	between	 the	explained	variance	of	 low-level	 and	abstract	 features	 (i.e.	 complexity)	376 
along	the	visual	hierarchy	reveals	an	abrupt	shift.	Values	higher	than	one	(horizontal	dashed	line)	377 
indicate	 that	 brain	 representations	 are	 better	 accounted	 for	 by	 retinotopic	 information	 while	378 
values	 smaller	 than	 one	 that	 abstract	 representation	 is	more	 relevant.	 The	 vertical	 dashed	 line	379 
represents	the	point	where	mean	and	slope	(dashed	black	lines)	present	an	abrupt	change.	380 
B)	The	ratio	between	the	variance	explained	by	the	orthogonal	components	of	the	five	models	and	381 
the	sum	of	the	shared	components	between	the	five	models	(i.e.	orthogonality)	linearly	decreases	382 
along	 the	 visual	 hierarchy	 (ρ	 =	 -0.83,	 ***:	 p	 <	 0.001,	 parametric	 test).	 Values	 higher	 than	 one	383 
indicate	that	brain	representations	are	better	explained	by	orthogonal	components	of	variance.	384 
	385 

Discussion	386 

In	the	present	study,	we	found	that	object	shape	is	not	encoded	by	a	single	feature	but	is	387 

encoded	 by	 multiple	 representations	 (i.e.,	 silhouette,	 medial-axis	 and	 curvature)	 that	388 

independently	contribute	to	object	processing	in	the	human	visual	cortex	(Figure	2).	Moreover,	we	389 

showed	 that	 the	brain	encodes	orthogonal	object	 representations	 in	 a	 topographic	 fashion:	 the	390 

early	visual	cortex	is	biased	towards	unique	components	of	variance,	while	shared	representations	391 

become	progressively	more	relevant	in	anterior	regions	(Figure	5A).	392 

	 In	 line	with	previous	 studies,	we	 found	 that	 object	 silhouette	 is	mainly	 encoded	 in	 early	393 

visual	 areas	 (Bracci	 and	 Op	 de	 Beeck	 2016;	 Kaiser	 et	 al.	 2016;	 Khaligh-Razavi	 and	 Kriegeskorte	394 
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2014;	 Proklova	 et	 al.	 2016).	 This	 result	 can	 be	 explained	 by	 top-down	 figure-dependent	395 

mechanisms	 that	modulate	V1	activity	both	 in	monkeys	 (Poort	et	al.	2016;	Self	et	al.	2019)	and	396 

humans	 (Kok	 and	 de	 Lange	 2014;	 Muckli	 et	 al.	 2015),	 and	 enhances	 the	 processing	 of	 object-397 

related	information	in	early	visual	areas	also	during	natural	vision	(Papale	et	al.	2018).	However,	398 

another	 possibility	 may	 be	 that	 the	 silhouette	 model	 better	 captures	 the	 object	 physical	399 

appearance	(Kubilius	et	al.	2016).	400 

Instead,	 the	 variance	 component	 unique	 to	 the	 medial-axis	 model	 –	 which	 is	 the	 most	401 

transformation-resistant	shape	description	(Yang	et	al.	2008)	–	was	significant	in	a	smaller	extent	402 

of	cortex	comprising	only	a	subset	of	voxels	in	right	LO	(Figure	2,	middle	in	green).	This	can	be	due	403 

to	a	higher	spatial	 inter-subject	variability	of	this	representation	that	has	been	already	observed	404 

by	Leeds	et	al.	(2013),	or	to	a	higher	collinearity	with	the	control	models	we	employed	(Figure	1C)	405 

that	prevents	 from	disentangling	 its	 contribution	 from	competing	 representations.	Nonetheless,	406 

our	 result	 fits	 previous	evidence	of	medial-axis	 coding	 in	monkey	 IT	 (Hung	et	 al.	 2012;	putative	407 

homologue	of	human	LO),	and	is	consistent	with	our	previous	MEG	study	showing	that	medial-axis	408 

processing	is	limited	to	a	small	cluster	of	right	posterior	sensors,	when	controlling	for	collinearity	409 

with	low-level	and	categorical	representations	(Papale	et	al.	2019).	410 

Finally,	IT	(Kayaert	et	al.	2005b;	Yue	et	al.	2014),	LO	(Vernon	et	al.	2016)	and	FusG	(Caldara	411 

et	al.	2006)	were	bilaterally	tuned	to	contour	curvature	(Figure	2,	bottom	in	blue),	in	accordance	412 

with	 previous	 neuroimaging	 investigations.	 Actually,	 LO	 has	 a	 pivotal	 role	 in	 object	 processing	413 

(Grill-Spector	et	al.	2001;	Grill-Spector	et	al.	1999;	Kourtzi	and	Kanwisher	2001),	as	IT	in	monkeys	414 

(Brincat	and	Connor	2004;	Desimone	et	al.	1984;	Kayaert	et	al.	2005a;	Op	de	Beeck	et	al.	2001;	415 

Tanaka	 2003;	 Zoccolan	 et	 al.	 2007).	 In	 addition,	 while	 we	 focus	 our	 discussion	 on	 the	 ventral	416 

stream,	we	also	observed	 few	 significant	 clusters	 in	dorsal	 visual	 regions	 (R	pIPS;	 see	 Figure	2),	417 

both	for	curvature	and	silhouette,	which	confirm	previous	observations	(Freud	et	al.	2017).	418 
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Closed	shapes	can	be	easily	and	reliably	generated	by	combining	simple	elements	(e.g.,	geons	419 

or	medial	axes),	by	connecting	few	salient	points	with	acute	curvature	or	by	modulating	its	radial	420 

frequency.	This	may	suggest	that	a	unique	featural	dimension	–	and	maybe	a	single	brain	region	as	421 

V4	or	LO	-	could	critically	account	for	cortical	shape	representations.	However,	the	evidence	that	422 

all	 the	tested	dimensions	 independently	contribute	to	shape	representation	 in	the	human	visual	423 

cortex	 favors	 the	 hypothesis	 of	 a	multi-dimensional	 coding	 of	 object	 shape	 (Silson	 et	 al.	 2016;	424 

Silson	et	al.	2013),	similarly	to	what	observed	for	texture	processing	(Okazawa	et	al.	2015;	Ziemba	425 

et	al.	2016).	426 

Long	et	al.	 (2018)	suggested	that	mid-level	computations,	covarying	with	high-level	semantic	427 

processing	(including	curvature	extraction),	control	the	organization	of	OTC.	In	the	present	study,	428 

however,	 we	 observed	 overlapping	 selectivity	 to	 orthogonal	 features	 in	 LO	 (medial-axis	 and	429 

curvature),	 IT,	 right	 FusG,	 Cun,	 right	 pMTG	 and	 right	 pIPS	 (silhouette	 and	 curvature).	 Since	we	430 

controlled	 for	 collinearity	 between	 models,	 this	 result	 could	 not	 be	 merely	 ascribed	 to	 the	431 

variance	shared	by	those	features.	While	this	may	apparently	result	in	contrast	with	the	proposal	432 

by	 Long	 et	 al.	 (2018),	 here	 we	 also	 observed	 that	 coding	 of	 shared	 descriptions	 in	 OTC	 is	433 

topographically	 arranged	 and	 its	 relevance	 linearly	 increases	 from	 posterior	 to	 anterior	 regions	434 

(Figure	5).	This	observation,	consistently	with	the	core	finding	of	Long	et	al.	(2018),	suggests	that	435 

the	 hierarchy	 of	 visual	 processing	 is	 not	 only	 shaped	 by	 specificity	 to	 increasingly	 complex	436 

features,	but	also	by	a	higher	selectivity	to	shared	representations.	437 

This	 observation	 complements	what	 has	 been	 already	 observed	on	 the	 two	extremes	 of	438 

the	 ventral	 visual	 pathway:	 V1	 and	 IT.	 Representations	 in	 V1	 are	 over-complete	 relative	 to	 the	439 

retinal	 input	 (Olshausen	 and	 Field	 1996;	 Vinje	 and	 Gallant	 2000).	 In	 addition,	 inhibitory	440 

interactions	in	V1	are	specifically	targeted	at	neurons	with	similar	tuning	properties	(Chettih	and	441 

Harvey	2019).	Both	these	factors	increase	V1	representational	capacity	and	may	ultimately	lead	to	442 
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a	 higher	 selectivity	 to	 orthogonal	 features,	 as	 we	 observed	 in	 posterior	 regions.	 On	 the	 other	443 

hand,	 higher	 sensitivity	 to	 shared	 information	 in	 more	 anterior	 areas	 may	 be	 produced	 by	444 

populations	 of	 neurons	 that	 are	 not	 tuned	 to	 a	 specific	 property	 but	 that	 encode	 multiple	445 

dimensions	 at	 once.	 Indeed,	 shared	 featural	 selectivity	 has	 been	 proposed	 as	 the	 mechanism	446 

responsible	 to	 achieve	 dimensionality	 reduction	 of	 the	 sensory	 input	 in	 IT	 (Lehky	 et	 al.	 2014),	447 

where	both	neural	density	and	surface	are	much	lower	than	in	V1	(Cahalane	et	al.	2012;	Van	Essen	448 

et	 al.	 1992).	 In	 line	 with	 this,	 the	 highest	 dimensional	 among	 our	 three	 shape	 models	 (i.e.,	449 

silhouette)	 is	also	represented	in	posterior	regions	(Figure	2).	Relatedly,	the	interaction	between	450 

multiple	features	 is	 thought	to	represent	the	optimal	solution	to	 increase	the	sensitivity	to	their	451 

mutual	changes:	in	this	view,	instead	of	having	few	neurons	encoding	a	single	feature	each,	it	may	452 

be	preferable	 to	have	most	of	 the	neurons	 encoding	multiple	 features	 at	 once	 (Benjamin	et	 al.	453 

2019).	It	has	been	also	suggested	that	interactions	between	features	are	responsible	for	the	poor	454 

reliability	of	tuning	curves	in	predicting	brain	responses	in	natural	vision	(Benjamin	et	al.	2019).	455 

Thus,	 what	 can	 be	 concluded	 on	 the	 nature	 of	 object	 processing?	 On	 one	 hand,	 we	456 

observed	an	abrupt	shift	from	retinotopic	to	abstract	representations	moving	anteriorly	across	the	457 

brain	 (Figure	 5A).	 However,	 this	 shift	 is	 relative:	 though	 less	 relevant,	 orthogonal	 retinotopic	458 

information	 spreads	 also	 to	 OTC,	 explaining	 a	 significant	 portion	 of	 its	 variance,	 in	 line	 with	459 

previous	 work	 and	 suggesting	 a	 link	 between	 low-level	 and	 object	 selectivity	 (Rajimehr	 et	 al.,	460 

2011;	Rice	et	al.,	2014).	On	the	other	hand,	we	found	a	linear	dependency	between	the	anterior-461 

to-posterior	axis	and	the	variance	explained	by	shared	information	(Figure	5B).	As	stated	earlier,	462 

this	 property	 describes	 the	 linear	 cascade	 of	 computations	 in	 the	 visual	 hierarchy	 better	 than	463 

complexity:	optimizing	the	coding	of	shared	variance	between	behaviorally	relevant	features	may	464 

represent	a	key	factor	in	shaping	the	architecture	of	our	visual	cortex	and	achieving	reliable,	view-465 

point	 invariant	 object	 representations.	 In	 this	 light,	 the	 next	 step	 should	 be	 to	 move	 from	466 
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modeling	 representational	 geometries	 to	 more	 direct	 modulations	 of	 brain	 responses,	 so	 to	467 

control	also	for	nonlinear	interactions	between	features	(Benjamin	et	al.	2019).	468 

It	should	be	noted	that	due	to	the	low	fMRI	temporal	resolution	we	cannot	resolve	which	469 

mechanisms	 support	 the	 different	 tuning	 for	 shared	 representations.	 Moreover,	 while	 the	470 

selected	models	capture	visual	transformations,	many	alternative	descriptions	exist	(e.g.,	Khaligh-471 

Razavi	 and	 Kriegeskorte	 2014).	 Overall,	 however,	 our	 results	 hint	 at	 the	 existence	 of	 a	 multi-472 

dimensional	coding	of	object	shape,	and	reveal	that	selectivity	for	shared	object	representations	473 

are	topographically	arranged	and	increases	along	the	visual	hierarchy.	Future	research	will	identify	474 

how	different	tasks	(e.g.,	determining	object	similarity	vs.	extracting	affordances),	and	alternative	475 

descriptions	impact	on	the	observed	patterns	of	selectivity.	476 
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