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Learning Your Heart Actions From Pulse:
ECG Waveform Reconstruction From PPG
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Abstract—Objective: In this paper, we study the relation be-
tween electrocardiogram (ECG) and photoplethysmogram (PPG)
and infer the waveform of ECG via the PPG signals. Methods: In
order to address this inverse problem, a transform is proposed
to map the discrete cosine transform (DCT) coefficients of each
PPG cycle to those of the corresponding ECG cycle. The resulting
DCT coefficients of the ECG cycle are inversely transformed to
obtain the reconstructed ECG waveform. Results: The proposed
method is evaluated with the different morphologies of the PPG
and ECG signals on three benchmark datasets with a variety of
combinations of age, weight, and health conditions using different
training modes. Experimental results show that the proposed
method can achieve a high prediction accuracy greater than
0.92 in averaged correlation for each dataset when the model
is trained subject-wise. Conclusion: With a signal processing
and learning system that is designed synergistically, we are
able to reconstruct ECG signal by exploiting the relation of
these two types of cardiovascular measurement. Significance:
The reconstruction capability of the proposed method may
enable low-cost ECG screening for continuous and long-term
monitoring. This work may open up a new research direction to
transfer the understanding of clinical ECG knowledge base to
build a knowledge base for PPG and data from wearable devices.

Index Terms—ECG, PPG, inverse problem, DCT.

I. INTRODUCTION

CARDIOVASCULAR disease (CVD) has become the
leading cause of human death – about 32% of all

deaths worldwide in 2017 according to the Global Burden
of Disease results [2]. Statistics also reveal that young
people, especially athletes, are more prone to sudden cardiac
arrests than before [3]. Those life-threatening cardiovascular
diseases often happen outside clinics and hospitals, and the
patients are recommended by cardiologists to attend a long-
term continuous monitoring program [4].

The electrocardiogram (ECG) is a fundamental tool of
clinical practice [5], and the most commonly used cardio-
vascular diagnostic procedure today. Many modern wearable
ECG systems have been developed in recent decades. They are
simpler in physical configuration, more reliable than before,
and many weigh only a fraction of a pound. However, the
materials used to provide excellent signal quality with the
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electrode (such as the gel, adhesive, and metal stud) are prone
to skin irritation and discomfort during prolonged use [6],
which restricts the long-term use of the devices.

The photoplethysmogram (PPG) is a noninvasive circulatory
signal related to the pulsatile volume of blood in tissue [7].
In common PPG modalities, the tissue is irradiated by a
light-emitting diode, and the reflected or transmitted light
intensity is measured by a photodetector on the same or the
other side of the tissue. A pulse of blood modulates the light
intensity at the photodetector, and the PPG is varying in an
opposite direction with the volumn of blood [7]. Compared
with ECG, PPG is easier to set up and more economical,
making it nearly ubiquitous in clinics and hospitals in the form
of finger/toe clips and oximeters. In consumer electronics,
PPG has increasing popularity in the form of wearable devices
that offer continuous and long-term monitoring capability with
little to no skin irritations.

The PPG and ECG signals are intrinsically related, con-
sidering that the variation of the peripheral blood volume is
influenced by the left ventricular myocardial activities, and
these activities are controlled by the electrical signals origi-
nating from the sinoatrial (SA) node. The timing, amplitude,
and shape characteristics of the PPG waveform contain infor-
mation about the interaction between the heart and connective
vasculature. These features have been translated to measure
heart rate, heart rate variability, respiration rate [8], blood
oxygen saturation [9], blood pressure [10], and to assess vas-
cular function [11]. As the prevailing use of wearable device
capturing users’ daily PPG signal, we are inspired to utilize
this cardiovascular relation to reconstruct the ECG waveform
from the PPG measurement. This exploration, if successful,
can provide low-cost ECG screening for continuous and long-
term monitoring and take advantage of both the rich clinical
knowledge base of ECG signal and the easy accessibility of
the PPG signal.

Regarding related work, the authors in [12] trained several
classifiers to infer the quantized levels of RR, PR, QRS,
and QT interval parameters, respectively, from selected time
domain and frequency domain features of PPG. Even though
the system achieved 90% accuracy on a benchmark hospital
dataset, the capability confined to only inferring ECG param-
eters may restrict a broader use of this art. In this paper, we
propose to estimate the waveform of the ECG signal using
PPG measurement by learning a signal model that relates
the two time series. We first preprocess the ECG and PPG
signal pairs to obtain temporally aligned and normalized sets
of signals. We then segment the signals into pairs of cycles
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Fig. 1. Upper: a five-second reconstructed ECG signal in test set (black line)
vs. the reference ECG signal (red line) using the data from the MIMIC-III
database [13]. The two signals were intentionally drawn with an offset in the
vertical direction to better reveal the details. Lower: the corresponding PPG
signal used to reconstructed the ECG signal.

and train a linear transform that maps the discrete cosine
transform (DCT) coefficients of the PPG cycle to those of
the corresponding ECG cycle. The ECG waveform is then
obtained via the inverse DCT. We evaluate our methodology
on two publicly available datasets as well as a self-collected
dataset, which in total contains 147 subjects with a wide
variety of age, weight, and health conditions using different
training modes. As an example, Fig. 1 shows a five-second
reconstructed ECG signal in the test set using the proposed
method. Note that the reconstructed ECG signal is almost
identical with the reference one.

The significance of this work is threefold. First, the statis-
tics of the system performance metrics evaluated on three
databases show that our proposed system can reconstruct ECG
signals accurately. Second, to the best of our knowledge, this
is the first work addressing the problem of reconstructing ECG
signals from the PPG signals. It may open up a new direction
for cardiac medical practitioners, wearable technologists, and
data scientists to leverage a rich body of clinical ECG knowl-
edge and transfer the understanding to build a knowledge base
for PPG and data from wearable devices. Third, the technol-
ogy may enable a more user-friendly, low-cost, continuous,
and long-term cardiac monitoring that supports and promotes
public health, especially for people with special needs.

The rest of the paper is organized as follows. In Section II,
we mathematically model the relationship between the ECG
and PPG signals. In Section III, we introduce the proposed
system based on the proposed signal model. We test the system
and report the experimental results in Section IV, and discuss
the possible extension and the limitations of the proposed
system in Section V. The conclusion is drawn in Section VI.

II. A CYCLE-WISE SIGNAL MODEL FOR PPG AND ECG

In this section, we discuss a physiological model we adopted
in this paper to develop the proposed algorithm. As shown in
Fig. 2, during each cardiac cycle, the atrioventricular (AV)
node receives the electrical signals originated from the SA
node. The AV node then transmits this bio-electrical signals
through the bundle of His, left bundle branches, and Purkinje
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Fig. 2. A visualization of the relationship between the ECG, the aortic
pressure, and the PPG.

fibers to the left ventricular myocardium, causing the depo-
larization and contraction of the left ventricle. As a result
of this process, the pressure of the left ventricle rises and
exceeds the aortic pressure, causing the opening of the aortic
valves, blood flow from the left ventricle into the aorta, and
the corresponding rise of the aortic pressure. Upon closure of
the aortic valves, the generated pulse wave transmits the blood
to the peripheral parts of our body, such as fingertips or toes,
through a network of blood vessels.

A. The ECG Signal and the Aortic Pressure

Consider one specific cardiac cycle. We denote the uni-
formly sampled cardiac electrical activity as e(n), n ∈ [1, L],
where L is the total number of samples within the cycle.
We denote the electrocardiogram measurement recording the
potential difference between two electrodes placed on the
surface of the skin as cy(n). Taking into account the human
body electrical resistance and the sensor noise, we model the
ECG signal cy(n) as:

cy(n) = αe(n) + vy(n), (1)

where α denotes a subject-specific parameter accounting for
the resistance of the electrical path between the heart and the
skin surface; vy(n) denotes the ECG sensor noise, which is
modeled as a zero-mean white Gaussian process.

The contraction and relaxation of the heart muscles follow
the bio-electrical activities of the heart. These biomechanical
activities further modulate the aortic pressure via the opening
and closing of the aortic valves. The aortic pressure, denoted as
pa(n), is thus highly correlated with the cardiac electrical ac-
tivities e(n). To model this correlation, we first map both e(n)
and pa(n) to their frequency domain via type II DCT [14],
as DCT has the potential to provide a compact and effective
representation of the signals [15]. We then propose to model
the relationship of the two signals with a linear transform from
the DCT domain of e(n) to that of pa(n) as:

Pa = HE, (2)

where E, Pa ∈ RL×1 are the DCT-II coefficients of e(n)
and the aortic pressure pa(n) respectively. H ∈ RL×L is the
transition matrix.
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B. The Pulse Wave and the PPG Signal

When the pulse wave and blood flow travel through our
body from the aorta to a peripheral site, it might experience
different interactions with the blood vessels, for instance,
splitting and pushing. We assume the structure of the blood
vessel path of a specific person is time-invariant. Inspired
by models for the vocal tract in speech production ( [16],
Chapter 3), we propose to model this blood vessel channel
from the aorta to the peripheral site as a linear time-invariant
system. We denote the peripheral pulse signal at a specific
body site as pp(n). We write pp(n) according to the prior
channel assumption as:

pp(n) = b(n) ~ pa(n) + vb(n), (3)

where b(n) denotes the impulse response of the channel
of blood vessels, and ~ denotes a symmetric convolution
operation [17]. vb(n) is the zero-mean white Gaussian noise,
capturing the variance of this model. The symmetric convo-
lution of b(n) and pa(n) gives a result that is the same as
a linear convolution of the symmetrically left-sided extended
version of b(n) and two-sided extended version of pa(n).
The extension of pa(n) provides smooth boundary values for
filtering near its original endpoints. This “folded aliasing” may
be preferable in modeling this blood vessel channel effect to
the warp-around aliasing of a circular convolution [17].

We assume the PPG sensor attached to the same peripheral
site works in the transmissive mode. It means that the pho-
todetector of the PPG sensor is on the other side of the tissue
with the light-emitting diode. We assume the light source
has a constant intensity of I on the spectral range of the
receiver side. We further assume no relative motion between
the attached skin and the photodetector, and the contact is tight
enough so that the signal is not influenced by the possible
environmental illuminations. We write the PPG measurement,
denoted as cx(n), as:

cx(n) = I [τ0 + τ1pp(n)] + vx(n), (4)

where τ0 and τ1 denote the relative transmissive strength of the
non-pulsatile components and pulsatile components of tissue,
respectively [18] 1. vx(n) denotes the PPG sensor noise, which
is modeled as a zero-mean white Gaussian process. We can
rewrite (4) as:

cx(n) = I1pp(n) + I0 + vx(n), (5)

where I1 = Iτ1 and I0 = Iτ0.

C. The Inverse Model from PPG to ECG

According to the property of the symmetric convolution, a
symmetric convolution in time domain can be represented as
a pointwise multiplication across the frequency domain of a
cosine transform [17]. Combined with the linearity property
of the DCT, we may rewrite (3) in frequency domain as:

Pp = BPa + Vb, (6)

1Based on the dichromatic model [19], when PPG sensor works in the
reflective mode, parameters τ0 and τ1 in (4) denote the relative reflective
strength of the non-pulsatile components and pulsatile components of tissue,
respectively [20].

where Pp, Pa, and Vb are the DCT-II coefficients of pp(n),
pa(n), and vb(n) respectively. B , diag(B1, B2, ..., BL) ∈
RL×L, where Bk denotes the kth DCT-I coefficient of b(n).
We next apply a type II DCT on both sides of (1) and (5) and
we arrive at:

Cy = αE + Vy (7)
Cx = I1Pp + I0 + Vx, (8)

where Cy , Vy, Cx, I0 and Vx denotes the DCT-II coeffi-
cients of cy(n), vy(n), cx(n), constant function I0 and vx(n)
respectively. Assuming the nonsingularity of the matrix B and
H and according to (2), (6), (7), and (8), we have:

Cy = FCx + C0 + V, (9)

where F , αI−11 H−1B−1, C0 , −αI−11 H−1B−1I0, and
V , Vy − αH−1B−1

(
I−11 Vx + Vb

)
. When we look indi-

vidually at each element of Cy , we have:

Cy(k) = F(k)Cx + C0(k) + V (k), k ∈ [1, L], (10)

where F(k) is the kth row of matrix F; C0(k) and V (k)
denote the kth element of C0 and V, respectively. We know
V (k) is a zero-mean Gaussian random variable, as it is a linear
combination of zero-mean Gaussian random variables from vy ,
vb, and vx. According to (10), the relation between the PPG
and the ECG signal is captured by a linear model in their
frequency domain. We are thus motivated to explore the linear
relationships between the DCT coefficients of PPG signal and
those of the ECG signals.

III. METHODOLOGY

According to the signal model we discussed in the previous
section, we propose a system which learns the linear transform
F from pairs of PPG and ECG data. The pipeline of the system
is shown in Fig. 3. The pair of PPG and ECG signals are first
preprocessed into pairs of synchronized cycles. The cycle pairs
are then fed into the training system to learn the transform
matrix. We discuss further the details of the system as follows.

A. Preprocessing: Cycle-wise Segmentation

The goal of preprocessing ECG and PPG signals is to obtain
temporally aligned and normalized pair of signals, so that the
critical temporal features of both waveforms are synchronized
to facilitate our investigation. As shown in Fig. 3, the pre-
processing phase contains data alignment, signal detrending,
cycle-wise segmentation, temporal scaling, and normalization
stages that be explained as follows.

a) Data alignment: Considering possible misalignment
of the signal pair in each trial, we perform a two-level signal
alignment to obtain physically aligned signal pairs. We first
estimate the signal delay in the cycle level using the peak
features as they are the most distinguishable features within
the cycle. We then align the signals to the sample level based
on their physical correspondence.

Suppose we have a pair of almost simultaneously recorded
PPG and ECG signals, denoted as x ∈ RT and y ∈ RT

respectively. We name the coordinate of the systolic peak in
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Fig. 3. Flowchart of the proposed system. The ECG and PPG signals are first preprocessed to obtain physically aligned and normalized pairs of cycles. The
selected DCT coefficients of 80% pairs of cycles are used for training a linear transform F which is used in the test phase to reconstruct the ECG signals.

the ith cycle of PPG as nsp(i) and the R peak of ECG as nrp(i).
The cycle delay mdelay is searched for in a discrete interval
D , [−k, k], where the search radius k = 5 as we expect the
cycle delay to be small. For each evaluated m ∈ D, we first
preliminarily align the signal with respect to nsp(1−m·1(m <
0)), and nrp(1−m·1(m > 0)). The aligned coordinates of PPG
and ECG peaks are {n′sp(m)} and {n′rp(m)}. We then estimate
the cycle delay m̂delay by solving the following problem:

m̂delay = argmin
m∈D

i=M−k∑
i=1

∣∣n′sp(i−m · 1(m < 0))

− n′rp(i+m · 1(m > 0))
∣∣, (11)

where M denotes the total number of cycles; 1 denotes the
indicator function. We align the signals by shifting the PPG
signal so that the systolic peaks of PPG and the R peaks of
ECG are temporally matched.

Next, we align the signal to the sample level according
to the R peak of the ECG and the onset point of PPG in
the same cycle (the local minimum point before the systolic
peak), considering that the R peak corresponds approximately
to the opening of the aortic valve, and the onset point of PPG
indicates the arrival of the pulse wave [7]. In this way, we
eliminate the pulse transit time and align the signals.

b) Detrending: The non-stationary trend in both signals
requires additional attention to temporal pattern analysis. A
slowly-varying trend can be estimated and then subtracted
from the original signals. The trend is assumed to be a
smooth, unknown version of x and y with a property that its
accumulated convexity measured for every point on the signal
is as small as possible, namely,

x̂trend = argmin
x̂
‖x− x̂‖22 + λ ‖D2x̂‖22 , (12)

where x is the original signal, x̂trend is the estimated trend in x,
λ is a regularization parameter controlling the smoothness of
the estimated trend, and D2 ∈ RT×T is a Toeplitz matrix that
acts as a second-order difference operator. The closed-form
solution of (12) is x̂trend = (I + λDᵀ

2D2)−1x, where I is the
identity matrix, Hence, the detrended signal is x̃ = x− x̂trend,
and similarly, ỹ = y − ŷtrend.

c) Segmentation & Normalization: After the signal align-
ment and detrending, we segment each cycle of the signal x̃

and ỹ to prepare for the learning phase. In our experiment,
we introduce the following two cycle segmentation schemes:
SR and R2R.
• SR: we segment the signal according to the points which

are 1/3 of the cycle length to the left of the R peaks of the
ECG signal. We call this scheme SR as it approximately
captures the standard shape of sinus rhythm.

• R2R: we segment the signal according to the location of
the R peak of the ECG signal to mitigate the reconstruc-
tion error in the QRS complex.

After the segmentation, we temporally scale each cycle sample
via linear interpolation to make it of length L in order to
mitigate the influence of the heart rate variation. We then
normalize each cycle by subtracting the sample mean and
dividing by the sample standard deviation. We denote the
normalized PPG and ECG cycle samples as cx, cy ∈ RM×L.

B. Learning a DCT-domain Linear Transform

The right part of Fig. 3 shows our proposed learning
framework. In the training phase, we build and train a linear
transform to model the relation between the DCT coefficients
of PPG and ECG cycles. We then use the trained matrix to
reconstruct the ECG waveform in the test phase.

Specifically, we first perform cycle-wise DCT on cx and
cy , which yields Cx, Cy ∈ RM×L. Then the first Lx, Ly

DCT coefficients of Cx, Cy are selected to represent the
corresponding waveform as the signal energy is concentrated
mostly on the lower frequency components per our observa-
tion. We denote them as C̃x ∈ RM×Lx and C̃y ∈ RM×Ly .
We next separate C̃x and C̃y into training and test sets as
Cx,train ∈ RMtrain×Lx , Cy,train ∈ RMtrain×Ly and Cx,test ∈
RMtest×Lx , Cy,test ∈ RMtest×Ly , where Mtrain +Mtest = M .

In the training process, a linear transform matrix F∗ ∈
RLx×Ly that maps from PPG to ECG DCT coefficients is
learned through ridge regression as described below:

F∗ = argmin
F
‖Cx,train F−Cy,train‖2F + γ ‖F‖2F , (13)

where ‖·‖F denotes the Frobenius norm of a matrix, and
γ > 0 is a complexity parameter that controls the shrinkage
of F toward zero. The goal of penalizing ‖F‖2F is to reduce
the variance of the predictions and to avoid overfitting [21].
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The analytic solution to (13) is F∗ = (Cᵀ
x,trainCx,train +

γI)−1Cᵀ
x,trainCy,train, where I is the identity matrix.

In the test phase, we apply the optimal linear transform
F∗ learned in training stage on Cx,test and estimate the
corresponding DCT coefficients of ECG cycles. We denote
the estimate as ˆ̃Cy,test , Cx,test F

∗. To reconstruct ECG, we
first augment each row of ˆ̃Cy,test to be in the same dimension
as L (by padding zeros). We denote the zero-padded matrix
as Ĉy,test ∈ RMtest×L. We then apply inverse DCT to each row
of Ĉy,test, interpolate the resulted matrix row by row to its
original temporal scale, and concatenate the inversely scaled
pieces of cycles to obtain the reconstructed ECG signal ŷtest.

IV. EXPERIMENTS

A. Experiment I: Capnobase TBME-RR Database

We first used the Capnobase TBME-RR [8] to evaluate the
performance of the proposed system. The dataset contains 42
eight-min sessions of simultaneously recorded PPG and ECG
measurements from 29 pediatric and 13 adults 2, sampled
at 300 Hz. The 42 cases were randomly selected from a
larger collection of physiological signals collected during
elective surgery and routine anesthesia. Each recorded session
corresponds to a unique subject. The PPG signal was acquired
on subjects’ fingertips via a pulse oximeter. The dataset has a
wide variety of patient’s age (min: 1, max: 63, median: 14) and
weight (min: 9 kg, max: 145 kg, median: 49 kg) and is thus a
favorable dataset for testing the performance of our proposed
system.

We first pruned the signals according to the human-labeled
artifact segments and processed the pairs of ECG and PPG
signal using the method introduced in Section III-A to obtain
aligned and normalized pairs of the signal cycles. We set L =
300 and Ly = 100, as most of the diagnostic information
of ECG is contained below 100 Hz [5]. We set λ = 500 and
γ = 10 empirically as they offer the best regularization results
in the tasks. In order to test the consistency of the system, we
selected the first 80% of each session as the training set and the
rest for testing. We used the following two metrics to evaluate
the system performance in the test set:
• Relative root mean squared error:

rRMSE(ytest, ŷtest) =
‖ytest − ŷtest‖2
‖ytest‖2

, (14)

• Pearson’s correlation coefficient:

ρ(ytest, ŷtest) =
(ytest − ȳtest)

ᵀ(ŷtest − ¯̂ytest)

‖ytest − ȳtest‖2
∥∥ŷtest − ¯̂ytest

∥∥
2

, (15)

where ytest, ¯̂ytest, and ȳtest denote the ECG signal in test set,
the average of all coordinates of the vectors ŷtest and ytest
respectively.

In this study, we evaluate the system in the following two
training modes:

2Note that the recording in this database is of high signal quality. In cases
when the signal is corrupted by noise or subject’s motion artifacts, a denoising
process is needed to clean the signal before the preprocessing stage.
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Fig. 4. The line plots give the average of rRMSE in (a), (c), (e), and (g) and
ρ in (b), (d), (f), and (h) of all sessions in the test set for different choices of
number of PPG DCT coefficient m1 using SR (a), (b), (e), and (h) and R2R
(c), (d), (g), (h) segmentation scheme and SI (a)–(d) and SD (e)-(h) mode
respectively. The vertical bars at each data point shows one standard error
above and below the sample mean.

• Subject Independent (SI) mode: we trained a single linear
transform F∗ using all the training data, i.e., the trained
model is independent with each subject in the dataset.

• Subject Dependent (SD) mode: a linear transform F∗

was trained and tested in each session. In this way, we
obtained a subject dependent model for each individual.

We first cross-validated the number of DCT coefficients
of the PPG signal Lx used in the learning system. It is
clear that the more variables as predictors, i.e., more PPG
DCT coefficients are used in the linear system, the better the
performance can be achieved in training. However, we can
observe from Fig. 4 that the performance of our system in the
test set using either SR and R2R becomes saturated as Lx gets
more significant from approximate 18 and 12 in the SI and SD
mode respectively. The trends of convergence in both modes
suggest potential model overfitting. Another observation is that
the convergence rate is slower in the SI mode compared with
the SD mode. Such observation is expected because the data
diversity is much higher in the SI mode than that in the SD
mode, and more variables are needed to capture the additional
variance in the SI mode. Lx = 18 in the SI mode and Lx = 12
in the SD mode are thus favorable to us as the system has
comparable performance and the model is parsimonious than
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Fig. 5. An example of the ECG segmentation result on three cycles of the
signal in the 1st session of TBME-RR database. The green, red, and blue areas
in the plot denote the estimated P waves, the QRS waves, and the T waves,
respectively. For each cycle, the ratio between the duration of the QRS+T
wave is 3/2 of the duration of the T wave.

those with larger Lx.
The norm of one cycle of ECG signal is usually dominated

by that of the QRS complex. This fact of unbalanced signal
energy distribution might lead to insufficient evaluation on
the P wave and T wave of the ECG signal. To address
this problem, we further separated the ECG cycle into and
evaluated the system performance on segments of the P wave,
QRS wave, and T wave. The evaluation was performed in
terms of rRMSE and ρ on each segment as well as using the
entire cycle of the signal. Specifically, we adopted the QRS
detection algorithm introduced in [22] to locate the onset and
endpoint of the QRS complex. We empirically selected the
60% point between the onset points of two adjacent QRS
complexes as the separating point for the P and T wave. Fig. 5
shows one example of the ECG segmentation result sampled
from the first subject in the database. Note that the onset and
endpoint of all waves in each cycle are accurately estimated.

We list the average performance using R2R and SR cycle
segmentation schemes in different training modes in Table I
and plot the results using the box plots in Fig. 6. In Table I, the
performance is characterized by the sample mean and standard
deviation of rRMSE and ρ on P, QRS, T, and all waves, where
all wave denotes the whole length of the signal including every
wave. In addition to the ridge regression learning method we
introduced in Section III-B, we also list the performance result
using ordinary least squares (OLS) [21] and least absolute
shrinkage and selection operator (lasso) [23], respectively.
From the statistics, we learn that overall R2R gives better
performance than SR, and model trained in the SD mode gives
better performance compared with that trained in the SI mode
in this dataset as possible subject differences in terms of H in
(2) and b(t) in (3) are expected. The three regression methods,
OLS, ridge regression and lasso give comparable performance.
In general, R2R outputs comparable results on P and T waves
compared with SR, whereas R2R outperforms SR on QRS
and all waves. In the SD mode, the average performance in
ρ on T wave is about 0.92 using R2R and 0.90 using SR,
much higher values than those on the P wave. There are
two possible reasons that explain this result. First, compared
with the QRS and T waves, the amplitude of the P wave is
much smaller. As a result, the P wave becomes more sensitive
to the noise compared with the T wave. Second, the shape
of the T wave signifies the repolarization of the ventricles,
and the ventricular repolarization is correlated with the shape

SD, R2R SD, SR
SI, R2R SI, SR

(a)

(b)

Fig. 6. Comparison of the performance of the proposed method in test
set of the TBME-RR database in different combinations of the SR or R2R
segmentation schemes and the SD or SI test modes evaluated at P, QRS, T,
and all waves. Statistics of the (a) rRMSE and (b) ρ are summarized using
the box plots.

of the dicrotic notch in the PPG signal. This is because,
during the ventricular repolarization process, the closure of the
aortic valve is associated with a small backflow of blood into
the ventricle and a characteristic notch in the aortic pressure
tracings. This connection between the P wave of ECG and the
dicrotic notch of PPG may facilitate the system performance
on the P wave.

As an example, we show a five-second segment of the
reconstructed ECG waveform in the test set of the first
subject in Fig. 7 using the R2R cycle segmentation scheme
with Lx = 18 in the SI mode and Lx = 12 in the SD
mode. We choose the first subject to be the example as the
system performance evaluated on this subject approximates the
average performance over the database. We see from the plot
that the system retains most of the shape of the original ECG
waveform except for the S peaks in the SI mode and almost
perfectly reconstructs the ECG waveform and maintains the
location of each PQRST peaks in the SD mode.

In Fig. 8, we plot the rRMSE and ρ of each session
concerning subjects’ age and weight respectively in two 3-
D plots in the SI and SD mode. We then fit a linear model
with an interaction term for each combination of training mode
and evaluation metric according to the least-squares criterion.
An F -test is performed to test whether subjects’ profile, i.e.,
age, weight, and the interaction between age and weight, can
significantly affect the performance of the algorithm in each
metric and training mode combination. F -test results of small
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TABLE I
THE SYSTEM PERFORMANCE IN TEST SET OF THE TBME-RR DATABASE IN TERMS OF MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF RRMSE
AND ρ. R2R SEGMENTATION USING DIFFERENCE COMBINATIONS OF THE TRAINING MODE (SI/SD), THE SEGMENTATION SCHEMES (SR/R2R) AND THE
LINEAR REGRESSION METHODS (OLS/RIDGE/LASSO). THE BEST PERFORMED ENTRY IN EACH COLUMN AND TRAINING MODE IS BOLDED FOR BETTER

VISUALIZATION. THE ENTRY WITH LOWEST STANDARD DEVIATION WILL BE BOLDED IF THE MEANS OF MULTIPLE ENTRIES ARE IDENTICAL.

rRMSE ρ

P QRS T all P QRS T all

TBME-RR (SI)
OLS 0.563 (0.197) 0.465 (0.173) 0.736 (0.422) 0.499 (0.142) 0.660 (0.208) 0.879 (0.102) 0.717 (0.262) 0.859 (0.091)

SR ridge 0.561 (0.199) 0.465 (0.173) 0.734 (0.423) 0.499 (0.141) 0.659 (0.210) 0.880 (0.101) 0.718 (0.267) 0.859 (0.090)
lasso 0.565 (0.200) 0.468 (0.173) 0.734 (0.421) 0.502 (0.140) 0.652 (0.210) 0.879 (0.102) 0.718 (0.266) 0.858 (0.090)
OLS 0.564 (0.202) 0.359 (0.139) 0.726 (0.434) 0.418 (0.124) 0.686 (0.203) 0.937 (0.059) 0.709 (0.261) 0.906 (0.061)

R2R ridge 0.562 (0.204) 0.360 (0.142) 0.722 (0.424) 0.418 (0.126) 0.687 (0.204) 0.937 (0.060) 0.713 (0.264) 0.906 (0.063)
lasso 0.564 (0.204) 0.363 (0.142) 0.721 (0.435) 0.420 (0.125) 0.684 (0.203) 0.937 (0.060) 0.711 (0.267) 0.905 (0.062)

TBME-RR (SD)
OLS 0.329 (0.288) 0.275 (0.153) 0.285 (0.213) 0.284 (0.155) 0.825 (0.206) 0.946 (0.071) 0.898 (0.180) 0.947 (0.068)

SR ridge 0.289 (0.165) 0.273 (0.134) 0.285 (0.173) 0.277 (0.121) 0.836 (0.179) 0.949 (0.061) 0.906 (0.146) 0.951 (0.052)
lasso 0.314 (0.155) 0.291 (0.139) 0.306 (0.170) 0.294 (0.122) 0.810 (0.188) 0.943 (0.065) 0.899 (0.145) 0.947 (0.054)
OLS 0.283 (0.180) 0.131 (0.049) 0.285 (0.233) 0.170 (0.080) 0.859 (0.159) 0.990 (0.011) 0.906 (0.173) 0.982 (0.025)

R2R ridge 0.273 (0.165) 0.128 (0.039) 0.275 (0.178) 0.165 (0.061) 0.869 (0.141) 0.991 (0.006) 0.917 (0.131) 0.984 (0.014)
lasso 0.287 (0.158) 0.135 (0.038) 0.295 (0.173) 0.175 (0.058) 0.856 (0.137) 0.990 (0.006) 0.911 (0.131) 0.983 (0.012)

429 429.5 430 430.5 431 431.5 432 432.5 433 433.5
Time (sec)

reconstructed ECG

(a)
ECG
(SD)

(b)
ECG
(SI)

(c)

(d)
PPG

reference PPG

Fig. 7. The reconstructed ECG (black solid line) in (a) the SD and (b) SI
and the reference ECG (orange dashed line) waveform of the last 5 seconds
of the first session (age: 4 years old, weight: 18 kg) in TBME-RR database.
Zoomed-in version of the shaded cycle in each mode is shown in (c). The
corresponding PPG waveform is shown in (d).

p-values shown in Figs. 8(a) and 8(b) for the SI mode reveal
that the performance of the algorithm is dependent on the
combination of subject’s age and weight, whereas the large
high p-values shown in Figs. 8(c) and 8(d) for the SD mode
does not show a strong evidence to reject the hypothesis that
the performance of the algorithm is independent of age and
weight. Moreover, we notice that the performance tends to
be lower as the subject’s weight gets larger. This trend of
performance degradation might be due to the bias of the
training sample that the number of new-borns is much larger
than the number of other groups of subjects in the database.

(a) (b)

(c) (d)

Fig. 8. Scatter plots of (a) rRMSE and (b) ρ vs. subjects’ weight and age
using R2R scheme. Each sample corresponds to one of 42 sessions. The
surface mesh on each plot shows the regressed linear model: rRMSE or ρ ∼
intercept + age + weight + age× weight. The R2 and the p-value of F -test
is shown on each plot.

B. Experiment 2: MIMIC-III Database

Medical Information Mart for Intensive Care III (MIMIC-
III) [13] is an extensive database comprising vital sign mea-
surements at the bedside documented in MIMIC-III waveform
database and part of the patients’ profile in the MIMIC-
III clinical database. The database is publicly available and
encompasses a large population of ICU patients. In this
experiment, a subset of the MIMIC-III database was used to
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TABLE II
THE SYSTEM PERFORMANCE IN TEST SET OF THE MIMIC-III DATABASE IN TERMS OF SAMPLE MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF

RRMSE AND ρ. R2R SEGMENTATION USING DIFFERENCE COMBINATIONS OF TRAINING MODE (SD/SI) AND LINEAR REGRESSION METHODS
(OLS/RIDGE/LASSO). THE BEST PERFORMED ENTRY IN EACH COLUMN AND TRAINING MODE IS BOLDED FOR BETTER VISUALIZATION.

rRMSE ρ

P QRS T all P QRS T all

MIMIC-III (SD)
OLS 0.451 (0.183) 0.320 (0.115) 0.367 (0.175) 0.333 (0.119) 0.807 (0.150) 0.936 (0.045) 0.896 (0.103) 0.935 (0.055)

R2R ridge 0.436 (0.175) 0.311 (0.113) 0.356 (0.169) 0.324 (0.114) 0.819 (0.141) 0.939 (0.044) 0.903 (0.097) 0.939 (0.053)
lasso 0.439 (0.171) 0.310 (0.110) 0.358 (0.162) 0.324 (0.109) 0.817 (0.139) 0.940 (0.042) 0.903 (0.094) 0.940 (0.049)

MIMIC-III (SI)
OLS 0.844 (0.240) 0.503 (0.166) 0.773 (0.211) 0.599 (0.148) 0.533 (0.252) 0.880 (0.082) 0.627 (0.318) 0.790 (0.118)

R2R ridge 0.844 (0.240) 0.503 (0.166) 0.773 (0.211) 0.599 (0.148) 0.533 (0.253) 0.881 (0.082) 0.627 (0.318) 0.790 (0.118)
lasso 0.844 (0.240) 0.503 (0.166) 0.773 (0.211) 0.599 (0.148) 0.533 (0.253) 0.881 (0.082) 0.627 (0.318) 0.790 (0.118)
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Fig. 9. Distribution of subjects collected from the MIMIC-III database in
five age groups and eleven disease types. Within each age group, the cardiac-
related diseases are colored as different shades of blue on the left, and the
noncardiac-related diseases are colored as different shades of red on the right.

evaluate the system’s performance when the subjects were with
various cardiac or non-cardiac malfunctions.

Specifically, we selected waveforms that contain both lead
II ECG and PPG signals from folder 35 in the MIMIC-III
waveform database. Then we linked the selected waveforms
with the MIMIC-III clinical database by subject ID to match
with the corresponding patient profile. Among the patients,
we selected those with specific cardiac/non-cardiac diseases
and removed low signal quality PPG/ECG pairs. The resulting
collected database consists of 53 patients with six common
cardiac diseases and 50 patients with five types of non-
cardiac diseases. The distribution of the collected patients is
visualized in stacked bar plot based on each one’s age group
and disease type in Fig. 9. Each patient has three sessions
of 5-min ECG and PPG recordings collected within several
hours. Cardiac diseases in the resulting database include atrial
fibrillation, myocardial infarction, cardiac arrest, congestive
heart failure, hypotension, hypertension and coronary artery
disease, while non-cardiac diseases are composed of sepsis,

SD, Card. SD, Non-Card. SI, Card. SI, Non-Card.

(a)

(b)

Fig. 10. Comparison of the performance of the proposed method in test set
of the MIMIC-III database in different combinations of the disease types and
test modes. Statistics of the (a) rRMSE and (b) ρ are summarized using the
box plots.

pneumonia, gastrointestinal bleed, diabetic ketoacidosis and
altered mental status.3

In this part of experiment, we evaluate our proposed system
in the following two training modes (both under R2R segmen-
tation scheme):
• Subject Independent (SI) mode: we trained one linear

transform F∗ using training data from patients with

3Based on the ICD-9-CM diagnosis codes, we chose those cardiac diseases
under the list of “diseases of the circulatory system”, which is corresponding
to 390-459 in the ICD-9-CM diagnosis codes. For those non-cardiac diseases,
we selected them from other categories, including “injury and poisoning”,
“diseases of the respiratory system”, etc.
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32 32.5 33 33.5 34 34.5 35 35.5 36 36.5 37
Time (sec)

0
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6

Time (sec)
32 32.5 33 33.5 34 34.5 35 35.5 36 36.5 37

Subject ID: 81443 Subject ID: 67413 

(a) (b)

ECG
(SD)

ECG
(SI)

PPG

reconstructed ECG

reference PPG

Fig. 11. Two qualitative comparisons between the reconstructed ECG signals tested in the SD (1st row) and SI (2nd row) mode from the MIMIC-III database.
(a) The subject is male, 54 years old, and with upper gastrointestinal bleeding. The Pearson’s correlation coefficients are 0.969 in the SD mode, and 0.923
in the SI mode. (b) The subject is male, 52 years old, and with congestive heart failure. The correlation coefficients are 0.959 in the SD mode, and 0.881 in
the SI mode.

cardiac diseases and another linear transform F∗ from
non-cardiac disease patients, i.e., the trained model is
independent with each subject in terms of disease type.

• Subject Dependent (SD) mode: For each subject, a linear
transform F∗ was trained on the first two sessions and
tested on the third session. In this way, we obtained a
subject dependent model for each individual.

We summarized the average performance in Table II using
R2R cycle segmentation scheme in the SD and SI training
modes. Results in Table II are characterized by the sample
mean and the standard deviation of rRMSE and ρ values on P,
QRS, T, and all waves as in the first experiment. The rRMSE
and ρ values are also plotted using the box plots in Fig. 10.
The statistics reveal that overall non-cardiac cases give better
performance than cardiac cases as less variation exists in the
morphology of non-cardiac ECG signals. The model trained
in the SD mode gives better performance compared with that
trained in the SI mode in this dataset, which suggests that H
in (2) and b(t) in (3) may be subject dependent. In general,
for the SD mode, the average performance in ρ on T wave is
about 0.90 and on QRS wave is about 0.94 using R2R, much
higher than those on the P wave, which is in accordance with
the first experiment.

In Fig. 11, we show two five-second segments of the
reconstructed ECG waveform in the test set from two subjects
using the R2R cycle segmentation scheme with Lx = 18 in
the SI mode and Lx = 12 in the SD mode. The first subject is
a 54-year-old male with upper gastrointestinal bleeding, and
the second subject is a 52-year-old male with congestive heart
failure. We see from the plots that the system retains the major
shape of the original ECG waveform except for the P waves
of the first subject and S waves of the second subject in the
SI mode. The system almost perfectly reconstructs the shape
of the ECG waveform in the SD mode.

In addition to quantitative analysis of the reconstruction
performance by Pearson correlation and rRMSE, we also exe-

cuted a disease classification experiment on the reconstructed
ECG signals to show the potential of our proposed method in
applications within biomedical health informatics.

First, from the collected MIMIC-III database, we selected
28 patients with five types of cardiac diseases, including
congestive heart failure, ST-segment elevated myocardial in-
farction, non-ST segment elevated myocardial infarction, hy-
potension, and coronary artery disease. For each patient,
we performed the SD mode ECG reconstruction experiment
to obtain the reconstructed ECG signals. To simulate the
diagnosis process of cardiologists, we connected the cycle-
wise ECG signals into pieces of 30-cycle length for training
and classification. The training data is composed of 70 %
from the original ECG signals, and the testing data constitutes
of the rest 30 % from original ECG signals and all of
the reconstructed ECG signals. The detailed distribution of
training and testing data concerning disease types are shown
in Table III.

We applied PCA for dimensionality reduction and SVM
classifier with polynomial kernel from SVM library [24].
The confusion matrices for classification are illustrated in
Fig. 12 with the reduced dimension equals to 100. Comparing
Figs. 12(a) and 12(b), we conclude that our reconstructed
ECG has a comparable classification performance as the
original ECG signals. We also include the confusion matrix
for original PPG classification in Fig. 12(c) for reference. The
superior performance of classification from the reconstructed
ECG signals compared to that of the original PPG signal
indicates the fidelity of the reconstructed ECG recordings in
the presence of cardiac pathologies.

C. Experiment 3: Self-collected UMD Dataset

Next, we test the temporal consistency of the proposed sys-
tem with the self-collected data using consumer-grade sensors.
Two subjects participated in this two-weeks long experiment.
One subject is male, 31 years old. The other is female, 23
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(a) (b) (c)

Fig. 12. Confusion matrices for classification results using kernel SVM on three types of data: (a) original ECG, (b) inferred ECG, and (c) original PPG.

TABLE III
DISTRIBUTION OF TRAINING AND TESTING DATA FOR DISEASE

CLASSIFICATION IN THE MIMIC-III DATASET

Disease Number
of patients

Number of
training data

Number of
test data

Number of
test data

(original
ECG)

(reconstructed
ECG)

CHF 7 163 (23.6%) 65 (25.8%) 67 (23.9%)
STMI 7 171 (24.7%) 59 (23.4%) 68 (24.3%)
NSTMI 5 114 (16.5%) 40 (15.9%) 46 (16.4%)
HYPO 5 158 (22.8%) 57 (22.6%) 64 (22.9%)
CAD 4 86 (12.4%) 31 (12.3%) 35 (12.5%)
Total 28 692 (100%) 252 (100%) 280 (100%)

CHF: congestive heart failure
STMI: ST-segment elevated Myocardial infarction
NSTMI: non-ST segment elevated Myocardial infarction
HYPO: hypotension
CAD: coronary artery disease

(a)
ECG

(SessD)

(b)
ECG

(SessI)

(c)
ECG

(SubjI)

(d)
PPG

reconstructed ECG

reference PPG

Fig. 13. A qualitative comparison among the reconstructed ECG signals tested
in (a) SessD, (b) SessI, and (c) SubjI modes respectively, from the 6th session
of the first subject in self-collected database. In (a-c), the black line indicates
the reconstructed ECG and the orange dashed line refers to the reference
ECG. The Pearson’s correlation coefficients for these three cases are 0.937
in SessD, 0.917 in SessI, and 0.869 in SubjI. (d): the corresponding PPG
waveform.

years old. Both of them are Asian. According to the most-
recent medical examinations received by both subjects, none
of them had been diagnosed with any known CVDs or mental
illness. We recorded six 5-min sessions for the first subject and
seven sessions for the second subject in different times over
a two week period. In each session, the subject was asked to
wear two devices, namely, EMAY FDA-clear handheld single-
lead ECG monitor (Model: EMG-10), and CONTEC pulse
oximeter (Model: CMS50E) to record their lead I bipolar ECG
signals4 and finger-tip PPG signals simultaneously. We asked
the subject to wear the PPG sensor on his/her index finger of
the right hand, and attach the electrodes of the ECG sensor
to the palm of the left hand and the back of the right hand.
The subjects were asked to sit in front of a table and put their
arms on the table as motionless and peacefully as possible to
reduce the motion-induced artifacts during the recording time.
The sampling rates of the ECG and PPG sensors are 150 and
60 Hz, respectively. We up-sampled both signals to 300 Hz
via the bilinear interpolation for consistency consideration and
properly aligned the pair of signals.

We evaluate the system performance in the following three
training modes:

• Session Dependent (SessD) mode: Same as the SD mode
we investigated in Section IV-A. F∗ was trained and
tested separately in each session.

• Session Independent (SessI) mode: The sessions of each
subject were first listed chronologically. F∗ was trained
on the first 80% of the sessions and was tested on the
rest of the sessions in order to maximize the temporal
difference of the training and test set.

• Subject Independent (SubjI) mode: We combined the
subject dependent training sets used in SessI mode and
trained a subject independent model to test on the same
test set in SessI mode.

In this experiment, we use the R2R segmentation scheme
and set Lx = 12 in SessD and SessI mode and Lx = 18
in SubjI mode. The cycle segmentation process is guided by
the peak detection algorithms introduced in [22]. The two
algorithms are deployed to detect the R peak of ECG and the

4We measure the lead I ECG signal in this experiment considering the
easiest accessibility among all leads using the handheld ECG sensor.
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TABLE IV
THE SYSTEM PERFORMANCE IN TEST SET OF THE UMD DATABASE IN TERMS OF SAMPLE MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF

RRMSE AND ρ. THE BEST PERFORMED ENTRY IN EACH COLUMN AND TRAINING MODE IS BOLDED FOR BETTER VISUALIZATION.

rRMSE ρ

P QRS T all P QRS T all

UMD Data (SessD)
OLS 0.591 (0.102) 0.230 (0.051) 0.491 (0.103) 0.372 (0.068) 0.620 (0.155) 0.970 (0.013) 0.863 (0.057) 0.926 (0.028)

R2R ridge 0.589 (0.101) 0.229 (0.051) 0.490 (0.105) 0.370 (0.068) 0.623 (0.147) 0.970 (0.013) 0.864 (0.057) 0.926 (0.027)
lasso 0.593 (0.102) 0.235 (0.051) 0.494 (0.107) 0.376 (0.071) 0.618 (0.149) 0.968 (0.013) 0.861 (0.058) 0.924 (0.028)

UMD Data (SessI)
OLS 0.660 (0.070) 0.278 (0.021) 0.569 (0.052) 0.427 (0.047) 0.575 (0.125) 0.966 (0.009) 0.835 (0.039) 0.903 (0.024)

R2R ridge 0.660 (0.071) 0.278 (0.021) 0.567 (0.053) 0.426 (0.049) 0.575 (0.125) 0.966 (0.009) 0.836 (0.039) 0.904 (0.024)
lasso 0.664 (0.073) 0.280 (0.022) 0.568 (0.056) 0.428 (0.051) 0.569 (0.125) 0.965 (0.010) 0.834 (0.041) 0.903 (0.026)

UMS Data (SubjI)
OLS 0.724 (0.058) 0.302 (0.024) 0.591 (0.111) 0.447 (0.046) 0.503 (0.146) 0.956 (0.013) 0.830 (0.044) 0.895 (0.025)

R2R ridge 0.724 (0.059) 0.302 (0.024) 0.591 (0.111) 0.447 (0.046) 0.503 (0.147) 0.956 (0.013) 0.830 (0.044) 0.895 (0.025)
lasso 0.725 (0.059) 0.303 (0.025) 0.592 (0.110) 0.448 (0.047) 0.500 (0.146) 0.956 (0.014) 0.829 (0.045) 0.895 (0.025)

onset point of the PPG signal, respectively. Fig. 13 shows one
example of the reconstructed waveforms from the 6th session
of the first subject. Note that this session is recorded more than
one week after the other sessions. From the qualitative result in
2nd and 3rd rows of Fig. 13, we notice that the reconstructed
signals match well with the reference ECG in all waves in the
condition of long temporal separation from the training set.

Similar to the previous two experiments, we summarized
the average performance in different combinations of training
modes and regression methods and evaluate each combination
in terms of rRMSE and ρ in P, QRS, T waves respectively.
Notice that in general, the system perform best in SessD
mode, followed by SessI and SubjI. Again, this difference
may suggest possible subject-wise difference of the model
parameter b(t), H, or α. Consistent observations in this dataset
also include better performance in T wave than P wave, and
our conjecture remains with the one claimed in Section IV-A.

V. DISCUSSIONS

A. Cycle Segmentation via PPG

We have evaluated the system in Section IV assuming
the availability of the ground truth cardiac cycle information
obtained from the ECG signal. We now examine a more
practical setting when the cycles are estimated solely from the
PPG signal, thereby accounting for the real-world constraint
that the reference cycle information is unavailable.

The MIMIC-III database introduced in Section IV-B was
adopted in this experiment. We segmented the signal according
to the onset points of the PPG signal, considering the onset
point represents one of the most distinct features within the
PPG cycle. We name this segmentation scheme O2O.

To single out the contribution to the reconstruction error
due to the discrepancy in the waveform shape rather than
the misalignment of the ECG peaks, we evaluate O2O after
each reconstructed cycle was post-processed to align with
the original ECG signal. This was done by shifting each
reconstructed ECG cycle in time so that the original and

TABLE V
PERFORMANCE COMPARISON USING O2O AND R2R CYCLE

SEGMENTATION SCHEMES ON THE MIMIC-III TEST DATASET.

Segmentation rRMSE (SD) ρ (SD) rRMSE (SI) ρ (SI)

O2O 0.553 0.823 0.689 0.717
R2R 0.324 0.940 0.599 0.790

reconstructed ECG signals were matched according to their R
peaks. We list the performance metrics in the SD and SI modes
and compare the results with the R2R segmentation in Table V.
Note that ρ = 0.510 when using O2O segmentation without
the peak alignment in the SD mode, and ρ increases to 0.823
once the peak is aligned. The performance statistics reveal
that the shape of the waveform is inferred well, and increased
error in reconstruction by O2O compared with R2R is mainly
due to the misalignment of the signal that has a sample mean
and standard deviation of 0.38% and 3.98% in relative cycle
length, respectively. This observation is consistent across the
SI and SD training modes.

The disease classification experiment was conducted us-
ing the O2O segmentation without the peak alignment. We
observed a comparable classification accuracy of the recon-
structed ECG signal compared with the result when the model
was trained with the R2R segmentation. This observation
indicates that the ECG reconstruction deviation does not affect
the diagnostic power of the reconstructed ECG signal.

B. Limitations and Extensions of the Proposed Methodology

For some subjects with cardiac complications that influ-
ence the morphology of ECG waves, our proposed model
in Section II and the corresponding methodology using DCT
representations have limitations and may not be able to always
faithfully reproduce the ECG signals from PPG, especially
when the model is trained in the SI mode. Fig. 14 shows three
examples of 5-second long reconstructed ECG signals from

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/815258doi: bioRxiv preprint 

https://doi.org/10.1101/815258


12

(a) Subject ID: 42545, Non-ST Segment Elevation; Myocardial Infarction

(b) Subject ID: 55585, Hypotension; Pulmonary Embolis

(c) Subject ID: 73971, Coronary Artery Disease

Recon. ECG (SI)
Ref. ECG 

Fig. 14. Three examples of the reconstructed ECG signal of low performance
in presence of difference pathologies of the ECG signal. The reconstructed
ECGs fail to capture the waveform during the elevation of the T wave (a, b,
c), the T wave (b, c), the P wave (c).

the MIMIC-III database using a subject independent model in
MIMIC-III database that do not fully capture some detailed
characteristics of the original ECG signal. Some other cases
that may influence the system performance include motion-
induced artifacts and loose contact artifacts in PPG recordings
under ambulatory conditions. With a more sophisticated train-
ing system and the availability of a larger dataset, we expect
such limitations can be addressed.

In order to provide more model flexibility in reconstruction,
we foresee that the mapping F is not limited to a linear
transform but can be generalized to nonlinear mappings or
transforms (for example, neural networks) and harness more
patient data and medical knowledge. Also, the analysis chan-
nel of the system is not limited to DCT but can be of
other analytical forms, including discrete wavelet transform,
discrete Fourier transform, or other parameterized mapping
jointly learned with F. With further exploration of datasets
with detailed profiles of subjects and larger size of data, a
more complex model can be learned based on biomedical,
statistical, and physical meanings of the signals to capture the
relation of PPG and ECG better. In addition, since ECG is
a more adequate and important indicator than PPG for many
cardiovascular diseases (CVDs), it has the potential that the
developed model, along with the reconstructed ECG, has a
significant implication on CVD inference.

VI. CONCLUSION

This paper has presented a learning-based approach to
reconstruct ECG signals from PPG signals based on the
synergy of physical model, biomedical knowledge, and data.
The algorithm was successfully evaluated in both subject
dependent and subject independent fashions on two widely-
adopted databases as well as a self-collected database. We
have cross-validated the system’s hyper-parameters, tested the
CVD diagnosis performance using the reconstructed ECG
signal, and verified the algorithm’s accuracy and consistency
at a fine ECG waveform level. As a pilot study, this work
demonstrates that with a signal processing and learning system
that is designed synergistically, we can precisely reconstruct
ECG signal from the more easily obtainable PPG data by
exploiting the relation of these two types of cardiovascular
related measurement.
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