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Abstract

The resources generated by the GTEx consortium o�er unprece-

dented opportunities to advance our understanding of the biology

of human traits and diseases. Here, we present an in-depth ex-

amination of the phenotypic consequences of transcriptome regula-

tion and a blueprint for the functional interpretation of genetic loci

discovered by genome-wide association studies (GWAS). Across a

broad set of complex traits and diseases, we �nd widespread dose-

dependent e�ects of RNA expression and splicing, with higher im-

pact on molecular phenotypes translating into higher impact down-

stream. Using colocalization and association approaches that take

into account the observed allelic heterogeneity, we propose poten-

tial target genes for 47% (2,519 out of 5,385) of the GWAS loci

examined. Our results demonstrate the translational relevance of

the GTEx resources and highlight the need to increase their reso-

lution and breadth to further our understanding of the genotype-

phenotype link.

Introduction

In the last decade, the number of reproducible genetic associations with complex traits

that have emerged from genome-wide association studies (GWAS) has substantially grown.

Many of the identi�ed associations lie in non-coding regions of the genome, suggesting that

they in�uence disease pathophysiology and complex traits via gene regulatory changes.

Integrative studies of molecular quantitative trait loci (QTL) (1) have pinpointed gene

expression as a key intermediate molecular phenotype, and improved functional inter-

pretation of GWAS �ndings, spanning immunological diseases (2), various cancers (3,4),

lipid traits (5,6), and a broad array of other complex traits.

Large-scale international e�orts such as the Genotype-Tissue Expression (GTEx) Con-

sortium have provided an atlas of the regulatory landscape of gene expression and splicing

variation in a broad collection of primary human tissues (7�9). Nearly all protein-coding

genes in the genome now have at least one local variant identi�ed to be associated with

expression and a majority also have common variants a�ecting splicing (FDR < 5%) (9).
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In parallel, there has been an explosive growth in the number of genetic discoveries across

a large number of phenotypes, prompting the development of integrative approaches to

characterize the function of GWAS �ndings (10�14). Nevertheless, our understanding

of underlying biological mechanisms for most complex traits substantially lags behind

the improved e�ciency of discovery of genetic associations, made possible by large-scale

biobanks and GWAS meta-analyses.

One of the primary tools for functional interpretation of GWAS associations has been

integrative analysis of molecular QTLs. Colocalization approaches that seek to establish

shared causal variants (e.g., eCaviar (15), enloc (16), and coloc (17)), enrichment analysis

(S-LDSC (18) and QTLEnrich (11)) or mediation and association methods (SMR (12),

TWAS (13) and PrediXcan (19)) have provided important insights, but they are often

used in isolation, and there have been limited prior assessments of power and error rates

associated with each (20). Their applications often fall short of providing a comprehensive,

biologically interpretable view across multiple methods, traits, and tissues or o�ering

guidelines that are generalizable to other contexts. Thus, a comprehensive assessment of

expression and splicing QTLs for their contributions to disease susceptibility and other

complex traits requires the development of novel methodologies with improved resolution

and interpretability.

Here, we develop novel methods, approaches, and resources that elucidate how genetic

variants associated with gene expression (cis-eQTLs) or splicing (cis-sQTLs) contribute

to, or mediate, the functional mechanisms underlying a wide array of complex diseases

and quantitative traits. Since splicing QTLs have largely been understudied, we per-

form a comprehensive integrative study of this class of QTLs, in a broad collection of

tissues, and GWAS associations. We leverage full summary results from 87 GWAS for

discovery analyses and use independent datasets for replication and validation. Notably,

we �nd widespread dose-dependent e�ect of cis-QTLs on traits through multiple lines

of evidence. We examine the importance of considering, or correcting for, false func-

tional links attributed to GWAS loci due to neighboring but distinct causal variants. To

identify predicted causal e�ects among the complex trait associated QTLs, we conduct

systematic evaluation across di�erent methods. Furthermore, we provide guidelines for

employing complementary methods to map the regulatory mechanisms underlying genetic

associations with complex traits.
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Harmonized GWAS and QTL datasets

The �nal GTEx data release (v8) includes 54 primary human tissues, 49 of which included

at least 65 samples and were used for cis-QTL mapping (Fig. 1) (9). This phase increases

the number of available tissues relative to previous GTEx publications (v6p; 44 tissues) (8)

and doubles the sample size from 7,051 RNA-Seq samples from 449 individuals to 15,253

samples from 838 individuals, now all with whole genome sequencing data as opposed to

genotype imputation in v6p. Furthermore, the v8 core data resources now include splicing

QTLs (9), allowing parallel analysis of both expression and splicing variation underlying

complex traits. Using these resources, we investigated the contribution of expression

and splicing QTLs in cis (eQTL and sQTL, respectively) to complex trait variance and

etiology.

We retained 87 GWAS datasets representing 74 distinct complex traits for further

analyses (table S1 and �g. S1) after stringent quality control (�g. S2; (21)) and data

harmonization(�g. S3, �g. S4).
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Fig. 1. Overview of work�ow for mapping complex trait associated QTLs. Full
variant association summary statistics results from 114 GWAS were downloaded, standardized,
and imputed to the GTEx v8 WGS variant calls (maf>0.01) for analyses. A total of 8.87 million
imputed and genotyped variants were investigated to identify trait-associated QTLs. A total
of 49 tissues, 87 traits, and 23,268 protein-coding genes and lncRNAs remained after stringent
quality assurance protocols and selection criteria. A wide array of complex trait classes, including
cardiometabolic, anthropometric, and psychiatric traits, were included.

Dose-dependent e�ects of expression and splicing regulation on complex traits

The robust enrichment of GWAS variants (�g. S5, �g. S6) and heritability in eQTLs

and sQTLs has been established by multiple studies, including our analysis of GTEx

v8 data (9, 21). This observation provides strong support for a causal role of expres-

sion and splicing regulation in complex traits. Importantly, transcriptome-based PrediX-

can/TWAS methods implicitly assume that gene regulation a�ects complex traits in a

dose-dependent manner. Nevertheless, there has been little formal support for this as-

sumption. Here, we tested a dose-dependent e�ect on traits, i.e., whether e/sVariants

with higher impact on gene expression or splicing lead to higher impact on a complex

trait and a larger GWAS e�ect (Fig. 2A). We note these analyses were performed with

�ne-mapped variants (21). The dose-dependent e�ect was quanti�ed by the genic medi-
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ating e�ect, βg, which re�ects how strongly the change in a given gene's dosage a�ects a

trait, with a non-causal gene having a �at slope (βg = 0).

To get a �rst-order approximation of the average mediating e�ect size (�g. S10), we

calculated the correlation between the magnitude of the QTL e�ect size and that of the

GWAS e�ect size for each tissue-trait pair, using �ne-mapped QTLs with the largest

posterior inclusion probability within each causal LD cluster (21). Importantly, this cor-

relation re�ects the mediated e�ect and corrects for LD contamination (see (21); �g. S9).

As hypothesized, we found a signi�cant positive correlation between the GWAS and QTL

e�ects, consistently across all 87 by 49 trait-tissue pairs. The average correlations were

0.18 (s.e. = 0.004, p < 1 × 10−30) and 0.25 (s.e. = 0.006, p < 1 × 10−30) for expression

and splicing, respectively (Fig. 2B and �g. S7). Averages were calculated taking into

account correlation between tissues (21), and p-values were calculated against permuted

null with matched local LD (21). These results provide the �rst line of evidence of the

dose-response e�ect.

Correlating the eQTL and GWAS e�ect sizes across genes has additional noise arising

from di�erent genes having di�erent levels of dosage sensitivity - i.e., a similar trait e�ect

may arise from a small change in one gene's expression and a large change in another one.

To account for this heterogeneity in mediating e�ect or, equivalently, dosage sensitivity,

we modeled the slope (βg) as a random variable following the normal distribution as

βg ∼ N (0, σ2
gene), where the variance is a measure of the average mediated e�ect for each

trait (22). These e�ects were signi�cantly larger than the permuted null (expression:

p = 1.8 × 10−9; splicing: p = 2.5 × 10−7; Fig. 2C). These results indicate that strong

genetic e�ects on expression or splicing are more likely to have a strong association to

complex traits, adding further support for a dose-dependent relationship between gene

regulation and downstream traits (Fig. 2E).

Furthermore, the high degree of allelic heterogeneity in the GTEx data enables anal-

ysis of the GWAS contribution of multiple independent eQTL e�ects for the same gene

(Fig. 2D, (9, 21)). Allelic heterogeneity allows a more precise analysis of dose-dependent

e�ects through comparison of the dose sensitivity between primary and secondary eQTLs,

estimated as the ratio of GWAS to eQTL e�ects, β̂ = δ̂/γ̂ (�g. S11). This method is equiv-

alent to Mendelian randomization approaches, estimating the likely causal e�ect of a gene

on a trait. More graphically (Fig. 2A), we tested whether the points in a dose-response

plot align along the corresponding slope line for each gene.
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We found a signi�cantly higher correlation in mediating e�ect between primary and

secondary eQTLs for a given gene compared to a null distribution obtained by sampling

GWAS e�ect sizes from a bivariate normal distribution to account for the small observed

LD between primary and secondary eQTLs (Fig. 2D-E) while keeping the observed eQTL

e�ect sizes (p < 1× 10−30).

Interestingly, the correlation between primary and secondary eQTLs for non-colocalized

genes (rcp < 0.01), which were used as controls (9,21), was signi�cantly higher than this

more accurate null, indicating that even eQTLs with very low colocalization probabil-

ity include many genes that are likely causal. Given this concordance between multiple

independent eQTLs, it is clear that with widespread allelic heterogeneity detected with

currently available sample sizes, methods that assume single causal variants are highly

limited. The approaches described here enable insights into how multiple regulatory ef-

fects converge to mediate the same trait association.
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Fig. 2. Dose-dependent e�ects of QTLs on complex traits. Here all analyses were
performed with �ne-mapped variants. (A) Schematic representation of dose-response model.
(B) Correlation between QTL and GWAS e�ects, Cor(|δ̂|, |γ̂|), median across 49 tissues is shown.
Gray distribution represents permuted null with matched local LD. (C) Average mediated e�ects
from mediation model (σ2gene, median across tissues). Gray distribution represents permuted
null with matched local LD. (D) Correlation of mediated e�ects between primary (ordered by
signi�cance) and secondary eQTLs for di�erent colocalization thresholds (rcp ≥ 0, 0.01, 0.10) in
dark blue. Correlation for genes rcp ≤ 0.01 and matched LD is shown in light blue. Correlation
for null calculated with simulated GWAS e�ects from bivariate normal with LD and observed
QTL e�ects is shown in gray. (E) Mediated e�ects of secondary vs primary eQTLs of colocalized
genes (rcp > 0.10) in whole blood, genes for all 87 traits are shown.

Causal gene prediction and prioritization

In addition to genome-wide analyses that shed light on the molecular architecture of com-

plex traits, QTL analysis of GWAS data can identify potential causal genes and molecular

changes in individual GWAS loci. Towards this end, we analyzed colocalization and ge-

netically predicted regulation association (Fig. 3A). After evaluating the performance

of coloc and enloc (16, 17), we chose enloc as our primary approach, due to its use of

hierarchical models to estimate colocalization priors (16) and its ability to account for

multiple causal variants. The coloc assumption of a single causal variant drastically re-

duces performance especially in large QTL datasets such as GTEx with widespread allelic
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heterogeneity (�g. S27). We estimated the posterior regional colocalization probability

(rcp), using enloc, for 12,072,964 (tissue, gene, GWAS locus, trait)-tuples and 67,943,800

(tissue, splicing event, GWAS locus, trait)-tuples. We used rcp>0.5 as a stringent evi-

dence of colocalization.

In total, we identi�ed 3,477 (15% of 23,963) unique genes colocalizing with GWAS hits

(rcp > 0.5) across all traits and tissues analyzed (�g. S14A). 3,157 splicing events (1%

out of 310,042) colocalized with GWAS hits, corresponding to 1,226 genes with at least

one colocalized splicing event (5% of 23,963, �g. S14B).

To assess the performance of di�erent colocalization approaches, we compared the �ne-

mapping results based on two large GWAS of height in European-ancestry individuals:

GIANT (23) and UK Biobank. Colocalization of signals in two traits occurs when they

share �ne-mapped variants, i.e. variants with posterior causal probability greater than

0. We found that 85% of �ne-mapped variants (posterior inclusion probability > 0.25)

in GIANT had posterior probability of 0 in the UK Biobank, which implies that the

colocalization probability contributed by these variants is 0. Notably, 48% of GIANT's

�ne-mapped loci had no overlap with the UK Biobank's loci, resulting in a colocalization

probability of 0. Given the larger sample size in the UK Biobank, this low colocalization

cannot be attributed to lack of power but is likely due in part to reference LD di�erences.

Thus, colocalization is highly conservative and may miss many causal genes, and low

colocalization probability should not be interpreted as evidence of lack of a causal link

between the molecular phenotype and the GWAS trait.

A complementary approach to colocalization is to estimate GWAS association for

genetically predicted gene expression or splicing (19). The GTEx v8 data provides an

important expansion of these analyses, allowing generation of prediction models in 49

tissues with whole genome sequencing data to impute gene expression and splicing vari-

ation. We trained prediction models using a variety of approaches and selected the top

performing one based on precision, recall, and other metrics (21,24). Brie�y, the optimal

model uses �ne-mapping probabilities for feature selection and exploits global patterns

of tissue sharing of regulation (see (21); �g. S12) to improve the weights. Multi-SNP

prediction models were generated for a total of 686,241 (gene, tissue) pairs and 1,816,703

(splicing event, tissue) pairs. With the increased sample size and improved models, we

increased the number of expression models by 14% (median across tissues) relative to the

GTEx v7 models Elastic Net models (�g. S13). Splicing models are available only for the
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v8 release.

Next, we computed the association between an imputed molecular phenotype (expres-

sion or splicing) and a trait to estimate the genic e�ect on the trait using S-PrediXcan (25).

Given the widespread tissue-sharing of regulatory variation (8), we also computed S-

MultiXcan scores (10) to integrate patterns of associations from multiple tissues and in-

crease statistical power (10). Twenty eight percent of the genes tested with S-PrediXcan

showed a signi�cant association with at least one of the 87 traits at Bonferroni-corrected p-

value threshold (p < 0.05/686, 241; �g. S14). For splicing, about 15% (20,364 of 138,890)

of tested splicing events showed a signi�cant association (p < 0.05/1, 816, 703). Nearly all

traits (94%; 82 out of 87) showed at least one S-PrediXcan signi�cant gene-level associa-

tion in at least one tissue (�g. S19 and S20). This resource of S-PrediXcan associations

can be used to prioritize a list of putatively causal genes for follow-up studies.

To replicate the PrediXcan expression associations in an independent dataset, BioVU,

which is a large-scale biobank tied to Electronic Health Records (26, 27), we selected

seven traits with predicted high statistical power. Out of 947 gene-tissue-trait discoveries

tested, 458 unique gene-tissue-trait triplets (48%) showed replication in this independent

biobank (p < 0.05; (21)).

Altogether, these results provide abundant links between gene regulation and GWAS

loci. To further quantify this, we considered approximately LD-independent regions (28)

with a signi�cant GWAS variant for each trait, and calculated the proportion of GWAS

loci that contain an associated gene from S-PrediXcan (p < 0.05 / # genes, 2 × 10−6)

or a colocalized gene from enloc (rcp > 0.5). Across the traits, 72% (3,899/5,385) of

GWAS loci had a S-PrediXcan expression association in the same LD region and 55%

(2,125/3,899) had evidence of colocalization with an eQTL (table S3, table S4, �g. S17).

For splicing, 62% (3,345/5,385) had a S-PrediXcan association and 34% (1,135/3,345)

enloc colocalized with an sQTL (�g. S18). From the combined list of eGenes and sGenes,

47% of loci have a gene with both enloc and PrediXcan support. The distribution of

the proportion of associated and colocalized GWAS loci across 87 traits is summarised in

Fig. 3-E; for a typical complex trait, about 20% of GWAS loci contained a colocalized,

signi�cantly associated gene while 11% contained a colocalized, signi�cantly associated

splicing event. These results propose function for a large number of GWAS loci, but most

loci remain without candidate genes, highlighting the need to expand the resolution of

transcriptome studies.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


Performance of causal gene prediction

Multiple studies have found an excess of deleterious rare variants associated with complex

traits in genes that are in the vicinity of common variants associated with the same

trait (29�31), suggesting that the dose-response curve at the regulatory range may be

extrapolated to the rare, loss-of-function end (Fig. 3B). We thus leveraged this rare variant

information to analyze the sensitivity and speci�city of S-PrediXcan and enloc in �nding

causal genes in GWAS loci. Towards this end, we curated two �silver standard" sets of

genes associated with speci�c traits, based on the OMIM (Online Mendelian Inheritance

in Man) database (32) and rare variant association studies (29,33,34) (�g. S21, table S6).

We analyzed the genes, within the silver standard sets, that have a GWAS association for

a matched trait in the same LD block (21, 28), resulting in 1,592 OMIM gene-trait pairs

and 101 rare variant based gene-trait pairs (table S11, table S12, �g. S22). Since only

genes in the vicinity of an index gene can be discovered with cis-regulatory information,

we selected 229 OMIM genes and 81 genes harboring rare variant associations that are

located within the same LD block as the GWAS locus for a matched trait (�g. S23).

Both S-PrediXcan and enloc showed high sensitivity to identifying the silver standard

genes (Fig. 3C, Fig. 3D). Compared to a random set of genes within the same LD block as

the GWAS locus and OMIM gene, S-PrediXcan and enloc showed substantial enrichment

of 2.5 and 4.6 folds for expression and 2.5 and 6.1 folds for splicing, respectively. For the

rare variant silver standard, we found similar enrichment for PrediXcan (2.2 and 2.19 for

expression and splicing, respectively) and enloc (14.7 and 21.7). We note comparison of

this enrichment between the methods is not interpretable because the tresholds based on

signi�cance and colocalization probability are not comparable.

For applications such as target selection for drug development or follow-up experi-

ments, another relevant metric is the precision or, equivalently, positive predictive value

(PPV) � the probability that the gene-trait link is causal given that it is called signi�-

cant or colocalized. Using the same threshold as for the sensitivity calculation, we found

that 8.5% (73 out of 859) of PrediXcan signi�cant genes and 11.7% (49 out of 419) of

enloc-colocalized genes were also OMIM genes for matched traits.

These enrichment results were corroborated by ROC and precision-recall curves, which

demonstrate that enloc and PrediXcan contribute to prediction of causal genes, and that

combining enloc and PrediXcan improves the precision-recall trade-o� (�g. S25). How-

ever, the overall prediction performance is modest, which is likely to be partially due to
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the fact that the OMIM gene list has an inherent bias. Our current understanding of

gene function is biased towards protein-coding variants with very large e�ects, which is

re�ected in the list of OMIM genes. Genes associated to rare severe disease tend to be

depleted of regulatory variation (35, 36), which will decrease the performance of a QTL-

based method in a way that is unlikely to be generally applicable to GWAS genes that

are more tolerant to regulatory variation (36).

To further investigate whether this predictive power could be improved by considering

the proximity of the GWAS peaks to the OMIM genes, we performed a joint logistic re-

gression of OMIM gene status on 1) the proximity of the top GWAS variant to the nearest

gene, 2) posterior probability of colocalization, and 3) PrediXcan association signi�cance

between QTL and GWAS variants. To make the scale of the three features more compa-

rable, we used their respective ranking within the locus with a threshold for genes with

no evidence of colocalization or association. Among the 229 OMIM genes, 28.4% were the

closest gene, 22.7% were the most colocalized, and 18.3% were the most signi�cant �g. S24.

All three features were signi�cant predictors of OMIM gene status, with better ranked

genes more likely to be OMIM genes (proximity p = 2.0 × 10−2, enloc p = 6.1 × 10−3,

PrediXcan p = 2.5× 10−4), indicating that each method provides an independent source

of causal evidence. Similar results were obtained using splicing colocalization and asso-

ciation scores and the rare variant based silver standard, as shown in table S7. These

results provide further empirical evidence that a combination of colocalization and asso-

ciation methods will perform better than individual ones. The signi�cance of proximity

is an indicator of the missing regulability, i.e. mechanisms that may be uncovered by a

gene assignment that assays other tissue or cell type contexts, larger samples, and other

molecular traits.

Predicted OMIM genes included well-known �ndings such as PCSK9 for LDLR, with

PCSK9 signi�cant and colocalized for relevant GWAS traits (LDL-C levels, coronary

artery disease, and self-reported high cholesterol), and Interleukins and HLA subunits for

asthma, both signi�cant and colocalized for related immunological traits. Signi�cantly

associated and colocalized genes that predicted OMIM genes also included FLG (eczema),

TPO (hypothyroidism), and NOD2 (in�ammatory bowel disease) (see table S11 for com-

plete list). Prediction of genes in the rare variant based silver standard was similarly

observed (see (21); �g. S26).
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Fig. 3. Identifying and validating predicted causal genes. (A) Schematic representation
of association and colocalization approaches. (B) Schematic representation of extrapolation
of the dose-response curve to Mendelian end of phenotype-genotype spectrum (37). (C-D)
Performance of enloc, PrediXcan, and SMR on expression (C) and splicing (D) data to predict
causal genes using the OMIM silver standard. (E) Proportion of GWAS-associated loci per trait
that contain colocalized and S-PrediXcan-associated signals for expression and splicing.

Tissue enrichment of GWAS signals

A systematic survey of regulatory variation across 49 human tissues promises to facilitate

the identi�cation of the tissues of action for complex traits. However, because of the

broad sharing of regulatory variation across tissues and the reduced signi�cance of tissue-

speci�c eQTLs, causal tissue identi�cation has been challenging. Here we used sparse

factors from mashR representing patterns of tissue sharing of eQTLs (21), to classify

each gene-trait association into one of 15 tissue classes (�g. S28). Using the pattern of

tissue classes of non-colocalized genes (rcp = 0) as the expected null, we assessed whether

signi�cantly associated and colocalized genes (PrediXcan signi�cant and rcp > 0.01) were

over-represented in certain tissue classes (Fig. 4). Consistent with previous reports (11,

38), we identi�ed several instances in which the most signi�cant tissue is supported by

current biological knowledge. For example, blood cell count traits were enriched in whole

blood, neuroticism and �uid intelligence in brain/pituitary, hypothyrodism in thyroid,
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coronary artery disease in artery, and cholesterol-related traits in liver. Taken together,

these results show the potential of leveraging regulatory variation to help identify tissues

of relevance for complex traits.

Fig. 4. Identifying trait-relevant tissues using tissue-speci�c enrichment. Enrichment
of tisssue-speci�c association and colocalization compared to the pattern of tissue-speci�city of
non-colocalized genes. Over-representation of the tissue class for PrediXcan-signi�cant and colo-
calized genes is indicated by dark yellow while depletion is indicated by blue. Black dots label
the tissue class-trait pairs passing the nominal p-value signi�cance threshold of 0.05. Abbrevia-
tion: S1. Trait category colors: S1.

Discussion

We examined in-depth the phenotypic consequences of transcriptome regulation and pro-

vide novel computational methodologies and best-practice guidelines for using the GTEx

resources to interpret GWAS results. We provide a systematic empirical demonstration

of the widespread dose-dependent e�ect of expression and splicing on complex traits, i.e.,

variants with larger impact at the molecular level had larger impact at the trait level.

Furthermore, we found that target genes in GWAS loci identi�ed by enloc and PrediXcan

were predictive of OMIM genes for matched traits, implying that for a proportion of the

genes, the dose-response curve can be extrapolated to the rare and more severe end of the

genotype-trait spectrum. The observation that common regulatory variants target genes

also implicated by rare coding variants underscores the extent to which these di�erent

types of genetic variants converge to mediate a spectrum of similar pathophysiological

e�ects and may provide a powerful approach to drug target discovery.
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We implemented association and colocalization methods that leverage the observed al-

lelic heterogeneity of expression traits. After extensive comparison using two independent

sets of silver standard gene-trait pairs, we conclude that combining enloc, PrediXcan, and

proximity ranking outperforms the individual approaches. The signi�cance of the prox-

imity ranking is a sign of the �missing regulability� emphasizing the need to expand the

resolution, sample size, and range of contexts of transcriptome studies as well as to ex-

amine other molecular mechanisms.

We caution that the increased power o�ered by this release of the GTEx resources

also brings higher risk of false links due to LD contamination and that naive use of eQTL

or sQTL association p-values to assign function to a GWAS locus can be misleading.

Colocalization approaches can be e�ective in weeding out LD contamination but given

the current state of the methods and the lack of LD references from source studies, they

can also be overtly conservative. Importantly, �ne-mapping and colocalization approaches

can be highly sensitive to LD misspeci�cation when only summary results are used (39).

The GWAS community has made great progress in recognizing the need to share summary

results, but to take full advantage of these data, improved sharing of LD information from

the source study as well as from large sequencing reference datasets, is also required. We

highlight the importance of considering more than one statistical evidence to determine

the causal mechanisms underlying a complex trait.

Finally, we generated several resources that can open the door for addressing key ques-

tions in complex trait genomics. We present a catalog of gene-level associations, including

potential target genes for nearly half of the GWAS loci investigated here that provides a

rich basis for studies on the functional mechanisms of complex diseases and traits. We

provide a database of optimal gene expression imputation models that were built on the

�ne-mapping probabilities for feature selection and that leverage the global patterns of

tissue sharing of regulation to improve the weights. These imputation models of ex-

pression and splicing, which to date has been challenging to study, provide a foundation

for transcriptome-wide association studies of the human phenome � the collection of all

human diseases and traits � to further accelerate discovery of trait-associated genes. Col-

lectively, these data thus represent a valuable resource, enabling novel biological insights

and facilitating follow-up studies of causal mechanisms.
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1.1 Genotype-Tissue Expression (GTEx) Project

All processed Genotype-Tissue Expression (GTEx) Project v8 data have been made avail-

able on dbGAP (accession ID: phs000424.v8). Primary and extended results generated

by consortium members are available on the Google Cloud Platform storage accessible

via the GTEx Portal (see URLs). The GTEx Project v8 data, based on 17,382 RNA-

sequencing samples from 54 tissues of 948 post-mortem subjects, has established the most

comprehensive map of regulatory variation to date. In addition to the larger sample size

and greater tissue coverage compared to v6, v8 data also included whole-genome sequenc-

ing data, facilitating high resolution QTL map of 838 subjects for 49 tissues with at least

70 samples. We mapped complex trait associations for 23,268 cis-eGenes and 14,424 cis-

sGenes (9). We did not include trans QTLs in our analyses due to limited power after

correcting for confounders and potential pleiotropic e�ect in complex trait associations.

Below, we brie�y describe the whole-genome sequencing, RNA-sequencing and QTL data

processing protocols. Detailed description of subject ascertainment, sample procurement,

and sequencing data processing are available elsewhere (9).

Whole-genome sequence data processing and quality control

Out of 899 WGS samples sequenced at an average coverage of 30x on HiSeq200 (68

samples) and HiSeqX (all other samples), variant call �les (VCF) for 866 GTEx donors

were included in downstream analyses after excluding one each from 30 duplicate samples

and three donors. Of these, 838 subjects with RNA-seq data were included for QTL

mapping and subsequent complex trait association analyses in our study. All whole-

genome sequencing data were mapped to GRCh38/hg38 reference.
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RNA-Seq data processing and quality control

Whole transcriptome RNA-Seq data were aligned using STAR (v2.5.3.a; (40)). For

STAR index, GENCODE v26 (GRCh38; see URLs) was used with the sjdbOverhang

75 for 76-bp paired-end sequencing protocol. Default parameters were used for RSEM

(see URLs; (41)) index generation. GTEx utilized Picard (see URLs) to mark and

remove potential PCR duplicates and RNA-SeQC (42) to process post-alignment quality

control. RSEM was then used for per-sample transcript quanti�cation. Subsequently, read

counts were normalized between samples using TMM (43). For eQTL analyses, latent

factor covariates were calculated using PEER as follows: 15 factors for N<150 per tissue;

30 factors for 150<=N<250; 45 factors for 250<=N<350; and 60 factors for N>=350.

Finally, fastQTL (44) was used for cis-eQTL mapping in each tissue. Only protein-coding,

lincRNA, and antisense biotypes as de�ned by Gencode v26 were considered for further

analyses. To study alternative splicing, GTEx applied LeafCutter (version 0.2.8; (45))

using default parameters to quantify splicing QTLs in cis with intron excision ratios (9).

1.2 Genome-wide association studies (GWAS)

Harmonization

The process followed for the harmonization and imputation are depicted in �g. S2. For

each standardized GWAS summary statistics, we mapped all variants to hg38 (GRCh38)

references using pyliftover (see URLs). For missing chromosome or genomic position

information in the original GWAS summary statistics �le, we queried dbSNP build 125

(hg17), dbSNP build 130 (hg18/GRCh36), and dbSNP build 150 (hg19/GRCh37) using

the provided variant rsID information and the original reference build of the GWAS

summary statistics �le. Variants with missing chromosome, genomic position, and rsID

information were excluded from further analyses. Only autosomal variants were included

in our analyses. Missing allele frequency information was �lled using the allele frequencies

estimated in the GTEx (v8) individuals of genotype-based European genetic ancestry

(here onwards, GTEx-EUR) whenever possible. We excluded variants with discordant

reference and alternate allele information between GTEx and the GWAS study. We

included only the alleles with the highest MAF among multiple alternate alleles if the

variant was reported as multiallelic in GTEx. When more than one GWAS variant mapped

to a given GTEx variant (i.e., the same chromosomal location in hg38), only the one with
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the highest signi�cance was retained. For binary traits, if the sample size was present

but the number of cases was missing, we �lled the missing count with the sample size

and number of cases reported in the paper. For continuous traits, if the �le contained the

sample size for each variant, the reported number was used. If not, we �lled this value

using the number reported in the corresponding publication. If only some variants were

missing, we �lled the missing value with the median of all reported values.

Imputation of GWAS summary statistics

To standardize the number of variants across trait-tissue pairs, all processed GWAS re-

sults were imputed. We implemented the Best Linear Unbiased Prediction (BLUP) ap-

proach (46,47) in-house (https://github.com/hakyimlab/summary-gwas-imputation)

to impute z-scores for those variants reported in GTEx without matching data in the

GWAS summary statistics. This algorithm does not impute raw e�ect sizes (β coe�-

cients). The imputation was performed in speci�c regions assumed to have su�ciently

low correlations between them, de�ned by approximately independent linkage disequilib-

rium (LD) blocks (28) lifted over to hg38/GRCh38.

Only GTEx variants with MAF > 0.01 in GTEx-EUR subjects were used in down-

stream analyses. Covariance matrices (reference LD information) were estimated on these

GTEx-EUR subjects. The corresponding (pseudo-)inverse matrices for covariances C

were calculated via Singular Value Decomposition (SVD) using ridge-like regularization

C + 0.1I. To avoid ambiguous strand issues homogeneously, palindromic variants (i.e.

CG) were excluded from the imputation input. Thus, an imputed z-score was generated

for palindromic variants available in the original GWAS; for them, we report the absolute

value of the original entry with the sign from the imputed z-score. The sample size that

we report for the imputed variants is the same as the sample size for the observed ones if

it is reported as constant across variants, or their median if it changes across the observed

variants, which occurs in the case of meta-analyses.

We initially considered publicly available GWAS summary statistics for 114 complex

traits provided by large-scale consortia and the UK Biobank (48) (table S9). Of these,

27 studies with a relatively small intersection of variants with the GTEx panel (number

of variants< 2 × 106, compared to almost 9 × 106 variants available in GTEx) exhibited

signi�cant de�ation of their association p-values(�g. S4). Thus, all analyses focused on 87

traits where missing variants could be properly imputed unless otherwise stated explicitly
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(table S1). We observed noteworthy association prediction performance across the selected

87 traits (e.g., with a median r2 = 0.90 (IQR = 0.0268) between the original and imputed

zscores on chromosome 1). The median slope was 0.94 (IQR = 0.0164), as the imputed

zscore values tend to be more conservative than the original ones. Imputation quality

was consistent across traits, depending strongly on the number of input available variants

(�g. S3).

Supplementary Fig. S1. GWAS trait categories. Categories of the traits with full GWAS
summary statistics used in the analysis. See list of traits in S1.
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Supplementary Fig. S2. Work�ow of GWAS results processing.

37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. S3. GWAS imputation quality Original versus imputed zscores for
palindromic variants in chromosome 1 for 3 traits.
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Supplementary Fig. S4. GWAS imputation de�ation This �gure compares the distri-
bution of p-values for 28 GWAS traits before and after imputation. Vertical scale shows -
log10(p-value) of variant association. The 27 traits that exhibited de�ation are �lled in gray. An
unde�ated trait (e.g., Red Blood Cell count) is included for comparison. See trait abbreviation
list in Table S9.
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Table S1: List of 87 GWAS datasets

Category Trait Abbreviation Sample_Size

Psychiatric-neurologic Alzheimers Disease AD 54162
Psychiatric-neurologic Attention De�cit Hyperactivity Disorder ADHD 53293
Psychiatric-neurologic Chronotype CHRONO 128266
Psychiatric-neurologic Chronotype UKB CHRONO_UKB 337119
Psychiatric-neurologic Depressive Symptoms DEPR 180866
Psychiatric-neurologic Education Years EDU 293723
Psychiatric-neurologic Epilepsy UKB EPI_UKB 337119
Psychiatric-neurologic Fluid Intelligence Score UKB FIS_UKB 337119
Psychiatric-neurologic Insomnia In Both Sexes INSOMN 113006
Psychiatric-neurologic Insomnia UKB INSOMN_UKB 337119
Psychiatric-neurologic Insomnia UKBS INSOMN_UKBS 337119
Psychiatric-neurologic Migraine UKB MIGR_UKB 337119
Psychiatric-neurologic Migraine UKBS MIGR_UKBS 337119
Psychiatric-neurologic Multiple Sclerosis UKBS MS_UKBS 337119
Psychiatric-neurologic Neuroticism UKB NEUROT_UKB 337119
Psychiatric-neurologic Parkinsons Disease UKBS PD_UKBS 337119
Psychiatric-neurologic Psychological Problem UKBS PSY_UKBS 337119
Psychiatric-neurologic Schizophrenia SCZ 150064
Psychiatric-neurologic Schizophrenia UKBS SCZ_UKBS 337119
Psychiatric-neurologic Sleep Duration SLEEP 128266
Psychiatric-neurologic Sleep Duration UKB SLEEP_UKB 337119
Anthropometric BMI UKB BMI_UKB 337119
Anthropometric Birth Weight BW 143677
Anthropometric Birth Weight UKB BW_UKB 337119
Anthropometric Body Fat Percentage UKB FAT_UKB 337119
Anthropometric Bone Mineral Density BMD 49988
Anthropometric Height HEIGHT 253288
Anthropometric Intracraneal Volume ICV 30717
Anthropometric Standing Height UKB HEIGHT_UKB 337119
Cardiometabolic CH2DB NMR CH2 24154
Cardiometabolic Coronary Artery Disease CAD 184305
Cardiometabolic Deep Venous Thrombosis UKB DVT_UKB 337119
Cardiometabolic Deep Venous Thrombosis UKBS DVT_UKBS 337119
Cardiometabolic Fasting Glucose FG 46186
Cardiometabolic Fasting Insulin INSUL 38238
Cardiometabolic HDL Cholesterol NMR HDLC 19270
Cardiometabolic Heart Attack UKB MI_UKB 337119
Cardiometabolic High Cholesterol UKBS HC_UKBS 337119
Cardiometabolic Hypertension UKBS HPT_UKBS 337119
Cardiometabolic LDL Cholesterol NMR LDLC 13527
Cardiometabolic Pulmonary Embolism UKB PE_UKB 337119
Cardiometabolic Triglycerides NMR IDL 21559
Cardiometabolic Type 2 Diabetes UKBS T2D_UKBS 337119
Blood Eosinophil Count EC 173480
Blood Granulocyte Count GC 173480
Blood High Light Scatter Reticulocyte Count HRET 173480
Blood Lymphocyte Count LC 173480
Blood Monocyte Count MC 173480
Blood Myeloid White Cell Count MWBC 173480
Blood Neutrophil Count NC 173480
Blood Platelet Count PLT 173480
Blood Red Blood Cell Count RBC 173480
Blood Reticulocyte Count RET 173480
Blood Sum Basophil Neutrophil Count BNC 173480
Blood Sum Eosinophil Basophil Count EBC 173480
Blood Sum Neutrophil Eosinophil Count NEC 173480
Blood White Blood Cell Count WBC 173480
Cancer Breast Cancer BC 120000
Cancer ER-negative Breast Cancer ERNBC 120000
Cancer ER-positive Breast Cancer ERPBC 120000
Allergy Asthma UKBS ATH_UKBS 337119
Allergy Eczema ECZ 116863
Allergy Eczema UKBS ECZ_UKBS 337119
Immune Ankylosing Spondylitis UKBS ASP_UKBS 337119
Immune Asthma UKB ATH_UKB 337119
Immune Crohns Disease CD 20833
Immune Crohns Disease UKBS CD_UKBS 337119
Immune Hayfever UKB HAY_UKB 337119
Immune In�ammatory Bowel Disease IBD 34652
Immune In�ammatory Bowel Disease UKBS IBD_UKBS 337119
Immune Psoriasis UKBS PSO_UKBS 337119
Immune Rheumatoid Arthritis RA 80799
Immune Rheumatoid Arthritis UKBS RA_UKBS 337119
Immune Systemic Lupus Erythematosus SLE 23210
Immune Type 1 Diabetes UKBS T1D_UKBS 337119
Immune Ulcerative Colitis UC 27432
Immune Ulcerative Colitis UKBS UC_UKBS 337119
Aging Fathers Age At Death UKB FAD_UKB 337119
Aging Mothers Age At Death UKB MAD_UKB 337119
Digestive system disease Irritable Bowel Syndrome UKBS IBS_UKBS 337119
Endocrine system disease Hyperthyroidism UKBS HYPERTHY_UKBS 337119
Endocrine system disease Hypothyroidism UKBS HYPOTHY_UKBS 337119
Skeletal system disease Gout UKBS GOUT_UKBS 337119
Skeletal system disease Osteoporosis UKBS OST_UKBS 337119
Morphology Balding Pattern 2 UKB BLDP2_UKB 337119
Morphology Balding Pattern 3 UKB BLDP3_UKB 337119
Morphology Balding Pattern 4 UKB BLDP4_UKB 337119
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NHGRI-EBI GWAS catalog

To investigate the downstream e�ects of GWAS loci using the resources from the GTEx

consortium, we obtained the list of trait-associated SNPs from the GWAS catalog (49)

(downloaded on 9/7/2018), which, at download, contained 80,727 entries. To measure

the enrichment of e/sQTL in GWAS Catalog, we computed the proportion of e/sQTL in

GWAS catalog relative to the proportion of e/sQTL among all GTEx V8 variants. And

we obtained the uncertainty measurement of proportion and enrichment fold using block

jackknife. See (9) for details.

Validation of �ndings in BioVU Biobank

For replication analyses in BioVU (27), we selected 11 complex traits and 10 tissues with

the largest sample size and estimated statistical power to detect true associations.

1.3 On summarizing across traits and tissues

Many of our analyses generate one statistic for each of the 4,263 (87 × 49) trait-tissue

pairs. These can have a complex error structure with a wide range of standard errors

and correlation between tissues. Thus, the usual "iid" (independent and identically dis-

tributed) assumption behind common statistical tests is not appropriate. For summarizing

across traits for a given tissue, we assumed independence across traits but took into ac-

count the di�erent standard errors. For summarizing across trait-tissue pairs, we allowed

both correlation between tissues and correlation between traits, and corrected for di�erent

standard errors. More speci�cally, let Stp be some statistic estimated in trait p and tissue

t with standard error se(Stp).

Summarizing across traits for a given tissue. Here we describe the procedure to

summarize results that have one statistic (along with its standard error) per trait-tissue

pair. For each tissue t, we summarized St1, · · · , StP by �tting the following linear model:

Stp = µtS + εtp (1)

εtp ∼ N(0, se(Stp)
2 × σ2

t ) (2)

Hence, we obtain µ̂tS and se(µ̂tS) as the summary of St1, · · · , StP estimates aggregated

across traits, which is essentially a weighted average across traits.
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Summarizing across trait and tissue pairs. Similarly, we summarized S11, · · · ,
Stp, · · · , STP by �tting the following linear model.

Stp = µS + µtS + µpS + εtp (3)

µtS ∼ N(0, σ2
T ) (4)

µpS ∼ N(0, σ2
P ) (5)

εtp ∼ N(0, se(Stp)
2 × σ2), (6)

where µtS is the tissue-speci�c random intercept (this accounts for tissue-speci�c fea-

tures common across traits) and µpS is the trait-speci�c random intercept (this accounts

for trait-speci�c characteristics and thus accounts for the correlation between tissues for

a given trait). The estimated µ̂S and se(µ̂S) is the average Stp across all trait-tissue pairs

accounting for the complex error structure.

Testing whether two statistics have di�erent mean. For some analyses, we would

like to test whether two quantities are di�erent across all trait-tissue pairs (e.g. enrichment

signal measured for sQTL as µS1 vs. the one measured for eQTL as µS2 , etc). For this

purpose, we constructed the following paired test. First, we formed the test statistic T tp :=

S1,tp − S2,tp which, under the null H0 : µS1 = µS2 , has T
tp ∼ N(0, se(S1,tp)

2 + se(S2,tp)
2).

Then, we summarized T tp across all trait-tissue pairs by the procedure described in the

previous paragraph where tissue- or trait-speci�c intercepts are introduced to account

for the complicated correlation structure among T tp's. The resulting statistic T follows

T ∼ N(0, se(T )) under the null.

1.4 Enrichment across tissues

Detailed discussions regarding the enrichment analyses and methods to address LD con-

tamination are described elsewhere (9,22).
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Supplementary Fig. S5. Enrichment of QTLs among complex trait associated vari-
ants. Enrichment estimates as enloc log odds ratio by tissue are summarized across traits (on
y-axis) with error bar representing 95% con�dence interval. Tissues (on horizontal axis) are
ordered by sample size. Cis-expression results are shown in red and cis-splicing results are shown
in green.

Proportion of QTLs by p-value cuto�

To estimate the proportion of SNPs considered as associated with expression (for at least

one gene) at various p-value thresholds, we used the most signi�cant p-value (tested using

all GTEx individuals) for each SNP from all associations in all tissues (including all genes

and variants tested). We plotted the proportion SNPs whose most signi�cant p-value

meets a p-value threshold for varying levels of this threshold (�g. S6). To test whether

trait-associated SNPs are more likely to be e/sQTLs, we repeated the above procedure

for the lead SNPs in the GWAS catalog.

Enrichment of GWAS catalog variants

To investigate the relevance of the QTLs in complex traits, we analyzed the database of

trait-associated variants (de�ned as p < 5× 10−8), as curated in the NHGRI-EBI GWAS

catalog (see Methods; hereafter GWAS catalog), and tested enrichment of single tissue

QTLs across complex traits represented in the GWAS catalog. Next, we examined the

nominally associated loci that did not attain genome-wide signi�cance in a subset of

studies reported in the GWAS catalog.

Consistent with earlier reports (1,8), we observed a 1.46 fold (s.e. = 0.02) enrichment

of cis-eQTLs among the trait-associated variants (�g. S6 ), of which 63% are an eQTL in
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some tissue compared to 43% among all tested variants (MAF > 0.01 in GTEx samples

with European ancestry). Notably, splicing cis-QTLs showed a 1.87 fold (s.e. = 0.06)

enrichment with 37% of trait-associated variants as sQTLs compared to 20% of all tested

variants.

Supplementary Fig. S6. Expression and splicing QTL enrichment among GWAS
variants. The proportion of genetic variants associated with gene expression (A) and splicing
(B) of at least one gene in at least one tissue for each p-value cuto� (on x-axis in − log10(p)
scale) is shown. The proportions for all tested variants are shown as squares and the proportions
for the GWAS catalog variants are shown as circles.

We observed that the proportion of variants associated with expression and splicing

at di�erent signi�cance threshold was much larger for trait-associated variants from the

GWAS catalog than for the full set of tested common variants (�g. S6. The signi�cance

of this di�erence is reported elsewhere (9). Notably, as statistical power improved with

increased sample sizes, spurious associations caused by trait-associated QTLs that are

distinct from, but in linkage disequilibrium (LD) with, the trait causal variant(s) (LD

contamination) also increased (22). At a nominal threshold, the proportion of common

variants associated with the expression of a gene in some tissue increased from 92.7% in

the V6 release (8) to 97.3% in V8. For splicing the proportion was 97.7%. We should

caution that assigning function to a GWAS locus based on QTL association p-value alone,

even with a more stringent threshold, could be misleading.

LD contamination

Here we illustrate how LD contamination a�ects functional interpretation of a GWAS

locus. The lead BMI-associated variant (rs1558902, chr16_53769662_T_A_b38) is an

eQTL associated with FTO expression in skeletal muscle (p=7.5 × 10−8; FDR<0.05).

However, �ne-mapping of the region for BMI and FTO expression in muscle showed
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that the causal variant for each trait is likely to be distinct (with the credible set for

BMI causal variants distinct from the credible set for for causal eQTLs in the locus).

FTO expression �ne-mapping assigned >99% probability of being causal to rs1861867,

chr16_53814649_A_G_b38.

1.5 Fine-mapping QTL variants

We applied dap-g (14) to the 49 tissues to estimate the degree to which a variant might

exert a causal e�ect on expression or splicing levels, using default parameter values. First,

we selected genes annotated as protein-coding, lincRNA or pseudogenes. For each gene,

we considered all variants within the cis-window (1Mbps) with MAF > 0.01, and used

the same covariates as in the main eQTL analysis to correct for unwanted variation. This

yielded a list of clusters (variants related by LD), and posterior inclusion probabilities

(pip) that provide an estimate of the probability of a variant being causal. We repeated

this process for splicing ratios from Leafcutter, using a cis-window ranging from 1Mbps

upstream of the splicing event start location to 1Mbps downstream of the end location.

We used individual-level data for GTEx-EUR subjects both for expression and splicing.

Sample sizes ranged from 65 in kidney cortex to 602 in skeletal muscle tissues.

1.6 Mediation analysis

Modeling e�ect mediated by regulatory process

We compared the magnitude of GWAS and cis-QTL e�ect sizes, which is the basis of

multi-SNP Mendelian randomization approaches (50).

To formalize the relationship between the GWAS e�ect size (δ) and the QTL e�ect size

(γ), we assumed an additive genetic model for the GWAS trait. Speci�cally, for variant

k,

Y =
∑
k

δk ·Xk + ε, (7)

where Xk is the allele count of variant k, Y is the trait, and ε is the un-explained variation.

We decomposed GWAS e�ect size into its mediated and un-mediated components,

δk =
∑
g∈Gk

βgγk,g + νk, (8)

45

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


where Gk represents the set of genes regulated by variant k with corresponding QTL

e�ect size as γk,g, and νk is the un-mediated e�ect of variant k on trait. And βg is the

downstream e�ect of gene g on the trait.

Selection of �ne-mapped variants as instrumental variables

To investigate the relationship between GWAS and QTL e�ect sizes in the transcriptome,

we generated a set of �ne-mapped QTL signals derived from dap-g �ne-mapping performed

in the GTEx-EUR individuals (see Section 1.5) to serve as proxy for causal QTLs. For

splicing, we utilized sQTLs at the splicing event/variant level rather than the gene/variant

level. In particular, we selected the top variant within each 25% credible set of a gene

or splicing event and �ltered out the QTLs with pip less than 1%. For each of the

selected QTLs, we used the QTL e�ect size estimated from the marginal test (using the

GTEx-EUR individuals) and GWAS e�ect size obtained from the imputed z-score from

the GWAS imputation by β̂ ≈ z/
√
f(1− f)N , where f is the allele frequency and N is

the GWAS sample size.

Correlation between GWAS and QTL e�ect sizes

For each trait-tissue pair, we calculated the Pearson correlation of the magnitude of

observed GWAS e�ect size and of cis-eQTL e�ect size, Ĉor(|δ̂k|, |γ̂k|), for the list of selected
�ne-mapped QTLs, as described in Section 1.6. The observed Pearson correlation captures

the mediated e�ect (see details in Section 1.6). To obtain a null distribution for the

correlation, we computed the Pearson correlation under the shu�ed data within each

LD-score bin de�ned by quantiles (100 bins were used). The signi�cance of the di�erence

between observed and null distribution was calculated using the method described in 1.3.

Transcriptome-wide estimation of the downstream e�ect size

To estimate the transcriptome-wide contribution of the mediated e�ects on complex traits,

we proposed a mixed-e�ects model on the basis of Eq. 8,

|δk| = βg · (sign(δk) · γk,g) + b0 + b1 ·
√
LD-scorek + ε (9)

βg ∼ N(0, σ2
gene) (10)

ε ∼ N(0, σ2), (11)

46

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


where b0, b1 are the �xed e�ect capturing the un-mediated e�ect and βg is the down-

stream e�ect (mediated e�ect) of the gene or splicing event g. In short, we assumed

an in�nitesimal model on the downstream e�ect and aimed at estimating σ2
gene as the

transcriptome-wide contribution of the mediated e�ect. For each tissue-trait pair, we �t-

ted the model using selected �ne-mapped QTLs, as described in Section 1.6, along with

the corresponding δ̂k, γ̂k,g. To obtain the distribution of σ
2
gene under the null, we performed

the same calculation using shu�ed GWAS e�ect sizes.

Concordance of mediated e�ects for allelic series of independent eQTLs

Under the mediation model in Eq. 8, we expect that for a given gene with multiple QTL

signals, these signals should share the same downstream e�ect, βg. Since the number of

splicing events with multiple QTL signals was limited, we restricted this analysis to eQTLs

only. We tested for concordance of downstream e�ect size obtained from the primary and

secondary eQTL of a gene (ranked by QTL signi�cance or QTL e�ect size estimate).

Speci�cally, for a given trait and gene g, we de�ned the observed downstream e�ect for

the kth variant as β̂k,g = δ̂k/γ̂k,g. Thus, for each gene, we obtained β̂prim and β̂sec as the

observed downstream e�ect for the primary and secondary eQTLs if more than one eQTL

signal was detected by dap-g. Ideally, for a mediating gene in a causal tissue (or a good

proxy tissue), we would expect that β̂prim and β̂sec should tend to have consistent value as

compared to random. We measured the concordance in two ways: 1) correlation between

β̂prim and β̂sec; 2) percent concordant, de�ned as the fraction of eQTL pairs having the

same sign in β̂prim and β̂sec

Concordance as compared to non-colocalized genes with matched LD. To en-

sure that the concordance between β̂prim and β̂sec was not driven by LD, we compared the

concordance of primary and secondary eQTLs between colocalized and likely non-causal

genes with similar LD pattern between primary and secondary eQTLs. Speci�cally, for

each trait-tissue pair, we obtained primary and secondary eQTLs based on magnitude

of e�ect size and measured the concordance as Ĉor(β̂prim, β̂sec). We computed the con-

cordance for colocalized genes at various enloc rcp cuto�s (obtained from GTEx-EUR

individuals). Furthermore, we randomly sampled the same number of genes with enloc

rcp < 0.01 by matched LD and calculated the corresponding concordance as the null. To

reduce the e�ect of outliers on concordance calculation, we removed genes with β̂prim or
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β̂sec in the top and bottom 5%. We kept only trait-tissue pairs with more than 10 genes

observed after removing outliers.

Concordance as compared to null with matched LD. The correlation between

primary and secondary eQTLs (pairwise LD) could introduce correlation between primary

and secondary δ̂'s and similarly to primary and secondary γ̂'s, which would potentially

contribute to concordance. To account for this confounding, for each gene, we simulated

δ̃prim and δ̃sec preserving the correlation introduced by pairwise LD with

(δ̃prim, δ̃sec) ∼ N(Σ

[
δprim
δsec

]
,Σ) (12)

Σ =

[
1 R̂

R̂ 1

]
(13)

δprim, δsec ∼iid N(0, 1) (14)

where R̂ is the sample correlation (from GTEx-EUR individuals) of primary and sec-

ondary variants. This simulation scheme is equivalent to simulating phenotype as Ỹ ∼
N(Xδprim +Xδsec, σ

2) and running GWAS on the GTEx-EUR genotypes.

Visualizing the concordance among enloc colocalized genes. To visualize the

concordance of β̂prim and β̂sec, we �rst scaled δ̂ and γ̂ by their standard deviation among

all eQTLs selected in Section 1.6. Then, we extracted the set of genes with exactly two

dap-g eQTLs (as described in 1.6) and labelled the two eQTLs as primary and secondary

based on QTL signi�cance or QTL e�ect size. We computed β̂prim and β̂sec and removed

the genes with β̂prim or β̂sec in the top and bottem 5%. As a control, we also simulated

random δ to compute simulated βsim for downstream analysis. We further �ltered the

genes by selecting only those with enloc rcp > 0.1.

Widespread dose-dependent e�ects of expression and splicing regulation on
complex traits (cont. from main text)

With multiple �ne-mapped QTLs being detected in expression data, we proceeded to look

into the e�ect of primary and secondary eQTLs. A third line of support for the dose-

dependent e�ect was provided by the fact that primary eQTLs (ranked by e�ect size)

showed, on average, larger GWAS e�ect sizes than secondary eQTLs (Fig. 2F).
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Allelic series of independent eQTLs extensively replicate dose-response slopes
(cont. from main text)

(A)

(B)

Supplementary Fig. S7. Proportion of genes with concordant sign in β̂ between
primary and secondary eQTLs (percent concordance) across tissues and traits. We
computed the fraction of genes with primary and secondary eQTLs having concordant sign in
β̂ := δ̂/γ̂ (as percent concordance on y-axis). (A) The percent concordance for 49 tissues
aggregated across 87 traits. (B) The percent concordance for 87 traits aggregated across 49
tissues. 49
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Supplementary Fig. S8. Percent concordance for genes showing colocalization ev-
idence versus LD-matched non-colocalized genes and LD-matched simulated δ̂prim
and δ̂sec. The percent concordance (on y-axis) for genes with various enloc colcalization signal
(on x-axis) is shown for 87 traits in whole blood in blue. The percent concordance obtained by
sampling from non-colocalized genes (rcp < 0.01) with matched LD between primary and sec-

ondary QTLs is shown in light blue and that obtained by simulating δ̂prim and δ̂sec with observed
pairwise LD is shown in gray.

Providing further support for the dose-dependent e�ect, the concordance of the medi-

ated e�ects was consistently observed across traits and tissues and retained concordant

directionality (Fig. 2D-E, �gs. S8,S7), especially among colocalized genes (rcp > 0.1). Pri-

mary and secondary eQTLs ranked by eQTL e�ect size instead of p-value yielded similar

patterns (�g. S11).

Correlation between GWAS and QTL e�ect sizes and mixed-e�ects model
account for LD contamination

We illustrate the intuition behind the LD-contamination correction when the average

mediated e�ects are estimated using the approximate method (correlation of absolute

values) or the mixed-e�ects approach.
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Supplementary Fig. S9. Diagram representation of LD contamination.

Consider the LD-contamination scenario where SNP 1 and SNP 2 are in LD with

correlation R2 (suppose LD is �xed) and have a non-zero e�ect on gene expression and

trait, respectively (as shown in �g. S9). The marginal e�ect estimates of SNP 1, i.e. δ̂1

and γ̂1, are given by

δ̂1 = Rδ2 + εGWAS (15)

γ̂1 = γ1 + εQTL, (16)

where Eq. 15 holds because the marginal e�ect size depends on LD. To determine the

covariance of the magnitude of the GWAS and QTL estimates for SNP 1, we consider

E(|δ̂1||γ̂1|).

E(δ̂1γ̂1 |R) = E((Rδ2 + εGWAS) · (γ1 + εQTL) |R) (17)

= E(Rδ2γ1 |R) + E(εGWASγ1) + E(Rδ2εQTL |R) + E(εGWASεQTL) (18)

= R · E(δ2γ1), (19)

where Eq. 19 holds since the last three terms in the previous line are zeros, due to the

independence among εGWAS, εQTL, and true e�ect sizes, δ and γ.

Hence, the covariance of the GWAS and QTL e�ect sizes under the LD contamination
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scenario is

Cov(δ̂1, γ̂1 |R) = E(δ̂1γ̂1 |R)− E(δ̂1 |R) · E(γ̂1 |R) (20)

= R · E(δ2γ1)− E(δ̂1 |R) · E(γ̂1 |R) (21)

= R · E(δ2γ1)− E(Rδ2 + εGWAS) · E(γ1 + εQTL) (22)

= R · E(δ2γ1)−R · E(δ2) · E(γ1) (23)

= R · Cov(δ2, γ1), (24)

which implies that conditioning on LD, the observed correlation between δ̂ and γ̂ should

be very small.

Supplementary Fig. S10. Diagram representation of mediation model.

Similarly, we can derive the correlation between GWAS and QTL e�ect size estimates

under the simple mediation model shown in Supplementary Figure S10, where we have

δ̂1 = β1γ1 + εGWAS (25)

γ̂1 = γ1 + εQTL, (26)

where Eq. 25 follows by de�nition of the mediation model considering no direct e�ect. So,

Cov(δ̂1, γ̂1 |β1) = β1E(γ21)− β1E(γ1)
2 (27)

= β1Var(γ1) (28)

So, if we consider a gene locus, which naturally conditions on local LD and gene-level
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e�ect β, we can conclude that

Cov(δ̂1, γ̂1 |gene locus) = Cov(δ̂1, γ̂1 |β1, R) (29)

=

{
0 LD contamination

Var(γ1) Mediation model
(30)

In practice, we do not have enough observations (i.e. independent QTLs) for each

gene so that we cannot compute the above conditional correlation. Instead, motivated

by this intuition, we developed two work-around approaches to capture the mediated

e�ect across the transcriptome. First, we considered the correlation between GWAS and

QTL e�ect sizes across the transcriptome. Essentially, when we take the correlation

across all genes, we marginalize out the e�ect of β and R. Since the direction of β is

arbitrary (with E(β) = 0), we will not see the correlation between GWAS and QTL e�ect

size even under the mediation model. To account for this fact, we proposed to examine

the correlation between the magnitude of GWAS and QTL e�ect sizes, i.e. Cor(|δ̂|, |γ̂|),
which still captures the distinction between LD contamination and mediation model, since

Cor(|δ1|, |γ2|) = 0, ∀δ1 ⊥ γ2.

However, if the LD contamination goes into both GWAS and QTL e�ect sizes, Cor(|δ|, |γ|)
will be positive which is driven completely by LD. For instance, a region with high LD

results in big GWAS and QTL e�ect sizes in magnitude and a region with low LD results

in small GWAS and QTL e�ect sizes in magnitude. If we plot the magnitude of the QTL

e�ect size against the one for GWAS across all regions with varying LD values, we will

see the correlation as well. To account for this fact and measure the contribution of LD

in the observed Cor(|δ̂|, |γ̂|), we constructed permuted null by shu�ing e�ect sizes within

each LD-score bin.

We also developed a mixed-e�ects approach. We model β as a random e�ect, β ∼
N(0, σ2

gene), and instead of averaging β's across the whole transcriptome (this is what

Cor(δ̂, γ̂) does), we quantify the mediated e�ect by estimating σ2
gene. Speci�cally, we �t

|δ̂i| = βg(sign(δ̂i) · γ̂gi) + b0 + b1
√
LD-scorei + εi (31)

βg ∼iid N(0, σ2
gene) (32)

εi ∼iid N(0, σ2), (33)

where g indicates gene index and i indicates variant index. And b0, b1 are �xed e�ects

accounting for the contribution of LD to the magnitude of GWAS e�ect size. To obtain
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the null for testing whether σ2
gene = 0, we permute δ̂i and corresponding covariate (LD-

score) altogether keeping the structure of grouping variants by gene the same. Essentially,

the mixed-e�ects model in Eq. 31 is designed to capture the distinction between LD

contamination and mediation shown in Eq. 30 in a transcriptome-wide manner.

Supplementary Fig. S11. Downstream e�ects of primary and secondary eQTLs
highly correlated. Downstream e�ects of primary and secondary cis-eQTL signals (δ̂/γ̂) which
are ordered by |γ̂| are shown for all 87 traits in Whole Blood.

1.7 Patterns of regulation of expression across tissues

Identifying tissue-speci�city of eQTL

We used FLASH Sparse Factor Analysis (51) to identify latent factors speci�c to di�erent

tissue clusters. Brie�y, flashr was run on a set of top eQTLs (obtained from all GTEx

individuals) per gene which had been tested in all 49 tissues (around 16,000 eQTLs in

total were selected) which showed strong evidence of being active in at least one tissue.

Speci�cally, for each selected variant-gene pair, the marginal e�ect size estimates were

extracted for all 49 tissues regardless of whether it was signi�cant in that tissue or not.

The resulting estimated e�ect-size matrix (of dimension ∼ 16, 000 × 49) was the input
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to flashr (with normal prior on loading and uniform with positive support as prior on

factor) to obtain the sparse factors (see URLs). The flashr run yielded 31 FLASH

factors (S12), which were used to assign the tissue-speci�city of an eQTL. We de�ned the

eQTL tissue-speci�city by projecting the estimated e�ect-size vector across 49 tissues onto

the FLASH factors and computed the quality of the projection, PVE, as PVEk =
‖~βk‖22
‖~β‖22

.

PVEk represented the quality score for using FLASH factor k to explain the cross-tissue

pattern of eQTL. The eQTL was assigned to a FLASH factor k if PVEk was maximal

among all FLASH factors and PVEk > 0.2 and for those with PVEk ≤ 0.2 in all FLASH

factors, NA (short for not assigned) was assigned instead. These "not assigned" eQTLs had

more complex tissue-sharing pattern than the factors captured in the FLASH analysis.

To obtain an interpretable tissue-speci�city category, we labeled Factor1 as the shared

factor, Factor2, Factor13, Factor14, Factor29, and Factor30 as brain-speci�c factors, and

the rest of the factor assignment as other factors.

Smoothing e�ect size estimates by leveraging global patterns of tissue sharing

We applied the multivariate adaptive shrinkage implemented in mashr (52) to smooth

cis-eQTL e�ect size estimates (obtained from all GTEx individuals) by taking advantage

of correlation between tissues. To �t the mashr model, we used the set of ∼ 16, 000

cis-eQTLs as stated in Section 1.7 to learn the mashr prior, and then �t the mashr

model using ∼ 40, 000 randomly selected variant-gene pairs for the same set of eGenes.

We learned data-driven mashr priors in three ways: 1) FLASH factors as described in

Section 1.7; 2) PCA with number of PC = 3; 3) empirical covariance of observed z-

scores. The data-driven covariances were further denoised by calling cov_ed in mashr.

Furthermore, we included the set of canonical covariances as described in (52) as an

additionalmashr prior. We �t themashr model using the set of randomly selected variant-

gene pairs with the error correlation estimated by applying estimate_null_correlation

function in mashr and the priors obtained above. The resulting mashr model was used

to compute the posterior mean, standard deviation, and local false sign rate (LFSR) for

a given variant-trait pair.
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Supplementary Fig. S12. Tissue-speci�c factor estimation using �ashr. We performed
empirical Bayes matrix factorization (by flashr) on a set of the top cis-eQTLs (per gene),
and we restricted factors to have non-negative values. We binarized the resulting factors by
thresholding the tissue contribution to TRUE if it is at least 20% of the maximum. The pattern
after thresholding is shown.

1.8 Causal gene prioritization

Two classes of methods can be used to identify the target genes of GWAS loci. One

class is based on the colocalization of GWAS and QTL loci, which seeks to determine

whether the causal variant for the trait is the same as the causal variant for the molecular

phenotype. The other class is based on the association between the genetically regulated

component of gene expression (or splicing) with the trait.

Colocalization

For a given variant associated with multiple traits such as gene expression (eQTL) and

complex disease (trait-associated variant), extensive LD makes it challenging to identify

the underlying true causal mechanisms. Thus, we conducted colocalization analysis using

two independent approaches: coloc (17) and enloc (16)), to estimate whether a gene's
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expression or a splicing event shares a causal variant with a trait.

enloc

We computed Bayesian regional colocalization probability (rcp) using enloc, to estimate

the probability of a GWAS region and a gene's cis window sharing causal variants. We

leveraged the same dap-g results from 1.5, and split the GWAS summary statistics into

approximately LD-independent regions (28), each region de�ning a GWAS locus. For

each trait-tissue combination, we computed the rcp of every overlapping GWAS locus to

a gene's or splicing event's cis window with enloc default parameters. The enrichment

estimates obtained by enloc are shown in �g. S5.

For each trait, we counted the number of GWAS loci that contain a GWAS signi�cant

hit, and among these, the number of loci that additionally contain a gene with enloc

colocalization rcp > 0.5. As shown in �g. S17C, across traits, a median 29% of loci with

a GWAS signal contain an enloc colocalized signal. Given enloc's conservative nature,

we caution that rcp < 0.5 does not mean that there is no causal relationship between

the molecular phenotype and the complex trait; rather, it should be interpreted as lack of

su�cient evidence with current data. We summarize the �ndings in �g. S18. We observed

a smaller proportion of GWAS loci containing a colocalized splicing event (median 11%

across traits).

coloc

We computed coloc on all cis-windows with at least one eVariant (cis-eQTL per-tissue q-

value< 0.05) or sVariant. For binary traits, case proportion and 'cc' trait type parameters

were used. For continuous traits, sample size and 'quant' trait type parameters were used.

In both cases, imputed or calculated z-scores were used as e�ect coe�cients in Bayes factor

calculations.

Coloc is very sensitive to the choice of priors. We used enloc's enrichment estimates to

de�ne data-based priors in a consistent manner. First, we de�ned likely LD-independent

blocks of variants using de�nitions provided previously (28). The probability of eQTL

signal, Pr(di = 1), was estimated using dap-g (14). Subsequently, we calculated priors p1,
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p2, and p12 for colocalization analyses as follows:

p1 := Pr(γi = 1, di = 0) =
exp(α0)

1 + exp(α0)
× (1− Pr(di = 1)),

p2 := Pr(γi = 0, di = 1) =
1

1 + exp(α0 + α1)
× Pr(di = 1), and

p12 := Pr(γi = 1, di = 1) =
exp(α0 + α1)

1 + exp(α0 + α1)
× Pr(di = 1),

where α0 and α1 indicate intercept e�ect estimate and log odds ratio estimate for the

enrichment using enloc, respectively.

We ran coloc using variants in the cis-window for each gene and the intersection with

each GWAS trait, obtaining �ve probabilities for each (gene, tissue, trait) tuple: P0

for the probability of neither expression nor GWAS having a causal variant; P1 for the

probability of only expression having a causal variant; P2 for only the GWAS having a

causal variant; P3 for the GWAS and expression traits to have distinct causal variants;

P4 for the GWAS and expression traits to have a shared causal variant. We repeated this

process using sQTL results.

1.9 Fine-mapping of GWAS using summary statistics

To investigate the robustness of �ne-mapping, we �ne-mapped "height" from the GIANT

GWAS meta-analysis and "standing height" from the UK Biobank using susieR (53). We

performed �ne-mapping using susie_bhat within each LD block (28). We used GWAS

e�ect sizes β̃ imputed from z-scores by β̃ = z/
√
Nf(1− f) and se(β̃) = β̃/z, where f is

allele frequency and N is GWAS sample size. The GTEx-EUR individuals were used as

the reference LD panel. We applied the same approach to �ne-map the BMI-associated

FTO locus using the UK BioBank BMI data.

1.10 Association to predicted expression or splicing

Prediction models

To predict expression, we constructed linear prediction models (24), using only individuals

of European ancestry, and variants with MAF > 0.01, for genes annotated as protein-

coding, pseudo-gene, or lncRNA. For each gene-tissue pair, we selected the variants with

highest pip in their cluster, and kept those achieving pip > 0.01 in dap-g (14). We

used mashr (52) e�ect sizes (as computed in 1.7) for each selected variant. For each
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model, we computed the covariance matrix between variants using only individuals of

European ancestries, with sample sizes ranging from 65 (kidney - cortex) to 602 (skeletal

muscle). This allowed us to build LD panels for every tissue, noting that GWAS studies

are conducted on populations of predominantly European ancestries. For every gene,

we also computed the covariance of all the variants present across the di�erent tissue

models, compiling a cross-tissue LD panel to compute the correlation between predicted

expression levels across tissues. We refer to these models as mashr models. We compared

the number of mashr models to the number of Elastic Net models from GTEx version

7 (�g. S13). We generated analogous prediction models for splicing ratios, as computed

by Leafcutter (45), applying the same model-building methodology to the data from the

sQTL analysis.

We generated a secondary set of prediction models based on �ne-mapping informa-

tion. For every gene-tissue pair, we selected the variants with the highest pip in each

cluster achieving pip > 0.01 as explanatory variables. We performed an Elastic Net (54)

regression of expression on these variables, for genes annotated as protein coding, pseudo-

gene, or lncRNA. We employed a cross-validated strategy, and kept only models that

achieved cross-validated correlation ρ > 0.1 and cross-validated prediction performance

p-value p < 0.05. Each variant's e�ect size was penalized by a factor 1 − pip, so that

variants with higher probabilities were more likely to impact the model. Expression phe-

notypes were adjusted for unwanted variation using covariates such as gender, sequencing

plaform, age, the top 3 principal components from genotype data, and PEER factors.

The number of PEER factors was determined from the sample size: 15 for n < 150, 30

for 150 ≤ n < 250, 45 for 250 ≤ n < 350, 60 for 350 ≤ n. We obtained 686,241 models for

di�erent (gene, tissue) pairs. For each model, we computed tissue-level and cross-tissue

covariances as in the mashr models.

We also generated analogous prediction models for splicing ratios, with the same

model-building methodology applied to the data from the sQTL analysis, obtaining

1,816,703 (splicing event, tissue) pairs.

We constructed additional sets of prediction models comprised of a single snp, using

the top eQTL per gene or the primary, secondary or tertiary eQTL arising from conditional

or marginal analysis, in order to assess e�ect di�erence on the complex traits.
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Supplementary Fig. S13. Number of models available in v8 MASHR family of
models, compared to v7 Elastic Net family. Tissues are ordered by sample size.

S-PrediXcan

We performed S-PrediXcan analysis (25) on the 87 complex traits, using the GWAS

summary statistics described in 1.2, to identify trait-associated genes (typically p < 2.5×
10−7). We used the 49 models and LD panels described in 1.10, separately on each trait, to

obtain 59,485,548 (gene, tissue, trait) tuples. Repeating this process to generate splicing

event ratio models, we obtained 154,891,730 (splicing event, tissue, trait) tuples; for each

trait, the Bonferroni-signi�cance threshold was p < 9.5× 10−8.

Colocalized and signi�cantly associated genes

We assessed how many genes present evidence of trait association and colocalization, using

both expression and splicing event. First, we counted the proportion of genes that showed
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a colocalized expression signal with any trait in any tissue, and observed 15% such genes at

rcp> 0.5. Then, for each gene, we considered the splicing event with highest colocalization

value in any trait or tissue, and found evidence for 5% at rcp> 0.5.

Then we repeated this process for S-PrediXcan associations at di�erent signifcance

thresholds. About 30% of genes showed a signi�cant S-PrediXcan association to any

trait, and only 8% when �ltered for associations with rcp> 0.5. When using the highest

splicing association and colocalization value for a gene, these proportions were 20% and

3%, respectively.

These proportions gauge our power to predict causal genes a�ecting complex traits on

the GTEx resource, with expression yielding more �ndings than splicing.
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Supplementary Fig. S14. Proportion of genes with a colocalized or associated signal
using expression or splicing event.
A shows the proportion of genes with colocalization evidence in expression data, for di�erent rcp
thresholds. 3,477 genes show evidence at rcp> 0.5 (15% out of 23,963 genes with enloc results).
B shows the proportion of genes with colocalization evidence in splicing data; 1,277 genes (5%
of all 23,963) show evidence at rcp> 0.5.
C shows the proportion of genes with association evidence in expression data, additionally �ltered
by colocalization on di�erent thresholds. About 30% of genes show associations at the bonferroni
threshold (p < 0.05/686, 241), while 8% also show colocalization evidence.
D shows the proportion with association and colocalization evidence in splicing data; about 20%
show association evidence (p < 0.05/1, 816, 703) and 3% are also colocalized.

S-MultiXcan

There is substantial sharing of eQTLs across tissues (8). Therefore, we applied S-MultiXcan (10),

an approach to exploit the tissue sharing of regulatory variation, to improve our ability
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to identify trait-associated genes. The method extends the single-tissue S-PrediXcan

approach, leveraging GWAS summary statistics and taking into account the correlation

between tissues. We obtained association statistics for 1,958,220 (gene, trait) pairs and

11,986,329 (splicing event, trait) pairs.

PrediXcan replication in BioVU

We replicated the signi�cant gene-level associations for a prioritized list of traits (ta-

ble S16) using BioVU (27), Vanderbilt University's DNA Biobank tied to a large-scale

Electronic Health Records (EHR) database. We sought BioVU replication in the exact

discovery tissues for the signi�cant gene-trait associations. We restricted our analysis

to subjects of European ancestries, using principal component analysis as implemented

in EIGENSOFT (version 7.1.2; (55)). First, we estimated the genetically determined

component of gene expression in the BioVU individuals using the PrediXcan imputation

models. We then conducted association analysis for the prioritized traits using logistic

regression, with sex and age as covariates.

Summary-data-based Mendelian Randomization (SMR) and HEIDI

We performed top-eQTL based Summary-data-based Mendelian Randomization (SMR) (12)

analysis of the 4,263 tissue-trait pairs. SMR, which integrates summary statistics from

GWAS and eQTL data, has been used to prioritize genes underlying GWAS associations.

Supplementary Fig. S15. Causal gene prioritization using S-PrediXcan and enloc.
Summary of GWAS loci that also contain an associated S-PrediXcan or enloc signal, for expres-
sion (left) and splicing (right), using MASHR models.
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Supplementary Fig. S16. Causal gene prioritization using S-PrediXcan and enloc.
Summary of GWAS loci that also contain an associated S-PrediXcan or enloc signal, for expres-
sion (left) and splicing (right), using Elastic Net models.
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Table S2: Expression and splicing prediction models using mashr-based models.

name abbreviation european samples expression models splicing models

Adipose - Subcutaneous 491 ADPSBQ 14732 42912
Adipose - Visceral (Omentum) 401 ADPVSC 14640 41720
Adrenal Gland 200 ADRNLG 13622 36754
Artery - Aorta 338 ARTAORT 14396 40474
Artery - Coronary 180 ARTCRN 13878 40579
Artery - Tibial 489 ARTTBL 14493 40690
Brain - Amygdala 119 BRNAMY 12814 24236
Brain - Anterior cingulate cortex (BA24) 135 BRNACC 13528 28806
Brain - Caudate (basal ganglia) 172 BRNCDT 14118 32127
Brain - Cerebellar Hemisphere 157 BRNCHB 13771 39862
Brain - Cerebellum 188 BRNCHA 13992 40747
Brain - Cortex 184 BRNCTXA 14284 35086
Brain - Frontal Cortex (BA9) 158 BRNCTXB 14091 32031
Brain - Hippocampus 150 BRNHPP 13526 27437
Brain - Hypothalamus 157 BRNHPT 13741 30326
Brain - Nucleus accumbens (basal ganglia) 181 BRNNCC 14062 32670
Brain - Putamen (basal ganglia) 153 BRNPTM 13694 28461
Brain - Spinal cord (cervical c-1) 115 BRNSPC 13096 28883
Brain - Substantia nigra 101 BRNSNG 12637 23677
Breast - Mammary Tissue 337 BREAST 14654 44613
Cells - Cultured �broblasts 417 FIBRBLS 13976 36809
Cells - EBV-transformed lymphocytes 116 LCL 12398 37627
Colon - Sigmoid 274 CLNSGM 14363 41581
Colon - Transverse 306 CLNTRN 14582 41215
Esophagus - Gastroesophageal Junction 281 ESPGEJ 14285 41004
Esophagus - Mucosa 423 ESPMCS 14589 37186
Esophagus - Muscularis 399 ESPMSL 14603 40376
Heart - Atrial Appendage 322 HRTAA 14035 36322
Heart - Left Ventricle 334 HRTLV 13200 29470
Kidney - Cortex 65 KDNCTX 11164 24571
Liver 183 LIVER 12714 27011
Lung 444 LUNG 15058 44346
Minor Salivary Gland 119 SLVRYG 13884 38380
Muscle - Skeletal 602 MSCLSK 13381 31855
Nerve - Tibial 449 NERVET 15373 45478
Ovary 140 OVARY 13738 40857
Pancreas 253 PNCREAS 13695 31203
Pituitary 219 PTTARY 14647 42343
Prostate 186 PRSTTE 14450 41991
Skin - Not Sun Exposed (Suprapubic) 440 SKINNS 14932 42005
Skin - Sun Exposed (Lower leg) 517 SKINS 15204 42219
Small Intestine - Terminal Ileum 144 SNTTRM 14065 39864
Spleen 186 SPLEEN 14073 40290
Stomach 269 STMACH 14102 36624
Testis 277 TESTIS 17867 67784
Thyroid 494 THYROID 15303 45217
Uterus 108 UTERUS 13199 39485
Vagina 122 VAGINA 12969 36931
Whole Blood 573 WHLBLD 12623 24568

total 686241 1816703

Table S3: GWAS loci count for di�erent prioritization method(s). Numbers of loci
with associated/colocalized genes/splicing event detected by each method.

GWAS-signi�cant (loci, trait) associations 5385
GWAS-signi�cant unique loci 1167
enloc (loci, trait) colocalizations expression 2303
enloc (loci, trait) colocalizations splicing 1223
S-PrediXcan (loci, trait) associations expression 3756
S-PrediXcan (loci, trait) associations splicing 3598
S-PrediXcan & enloc (loci, trait) detections expression 1989
S-PrediXcan & enloc (loci, trait) detections splicing 1081
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Table S4: Proportion of GWAS loci for di�erent prioritizing method(s). proportion
of GWAS-signi�cant loci with colocalized/associated genes/splicing events.

method molecular # of loci with % of loci with
phenotype signi�cant/colocalized signi�cant/colocalized

gene/splicing-trait pairs gene/splicing-trait pairs
enloc expression 663 57%
enloc splicing 435 37%
S-PrediXcan expression 919 79%
S-PrediXcan splicing 866 74%
S-PrediXcan & enloc expression 594 51%
S-PrediXcan & enloc splicing 386 33%

Supplementary Fig. S17. Colocalization of expression QTLs Colocalization for each
of the 87 GWAS traits aggregated across the 49 tissues. GWAS loci are shown in
gray, colocalized results are shown in dark green. The traits are ordered by number of GWAS-
signi�cant variants.
Panel A shows the number of colocalized genes, achieving enloc rcp > 0.5 in at least one tissue,
for each GWAS trait. The number of colocalized results tends to increase with the number of
GWAS-signi�cant variants.
Panel B shows the number of loci (approximately independent LD regions from (28)) with at
least one GWAS-signi�cant variant (dark gray), and among them those with at least one gene
reaching rcp > 0.5 (dark green).
Panel C shows the proportion of loci with at least one GWAS-signi�cant hit that contain at
least one colocalized gene. Across traits, a median of 21% of the GWAS loci contain colocalized
results. See trait abbreviation list in Table S1. This �gure is also presented in (9).
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Supplementary Fig. S18. Colocalization of splicing QTLs for each of the 87 GWAS
traits aggregated across the 49 tissues. The traits are ordered by number of GWAS-
signi�cant variants. GWAS loci are shown in gray, colocalized results are shown in dark green.
Panel A shows the number of colocalized splicing event, achieving enloc rcp > 0.5 in at least
one tissue, for each GWAS trait. As with gene expression results, the number of colocalized
results tends to increase with the number of GWAS-signi�cant variants.
Panel B shows the number of loci (approximately independent LD regions from (28)) with at
least one GWAS-signi�cant variant (dark gray), and among them those with one splicing event
achieving rcp > 0.5 (dark green).
Panel C shows the proportion of loci with at least one GWAS-signi�cant hit loci with at least one
colocalized splicing event. Across traits, a median of 11% of the GWAS loci contain a colocalized
result, lower than the gene expression counterpart (29%), indicating a decreased power in the
sQTL study. See trait abbreviation list in Table S1.
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Supplementary Fig. S19. PrediXcan expression associations aggregated across tis-
sues. This �gure summarizes S-MultiXcan associations for each of the 87 traits using the gene
expression models. The traits are ordered by number of GWAS-signi�cant variants.
Panel A) shows in purple the number of S-MultiXcan signi�cant genes, and in dark green the
subset also achieving enloc rcp > 0.5 in any tissue. S-MultiXcan has a high power for detecting
associations, but 12% (median across traits) of these genes show evidence of colocalization.
Panel B) shows the number of loci (approximately independent LD regions (28)) with a signif-
icant GWAS association (gray), a signi�cant S-MultiXcan association (purple), and a signi�cant
S-MultiXcan association that is colocalized (dark green). Anthropometric and Blood traits tend
to present the largest number of associated loci, with Height from two independent studies leading
the number of associations.
Panel C) shows the proportion of loci with signi�cant GWAS associations (gray) that con-
tain S-Multixcan (purple) and colocalized S-MultiXcan associations (dark green). Across traits,
a median of 70% of GWAS-associated loci show a S-MultiXcan detection, while 19% show a
colocalized S-MultiXcan detection.
See trait abbreviation list in Table S1.

68

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


Supplementary Fig. S20. PrediXcan splicing associations aggregated across tissues.
This �gure summarizes S-MultiXcan associations for each of the 87 traits using splicing models.
The traits are ordered by number of GWAS-signi�cant variants.
Panel A) shows in purple the number of S-MultiXcan signi�cant splicing events, and in dark
green the subset also achieving enloc rcp > 0.5 in any tissue. The proportion of colocalized,
signi�cantly associated splicing events is typically 2%, much lower than the proportion from
gene expression (12%).
Panel B) shows the number of loci (approximately independent LD regions (28)) with a signi�cant
GWAS association (gray), a signi�cant S-MultiXcan association (purple), and a signi�cant S-
MultiXcan association that is colocalized (dark green). As in the case of expression models,
Anthropometric and Blood traits tend to present the largest number of associated loci.
Panel C) shows the proportion of loci with signi�cant GWAS associations (gray) that contain
S-Multixcan (purple) and colocalized S-MultiXcan associations (dark green). Across traits, a
median of 63% of GWAS-associated loci show an S-MultiXcan association, while 11% show a
colocalized S-MultiXcan association. These proportions are lower than the corresponding ones
for expression (70% and 19% respectively).
See trait abbreviation list in Table S1.
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1.11 Regulatory mechanism extends to rare, Mendelian traits

OMIM-based curation

Table S5: 114 GWAS traits used for OMIM-based curation. Keywords of all 114 GWAS
traits used for OMIM-based curation and analyses are listed.

Abbreviation Keyword Abbreviation Keyword

Sleep_Duration_UKB sleep duration Sum_Eosinophil_Basophil_Count
Chronotype_UKB chronotype Sum_Neutrophil_Eosinophil_Count

Insomnia_UKB insomnia White_Blood_Cell_Count white blood cell count
Fathers_Age_At_Death_UKB aging Coronary_Artery_Disease coronary heart disease

Deep_Venous_Thrombosis_UKBS venous thromboembolism Chronic_Kidney_Disease chronic kidney
Asthma_UKBS asthma Insomnia_In_Both_Sexes insomnia

Irritable_Bowel_Syndrome_UKBS irritable bowel Type_2_Diabetes type 2 diabetes
Type_1_Diabetes_UKBS type 1 diabetes Eczema atopic dermatitis
Type_2_Diabetes_UKBS type 2 diabetes Birth_Length
Hyperthyroidism_UKBS hyperthyroidism BMI_Childhood bmi;body mass index
Hypothyroidism_UKBS hypothyroidism Birth_Weight

Psychological_Problem_UKBS psychiatric;psychological Pubertal_Height_Female
Multiple_Sclerosis_UKBS multiple sclerosis Pubertal_Height_Male
Parkinsons_Disease_UKBS Parkinson's Intracraneal_Volume intracranial volumn

Migraine_UKBS migraine Asthma asthma
Schizophrenia_UKBS Schizophrenia Bone_Mineral_Density bone mineral density
Osteoporosis_UKBS osteoporosis BMI_Active_Inds bmi;body mass index

Ankylosing_Spondylitis_UKBS ankylosing spondylitis BMI_EUR bmi;body mass index
Eczema_UKBS eczema;dermatitis Height height
Psoriasis_UKBS psoriasis Hip_Circumference_EUR hip circumference

In�ammatory_Bowel in�ammatory bowel disease Waist_Circumference_EUR waist circumference
_Disease_UKBS

Crohns_Disease_UKBS crohn's disease Waist-to-Hip_Ratio_EUR waist-to-hip
Ulcerative_Colitis_UKBS ulcerative colitis HDL_Cholesterol hdl cholesterol

Rheumatoid_Arthritis_UKBS rheumatoid arthritis LDL_Cholesterol ldl cholesterol
Gout_UKBS gout Triglycerides triglycerides

High_Cholesterol_UKBS total cholesterol Neuroticism neuroticism
Insomnia_UKBS insomnia Heart_Rate heart rate

Fluid_Intelligence_Score_UKB intelligence Crohns_Disease crohn's disease
Birth_Weight_UKB birth weight In�ammatory_Bowel_Disease in�ammatory bowel disease
Neuroticism_UKB neuroticism Ulcerative_Colitis ulcerative colitis

BMI_UKB bmi;body mass index Alzheimers_Disease alzheimer
Body_Fat_Percentage_UKB body fat Epilepsy epilepsy

Balding_Pattern_2_UKB Celiac_Disease celiac disease
Balding_Pattern_3_UKB Multiple_Sclerosis multiple sclerosis
Balding_Pattern_4_UKB Systemic_Lupus_Erythematosus systemic lupus erythematosus

Mothers_Age_At_Death_UKB aging Stroke stroke
Standing_Height_UKB height Chronotype chronotype

Heart_Attack_UKB Sleep_Duration sleep duration
Deep_Venous_Thrombosis_UKB venous thromboembolism Fasting_Glucose fasting glucose;

fasting plasma glucose
Pulmonary_Embolism_UKB Fasting_Insulin fasting insulin

Asthma_UKB asthma CH2DB_NMR
Hayfever_UKB HDL_Cholesterol_NMR hdl cholesterol
Epilepsy_UKB epilepsy Triglycerides_NMR triglycerides
Migraine_UKB migraine LDL_Cholesterol_NMR ldl cholesterol

Hypertension_UKBS hypertension Attention_De�cit attention de�cit
_Hyperactivity_Disorder hyperactivity disorder

Adiponectin adiponectin Autism_Spectrum_Disorder autism
Eosinophil_Count eosinophil count Schizophrenia schizophrenia

Granulocyte_Count Rheumatoid_Arthritis rheumatoid arthritis
High_Light_Scatter Depressive_Symptoms depression

_Reticulocyte_Count
Lymphocyte_Count lymphocyte Education_Years education
Monocyte_Count monocyte count;monocytes Asthma_TAGC_EUR asthma

Myeloid_White_Cell_Count Systolic_Blood_Pressure systolic blood pressure
Neutrophil_Count neutrophil count;neutrophils Diastolic_Blood_Pressure diastolic blood pressure

Platelet_Count platelet counts ER-negative_Breast_Cancer breast cancer
Red_Blood_Cell_Count red blood cell count ER-positive_Breast_Cancer breast cancer

Reticulocyte_Count Breast_Cancer breast cancer
Sum_Basophil_Neutrophil_Count Smoker smoking behavior

1.12 Curation of causal gene-trait pairs (silver standards)

We curated a list of 1,592 gene-trait pairs with evidence of causal associations in the

OMIM database (hereafter, OMIM genes).

After matching traits, we retained 29 unique traits and 631 unique genes that are

within the same LD block (28) as the GWAS hit (table S10). As an additional independent

evaluation, we also curated a list of `silver standard genes', using 101 gene-trait pairs from
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rare coding variant association studies (29,33, 34) (table S13). The resulting 228 OMIM

gene-trait pairs and 80 rare variant harboring gene-trait pairs are used in subsequent

validation analyses.

Throughout this section, we limited our scope to only the protein-coding genes. We

�rst describe the approach to de�ne the OMIM-based silver standard. And then we

describe the construction of a rare variant set based silver standard.

OMIM-based causal genes

Supplementary Fig. S21. Work�ow of OMIM-based curation. The work�ow of OMIM-
based causal gene curation is shown where each box represents the trait description/identi�er
in di�erent databases. The steps to obtain OMIM genes for MAGIC_FastingGlucose, one of our
GWAS traits, is shown as a concrete realization of the work�ow.

To obtain a curated set of trait-gene pairs from the OMIM database (32), we constructed

a map between our GWAS traits and the OMIM traits and then mapped the OMIM

traits to genes using the `Gene-Phenotype Relationships' available in the OMIM database.

Speci�cally, we constructed a keyword for each of the 114 GWAS traits (see TableThen,

we matched the keyword to trait description in the GWAS catalog if the keyword occurred

in the description sentence (as shown in �g. S21 step 1). The GWAS catalog-to-phecode

map (as shown in S21 step 2) was created, using electronic health records (EHR) data (27),

for a replication study of GWAS �ndings. The implementation of the map is described in

detail in (27). Brie�y, traits from the catalog (represented as free text) were mapped to

the closest corresponding phecode. The phecode/catalog trait relationships were classi�ed
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as "exact", "narrower" (if the phecode was more speci�c than the catalog trait), "broader"

(if the phecode was more general than the catalog trait), and "proxy" (if the catalog trait

was for a continuous measurement). All phecode/catalog trait relationships were included

in the analysis.

The clinical descriptions from OMIM have been annotated with Human Phenotype

Ontology (HPO) (56) terms. We created a map between phecodes and HPO terms used

to describe OMIM diseases, as previously described (57), which gave rise to the mapping

betweem phecodes and OMIM traits (as shown in S21 step 3). By combining these

maps, we were able to relate GWAS catalog traits to OMIM disease descriptions, utilizing

phecodes and HPO terms as intermediate steps.

For a subset of datasets with discovery (public) and replication (UKB) results in our

collection, we kept the dataset with higher number of GWAS loci to avoid double counting.

The number of GWAS loci was determined based on counting the lead variants, using

the PLINK V1.9 command �clump-r2 0.2 �clump-p1 5e-8 at genome-wide signi�cance

5 × 10−8) for each trait. Furthermore, for this analysis, we excluded GWAS traits with

fewer than 50 GWAS loci. The full list of OMIM based trait-gene pairs is listed in S10.

Rare variant association based causal genes

In addition to the OMIM-based curation, we collected a set of genes in which rare protein-

coding variants were reported to be signi�cantly associated with our list of complex traits.

Here, we focused on rare variant association evidence reported on height and lipid traits

(low-density lipid cholesterol, high-density lipid cholesterol, triglycerides, and total choles-

terol levels) (29, 33, 34). In particular, we collected signi�cant coding/splicing variants

reported previously (29) and kept variants with e�ect allele frequency < 0.01 (Table

S6: ExomeChip variants with Pdiscovery <2e-07 in the European-ancestry meta-analysis

(N=381,625)). Similarly, we collected signi�cant variants reported by (33) (Table S12:

Association Results for 444 independently associated variants with lipid traits) and �l-

tered out variants with minor allele frequency < 0.01. For the whole-exome sequencing

study conducted in Finnish isolates (34), we extracted signi�cant genes identi�ed by a

gene-based test using protein truncating variants (Table S9: Gene-based associations from

aggregate testing with EMMAX SKAT-O with P<3.88E-6) and signi�cant variants (Ta-

ble S7: A review of all variants that pass unconditional threshold of P<5E-07 for at least

one trait) with gnomAD MAF < 0.01. The full list of trait-gene pairs constructed from
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the process is available in Supplementary Table S13.

Constructing GWAS loci and candidate gene set for silver standard

silver trait nloci ngene silver trait nloci ngene
standard standard

rare variant Standing_Height_UKB 29 35 OMIM Monocyte_Count 1 1
rare variant LDL_Cholesterol 7 10 OMIM Neutrophil_Count 14 17
rare variant High_Cholesterol_UKBS 6 8 OMIM White_Blood_Cell_Count 16 17
rare variant HDL_Cholesterol 12 18 OMIM Coronary_Artery_Disease 12 13
rare variant Triglycerides 6 9 OMIM Type_2_Diabetes 11 12
OMIM Deep_Venous_Thrombosis 2 2 OMIM Waist_Circumference_EUR 6 6
OMIM Asthma_UKBS 10 12 OMIM LDL_Cholesterol 7 9
OMIM Type_1_Diabetes_UKBS 1 2 OMIM Triglycerides 11 11
OMIM Hypothyroidism_UKBS 14 14 OMIM In�ammatory_Bowel_Disease 7 8
OMIM Eczema_UKBS 4 5 OMIM Ulcerative_Colitis 4 4
OMIM Psoriasis_UKBS 2 2 OMIM Alzheimers_Disease 2 2
OMIM Gout_UKBS 1 1 OMIM Systemic_Lupus_Erythematosus 3 5
OMIM High_Cholesterol_UKBS 6 8 OMIM Schizophrenia 1 1
OMIM BMI_UKB 35 35 OMIM Rheumatoid_Arthritis 3 3
OMIM Hypertension_UKBS 19 24 OMIM Systolic_Blood_Pressure 2 2
OMIM Eosinophil_Count 7 7 OMIM Diastolic_Blood_Pressure 3 3
OMIM Lymphocyte_Count 2 2

Table S6: Count of GWAS loci with predicted causal e�ects overlapping likely func-
tional genes. The number of GWAS loci and the number of silver standard genes included for
analysis after taking the intersection between GWAS loci and silver standard genes are shown.

Supplementary Fig. S22. Distribution of the number of candidate genes per GWAS
locus overlapping OMIM- and rare variant-based silver standard. The distributions of
the number of candidate genes per GWAS locus are shown for OMIM-based curation (on the
right) and rare variant association-based curation (on the left).
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1.13 Performance of association and colocalization based meth-
ods using silver standards

Supplementary Fig. S23. Work�ow on constructing the list of candidate genes for
silver standard analysis. We started with GWAS summary statistics and extract LD blocks
(boundaries of LD block are shown as gray vertical lines) that contain a variant with GWAS
association p < 5 × 10−8. We further �ltered out LD blocks which do not overlap with silver
gene (labelled with red triangle). The candidate genes (shown as black horizontal bars) are those
overlapping with the leftover LD blocks.

Construction of candidate genes and de�nition of the scores for various meth-
ods

We constructed a set of candidate genes for silver standard analysis following the work�ow

shown in S23. The rationale of the analysis was to focus on a common use case in practice,

namely to prioritize genes within GWAS loci. First, for each trait we de�ned all LD

blocks with genome-wide signi�cant GWAS signals (p < 5× 10−8) as GWAS loci. Then,

we selected the variant with the highest signi�cance as the GWAS lead variant for the

locus (and randomly picked one in case of ties). Here we limited our scope to those

GWAS loci containing silver standard genes since the current silver standard did not have

enough information to test the rest, which were driven by genes without indication in

OMIM database and/or rare variant associations, and potentially had smaller e�ect size

as compared to the former. Thus, we kept only the GWAS loci overlapping with silver

standard genes. The full list of silver standard genes, after the �ltering procedure, can

be found in S14 and S15. The number of GWAS loci and silver standard genes that
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remained after the above �ltering steps can be found in Supplementary Table S6. From

these GWAS loci containing silver standard genes, we extracted all genes overlapping with

the loci as the set of candidate genes (the number of candidate genes per locus is shown

in �g. S22).

For each of these candidate genes, we obtained the gene-level statistics for the cor-

responding traits from the application of various methods, i.e. enloc, coloc, SMR, and

PrediXcan-mashr where we collapsed statistics across tissues by taking the `best' scores

(highest regional colocalization probability (rcp) in enloc; highest posterior probability

under hypothesis 4 in coloc; smallest p-value in SMR and PrediXcan-mashr).

Regarding the results on splicing (with statistics reported at the intron excision event

level), we obtained gene-level statistics by taking the `best' score among all splicing events

of the gene. We also summarized the cis-sQTL at the gene level using the same strategy.
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Per locus prioritization

(A)

(B)

Supplementary Fig. S24. The number of OMIM genes ranked top within a GWAS
locus by proximity, enloc, and PrediXcan. Results from expression are in (A) and those
from splicing are in (B).

Regression-based test on the per-locus rank To investigate the usefulness of the

colocalization and association statistics reported by enloc and PrediXcan respectively, we
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performed logistic regression, as described in , to �t log odds of being a 'causal' gene

against the ranking of: 1) proximity to GWAS lead variant (from close to distal), 2) rcp

from enloc (from high to low), and 3) gene-level association p-value from PrediXcan-mashr

or SMR (from signi�cant to non-signi�cant).

logit(Pr(causali)) = β0 + β1 · rank(proximityi) + β2 · rank(rcpi) + β3 · rank(P-valuei),
(34)

in which non-zero βk meant that the kth variable contributed independently on predict-

ing whether a gene was causal. Moreover, negative βk indicated that the direction of

contribution of the variable was as expected.

Regression-based test to investigate the independent contribution of proxim-
ity, colocalization, and association based methods

regulation silver_standard variable coe�cient coe�cient_se pvalue

expression OMIM rank_proximity -0.018 0.0081 0.03
expression OMIM predixcan_mashr_eur -0.038 0.008 2.2× 10−6

expression OMIM enloc -0.02 0.0093 0.031
splicing OMIM rank_proximity -0.026 0.0073 0.00031
splicing OMIM predixcan_mashr_eur -0.037 0.008 3.5× 10−6

splicing OMIM enloc -0.012 0.0086 0.17
expression rare variant rank_proximity -0.013 0.018 0.46
expression rare variant predixcan_mashr_eur -0.043 0.016 0.0084
expression rare variant enloc -0.043 0.02 0.032

splicing rare variant rank_proximity -0.048 0.015 0.0015
splicing rare variant predixcan_mashr_eur -0.018 0.013 0.15
splicing rare variant enloc -0.02 0.015 0.2

Table S7: Predictive value of di�erent per-locus prioritization methods. Results on
regression-based test (logistic regression) in per-locus analysis are shown. The estimated log odds
ratio of the rank of proximity (distance between GWAS leading variant and gene body), PrediX-
can signi�cance, and enloc rcp are shown in rows rank_proximity, predixcan_mashr_eur,
and enloc.

Precision-recall and receiver operating characteristic curve

In addition to the per-locus analysis, we combined the gene-trait pairs from the per-

locus analysis. We labelled the ones with silver standard genes for the corresponding

trait as 1 and the rest as 0 so that we could plot PR and ROC curve for each associ-

ation/colocalization based method by varying a universal threshold (i.e., either p-value

or colocalization probability) across all analyzed traits and loci. These curves provide a
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measure of the predictive power of each method, but use of a universal cuto� across all

traits and GWAS loci has limitations (see discussion in Section 1.13).

Enrichment and ROC curves

Regulation Dataset Method ROC AUC Enrichment

expression OMIM coloc 0.553
expression OMIM enloc 0.669 4.56
expression OMIM PrediXcan 0.672 2.50
expression OMIM SMR 0.591
expression Rare variant coloc 0.661
expression Rare variant enloc 0.755 14.72
expression Rare variant PrediXcan 0.743 2.21
expression Rare variant SMR 0.629
splicing OMIM enloc 0.650 6.10
splicing OMIM PrediXcan 0.632 2.54
splicing Rare variant enloc 0.714 21.76
splicing Rare variant PrediXcan 0.686 2.19

Table S8: Enrichment and AUC fo coloc, enloc, SMR, and PrediXcan

For expression, the areas under the curve (AUC) of were, in increasing performance,

0.553, 0.591, 0.669, and 0.672 for coloc, SMR, enloc, and PrediXcan using the OMIM

silver standard 3C. AUC were higher when using the rare variant silver standard with

SMR at the bottom of the ranking followed by coloc, PrediXcan, and enloc at the top S8.

For splicing enloc had higher 0.650 vs. 0.632 for PrediXcan using OMIM silver standard

and 0.714 and 0.686 using the rare variant silver standard.
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Precision-recall curves of PrediXcan and enloc on silver standard gene sets

(A) (B)

(C) (D)

Supplementary Fig. S25. Precision-recall curves of colocalization/association based
methods on OMIM silver standard. The results on expression data are shown in top
row and the ones on splicing data are shown in bottom row. (A,C) Precision-recall curve
of colocalization/association based methods. (B,D) Precision-recall curve of association based
methods when pre-�ltering with enloc rcp > 0.1.

79

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814350doi: bioRxiv preprint 

https://doi.org/10.1101/814350
http://creativecommons.org/licenses/by/4.0/


(A) (B)

(C) (D)

Supplementary Fig. S26. Precision-recall curves of colocalization/association based
methods on rare variant-based silver standard. The results on expression data are shown
in top row and the ones on splicing data are shown in bottom row. (A,C) Precision-recall curve
of colocalization/association based methods. (B,D) Precision-recall curve of association based
methods when pre-�ltering with enloc rcp > 0.1.
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(A) (B)

Supplementary Fig. S27. Precision-recal curves of colocalization methods. Precision-
recall curves of two colocalization methods (using expression data): ENLOC (blue) and COLOC
(green) using OMIM silver standard (in (A)) and rare variant-based silver standard (in (B)).

Discussion on the limitation of applying universal cuto� in precision-recall/ROC
curve

To apply a universal threshold to all loci and traits was a limitation of this approach. On

the one hand, di�erent GWAS traits may have di�erent sample sizes so that the colocal-

ization probabilities or association p-values are not comparable across traits. On the other

hand, for the same trait, the magnitude of the mediated e�ect size (gene/splicing-level

e�ect) at di�erent loci may vary, which makes the colocalization probability or associa-

tion p-value less comparable across loci. With these limitations, the comparison between

methods was still informative but might favor the one that su�ers less from the lack of

comparability and being more stringent (i.e. enloc). Furthermore, the curves were not di-

rectly comparable to per-locus approaches since a per-locus approach intrinsically utilized

the information that there was only one signal per locus. However, these curves provide

insights into how these methods would perform (in terms of precision/power trade-o�) if

we applied a universal cuto� across loci, which is a typical use case in practice.

Unique causal gene assumption with silver standard In many practical appli-

cations, the investigator will be interested in identifying the causal gene that drives the

signal at a given GWAS locus. Here we assume existence and uniqueness, i.e., that the
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causal gene is on the list of neighboring genes and that there is only one. These assump-

tions may fail, for example, if regulatory e�ects are unrelated to the causal mechanism or

the causal molecular phenotypes have not been assayed or discovered. Furthermore, the

assumption that there is only one causal gene is parsimonious and arguably reasonable,

but in general we do not have hard evidence to rule out multiple genes contributing to

the trait e�ect.

1.14 Predicted associations replicated in BioVU (cont.)

Among replicated loci are SORT1 (liver, coronary artery disease rcp = 0.952; dicovery

p = 2.041 × 10−19 BioVU p = 3.475 × 10−4), which has a well-established associations

to lipid metabolism and cardiovascular traits (58). Chromosome 6p24 region, which con-

tains PHACTR1, has been previously associated with a constellation of vascular diseases,

including coronary artery disease (59) and migraine headache (60). Notably, PHACTR1

was signi�cant in three di�erent arteries (aorta artery, coronary artery and tibial artery)

in two traits (coronary artery disease and migraine) in the replication analysis. In all

six tissue-trait pairs, PHACTR1 showed very high posterior probabilities in discovery

analyses (rcp = 0.992 to 1.00). In our replication analysis, PHACTR1 remained signi�-

cant only for coronary artery disease associations (table S16, aorta artery, discovery p =

2.246×10−39, BioVU p = 7.484×10−8; coronary artery, discovery p = 1.952×10−37, BioVU

p = 2.047× 10−7; tibial artery, discovery p = 1.559× 10−33, BioVU p = 9.880× 10−7).

1.15 Validation of likely causal genes (cont.)

Of note, two members of the sterolin family, ABCG5 and ABCG8, showed highly sig-

ni�cant predicted causal associations using both PrediXcan and enloc for LDL-C lev-

els and self-reported high cholesterol levels. ABCG8 showed more signi�cant associa-

tions in both datasets (chr2: 43838964 - 43878466; UKB self-reported high cholesterol:

-log10(pPrediXcan) = 38.43, rcp = 0.985; GLGC LDL-C: -log10(pPrediXcan) = 71.40, rcp

= 0.789), compared to ABCG5 (chr2: 43812472 - 43838865; -log10(pPrediXcan) = 36.85,

rcp = 0.941; -log10(pPrediXcan) = 80.80, rcp = 0.705). Mutations in either of the two

ATP-binding cassette (ABC) half-transporters, ABCG5 and ABCG8, lead to reduced

secretion of sterols into bile, and ultimately, obstruct cholesterol and other sterols exiting

the body (61). In mice with disrupted Abcg5 and Abcg8 (G5G8-/-), a 2- to 3-fold increase

in the fractional absoprtion of dietary plan steols and extrememly low biliary cholesterol
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levels was observed, indicating that disrupting these genes contribute greatly to plasma

cholesterol levels (62). The overexpression of human ABCG5 and ABCG8 in transgenic

Ldlr-/- mice resulted in 30% reduction in hepatic cholesterol levels and 70% reduced

atherosclerotic legion in the aortic root and arch (63) after 6-months on a Western diet.

Several other lipid-associated loci were also consistently predicted as causal across

OMIM, the rare variant derived set, PrediXcan and enloc. Rare protein-truncating vari-

ants in APOB have been previously associated with reduced LDL-C and triglyceride levels

and reduced coronary heart disease risk (64). Interestingly, APOB has been predicted

as a causal gene in four related traits, coronary artery disease, LDL-C levels, triglyceride

levels, and self-reported high cholesterol levels. Among the four traits, PrediXcan showed

the highest association to LDL-C levels (-log10(pPrediXcan) = 130.89; rcp = 0.485) while

self-reported high cholesterol showed the strongest evidence using enloc at nearly max-

imum posterior probability (-log10(pPrediXcan) = 93.66; rcp = 0.969). Although APOB

has been suggested as a better molecular indicator of predicted cardiac events in place of

LDL-C levels (65, 66), its translation has been surprisingly slow in clinical practice (67).

Here, we provide an additional support for the crucial role APOB may play in predicting

lipid traits.

1.16 Causal tissue analysis

We investigated the cross-tissue pattern of PrediXcan results across 49 tissues. For each

trait-gene pair, the PrediXcan z-score can be represented as a 49×1 vector with each entry

being the gene-level z-score in the corresponding tissue (if the prediction model of the gene

is not available in that tissue, we �lled in zero). To explore the tissue-speci�city of the

PrediXcan z-score vector, we proceeded by assigning the z-score vector to a tissue-pattern

category and tested whether certain tissue-pattern categories were over-represented among

colocalized PrediXcan genes as compared to non-colocalized genes. In particular, we used

the FLASH factors identi�ed from matrix factorization applied to the cis-eQTL e�ect

size matrix, as described in Section 1.7 (as PrediXcan and cis-eQTL shared similar tissue-

sharing pattern, data not shown). To obtain a set of detailed and biologically interpretable

tissue-pattern categories from the 31 FLASH factors, we manually merged them into 18

categories as shown in �g. S28. For each trait, we projected the z-score vector of each gene

to one of the 31 FLASH factors (as described in Section 1.7) so that the gene was assigned

to the corresponding tissue-pattern category. We de�ned a `positive' set of genes as the
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ones that met Bonferroni signi�cance at α = 0.05 in at least one tissue and enloc rcp >

0.01 in at least one tissue, which could be thought as a set of candidate genes a�ecting

the trait through expression level. We also constructed a `negative' set of genes with enloc

rcp = 0, which could be thought as a set of genes whose expressions were unlikely to a�ect

the trait. We proceeded to test whether certain tissue-pattern categories were enriched

in `positive' set as compared to `negative' set. Since the main focus of this analysis was

tissue-speci�c patterns, we excluded Factor1 (the cross-tissue factor) and Factor25 (likely

to be a tissue-shared factor capturing tissues with large sample size). Additionally, we

excluded Factor7 (testis), as it was unlikely to be the mediating tissue but might introduce

false positives. We tested the enrichment of each tissue-pattern category by Fisher's exact

test (`positive'/`negative' sets and in/not in tissue-patter category). Among 87 traits, 82

traits had enloc signal and the enrichment of these was calculated accordingly.

Supplementary Fig. S28. Factor analysis using �ashr to identify causal tissues.
Tissue-pattern categories generated from from FLASH applied to the cis-eQTLs are shown.
These tissue categories (on y-axis) were the same ones used in the analysis of causal tissue
identi�cation. Tissues are ordered by sample size.
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Table S9: GWAS Metadata contains relevant information concerning each GWAS study
used. Full table available in Supplementary Material. Analyses used the 87 traits with de�a-
tion=0 unless explictly said otherwise. Columns are: Tag: Internal name to identify the study,
De�ation: De�ation status after imputation (0 for no de�ation, 1 for moderate de�ation, 2
for extreme de�ation), PUBMED_Paper_Link: PUBMED entry, Pheno_File: name of
downloaded �le, Source_File: actual name of GWAS summary statistics (i.e. downloaded
�les might contain several traits), Portal: URL to GWAS study portal, Consortium: Name
of Consortium if any, Link: download link for the �le, Notes: any special comment on the
GWAS trait, Header: GWAS summary statistics header in case the �le is malformed, EFO:
Experimental Factor Ontology (68) entry if applicable, HPO: Human Phenotype Ontology (56)
entry if applicable, Description: optional description of the study, Trait: trait name, Sam-
ple_Size: number of individuals included in the study, Population: types of populations
present (EUR for European, AFR for African, EAS for East Asian, etc), Date: Date the �le was
downloaded,Declared_E�ect_Allele: column specifying e�ect allele,Genome_Reference:
Human Genome release used as reference (i.e. hg19, hg38), Binary: wether the trait is dichoto-
mous, Cases: number of cases if binary trait, abbreviation: short string for �gure and ta-
ble display, new_abbreviation: additional abbreviation, new_Trait: additional trait name,
Category: type of trait, Color: Hexadecimal color code for display

Supplementary tables in spreadsheet

Table S10: Presumed causal genes included in the OMIM database. Columns are:
trait: Tag used for the trait, pheno_mim: MIM ID of the phenotype mapped to GWAS trait,
mim: MIM ID of the corresponding gene, entry_type: Entry type in the OMIM database,
entrez_gene_id: Gene ID based on Entrez database, gene_name: O�cial gene symbol,
ensembl_gene_id: Gene ID based on Ensembl database, gene_type: Gene type based on
Gencode, gene: Trimmed Gene ID based on Ensembl database.
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Table S11: PrediXcan and enloc results for predicted causal genes selected based on
OMIM. Columns are: lead_var: the most signi�cant variant within the LD block, trait: trait
name, gene: Ensembl ID for the gene, is_omim: Is included in the OMIM database. TRUE
if included, FALSE if not, proximity: 0 if variant is in the gene, otherwise BPS from the gene
boundary, rank_proximity: ranking by proximity within LD block (rank starts from 0 and the
closer the lower rank), percentage_proximity: rank_proximity / number of genes in the lo-
cus, predixcan_mashr_eur_score: -log10 p-value (most signi�cant across tissues is used) of
PrediXcan-MASH trained on European data, enloc_score: rcp (max across tissues), predix-
can_mashr_eur_rank: PrediXcan signi�cance ranking within LD block (rank starts from 0
and the higher signi�cance the lower rank), enloc_rank: enloc rcp ranking within LD block
(rank starts from 0 and the higher rcp the lower rank), predixcan_mashr_eur_percentage:
predixcan_mashr_eur_rank / number of genes in the locus, enloc_percentage: enloc_rank /
number of genes in the locus, gene_name: O�cial gene symbol, gene_type: Gencode annot-
sted gene type, chromosome: Chromosome for the gene, start: Gencode annotated gene start
position. All isoforms are combined, end: Gencode annotated gene end position. All isoforms
are combined, strand: Gencode annotated gene strand.

Table S12: PrediXcan and enloc results for presumed causal genes in the rare vari-
ant based silver standard. Columns are: lead_var: the most signi�cant variant within
the LD block, trait: trait name, gene: Ensembl ID for the gene, is_ewas: Is included in the
EWAS . TRUE if included, FALSE if not, proximity: 0 if variant is in the gene, otherwise BPS
from the gene boundary, rank_proximity: ranking by proximity within LD block (rank starts
from 0 and the closer the lower rank), percentage_proximity: rank_proximity / number of
genes in the locus, predixcan_mashr_score: -log10 p-value (most signi�cant across tissues
is used) of PrediXcan-MASH trained on European data, enloc_score: rcp (max across tis-
sues), predixcan_mashr_rank: PrediXcan signi�cance ranking within LD block (rank starts
from 0 and the higher signi�cance the lower rank), enloc_rank: enloc rcp ranking within LD
block (rank starts from 0 and the higher rcp the lower rank), predixcan_mashr_percentage:
predixcan_mashr_eur_rank / number of genes in the locus, enloc_percentage: enloc_rank /
number of genes in the locus, gene_name: O�cial gene symbol, gene_type: Gencode annot-
sted gene type, chromosome: Chromosome for the gene, start: Gencode annotated gene start
position. All isoforms are combined, end: Gencode annotated gene end position. All isoforms
are combined, strand: Gencode annotated gene strand.

Table S13: Genes suggested as causal by rare variant association studies. Columns
are: gene: Trimmed gene ID based on Ensembl database, nobs: Number of times gene has been
observed in the trait, trait: Tag for the trait name.

Table S14: OMIM genes included in the analysis. Columns are: gene, trait.
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Table S15: Rare variant silver standard genes included in the analysis. Columns are:
gene, trait.

Table S16: BioVU. Columns are: gene, tissue, trait_map: mapped trait, pheno: trait,
gene_name, p_discovery, rcp_discovery, beta_biovu, p_biovu, z_biovu.
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