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Abstract 54 

Antibody repertoire sequencing (Ig-seq) has been widely used in studying humoral responses, with 55 

promising results. However, the promise of Ig-seq has not yet been fully realized, and key features of 56 

the antibody repertoire remain elusive or controversial. To clarify these key features, we analyzed 57 

2,152 high-quality heavy chain antibody repertoires, representing 582 donors and a total of 360 58 

million clones. Our study revealed that individuals exhibit very similar gene usage patterns for 59 

germline V, D, and J genes and that 53 core V genes contribute to more than 99% of the heavy chain 60 

repertoire. We further found that genetic background is sufficient but not necessary to determine usage 61 

of V, D, and J genes. Although gene usage pattern is not affected by age, we observed a significant 62 

sex preference for 24 V genes, 9 D genes and 5 J genes, but found no positional bias for V-D and D-J 63 

recombination. In addition, we found that the number of observed clones that were shared between 64 

any two repertoires followed a linear model and noted that the mutability of hot/cold spots and single 65 

nucleotides within antibody genes suggested a strand-specific somatic hypermutation mechanism. 66 

This population-level analysis resolves some critical characteristics of the antibody repertoire and thus 67 

may serve as a reference for research aiming to unravel B cell-related biology or diseases. The metrics 68 

revealed here will be of significant value to the large cadre of scientists who study the antibody 69 

repertoire. 70 

Keywords: B-cell biology, antibody repertoire, large-scale analysis, high-throughput sequencing, 71 

Ig-seq 72 

 73 

 74 

 75 

 76 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/814590doi: bioRxiv preprint 

https://doi.org/10.1101/814590
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 77 

The antibody repertoire is defined as the entire collection of B-cell receptors and antibodies that 78 

grant protection against a plethora of pathogens. A deeper understanding of the antibody repertoire 79 

under normal physiological conditions and in pathogenic conditions may shed light on functional 80 

immune responses and reveal the full scope of their protective and pathogenic functions. However, 81 

despite this great potential, collecting enough antibody molecules to capture the immense diversity of 82 

the antibody repertoire has been a critical challenge.  83 

Using high-throughput sequencing technology, Weinstein et al. developed antibody repertoire 84 

sequencing (Ig-seq) (Weinstein et al., 2009), which allows researchers to capture millions or even 85 

billions of antibody variable regions within a single experiment. The vast amount of data acquired by 86 

Ig-seq enables a deeper and more thorough evaluation of the key features of the antibody repertoire, as 87 

well as its constituent antibody molecules, at the single-nucleotide level. In the past decade, Ig-seq has 88 

advanced the study of many important sub-fields of B-cell immunology, such as antibody discovery 89 

(Reddy et al., 2010; Zhu et al., 2013a), vaccination development (Jackson et al., 2014; Jiang et al., 90 

2013; Joyce et al., 2016; Li et al., 2012), infection (Krebs et al., 2019; Parameswaran et al., 2013; Wu 91 

et al., 2015; Wu et al., 2011a), allergy (Hoh et al., 2016; Patil et al., 2015; Wu et al., 2014), 92 

autoimmune disease (Stern et al., 2014; Tipton et al., 2015; von Büdingen et al., 2012), and cancer 93 

immunology (Faham et al., 2012; Gawad et al., 2012; Kurtz et al., 2015). For example, using Ig-seq 94 

coupled with single-cell cloning technology, we and others identified thousands of HIV-1-neutralizing 95 

antibodies that bind to different epitopes and delineated their lineage-dependent maturation pathways 96 

(Bonsignori et al., 2016; Wu et al., 2015; Wu et al., 2011b; Zhu et al., 2013b). Studies of antibody 97 

repertoires after virus infection also led to the discovery of antibody convergence – a mechanism 98 

whereby identical or very similar antibody clonotypes are generated in different individuals facing the 99 

same selective pressure (Parameswaran et al., 2013). These results suggested that the antibody 100 
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repertoire could be used to track an individual’s immune history as well as to monitor the 101 

immunological memory of a community.  102 

The use of antibody repertoire in autoimmune diseases has provided important insight into both 103 

disease mechanisms and fundamental B cell biology. For example, Tipton et al. revealed that systemic 104 

lupus erythematosus (SLE) autoreactivity occurred during a polyclonal activation of 105 

IGHV4-34-dominant B cell clones via both germinal center-dependent and germinal 106 

center-independent mechanisms (Tipton et al., 2015). Büdingen et al. discovered that a pool of clonal 107 

related antibodies participates in a robust bidirectional exchange across the blood-brain barrier (von 108 

Büdingen et al., 2012). Analyzing the antibody repertoires of patients with the same disease, Stern et 109 

al. found that majority of the disease-related autoantibodies matured outside of the central nervous 110 

system and trafficked freely across tissue barriers (Stern et al., 2014).  111 

Prior studies using Ig-Seq accumulated a wealth of antibody repertoire data. This under-explored 112 

population-level big data could potentially help us resolve the important yet unclear or controversial 113 

features of the B cell biology and the antibody repertoire. For instance, what are the germline V, D, 114 

and J gene usage patterns and how similar are they between individuals? What are the factors 115 

determining these patterns if they do exist? Is there preferential recombination between V-D and D-J 116 

genes? What are the rules that govern the somatic hypermutations (SHM)? What are the proportion of 117 

public clones between individuals and what functions do these clones exert? 118 

With these unsolved or controversial questions in mind, we collected 2,152 high quality antibody 119 

heavy chain repertoires and performed thorough and in-depth analyses. These analyses revealed 120 

patterns of B cell biology as well as key features of the antibody repertoire, which will be of 121 

significant value to the large cadre of scientists in the field. 122 

 123 
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Results 124 

Overview of datasets used in this study 125 

The immense diversity of B cells is derived from two important biological processes: germline 126 

gene segment recombination, which introduces indels in complementarity-determining region 3, and 127 

activation-induced cytidine deaminase, which leads to somatic hypermutations in the antibody 128 

variable regions during affinity maturation. Thus, any mutation or indel in the variable region may be 129 

important for understanding and revealing B cell biology. It is thus essential to understand the 130 

sequencing errors that are intrinsic to Ig-seq approaches. For example, 454 sequencing often generates 131 

indels in the homopolymer region, and PCR amplification and high-throughput sequencing can also 132 

generate base errors and chimeras. These intrinsic errors would be easily mistaken as somatic 133 

hypermutation (SHM) generated during affinity maturations. We therefore only included samples that 134 

were sequenced by Illumina instruments. We also required the sequencing reads to cover a minimum 135 

of 500 bp, the primers to capture the full spectrum of antibodies generated by any V(D)J 136 

recombination, and a minimum number of productive reads (Materials and Methods). After filtering 137 

on these stringent criteria, we identified a total of 1,857 repertoires from 33 published studies and 295 138 

repertoires from in-house sequencing for further analysis (Figure 1a).  139 

The sample-associated metadata, including age, sex, physiological condition, tissue origin, and 140 

amplification method, are shown in Figures 1b-f. Age composition was more balanced for the sampled 141 

individuals than for the samples (Figure 1b and Figure S1), and the number of individuals for each age 142 

group is more than 30 (more than 80 samples for each age group). Slightly more than half of the 143 

samples were from females (Figure 1c). Sequencing libraries for all recruited samples were mainly 144 

amplified using multiplex PCR (Figure 1d). Donor conditions and the sources of the samples were 145 

classified into 13 and 6 directories respectively (Figures 1e and 1f). These repertoires covered a broad 146 

spectrum of diseases, such as autoimmune disease, cancer, virus infection, and more. The majority 147 
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(76.8%) of samples were derived from peripheral blood mononuclear cells (PBMCs); there were also 148 

samples from bone marrow, intestine, lung, and spleen. Overall, we included a total of 7,378,354,271 149 

raw reads in our analysis.  150 

The core V gene set determines the clear majority of antibodies 151 

The variable usage of germline genes represents the first level of antibody repertoire diversity 152 

and is believed to affect immune function (Glanville et al., 2011). Naïve germline gene usage may be 153 

optimized for interactions with common antigens and may serve as a control to detect 154 

pathology-driven repertoire variation in the B cell memory compartment (Laserson et al., 2014). For 155 

these reasons, the gene usage pattern has been studied at a small scale and under different 156 

experimental settings using two different quantification methods: gene usage and gene expression. 157 

Gene usage quantifies genes at the level of individual clones, whereas gene expression quantifies the 158 

occurrence of genes with each read. Gene expression is sensitive to cell type composition, such as 159 

clonal expansion in response to an adaptive immune stimulus, and thus is less optimal for comparisons 160 

between samples with differences in source tissues, immune status, and donor health. 161 

Library preparation technique also affects the quantification of genes. Two amplification 162 

strategies were used in the high-quality Ig-seq datasets: multiplex polymerase chain reaction (MPCR) 163 

and rapid amplification of cDNA ends (RACE). Previous studies showed that MPCR can introduce 164 

bias in library sequencing, even with an optimized primer set, while RACE introduces less bias (He et 165 

al., 2015; Liu et al., 2016; Robins, 2013). We compared quantitative metrics for 1,409 and 743 166 

samples amplified by MPCR and RACE, respectively. D and J gene usage were less influenced by 167 

either RACE or MPCR. However, V gene usage was more consistent between RACE and MPCR 168 

(Figure S2a-f and Materials and Methods) due to the various primers on the 5’ ends. We therefore 169 

selected gene usage for the following analyses unless otherwise specified.  170 

It has been long known that V(D)J gene segments are preferentially used or expressed, and the 171 

idea of a core gene set has been proposed (Boyd et al., 2010). However, which genes are in the core 172 

set and the extent to which they contribute to the antibody repertoire remains unclear. Taking 173 
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advantage of the large data set used in this study, we plotted the gene usage of V, D, and J genes. As 174 

shown in Figure 2, although the number of V genes present in each sample varies from 15 175 

(SRR3620039) to 99 (SRR8365259 and SRR4417619) along with the sequencing depth, we observed 176 

preferential usage of V genes. For example, IGHV3-30 and IGHV3-23 were present in all samples, 177 

while IGHV3-30-52 only appeared in one sample (SRR4417619). Accounting for both the prevalence 178 

of specific genes and their contribution to the antibody repertoire, we identified a core set of 53 V 179 

genes (Figures 2b and 2c, Materials and Methods). To our surprise, there are 3 pseudogenes, 180 

IGHV3-11 (2,147 samples, 581 donors), IGHV3-69-1 (2,128 samples, 579 donors), and IGHV3-71 181 

(1,691 samples, 464 donors), in the core gene set. All core V genes contribute to a median of 99.33% 182 

of clones (Figure S3). The remaining V genes thus either contribute little to the repertoire or are not 183 

present. IGHJ3, IGHJ4, and IGHJ5 are present in all samples, while IGHJ1, IGHJ2, and IGHJ6 occur 184 

in 2,149, 2,150, and 2,151 samples, respectively. Of these, IGHJ4 and IGHJ6 are found in a median of 185 

50.56% and 18.37% clones. IGHJ1 is the least used gene, contributing to a median of 2.15% clones. 186 

Three D genes, IGHD3-10, IGHD3-22, and IGHD6-19, are more prevalent. Statistics for V, D, and J 187 

gene segments are shown in Table S1, sorted by their occurrence in 582 individuals. 188 

Genetic background is sufficient but not necessary for achieving consistent germline 189 

gene usage patterns 190 

The factors that determine V gene usage patterns have been of great interest in the field, with 191 

different studies yielding different results. By comparing the repertoires of monozygotic twins and 192 

unrelated individuals, Glanville et al. concluded that gene usage patterns are heritable, whereas 193 

Arnaout et al., Briney et al., and Laserson et al. reported that an individual’s gene usage pattern is 194 

almost identical or remarkably consistent among individuals (Briney et al., 2012; Glanville et al., 2011; 195 

Laserson et al., 2014). Thus, the effect of genetic background on V gene usage pattern is still unclear.  196 

We therefore selected 109 repertoires, all amplified using 5’RACE, from 23 unrelated males and 197 

3 pairs of monozygotic twins. From these repertoires, we calculated Pearson’s correlation coefficients 198 
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(Pearson’s r values) for pairwise V gene usage (sample pairs from the same donor were excluded). As 199 

shown in Figure 3a, the overall coefficients of all 104 genes are higher than 53 core genes. Further 200 

scrutinizing the data revealed that most of the non-core genes had values of 0 (Figure S4a and S4b). 201 

For the male-derived samples, the minimum and maximum number of uncaptured core genes are 0 202 

and 13, respectively, with a median of 1 and a mean of 1.53. For the non-core gene set, the minimum 203 

number is 5, with a maximum of 47, a median of 21, and a mean of 23.12. For the female-derived 204 

samples, the minimum and maximum number of uncaptured core genes were 0 and 12, respectively, 205 

with a median of 1 and a mean of 1.10. For the non-core gene set, the minimum number is 5, with a 206 

maximum of 43, a median of 21, and a mean of 22.10. These values elevated the pairwise coefficients. 207 

Therefore, we decided to use the 53 core V genes identified earlier (Figures 2b and 2c) for further 208 

analyses. The Pearson’s r values of unrelated donors ranged from 0.3681 to 0.9517, while those of 209 

monozygotic twins of the same cell type ranged from 0.9130 to 0.9952. The higher coefficient 210 

observed in monozygotic twins indicates that genetic background is sufficient to account for 211 

consistent V gene usage. However, we also observed 16 unrelated sample pairs that showed a 212 

coefficient higher than 0.9130, the minimum coefficient observed between monozygotic twins with 213 

the same cell type. Thus, a shared genetic background is not necessary for generating repertoires with 214 

very similar V gene usage. The usage patterns of D and J genes also showed the same phenomena 215 

(Figure S5a and S5b), and results were similar in the female-derived samples (Figure S5c-e). We 216 

therefore conclude that genetic background plays a critical role in defining antibody repertoire by 217 

influencing germline gene usage. However, individuals with different genetic backgrounds can also 218 

achieve a remarkably similar repertoire.  219 

V, D, and J gene usage shows sex and isotype preferences 220 

After defining the relationship between gene usage and genetic background, we went on to 221 

analyze two other major factors: age and sex. Consistent with a previous study (Wang et al., 2014), 222 

our results showed that there is no linear relationship between gene usage and age, regardless of sex 223 

(Figures 3b and Figure S6a-f). To rigorously examine the impact of sex differences on antibody 224 
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repertoire gene usage, we calculated pairwise germline gene usage patterns for 499 healthy PBMC 225 

samples amplified with RACE from 94 male and 164 female individuals. To our surprise, we observed 226 

that 24 core V genes (Figure 3c), 5 J genes (Figure 3d), and 9 D genes (Figure 3e) showed significant 227 

differences between male- and female-derived samples (p < 0.05, P values are listed in Table S2).  228 

Previous studies reported that patients with influenza and SLE had characteristic changes in 229 

antibody gene usage (Pugh-Bernard et al., 2001; Sui et al., 2009). We therefore used healthy donors as 230 

background and investigated gene usage in individuals with different diseases (Figure S7a-f and Table 231 

S3). For the female-derived samples, 12 V and 8 D genes were out of the range defined by 283 healthy 232 

samples. We found that IGHV4-38-2 (SRR4026039 and SRR4026040) and IGHV3-23D 233 

(SRR4026032, SRR4026025, and SRR4026031) had increased usage in 1 and 2 out of 6 female 234 

Myasthenia Gravis patients. IGHD4-17 (SRR4026038 and SRR7230358), and IGHD3-3 235 

(SRR4026022 and SRR4026031) were upregulated in 2 out of 6 female Myasthenia Gravis patients. 236 

For the male-derived samples, 19 V, 7 D, and 3 J genes had either higher or lower usage compared to 237 

216 healthy male samples. For example, IGHV1-18 (H7N9_00004 and H7N9_00009) and IGHV3-73 238 

(H7N9_00011 and H7N9_00005) showed higher usage in 2 out of 4 H7N9-infected samples. Thus, a 239 

statistical analysis of large data sets may be a powerful tool in studying the antibody repertoires of 240 

unhealthy individuals.  241 

We also examined gene usage in different antibody isotypes, namely IgA, IgD, IgG, and IgM. 242 

There were total 51 repertoires from 5 females (14 samples) and 12 males (37 samples) available for 243 

this analysis (Figure S8). IgA and IgG were clustered together, while IgD and IgM gathered in the 244 

same subtree within the same donor. This is true for male (Figure S9a-c) and female (Figure S10a-c) 245 

samples and is consistent with a previous study (Laserson et al., 2014).  246 

DJ recombination shows no positional bias 247 

During the recombination process, exonuclease trimming and the random addition of nucleotides 248 

between VD and DJ segments create diverse junctions to account for a substantial amount of antigens 249 

that may be encountered (Early et al., 1980; Tonegawa, 1983). These junctions, together with the D 250 
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genes, are known as complementarity-determining region 3 (CDR3), which largely determines the 251 

binding specificity of an antibody (Chothia et al., 1989). Due to the functional importance of CDR3, 252 

there have been extensive studies looking at VDJ recombination preferences and indels in the 253 

junctions (Hansen et al., 2015; Hong et al., 2018; Saada et al., 2007; Souto-Carneiro et al., 2005; 254 

Truck et al., 2015).  255 

For the recombination bias studies, D and J gene segments were first classified as 5D, 3D, 5J, or 256 

3J based on their position on the chromosome. The 5D and 5J categories include the D and J segments 257 

located in the upstream region of their respective cluster. The 3D and 3J categories include the 258 

downstream D and J gene segments. Thus, 3D and 5J segments are proximal, and 5D and 3J segments 259 

are distal (Hong et al., 2018; Saada et al., 2007; Souto-Carneiro et al., 2005; Truck et al., 2015). 260 

Comparing DJ recombination between neonates and adults, Souto et al. found that 3D segments 261 

preferentially coupled to 5J segments (a proximal bias) throughout development, while 5D segments 262 

showed biased recombination to 3J segments (a distal bias) in full-term neonates rearrangements 263 

(Souto-Carneiro et al., 2005). Kidd et al. also observed a clear recombinational preference of 5D to 3J 264 

and 3D to 5J segments (Kidd et al., 2016). We thus plotted VD and DJ recombination (Figure 4a) 265 

using a total of 352 million productive clones that have D genes assigned (Figure 4b). Surprisingly, 266 

apart from the preferential usage of core V genes, IGHJ4, IGHJ6, and a few IGHD genes, we did not 267 

observe either proximal DJ or distal DJ recombination biases in our data. However, the datasets from 268 

previous neonate donors did not meet our inclusion criteria, so we cannot evaluate the positional bias 269 

of DJ recombination during neonatal development.  270 

D-D fusion exhibits isotype and distance preferences 271 

D-D fusion, the incorporation of multiple diversity (D) genes during heavy chain recombination, 272 

contributes markedly to antibody repertoire diversity and has been thought to generate long CDR3 273 

loops that frequently associate in self-reactive and polyreactive antibodies (Briney et al., 2012; 274 

Larimore et al., 2012). Briney et al. reported the first quantification of V(DD)J recombinants in naïve, 275 

memory IgM and IgG B cells from peripheral blood using Roche 454 sequencing of 4 healthy donors 276 
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(Briney et al., 2012). Using stringent criteria, they found no antibodies with D-D fusion in the memory 277 

IgG population. They also reported that D gene order in cases of D-D fusion matches the order of their 278 

loci in the genome.  279 

In bulky antibody repertoire sequencing, it is common practice to use different 3’ primers 280 

targeting different isotypes. We therefore went on to explore D-D fusion in different repertoires as 281 

well as different isotypes using IgScout (Safonova and Pevzner, 2019). We first examined CDR3 282 

length. Total CDR3s displayed a normal distribution with a peak length of 48 nucleotides. However, 283 

the lengths of CDR3s with D-D fusions were much longer, with a peak length of 66 nucleotides 284 

(Figure 4b). Hence, D-D fusion does result in longer CDR3s.   285 

To explore how often D-D fusion recombinants present in different antibody isotypes, we chose 286 

repertoires with at least 5,000 C gene assigned clones for corresponding isotype and calculated the 287 

frequency of D-D fusions. IgD had the highest D-D fusion frequency of 0.260% (median, n=104), 288 

followed by 0.216% of IgM (median, n=594). IgG (median, n=489) and IgA (n=163) exhibited much 289 

lower D-D fusion frequencies of 0.089% and 0.060% (median value), respectively (Figures 4c and 290 

Table S4). We did not calculate the D-D fusion frequencies for IgE because too few repertoires were 291 

available. These results are consistent with previous findings that D-D fusion recombinants may be 292 

negatively selected during isotype switching (Souto-Carneiro et al., 2005).  293 

In contrast with previous findings, however, gene order in D-D fusion did not match the order of 294 

the corresponding loci in the genome (Figure 4d). The upstream D gene is defined as the “first” D 295 

gene (D1) in the fused recombinants and the downstream D genes could be the “second” D gene (D2). 296 

In other word, the first D gene (D1) located more 5’ in the genome prefer to be the second D gene (D2) 297 

in a D-D fusion event. However, D1 gene seem to prefer to fuse with downstream D genes with a span 298 

of 7 (The span of adjacent D gene is 1) (Figure 4e). Surprisingly, we did not observe a positive 299 

correlation between D-D fusion and D gene usage (Briney et al., 2012). The most abundant pairs were 300 

D3-10-D1-1 and D6-1-D1-1. D6-19 often served as D2, and D5-12 or D6-13 as D1. These findings 301 

may shed light on the recombination mechanistic studies.  302 
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Stochastic recombination contributes to the public clone 303 

Public clones are defined as to clonotypes shared by multiple individuals (Greiff et al., 2015; Jackson 304 

et al., 2013; Miho et al., 2019). It has been suggested that public clones are valuable for designing 305 

vaccines, monitoring the immune response to infection or vaccination, developing biomarker patterns 306 

of disease states, and mediating the undesirable immune responses associated with autoimmune 307 

diseases (Briney et al., 2019; Bürckert et al., 2017; Greiff et al., 2017; Maecker et al., 2012). Recent 308 

studies reported that individuals exposed to the same antigen, such as HIV, influenza, or dengue, may 309 

develop identical or similar Ig sequences – a phenomenon called antibody convergence (Jackson et al., 310 

2014; Parameswaran et al., 2013; Setliff et al., 2018; Truck et al., 2015). Thus, a comprehensive atlas 311 

of public clones may help reconstruct the immunological history of an individual and may enable 312 

immunotherapeutic targeting within a population with a specific disease.  313 

Ig-seq has enabled public clone studies via multiple means. Greiff et al. developed an approach 314 

that learned the high-dimensional immunogenomic features from the repertoire and enabled the 315 

prediction of public and private clones (Greiff et al., 2017). By comparing multiple donors’ ultra-deep 316 

repertoire sequencing data, Burton et al. and Soto et al. estimated the fraction of public clones in an 317 

individual to be approximately 1% and 1% to 6%, respectively (Briney et al., 2019; Soto et al., 2019). 318 

Taking advantage of the unprecedented amount of data collected for the present study, we investigated 319 

the prevalence of public clones in 2,152 samples. As shown in Figure 5a, we found that the abundance 320 

of public clones in a sample decreased when the total number of clones decreased. This result suggests 321 

that methodological undersampling may compromise the detection of public clones (Greiff et al., 322 

2015). Furthermore, we also found that the number of public clones in two samples correlates linearly 323 

with the product of their respective clone numbers (Figure 5b) and that this correlation improves when 324 

the clone numbers for both samples increase (Figure S11a-g). The total number of clones in a given 325 

volume of blood varies with an upper boundary. Thus, getting more clones requires more blood 326 

samples. Based on different methods, the total clones in an individual’s circulating blood has been 327 

estimated to be between twenty-five million and one billion (Briney et al., 2019; Soto et al., 2019). 328 
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Using our linear models with a minimum number of 5 million clones, an individual may possess 329 

between 4.2 � 104 and 6.87 � 107 public clones in his or her circulating blood.  330 

More in-depth analyses revealed that V and J gene usage is almost identical to the gene usage for 331 

all clones (Figure S12). On the other hand, public clones possess significantly shorter CDR3s (Figure 332 

S13). Statistical analyses of the deletions, non-template additions, and P additions showed significant 333 

differences in most elements between public clones and private clones (Figure S14). In particular, the 334 

N1 and N2 additions in public clones between the VD and DJ junctions were shorter than those of 335 

private clones. This may explain the short CDR3s in public clones and why D genes could not be 336 

assigned in many public clones (Figure S15).  337 

Of the 162,975 (transformed to the number of unique CDR3 amino acid sequences) public clones 338 

identified in this study, 1,059 CDR3s were identical to published antigen-specific or 339 

disease-associated antibodies (Figure S16a). Further analyses showed that these CDR3s are enriched 340 

for the HIV, influenza, hematological malignancies, EBV, tetanus, and rheumatic categories (Table 341 

S5). This enrichment confirmed that antibody convergence was a source of public clones. In addition 342 

to the CDR3 enrichment in the antibodies with rheumatic autoimmune disease, we also found a CDR3 343 

corresponding to SLE-specific antibodies in one of the healthy donors in our data. In addition, the 344 

clonotypes shared by more donors were more abundant (Figure 5c), and this change in abundance was 345 

not related to CDR3 length. Previous studies in T cell receptors (TCRs) found that shared TCRs are 346 

more likely to be autoreactive (Madi et al., 2014) and that these autoreactive TCRs are important for 347 

maintaining an individual’s health. It is possible that public clones in an antibody repertoire serve the 348 

same function. Surprisingly, we also found 31,226 (66.2%) IgM and 7,699 (70.7%) IgD clones with 349 

identical sequences compared to their respective germline V and J genes (see Materials and Methods). 350 

These clones are generated solely by VDJ recombination but have no somatic hypermutation, 351 

regardless whether the individuals have been exposed to antigen or not. This result suggests that in 352 

addition to antibody convergence, the stochastic nature of somatic recombination alone could be a key 353 
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mechanism of generating public clones. We believe this collection of public clones will be helpful for 354 

studies relating to vaccine and therapeutic design targeting shared antibodies.  355 

Strand specificity features somatic hypermutation 356 

Somatic hypermutation (SHM) takes place in the germinal centers of peripheral lymphoid tissues 357 

and increases the number of realizable antibodies by several orders of magnitude in addition to 358 

combinatorial diversity. The preferences and patterns of SHM allow us to trace the clonal evolution of 359 

antibodies under the selective pressure of particular antigen and to facilitate vaccine design (Schramm 360 

and Douek, 2018). The nucleotides and amino acid sites that are preferred or disfavored in SHM have 361 

been investigated using limited data and in model systems (Schramm and Douek, 2018). SHM in the 362 

antibody repertoire results from two types of sequential events. First, activation-induced cytidine 363 

deaminase and other molecular components of the SHM machinery introduce mutations to the 364 

antibody variable regions. The selective pressure of a particular antigen then acts on these mutations 365 

and preserves the favored ones. Thus, the majority of SHM studies worked from unproductive reads to 366 

emphasize the effect of mutations rather than the effect of antigen selection. This is particularly 367 

beneficial for mechanistic research on SHM because it simplifies the model. However, antigens only 368 

place selective pressure on antibodies containing mutations and do not introduce additional mutations. 369 

Despite some antigens that may preferably retain rare mutations, the clear majority of mutations in 370 

functional antibodies would also reflect the selective flavors of the SHM machinery. Moreover, the 371 

selective bias only acts on antigen-specific clones. Thus, this bias would be minimized if the effects of 372 

clonal expansion are compensated or removed during computational analyses.  373 

With this in mind, we used consensus sequences and a position weight matrix (PWM) to 374 

represent a clone and probed mutations in the V genes at different levels (Materials and methods). We 375 

first depicted the mutational propensities at the single nucleotide level (Figures S17a and S17b). Three 376 

types of transitions (A to G, G to A, and C to T) occurred with high frequencies, and T to C mutations 377 

occurred at a significantly lower frequency. Transversions between purines and pyrimidines were less 378 

frequent, with the exception of G to C mutations. While C and G showed comparable mutability, A 379 
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exhibited significantly higher mutability than T. Because A: T and G: C present as pairs on the 380 

chromosome and SHM occurs at the DNA level, it is interesting to observe that the mutational 381 

tendencies are not reciprocal.  382 

Having observed disproportional mutation tendencies in nucleotide pairs, we investigated the 383 

mutability of reported motifs in a strand-specific manner (Material and methods). It is worth noting 384 

that all nucleotides and motifs were extracted from the forward V gene sequences, and the reverse 385 

sequences were discarded. Every nucleotide was classified exclusively in a single motif. Therefore, 386 

the bases between categories have no overlap. We confirmed that SYC (where S is C or G; and Y is C 387 

or T) and GRS (where R is A or G) are bona fide coldspots that showed the lowest frequency of 388 

mutations. The motifs WRCY, RGYW, WA, and TW also showed much higher mutations than did 389 

coldspots as reported by others (Liu and Schatz, 2009; Pham et al., 2003). However, significantly 390 

different mutabilities were observed again between reciprocal motifs (WRCY and RGYW, WA and 391 

TW) (Figure 6a, Figure S17c and Table S6). This result suggested strongly that SHM is introduced in 392 

a strand-specific manner. 393 

  Complementarity-determining region (CDR) 1 and CDR2 exhibited higher mutations as expected 394 

(Figure 6b and Figure S17d). While framework region (FR) 1 and FR2 displayed lower mutation rate 395 

in contrast with CDRs, the region immediately adjacent to the CDR regions was also subjected to a 396 

high frequency of mutations. These results support the idea that FRs provide the backbone of the 397 

antibody, while CDRs accumulate mutations to achieve high affinity binding to a target antigen. 398 

Consistent with previous observations (Shapiro et al., 1999), there was a considerable amount of SHM 399 

in the FR3 region. Interestingly, the base with highest mutation rate was found near the end of the FR3. 400 

A closer look at the germline sequence revealed that this nucleotide represents the third position 401 

within a codon. The space for nucleotides, associated codons and amino acids was dominated by G, 402 

GTG, and V (valine), respectively (Figures S18a-c). Interestingly, however, in most cases, this site 403 

does not occupy any previously identified canonical hotspot (Figure S18d). Nucleotide substitution 404 

analysis at this locus showed no preference and has no impact on the encoded amino acid except for 405 

eight alleles in the IGHV5 gene family (Figures S18e-g and S18h). In addition, the mutation spectrum 406 
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profiles varied in different IGHV families (Figure 6c).  407 

Although the conservative substitution (transition within the same amino acid group) dominated 408 

amino acid substitution profile, we observed relatively-high frequencies for non-conservative 409 

substitutions, such as H to Y and N to D, that were not identified before using limited number of 410 

datasets. In addition, we found W and C were least mutated (3.95% and 1.63%) and mutated to (1.00% 411 

and 2.17%) (Figure 6c and Figure S17e). 412 

The level of SHM as a function of confounding factors, such as age, sex, and isotypes, has also 413 

been explored to some extent (Jiang et al., 2013; Kitaura et al., 2017; Wang et al., 2014). Nonetheless, 414 

there have been no studies to date profiling SHM from a large data set. Using 363 samples from 290 415 

donors, we reviewed the role of age, sex and isotypes on the frequency of SHM. We found negligible 416 

differences between males and females, except for those between 41-50 years of age which probably 417 

result from uncommon sampling bias. (Figure S19). We therefore combined data from male and 418 

female donors to investigate the effects of age and isotype. Switched isotypes, namely IgG, IgA, and 419 

IgE, had comparable level of SHM (7 - 8%), while IgM and IgD had much lower level of SHM (1 - 420 

2%) (Figure S20), consistent with a previous report (Kitaura et al., 2017). We also observed a positive 421 

correlation between the level of IgG SHM and age, except for individuals in the 41-50 age range 422 

(Figure 6e). When we measure the contribution of age to SHM levels using a linear model, we 423 

obtained r-square values of 0.37 and 0.28 for male and female, respectively. Despite the compromised 424 

goodness of the model, we confirmed this correlation at the population level and estimated that the 425 

SHM increases by approximately 0.05% each year. This increase would mean that in general, a parent 426 

bears 1% more SHM than their children (Figure 6f). 427 

 428 

Discussion 429 

 Extremely large data sets have proven to be powerful for computational analysis to reveal 430 

patterns, trends, and associations. The advent and application of high-throughput sequencing 431 
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technology advanced the study of complex biological systems, launching projects such as the 1000 432 

Genomes Project, The Cancer Genome Atlas, the Encyclopedia of DNA Elements, and the NIH 433 

Human Microbiome Project. Inspired by the success of these projects, we systematically analyzed the 434 

largest antibody repertoire dataset to date and scrutinized, for the first time at this scale, the key 435 

features of the antibody repertoire.  436 

In addition to the uneven usage of germline genes, we identified a set of core V genes that 437 

contribute to the clear majority of the repertoire. Although the other V genes are less frequently 438 

observed in the current datasets, we believe their absence is the result of shallow sequencing depth 439 

compared to the complexity of antibody repertoire. Nonetheless, these core and “rare” V gene sets 440 

may serve as a reference for discovering gene usage fluctuations that are associated with or specific to 441 

particular diseases. We found that the number of public clones between two repertoires also relied on 442 

the sequencing depth. Moreover, a fraction of public clones identified in repertoire comparisons were 443 

reported to be disease-associated or antigen-specific. This result supports the notion of antibody 444 

convergence and also suggests that the antibody repertoire may help us trace an individual’s immune 445 

history and may therefore be useful in selecting vaccines and immunotherapy for certain diseases.  446 

The fundamental B cell biology that underlies the specific patterns of germline usage, D-D fusion, 447 

and SHMs revealed in our analyses remains controversial. Follow-up experiments may reveal the 448 

mechanisms behind these phenomena and thus advance our understanding of B cell development as 449 

well as its response to immune perturbations.  450 

Due to the intrinsic amplification bias caused by different amplification strategies and various 451 

primer sets, we did not perform analyses of clonal expansion, diversity, and evenness. A common 452 

standard for both experimental design and bioinformatics analysis will be critical for future studies.  453 

The human antibody repertoire possesses extreme diversity. Compared to the aforementioned 454 

prior studies, the number of samples analyzed here is far from sufficient to capture all this diversity. 455 

Moreover, antibody repertoires from a broad spectrum of diseases as well as different isotypes from 456 

various tissue types are still needed for a better understanding of humoral immunity. Due to the 457 
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limited source of human samples, it is likely that further studies with model systems such as mouse, 458 

rat, and macaque will bring us more insights.  459 
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Figure titles and legends 481 

Figure 1. Overview of the enrolled datasets. (a) The number of samples in each enrolled project. 482 

The X axis shows NCBI SRA project IDs, and ZZHLAB indicates the antibody repertoires generated 483 

in our lab. The Y axis shows the log10 transformed number of samples. The numbers of samples 484 

excluded by data size and experimental design are shown in red and grey, respectively. (b, c, d, e, f) 485 

show sample distribution based on (b) age; (c) sex; (d) PCR amplification strategy; (e) classification 486 

(healthy or diseased); and (f) various tissue or blood. 487 

Figure 2. Germline gene usage and core V genes. (a) The heatmaps show the normalized usage of V 488 

(top panel), D (middle panel), and J (bottom panel) genes. Each column shows color-coded gene 489 

usage for a dataset. Each row shows usage pattern of a particular gene (IDs labeled on the left side) in 490 

different datasets. The bar graphs to the right of the heatmaps show the number of samples in which 491 

each gene was present. J genes were present in almost every sample. The bar graph on top of the V 492 

gene usage heatmap shows the number of V genes present in each sample. (b) and (c) The V genes 493 

were ordered based on their occurrences in 582 individuals from high (left) to low (right). The X-axis 494 

shows the number of high frequency V genes included. (b) The Y-axis shows the percent of total 495 

clones that were represents by the most frequent V genes shown on X-axis. The color shows the log 496 

10 transformed number of samples each pixel represents. (c) The red line indicates the median 497 

fractions of total clones that were represents (left Y-axis) by the inclusion of top number of clones 498 

shown on X-axis. The blue line represents the slope of median clone fraction variation (on the red line) 499 

based on the adjacent 10 data points, 5 on the left and 5 on the right. 500 

Figure 3. Gene usage patterns with regard to genetic background, age, and gender. (a) The 501 

Pearson’s correlation (Pearson’s r) distribution of the gene usage between 5,261 paired samples. The 502 

Pearson’s r values were ordered from low to high. The red and light pink lines represent Pearson’s r 503 

values calculated using all V genes and 53 core genes, respectively. The blue and green dots indicate 504 

the Pearson’s r values between same and different cell types for monozygotic twins, respectively. (b) 505 

The relationship between core V genes and ages. The X-axis shows V gene ordered by frequency 506 
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(Table S1). The Y-axis indicates the R2 values calculated for a particular V gene at different ages 507 

(Supplementary. Fig. 6 and Materials and methods). (c), (d) and (e) show comparisons of core V (c), 508 

D (d), and J (e) genes between male and female. The red triangles indicate genes whose usage was 509 

significantly different between sexes. 510 

Figure 4. Recombination and modification between V(D)J recombination. (a) Recombination 511 

count and frequency of different VD/DJ segments. The logarithm of the count is shown by the color of 512 

the points, and the frequency of recombination is shown by the size of the points. The line at the 513 

margin shows the number of each gene segment. V genes, core genes and non-core genes are marked. 514 

The arrow shows the direction in IGH locus. (b) Distribution of CDR3 length in all sample, clones 515 

with whole V, D, J assignment, and DD fusion. (c) Frequency of DD fusion in each isotype. The line 516 

plot shows the number of samples with at least 5,000 clones in each isotype. (d) D gene usage in DD 517 

fusion. (e) Frequency of DD fusion with different span; the span of adjacent D gene is 1. (f) The 518 

number of DD fusions in all clones. The x axis represents the D gene at the 5’ end, and the y axis 519 

represents the D gene at the 3’ end. The bar plot at the margin shows the number of each row or 520 

column. 521 

Figure 5. Inter-sample abundance and gene usage of public clones. (a) The heatmap in the center 522 

indicates the abundance of public clones between samples. The top bar chart indicates the number of 523 

recovered total clones for each sample. The number of public clones between each pair of sample has 524 

been subjected to logarithmic transformation (T=log(1+Pab)). The number of public clones between 525 

samples within the same project has been set to 0 to remove chimera-related effects. Note that some 526 

samples from PRJNA260985 and PRJNA280743, were predicted to come from the same donors and 527 

the observed public clones between these samples was set to 0. (b) Linear model delineating the 528 

correlation between inter-sample public clone abundance and the product of their clone abundance. (c) 529 

Public clone size percentage as a function of donor sharing count. 530 

Figure 6. Somatic hypermutation patterns and influence factors. (a) The stacked column diagram 531 

shows the mutation percentage of motifs and composition of mutation targets. The X axis shows the 532 
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different motifs in germline sequences. The Y axis shows the composition of the mutated nucleotide 533 

of this motif. The line chart shows the mutation fraction of every motif. The red-colored label 534 

represents hot-spot, the blue colored label represents cold-spot. The underlined letter represents the 535 

mutation site. (b) and (c) show the mutation rate among different functional alleles and families. (b) 536 

The combined heatmap shows the mutation rate among used functional alleles in selected IgG samples. 537 

Each column shows the position of completion of the V segment from FR1 to FR3. Each row shows 538 

the functional alleles occurred in datasets. The area chart represents the average mutation rate in every 539 

position. The bar graph left to the heatmap shows the family of occurred alleles which ordered by the 540 

number of clones who were shows in the right bar graph. The color of the heat map represents the 541 

mutation rate of every position from used functional alleles. (c) The X axis shows the position of the 542 

V segment from FR1 to FR3. The Y axis shows the average mutation rate from different families. The 543 

area chart shows the overall average mutation rate about used functional alleles. The red lines and blue 544 

dotted lines show the result of the mutation rate of every family based on consensus and weight matrix 545 

methods. (d) The combined heatmap shows the substitution among amino acid. Each column and each 546 

row represents an amino acid. The germline residue is located on the x axis, and the mutated amino 547 

acid is located on the Y axis. The line graph represents the ability of each amino acid to be mutated 548 

and mutated. (e) The boxplot shows the mutation rate for different age groups across multiple 549 

functional region and whole region. The points on top of each boxplot indicates the outliers. (f) The 550 

scatter plot (orange for male and blue for female) shows the correlation between mutation rate and age. 551 

Two lines in the figure are the predicted linear regression model for male and female. R-squared value 552 

were marked on the top left in this figure. 553 

 554 
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Materials and Methods 555 

Dataset enrollment criteria 556 

We searched for bioprojects that were related to the antibody repertoire on the Sequence Read Archive 557 

(SRA: https://www.ncbi.nlm.nih.gov/sra) from the National Center for Biotechnology Information 558 

(NCBI: https://www.ncbi.nlm.nih.gov/). We identified thirty-eight projects before Feb 28, 2019. The 559 

datasets from the included projects were subjected to two consecutive filter processes. The first filter 560 

procedure was based entirely on sample metadata provided by SRA and the corresponding papers. The 561 

criteria include: 562 

� Homo sapiens 563 

� Illumina platform 564 

� Pair-end Library Layout 565 

� Sequencing length >= 250 566 

� Natural sample directly extracted from human tissues (excludes those samples derived from cell 567 

lines) 568 

� No specific amplification 569 

� Library source is either GENOMIC or TRANSCRIPTOME 570 

� No spike-in sequences 571 

The second filter procedure was based on the results when preprocessing finished, criteria here 572 

consists of, 573 

� Number of productive reads for heavy chain > =10,000 574 

� Fraction of heavy chain >= 20% 575 
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In-house dataset 576 

Subjects 577 

A total of 295 peripheral blood mononuclear cells (PBMCs) samples were collected. Of these, 254 578 

were derived from healthy individuals (without recent infection events), 18 were from HBV patients, 579 

16 were from H7N9 patients, 6 were from individuals involved in traffic accidents, and 1 was from a 580 

patient with meningitis. Peripheral blood samples (1 ml) obtained from each volunteer were collected 581 

in an EDTA-containing sterile tube and stored at room temperature for no more than 6 hours. PBMCs 582 

were isolated by Ficoll-Paque density centrifugation using Lymphoprep™ (Axis-Shield, 1114547), 583 

and the isolated cells were lysed in RLT buffer (Qiagen) supplemented with 1% β-mercaptoethanol 584 

(Sigma) before being stored in -80� for short-term storage. This protocol was approved by the Ethics 585 

Committee at Southern Medical University. Informed consent was obtained from all participants. 586 

RNA extraction, reverse transcription, 5’RACE amplification, and next-generation sequencing 587 
procedures 588 

RNA purification was carried out using the RNeasy Mini Kit (Qiagen, 74106) according to the 589 

manufacturer’s instructions. The concentration of the RNA was determined using a NanoDrop 2000c 590 

Spectrophotometer (ThermoFisher Scientific). Five hundred nanograms of RNA purified from each 591 

sample was used for cDNA synthesis with a total volume of 20 µl. cDNA was prepared using a 592 

SMARTer RACE cDNA Amplification Kit (Clontech, 634928) according to the manufacturer’s 593 

instructions. Forward primers were synthesized according to SMARTer RACE protocol. The first 50 594 

bp of the first constant domain (CH1) of heavy chain (IgG) were used to design the reverse primers. 595 

We also designed 8-11bp barcode at the upstream of these primers to distinguish samples. One 596 

microliter of the reverse transcription mixture was used as a template in a 20 µl PCR reaction. Primers 597 

were used at a final concentration of 100 nM. The thermal cycling conditions were programmed as 598 

follows: denaturation at 95°C for 3min, 30 cycles of denaturation at 98°C for 20s, annealing of primer 599 

to DNA at 60°C for 15s, and extension by Kapa HiFi HotStart Ready Mix (KAPA Biosystems, kk2602) 600 

at 72°C for 15s, followed by a final extension for 5 min at 72�. PCR products were analyzed on a 1.5% 601 
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agarose gel, and the appropriate bands (~600 bp) were purified using the Nucleospin Gel & PCR 602 

Clean-up kit (Macherey-Nagel, 704609.25). DNA Concentration was measured using the NanoDrop 603 

2000c Spectrophotometer (Thermo Fisher Scientific), and 400 ng of DNA was used to prepare 604 

libraries using a Universal DNA Library Prep Kit for Illumina V3 (Vazyme, ND607-01), strictly 605 

following the manufacturer’s instructions. Libraries were quantified using the Qubit 4.0 fluorometer 606 

(ThermoFisher Scientific) and re-quantified using the KAPA qPCR kit (KAPA Biosystems, 4824). The 607 

size of adapter-ligated DNA fragments (approximately 800 bp) was determined using a Bioanalyzer 608 

2100 system (Agilent). Each library was subjected to 2 × 300 bp paired-end sequencing using MiSeq 609 

Reagent V3 kits (Illumina, MS-102-3003). 610 

Germline gene assignment and clonotype assemble 611 

Paired-end FASTQ files downloaded from SRA and generated by our laboratory were inputted into 612 

MiXCR (version 3.0.7) and run with the following parameters: 613 

Align: mixcr align --library my_library -t 8 -r align_log.txt R1 R2 alignments.vdjca -s hs 614 

Assemble: mixcr assemble -r assemble_log.txt -OseparateByV=true -OseparateByJ=true -Osepar615 

ateByC=true alignments.vdjca clones.clns 616 

Export clones: mixcr exportClones clones.clns clones.txt 617 

Export Alignments: mixcr exportAlignments -f -readIds -vHit -dHit -jHit -cHit -vGene -dGene 618 

-jGene -nFeature CDR3 -aaFeature CDR3 -defaultAnchorPoints alignments.vdjca alignments.txt 619 

We built germline references for V, D, J, and C gene segments locally, and the germline refe620 

rences for V, D and J gene used in this study were customized using repseqio (v1.2.12, https:621 

//github.com/repseqio/repseqio). Reference sequences were obtained from IMGT/GENE DB (htt622 

p://www.imgt.org/genedb/) and are provided in Table S7. The formatted information for the re623 

ference constant region sequences was directly extracted from the MiXCR built-in reference (v624 

1.5) and then appended to the formatted customized reference for V, D and J genes. MiXCR 625 

clustered sequences with the same V, J, and C allele assignment and CDR3 nucleotide sequen626 
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ce into a clone with the parameters above. An in-house Python script was used to merge clo627 

nes with the same V and J gene and CDR3 nucleotide sequence into a clone. If we investiga628 

ted isotypes effect on some indices such gene usage, the C gene was also taken consideration.629 

  630 

Comparison of gene usage and expression between Multiplex and RACE 631 

Gene usage was defined as the number of clones with a given gene segment divided by the total 632 

number of clones. Gene expression was defined as the number of reads with a gene divided by the 633 

number of productive reads. For each gene segment, the median of usage and expression for either 634 

Multiplex or RACE was used for linear regression. Usage or expression from Multiplex was defined 635 

as independent variable while that from RACE was considered as dependent variable. The regplot, 636 

r2_score, and pearsonr functions in seaborn (version 0.9.1) and the sklearn (version 0.20.2) and scipy 637 

(version 1.2.1) Python modules were used to visualize the linear regression and to calculate R squared 638 

values and a Pearson Correlation Coefficient. 639 

Overview and core gene set selection of gene usage 640 

To show gene usage for all 2,152 samples clearly, we set thresholds for V, D, and J genes. If the usage 641 

was greater than the threshold, we used the threshold value instead of the original value. The average 642 

of the maximum of each sample for V, D, and J gene were calculated as thresholds. For core V gene 643 

set selection, we first sorted genes according to their occurrence in 582 donors. We then enrolled 102 644 

V genes one by one and computed the accumulated clone fraction with specific V genes for 2,152 645 

samples. The median of clone fraction for all samples was selected and the slope of them was 646 

computed. The slope of xi was equal to the distance of clone fraction at xi-5 and xi+5 divided by 11. 647 

Finally, if the slope was less than 0.001, we determined the clone fraction arrived the plateau and 648 

chose this gene set as the core gene.  649 
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Features’ effect on gene usage 650 

Genetic background 651 

Two hundred and twenty-two healthy peripheral blood mononuclear cell samples, obtained from 29 652 

male and 22 female individuals from 21 to 30 years of age, were amplified by RACE and used to 653 

explore how genetic background affects gene usage. We examined two gene sets containing 53 core V 654 

gene and 102 V genes. The Pearson Correlation Coefficient for every sample pair was calculated 655 

using pearsonr from a Python module named scipy (version 1.2.1). Sample pairs from the same donor 656 

were excluded. We performed statistics for male and female samples separately.  657 

Age 658 

We chose 499 healthy PBMC samples drawn from 94 male donors and 164 female donors by RACE. 659 

Linear regression was conducted using LinearRegression and r2_socre from sklearn (version 0.20.2) 660 

module. The independent and dependent variables were age and gene usage (of 53 V genes, 34 D 661 

genes, and 6 J genes), respectively. Samples derived from males and females were analyzed 662 

separately.  663 

Sex 664 

We performed two independent sample t-tests for 53 V genes, 34 D genes, and 6 J genes on the 499 665 

samples selected above using ttest_ind from scipy (version 1.2.1). Genes whose P values were less 666 

than 0.05 were defined as differentially used in the male samples and the female samples. 667 

Isotype 668 

We first obtained isotypes composition including IgA, IgD, IgE, IgM, and IgG for the 499 samples 669 

above. Because the fraction of IgE was too low to compare, we discarded this isotype. Based on the 670 

isotype fraction, there were 14 female and 37 male samples that could be used for this analysis. We 671 

then merged clones for each isotype from different samples derived from the same donor and 672 

recalculated gene usage for them. Gene usage was regarded as a vector, and Euclidean distance was 673 

calculated using DistanceMatrix from scikit-bio (version 0.5.5) to measure the similarity of gene 674 
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usage between different isotypes. The nj function from scikit-bio was used to build a neighbor joining 675 

tree. Finally, we used Dendroscope (version 3.6.3) to generate the trees. Samples analyzed for gene 676 

usage related to genetic background, age, and so on, are shown in Table S8. 677 

VD/DJ recombination 678 

To compare the recombination bias in all clones, we only analyzed clones with a D gene assignment. 679 

Clones with full V, D, J gene assignments were pooled together. Clones without stop codons or out-of 680 

–frame mutations in the CDR3 region were considered to be productive clones. If multiple 681 

assignments occurred, the gene with the highest score was used for the analysis. The clones were 682 

separated into subgroups according to VD/DJ recombination, and the frequency of each group was 683 

calculated. The number of each gene was calculated according to about 352 million productive clones. 684 

D-D fusion detection 685 

IgScout was used to detect D-D fusion. Input files were extracted from the MiXCR results using a 686 

custom generated script, which used default parameters and the same reference as MiXCR. No other 687 

filter was used to detect D-D fusion. The identity of D-D fusion and alignment length were calculated 688 

by a custom script written in python. Levenshtein distance was used to quantify the difference 689 

between the reference and the aligned sequences. The length of the aligned sequence was calculated 690 

directly from the result of IgScout.  691 

Position bias in D-D fusion 692 

Tandem CDR3s from all samples were pooled together to calculate gene usage in all D-D fusions. We 693 

defined D1 as the D gene at the 5’ end and D2 as the D gene at the 3’ end. The span of two D genes 694 

was defined as the genes position number between 5’ D and 3’D on the corresponding chromosome. 695 

The span of two adjacent D genes was 1. A negative value indicated that the D1 gene was located at 696 

the 5’ end of D2 on the chromosome, and a positive value represented a D2 gene located at the 3’ end 697 

of D1 on the chromosome.  698 
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Comparison of D-D frequency between isotypes 699 

To compare the D-D frequency between isotypes, we also included C gene annotations. Due to the low 700 

frequency of D-D fusion, we only included samples that contained at least 5,000 clones for 701 

corresponding isotypes. Our analysis included 104, 594, 489, 163 samples for IgD, IgM, IgG, and IgA, 702 

respectively. IgE was not included in the analysis because none of the samples met our criteria of at 703 

least 5000 annotated clones. The frequency of D-D fusion in each sample was calculated as the 704 

number of D-D fusions in the corresponding isotype divided by the total number of corresponding 705 

isotypes. 706 

CDR3 length distribution 707 

The number of nucleotides in each clone was defined as the CDR3 length of the clone. The 708 

distribution of all clones was showed calculated from total clones. CDR3 clones with a D gene 709 

assignment were calculated as D-containing CDR3. The length of Tandem CDR3s was calculated 710 

from an output file named tandem_cdr3s.txt generated by IgScout. To make the distribution 711 

comparable, the frequency of CDR3s in each length group was used.  712 

Public clone abundance profile 713 

Public clones were those clonotypes (defined before) shared by at least two donors from two or more 714 

projects. Therefore, number of public clones between two samples from the same project or the same 715 

donor was set to zero. This strict criterion for clonotypes was applied to remove ‘public’ clones 716 

resulting from chimeric artifacts.  717 

Linear model to delineate the stochastic nature of gene recombination 718 

Linear models were constructed using only valid sample pairs that derived from different donors in 719 

different projects. Associated coefficients for regression equation and R squared were estimated using 720 

function linear_model.LinearRegression within the Python package sklearn (version 0.20.2). 721 
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Profile of gene usage, CDR3 length, and Junctional Modification 722 

Non-redundant public clones were used to profile gene usage and CDR3 length distribution, while 723 

redundant public clones were used for junctional modification analysis. The junctional modification 724 

calculation method is the same as above. Statistical analysis was carried out using a two-tailed 725 

unpaired Student’s t-test. 726 

Antigen- or disease-related antibody database overlapping 727 

We generated custom antigen- and disease-related antibody databases (unpublished results). All 728 

curated antibody sequences (heavy chain) were collected from following databases: i) 729 

IMGT/LIGM_DB (http://www.imgt.org/ligmdb/); ii) abYsis 730 

(http://www.bioinf.org.uk/abysis3.1/index.html); iii) EMBLIG 731 

(http://acrmwww.biochem.ucl.ac.uk/abs/abybank/emblig/); iv) bNAber (http://bnaber.org/), v) 732 

HIV_DB (http://www.hiv.lanl.gov/); vi) NCBI Nucleotide database 733 

(https://www.ncbi.nlm.nih.gov/nuccore); and vii) EBI ENA (https://www.ebi.ac.uk/ena). For now, it is 734 

comprised of 65,088 non-redundant antibody heavy chain sequences, corresponding to 53,579 unique 735 

CDR3 amino acid sequences and 163 types of antigen or disease, including HIV, hematological 736 

malignancies, preterm birth, influenza and etc. Antigen- or disease-related enrichment analysis of 737 

overlapping antibodies was performed using a hypergeometric model, implemented with the 738 

stats.hypergeom.cdf function within the Python package scipy (version 1.2.1). The false discovery rate 739 

was calculated using the Benjamini-Hochberg method implemented with an in-house script. 740 

Somatic hypermutation 741 

Sample selection 742 

Only samples which were from healthy donors’ PBMC and were amplified using RACE protocol 743 

were included in the somatic hypermutation analysis. Since some experimentally qualified datasets 744 
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with which the alignment information failed to be exported, 363 samples were included in the end 745 

(Table S8). 746 

Export alignment 747 

Alignment information used to measure somatic hypermutation was exported using MiXCR with the 748 

following parameters: 749 

Assemble: mixcr assemble -r assemble_log.txt -OseparateByV=true -OseparateByJ=true 750 

-OseparateByC=true -a alignments.vdjca clones.clna 751 

Export Alignments: mixcr exportAlignments -f -readIds -cloneId -vHit -vAlignment -jHit -jAlignment 752 

-cHit -cAlignment -nFeature FR1 -nFeature CDR1 -nFeature FR2 -nFeature CDR2 -nFeature FR3 753 

-nFeature CDR3 -nFeature FR4 -aaFeature FR1 -aaFeature CDR1 -aaFeature FR2 -aaFeature 754 

CDR2 -aaFeature FR3 -aaFeature CDR3 -aaFeature FR4 -defaultAnchorPoints clones.clna 755 

alignments.txt 756 

Quality filtering and data preprocessing: 757 

(1) Read QC. Removal of reads that could not be merged by MiXCR, those without complete 758 

variable regions (VR), those having been assigned with a pseudogene or a different V assignment 759 

compared with their corresponding clones’, those containing insertions or deletions and those 760 

with stop codons or frameshifts in the variable region. 761 

(2) Clone QC. Removal of clones with only single qualified reads following read QC procedure 762 

above. 763 

(3) VR deduplication. Deduplicating VR to obtain non-redundant sequence set 764 

(4) VR grouping. Grouping VR according to the isotypes reported in the clone files. 765 
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Implementation of consensus and position-weighted matrix approaches 766 

The position-weighted matrix approach considers all qualified non-redundant reads within each clone. 767 

Because each clone was a basic unit in the somatic hypermutation analysis, the mutation rate for a 768 

certain position was calculated as the sum of mutation rate for all mutation events observed within 769 

reads supporting this clone. The number of substitution types for a nucleotide (nt) or an amino acid (aa) 770 

for a certain position was defined as 1 if a nucleotide or amino acid in a given position underwent the 771 

same substitution event for all reads within a clone (with the same target nt or aa), otherwise it would 772 

have a value less than 1. 773 

For every clone, a theoretical consensus sequence was calculated based on the motifs module in 774 

Biopython (version 1.73). The Hamming distance was used to calculate the distance between the 775 

theoretical sequence and each true sequence, where the true sequence closest to the theoretical 776 

sequence was taken as the representative sequence of the clone. 777 

Software 778 

In-house scripts were written in Python (version 3.7.4) based on the numpy (version 1.16.4), 779 

Biopython (version 1.73), Levenshtein (version 0.12.0) and pandas (version 0.24.2) modules. To 780 

visualize these results, we used the Python modules seaborn (version 0.9.1) and matplotlib (version 781 

3.0.2) as well as GraphPad Prism (version 7.04). 782 

Supplemental Information titles and legends 783 

Figure S1. Age (a) and sex (b) composition of enrolled donors. Total number of enrolled 784 

donors is 582. 785 

Figure S2. The Pearson correlation coefficients of gene expression and usage between 786 

Multiplex and RACE. Left: the distribution of Pearson correlation coefficients of V (a), D (b), 787 

and J (c) gene expression between Multiplex and RACE. Right: Pearson correlation coefficients 788 
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of V (d), D (e), and J (f) gene usage between these two groups. Note: There are 1,409 datasets 789 

amplified by Multiplex and 743 datasets amplified by RACE. 790 

Figure S3. Fraction of repertoire containing the 53 core V genes. 791 

Figure S4. Number of uncaptured V genes for 109 male (a) and 113 female (b) samples. 792 

Figure S5. The Pearson correlation coefficients of D (a), J (b) for male and V (c), D (d), and 793 

J (e) for female. Lines in red show all genes, and the line in light purple shows the core V genes. 794 

The dots indicate monozygotic twins from PRJNA300878. The blue dots indicate the same cell 795 

type of monozygotic twins, and the green dots indicate different cell types (naïve and memory) 796 

for them. 797 

Figure S6. Effect of Age on gene usage for females and males. The R square of linear 798 

regression between D (a), and J (b) gene usage and age in female. (c) The scatter plot for 53 V, 34 799 

D, and 6 J genes usage and age. The X-axis means the age and the Y-axis stands for the usage. R 800 

squared for V (d), D (e), and J (f) usage and age in the male. 801 

Figure S7. Gene usage in the infected and uninfected samples of the female (a, b, and c) and 802 

male (d, e, and f). Boxplots show usage from uninfected samples, while the red dots represent 803 

usage from infected ones. 804 

Figure S8. The isotype composition of clone from the male (a) and the female (b). Each 805 

column shows one isotype including IgA, IgD, IgE, IgG, IgM, and None, and each row represents 806 

a sample. For the row side color at the left of heatmap, the leftmost one was used to mark an 807 

individual while the right one was used to distinguish a project. Note: None means those clones 808 

cannot be aligned to a C gene. 809 
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Figure S9. Clustering of V (a), D (b), and J (c) gene usage with different isotype in the male. 810 

IgA was labeled in light blue, IgG was filled in blue, IgD was colored in light green, and IgM was 811 

labeled in green. 812 

Figure S10. Clustering of V (a), D (b), and J (c) gene usage with different isotype in female. 813 

IgA was labeled in light blue, IgG was filled in blue, IgD was colored in light green, and IgM was 814 

labeled in green. 815 

Figure S11. Linear model for describing the correlation between number of public clones 816 

and product of numbers of clones with each sample pair. Only sample pairs with both clone 817 

number being greater than (a) 10,000, (b) 100,000, (c)1,000,000, (d) 2,000,000, (e) 3,000,000, (f) 818 

4,000,000 and (g) 5,000,000 were selected to demonstrate the correlation. The regression 819 

functions are at the top of figures. Selected sample pair that with more clones show more fitness 820 

of the linear model. 821 

Figure S12. Public clone gene segment usage. (a, b) The two barplots show V and J gene usage 822 

frequency between public and private clones. Gene segments have been sorted by overall 823 

frequency and for v gene only those comprised more than 1% of the total repertoire were listed 824 

here. (c, d) The scatter plot demonstrated gene usage frequency correlation between public and 825 

private clones. The top left value (ρ) indicates Pearson’s correlation coefficient. 826 

Figure S13. CDR3 nucleotide length distribution comparison between total productive 827 

clones (n=267,761,654) and unique public clones (n=429,157). Note that the upper limit for 828 

length is determined according to a threshold of 1%. Two-sample Kolmogorov-Smirnov tests 829 

were performed to investigate length distribution difference (P-value <1.149e-13). 830 

Figure S14. Junctional modification comparison between total clones from 2,165 samples 831 

and public clones. The boxplot in each subfigure demonstrates the distribution of each kind of 832 
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junction modification length, as indicated by the schematic in bottom right (a). (b) Non-templated 833 

insertion length. (c) Palindromic insertion length distributions. (d) Deletion length distributions. 834 

Figure S15. Percent of clones with D hit(s) for 2,165 samples and all public clones. The 835 

boxplot on the top demonstrates the percent distribution for 2,165 samples (with a median of 836 

97.9%), and the red point at the bottom indicates the percent for public clones (67.6%). 837 

Figure S16. Antigen-specific or disease-associated annotation of public clones. (a) 838 

Overlapping of unique clonotypes between public clones and antibody sequences curated with 839 

related antigen or disease information. A clonotype here was defined as a unique CDR3 amino 840 

acid sequence with deprecated conserved residuals at both ends. (b) Disease or antigen percentage 841 

of annotated public clones. Terms in the same line in the legend are indicated by same color. 842 

Terms in legend match the pie chart from top to bottom and from left to right. 843 

Figure S17. Somatic hypermutation patterns and influence factors. (a) and (b) represent the 844 

transform among nucleotides based on the algorithm of consensus and position weight matrix 845 

(PWM). Each column and each row represent a nucleotide. The germline nucleotide is located on 846 

the x axis and the mutated nucleotide is located on the Y axis. The total mutation rate and target 847 

preference of every nucleotide are marked in the figure. (c), (d) and (e) used position weight 848 

matrix (PWM) to describe the patterns of somatic hypermutation. 849 

Figure S18. Description of the 290th position, which has the highest mutation rate. (a), (b), 850 

(c), and (d) show the composition of nucleotide, amino acid, codon, and motif in the germline 851 

sequence sorted by ratio, respectively. (e), (f) and (g) showed the fraction and composition of 852 

mutation from different families. (h) The boxplot shows the comparison of mutation rate between 853 

synonymous mutations and nonsynonymous mutations from different families. 854 

Figure S19. Mutation rate comparison between male and female based on IgG clones. (a-e) 855 

were based on consensus approach and (f-k) were based on PWM approach. Comparison were 856 
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performed independently in different age groups to remove age-related effect (marked on the top 857 

right of each subfigure). and only those age groups with at least 10 donors for both genders were 858 

presented here. The four numbers following each isotype in figure legends represent the number 859 

of clones, samples, donors and projects, respectively. 860 

Figure S20. Mutation rate comparison between different isotypes. (a-c) were based on 861 

consensus approach and (d-f) were based on PWM approach. Comparison were performed 862 

independently in different age groups to remove age-related effect (marked on the top right of 863 

each subfigure). Only 3 age groups have two or more kinds of clones. The four numbers 864 

following each isotype show the number of clones, samples, donors and projects, respectively. 865 
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Figure 1

a

Figure 1 Overview of the enrolled datasets. (a) The number of samples in each enrolled project. The X axis shows NCBI SRA 
project IDs, and ZZHLAB indicates the antibody repertoires generated in our lab. The Y axis shows the log10 transformed number of 
samples. The numbers of samples excluded by data size and experimental design are shown in red and grey, respectively. (b, c, d,
e, f) show sample distribution based on (b) age; (c) sex; (d) PCR amplification strategy; (e) classification (healthy or diseased); and 
(f) various tissue or blood.
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Figure 2 Germline gene usage and core V genes. (a) The 
heatmaps show the normalized usage of V (top panel), D 
(middle panel), and J (bottom panel) genes. Each column 
shows color-coded gene usage for a dataset. Each row shows 
usage pattern of a particular gene (IDs labeled on the left side) 
in different datasets. The bar graphs to the right of the 
heatmaps show the number of samples in which each gene 
was present. J genes were present in almost every sample. 
The bar graph on top of the V gene usage heatmap shows the 
number of V genes present in each sample. (b) and (c) The V 
genes were ordered based on their occurrences in 582 
individuals from high (left) to low (right). The X-axis shows the 
number of high frequency V genes included. (b) The Y-axis 
shows the percent of total clones that were represents by the 
most frequent V genes shown on X-axis. The color shows the 
log 10 transformed number of samples each pixel represents. 
(c) The red line indicates the median fractions of total clones 
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Figure 5. Inter-sample abundance and gene usage of public clones. (a) The heatmap in the center indicates the abundance of 
public clones between samples. The top bar chart indicates the number of recovered total clones for each sample. The number of 
public clones between each pair of sample has been subjected to logarithmic transformation (T=log(1+Pab)). The number of public 
clones between samples within the same project has been set to 0 to remove chimera-related effects. Note that some samples 
from PRJNA260985 and PRJNA280743, were predicted to come from the same donors and the observed public clones between 
these samples was set to 0. (b) Linear model delineating the correlation between inter-sample public clone abundance and the 
product of their clone abundance. (c) Public clone size percentage as a function of donor sharing count.
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Figure 6 | Somatic hypermutation patterns and influence factors. (a) The stacked column diagram shows the mutation percentage of motifs and 
composition of mutation targets. The X axis shows the different motifs in germline sequences. The Y axis shows the composition of the mutated nucleotide 
of this motif. The line chart shows the mutation fraction of every motif. The red-colored label represents hot-spot, the blue colored label represents cold-spot. 
The underlined letter represents the mutation site. (b) and (c) show the mutation rate among different functional alleles and families. (b) The combined 
heatmap shows the mutation rate among used functional alleles in selected IgG samples. Each column shows the position of completion of the V segment 
from FR1 to FR3. Each row shows the functional alleles occurred in datasets. The area chart represents the average mutation rate in every position. The bar 
graph left to the heatmap shows the family of occurred alleles which ordered by the number of clones who were shows in the right bar graph. The color of 
the heat map represents the mutation rate of every position from used functional alleles. (c) The X axis shows the position of the V segment from FR1 to 
FR3. The Y axis shows the average mutation rate from different families. The area chart shows the overall average mutation rate about used functional 
alleles. The red lines and blue dotted lines show the result of the mutation rate of every family based on consensus and weight matrix methods. (d) The 
combined heatmap shows the substitution among amino acid. Each column and each row represents an amino acid. The germline residue is located on the 
x axis, and the mutated amino acid is located on the Y axis. The line graphs represents the ability of each amino acid to be mutated and mutated. (e). The 
boxplot shows the mutation rate for different age groups across multiple functional region and whole region. The points on top of each boxplot indicates the 
outliers. (f) The scatter plot (orange for male and blue for female) shows the correlation between mutation rate and age. Two lines in the figure are the 
predicted linear regression model for male and female. R-squared value were marked on the top left in this figure.
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