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Abstract 1 

Analysis of rare variants in family-based studies remains a challenge.  To perform a  region/set-2 

based association analysis of rare variants in family-based studies, we propose a general 3 

methodological framework that integrates higher criticism, maximum, SKATs, and burden 4 

approaches into the family-based association testing (FBAT) framework. Using the haplotype 5 

algorithm for FBATs to compute the conditional genotype distribution under the null 6 

hypothesis of Mendelian transmissions, virtually any association test statistics can be 7 

implemented in our approach and simulation-based or exact p-values can be computed 8 

without the need for asymptotic settings. Using simulations, we compare the features of the 9 

proposed test statistics in our framework with the existing region-based methodology for 10 

family-based studies under various scenarios. The tests of our framework outperform the 11 

existing approaches. We provide general guidelines for which scenarios, e.g., sparseness of 12 

the signals or local LD structure, which test statistic will have distinct power advantages over 13 

the others. We also illustrate our approach in an application to a whole-genome sequencing 14 

dataset with 897 asthmatic trios. 15 
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Introduction 1 

In family-based association studies, the concept of Mendelian transmissions can be utilized to 2 

construct association tests that are robust against genetic confounding (Transmission 3 

Disequilibrium Tests (TDTs) 1 or Family-based Association Tests (FBATs) 2). This feature of 4 

family-based association tests was fundamental to establish them as a popular tool in 5 

association mapping since the days of candidate gene studies. The robustness of the approach 6 

largely out-weighted the requirement of family data, i.e., having to recruit additional related 7 

study subjects, and reduced statistical power compared to population-based cohorts with the 8 

same sample size. Testing strategies have been proposed that allowed the incorporation of 9 

the association information at the population-level in family-based designs without 10 

compromising the robustness of the test statistic 3–7. 11 

As genome-wide association studies (GWAS) became a standard research tool, and the 12 

multiple testing problem had to be addressed at a genome-wide level, researchers started to 13 

emphasize statistical power in their choice for study designs. Power and study design 14 

considerations substantially contributed to making population-based designs approaches the 15 

most popular choice in association analysis. 16 

Now, as whole-genome sequencing (WGS) studies are replacing chip-based GWAS, region-17 

based rare variant analysis approaches have moved to the center of the statistical 18 

methodology development, as, even for very large sample sizes, the power of single locus 19 

association analysis will be too small when the minor allele is rare. Region-based approaches 20 

are motivated by the idea that, if we can combine "association signals" across a pre-defined 21 

region in a suitable way, a stronger genetic signal could be assessed by a suitable test statistic, 22 

and the resulting region-based association test would have increased statistical power. At the 23 

same time, the multiple testing problem could become less severe as fewer association tests 24 
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are computed. The major statistical challenges for region-based tests are to identify suitable 1 

ways to combine the genetic information across the pre-specified region, to 2 

incorporate/estimate the correlation between the selected rare variants in the region-based 3 

test statistic, and to select a suitable test statistic. 4 

For population-based designs, based on assumptions about the alternative 5 

hypothesis/distribution of disease susceptibility loci (DSLs) and their effect directions, 6 

numerous region-based tests have been proposed, e.g., burden tests and variance component 7 

tests 8,9. However, population stratification is a potential problem in population-based designs 8 

that can be even more severe in the analysis of rare variants. 9 

For family-based designs, the popular burden tests and the SKAT approach have been 10 

translated to the FBAT framework 10,11. As with their population-based equivalents, these two 11 

approaches estimate the correlation between the genetic loci empirically. This, especially for 12 

rare variant data, can be problematic, as the rare variant allele counts are small, and the 13 

empirical estimates can be affected by numerical instabilities. Furthermore, the application of 14 

asymptotic theory may not provide accurate results here. Other recent approaches are based 15 

on mixed models and can, theoretically, analyze unrelated and related samples 12. 16 

As an other alternative to the transmission-based FBAT approach, methods that compare the 17 

allele frequencies between affected and unaffected individuals within families have been 18 

suggested, e.g., Generalized Disequilibrium Test (GDT) for single variant analysis 13. As they 19 

can incorporate all available phenotypic and genetic information within one pedigree, they 20 

can be more powerful than the corresponding FBAT analysis. However, they require the 21 

assumption that the allele frequencies and the genetic variance for all members of a pedigree 22 

are equal under the null hypothesis. This assumption can be violated in the presence of 23 
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population substructure within the founders of the families or when there are departures 1 

from Hardy Weinberg equilibrium 14. None of these assumptions is required for the FBAT 2 

approach to be valid. For region-based analysis, the Rare-Variant Generalized Disequilibrium 3 

Test (RV-GDT) extension has been proposed 15. 4 

In this communication, we will exclusively focus on transmission-based analysis approaches 5 

to construct association tests that are robust against confounding. We propose a general 6 

framework for region-based rare variant analysis in extended pedigree/nuclear families that 7 

is based on the FBAT approach. Multiple offspring per family may be available, founder/phase 8 

information can be missing, and phenotypes can be dichotomous or quantitative. In contrast 9 

to previous approaches for region-based analysis in population- and family-based designs, the 10 

joint distribution of the rare variants in the region is obtained analytically under the null 11 

hypothesis, conditioning on the sufficient statistic, using the haplotype algorithm for FBATs 12 

16,17. Based on the conditional genotype distribution, it is straightforward to implement region-13 

based FBATs, e.g., multivariate tests, burden tests, SKAT 9,11, and higher criticism approaches 14 

18–20. As the joint distribution of the rare variants is obtained analytically and can efficiently be 15 

sampled from, the significance of the test statistics in our framework can be obtained either 16 

by simulations or the construction of the exact distribution21. This flexibility of our approach 17 

enables the implementation of virtually any region/set-based test without the need for any 18 

asymptotic assumptions or approximations.  We illustrate the implementation of higher 19 

criticism approaches, maximum statistics, SKATs and burden tests in our framework.   20 

For different scenarios, e.g., regions with sparse signals, varying local Linkage Disequilibrium 21 

(LD) structure, we compare our proposed FBAT framework to existing methodology, using 22 

extensive simulation studies.  Our simulation results support our theoretical considerations 23 

that our testing framework provides a substantial improvement over the existing 24 
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methodology in terms of statistical power and robustness against population substructure.  1 

We also develop general recommendations for which choice of the test statistic is preferable 2 

for which scenario. Furthermore, we also applied our methodology framework to a whole-3 

genome sequencing study for childhood asthma with 897 trios.  4 

Methods 5 

In a family-based WGS association study, genotype data for rare variants are available for a 6 

set of marker loci that are in close physical proximity and define a genomic segment that is 7 

suitable for region-based association analysis. The genotype information may be available for 8 

multiple offspring as well as for the parents. For the 𝑖-th nuclear family, we introduce the 9 

𝑝 × 𝑛𝑖  genotype matrix 𝑋𝑖 and the 𝑛𝑖  dimensional phenotype vector 𝑇𝑖, where 𝑛𝑖  denotes the 10 

number of offspring in the 𝑖-th nuclear family, and 𝑝 denotes the number of variants in the 11 

analysis region. We regard 𝑋𝑖 as random while 𝑇𝑖 is fixed in the FBAT approach. Below, we 12 

propose a possible set of test statistics that can capture the potential association between the 13 

offspring genotype data and the phenotypes under various conditions. 14 

Simulation-based significance testing 15 

For each region, using the haplotype algorithm for FBAT 16,17, we derive the conditional 16 

distribution of offspring genotypes 𝑋𝑖 in the 𝑖-th nuclear family under the null hypothesis, 17 

given the sufficient statistic 𝑆𝑖 for the possible missing founder genotypes 22. The sufficient 18 

statistic approach utilizes parental genotypes if they are available. The knowledge about the 19 

conditional genotype distribution allows constructing association tests that are robust against 20 

population stratification and admixture. Based on this conditional genotype distribution, it is 21 

straightforward to compute the first two moments of commonly used test statistics under the 22 

null hypothesis of no association and derive the asymptotic distribution. However, as the 23 
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analysis of rare variant data leads to scenarios where the application of asymptotic theory 1 

does not provide reliable approximations, simulation-based or even exact p-values 21 are 2 

preferred. Here, we propose to evaluate association p-values based on a sufficiently large 3 

number of simulated draws from the null distribution. This procedure can be combined with 4 

adaptive permutation/simulation-based p-value techniques. In this context, we recommend 5 

using stopping rules that are nearly optimal in terms of the required number of simulations 23.   6 

This approach, therefore, also allows our testing framework to incorporate test statistics 7 

where the (asymptotic) distribution is intractable or cumbersome, e.g., maximum statistics or 8 

higher criticism approaches. 9 

 Test statistics 10 

All test statistics under consideration are based on the following two objects. For the 𝑖-th 11 

family, we define the 𝑝-dimensional vector of Mendelian residuals 𝑈𝑖 = (𝑋𝑖 − 𝐸[𝑋𝑖|𝑆𝑖])𝑇𝑖. 12 

Also, we define the corresponding 𝑝 × 𝑝 variance matrix 𝑉𝑖 = 𝑉𝑎𝑟(𝑈𝑖|𝑆𝑖, 𝑇𝑖). For both 13 

objects, the moments are computed under the null hypothesis, based on the sufficient statistic 14 

𝑆𝑖. 15 

16 
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Burden-based approaches 1 

Burden-type FBATs can be implemented by specifying a 𝑝-dimensional weight vector 𝑊 that 2 

collapses/summarizes the rare variant information of the region into a single scalar value. The 3 

specification of the weight vector 𝑊 requires assumptions about the effect direction and its 4 

effect size. In this context, the contribution to the FBAT statistic of the 𝑖-th family is then given 5 

by  6 

𝑈𝑖
∗ = 𝑊𝑇(𝑋𝑖 − 𝐸[𝑋𝑖|𝑆𝑖])𝑇𝑖 7 

The corresponding FBAT-statistic for the simulation-based testing is computed by 8 

𝐹𝐵𝐴𝑇𝑏𝑢𝑟𝑑𝑒𝑛 = (∑ 𝑈𝑖
∗

𝑖 )2. We note that for this burden test, it would be possible as well to 9 

compute an asymptotic p-value by also computing/estimating the corresponding variance.  10 

Variance component/SKAT approaches 11 

As an alternative to burden/collapsing association tests, SKAT/variance-component based 12 

region tests have been developed for rare variant data 9. They have the advantage that they 13 

do not require any assumptions about the effect configuration at the rare variant loci under 14 

the alternative hypothesis, but they are not as powerful as burden/collapsing approaches if 15 

one is certain about the alternative hypothesis. We define the general statistic 16 

𝐹𝐵𝐴𝑇𝑣𝑐 = 𝑈𝑇𝑊𝑈 17 

where 𝑈 = ∑ 𝑈𝑖𝑖  and 𝑊 is a fixed 𝑝 ×  𝑝 weight matrix. While, in the scenario of affected 18 

offspring trios and a diagonal weight matrix 𝑊, this test statistic equals the FB-SKAT statistic 19 

11, Ionita-Laza et al. assess significance based on asymptotic results that require the empirical 20 

estimation of the variance/covariance matrix for the rare variants, which, given the sparseness 21 
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of rare variant data, can become problematic.  In our framework, the p-value of the test 1 

statistic is obtained based on simulations from the conditional genotype distribution.  2 

If we set 𝑊 = 𝑉−1, where 𝑉 = ∑ 𝑉𝑖𝑖 , we obtain the multivariate FBAT 24. The multivariate 3 

FBAT was designed for common variants, and the asymptotic p-values also require an 4 

empirical estimate of the correlation matrix. Again, for rare variants, this can lead to unreliable 5 

results, making the implementation of the multivariate FBAT in our proposed framework 6 

preferable.  7 

Higher criticism and maximum statistic 8 

Besides the commonly used burden and variance component approaches, we introduce the 9 

higher criticism and maximum statistic for region-based analysis in family-based studies. Both 10 

approaches are designed to identify sparse alternatives and have been introduced to genetic 11 

association studies of unrelated individuals recently 18,20. 12 

Define the normalized residuals 
𝑈𝑗

√𝑉𝑗𝑗
, 𝑗 = 1, … , 𝑝 and denote the corresponding association p-13 

value based on the asymptotic marginal normal distribution by 𝑞𝑗. Based on the available 14 

amount of information per variant, e.g., the number of informative transmissions/families, we 15 

restrict the set of variants to a subset of variants where the marginal variance is large enough 16 

(e.g., we require at least 5 informative nuclear families). Denote the number of variants in this 17 

subset by 𝑝′. Given the ordered p-values 𝑞(1) ≤ 𝑞(2) ≤ ⋯ ≤ 𝑞(𝑝′), we define the HC statistic 18 

as 19 

𝐹𝐵𝐴𝑇𝐻𝐶 = max
𝐽

𝑗
𝑝′

− 𝑞(𝑗)

√𝑞(𝑗)(1 − 𝑞(𝑗))
 20 
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Here, the index set 𝐽 can be {1, … ,
𝑝′

2
} or {1, … , 𝑝′}, depending on assumptions about the 1 

underlying genetic architecture.  2 

It is important to note that, while 𝐹𝐵𝐴𝑇𝐻𝐶  contains a transformation based on the single 3 

variant asymptotic distribution, the assessment of its significance based on simulations from 4 

the conditional distribution remains a valid approach regardless of whether the assumptions 5 

that motivated the transformation hold.   6 

The second approach to detect spare signals in the tested genomic region is the MAX statistic 7 

which is simply defined as  8 

𝐹𝐵𝐴𝑇𝑀𝐴𝑋 = max
1≤𝑗≤𝑝

|
𝑈𝑗

√𝑉𝑗𝑗

| 9 

The theory related to the higher criticism/max statistic in the setting of unrelated case-control 10 

data and sparse signals developed in Mukherjee et al. 20 can be transferred to family-based 11 

studies/FBATS.  In Appendix A, we derive how the theory in Mukherjee et al. 20 can be applied 12 

to the FBAT framework in the scenario of affected offspring trios. The corresponding 13 

optimality results for sparse signal scenarios motivate the application of these test statistics 14 

to rare variants in sequencing studies. 15 

Finally, we note that it is, of course, possible to set up an omnibus statistic that is based on 16 

the maximum of multiple test statistics described above. 17 

Results 18 

In this section, we describe the results of two simulation studies and an analysis of a whole-19 

genome sequencing study for childhood-asthma with 897 affected offspring trios.  20 

 21 
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Simulation studies 1 

We studied the performance of our proposed test statistics in two extensive simulation 2 

studies. In both studies, we compared the Type I error and power with the existing 3 

methodology for family-based region association analysis. We restricted all simulations to the 4 

scenario of trios with an affected offspring. However, it is important to note that our 5 

framework can be applied to any nuclear family and phenotype distribution. For the test 6 

statistics 𝐹𝐵𝐴𝑇𝑏𝑢𝑟𝑑𝑒𝑛 and 𝐹𝐵𝐴𝑇𝑣𝑐, we applied uniform weights. In the following, we will 7 

denote the test statistics 𝐹𝐵𝐴𝑇𝑏𝑢𝑟𝑑𝑒𝑛, 𝐹𝐵𝐴𝑇𝑣𝑐, 𝐹𝐵𝐴𝑇𝐻𝐶, and 𝐹𝐵𝐴𝑇𝑀𝐴𝑋 by Burden, SKAT, HC, 8 

and MAX. 9 

Genetic regions with unphased data 10 

We extracted haplotypes for the CEU and the GBR subpopulations from the 1000 Genomes 11 

Project 25, consisting of 30 and 50 consecutive rare variants with a minor allele frequency 12 

(MAF) below 3%. Based on these haplotypes, we generated genotype data for trios using 13 

Mendelian transmissions. Using a standard logistic disease model with a disease prevalence 14 

of ≈ 10%, we simulated offspring affection status and collected 𝑛 = 1,000 affected offspring 15 

trios. This simulation study is similar to the simulation studies described in the existing 16 

literature 15,26.  17 

We compared our test statistics with the GTDT 26 and the RV-GDT  15. The GTDT 26 offers five 18 

different test statistics for region-based affected offspring trio analysis, designed for different 19 

modes of inheritance. The test statistics require phased haplotype data. If the phase 20 

information is not available, this information is reconstructed up to small uncertainties. We 21 

considered the test statistics GTDT-AD, GTDT-DOM, and GTDT-CH in our study. The RV-GDT 15 22 

describes a generalization of the single variant GDT 13 for multiple variants in a genetic region. 23 

The RV-GDT can be applied to arbitrary pedigrees where affected, and unaffected samples are 24 
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collected; members can be missing. The test statistic compares the genotype counts between 1 

affected and unaffected members and corrects for the relatedness using the 2 

estimated/reported kinship coefficients. We note that this implies that the phenotype 3 

information for parents must be available, whereas the classical TDT/FBAT test for offspring 4 

trios does not require this information. For comparison, we included the test MAX-BF that 5 

tests if at least one single variant FBAT statistic reached the Bonferroni-corrected significance 6 

level corresponding to the number of variants 𝑝 in the region. The corresponding single variant 7 

p-values were evaluated using asymptotic theory due to computational reasons. 8 

To check the Type I error rates and the robustness against population stratification; we 9 

considered a null hypothesis simulation where no genetic variant is associated with the 10 

affection status and three different population admixture scenarios (Table 1). In these 11 

admixture scenarios, we generated one fixed parent based on the CEU haplotypes and the 12 

other parent based on the GBR haplotypes. The affection status of the parents differed across 13 

the three admixture scenarios. For the power analysis, we simulated six different scenarios 14 

where the number of causal variants and corresponding effect sizes differ (Table 2). In scenario 15 

5, we picked very rare and independent causal variants with a MAF below 1%, and in scenario 16 

6 we chose causal variants that are in strong LD with multiple other variants. All results are 17 

based on 1,000 replicates. 18 

In Table 1, we observe that all methods control the Type I error appropriately. The only 19 

exception is the RV-GDT in the scenario of population admixture with discordant parental 20 

phenotypes (adm2 and adm3, Table 1). This is expected, as the GDT/RV-GDT test compares 21 

the frequencies between affected and unaffected family members and cannot distinguish 22 

between association and admixture in the parents. We also note that the RV-GDT computes 23 

a one-sided p-value, which explains the deflation/inflation behavior, depending on the 24 
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parental phenotypes. The power results in Table 2 demonstrate the advantages of non-burden 1 

tests in specific scenarios. The power results are also illustrated in Figures 1 and 2. The SKAT 2 

statistic shows the highest power in the first three scenarios and outperforms the other tests. 3 

However, the MAX and HC statistics also show substantial power. The results for scenario 4 4 

are comparable between SKAT, MAX, and HC. In scenario 5, the HC statistics achieves the 5 

highest power, which is supported by our theoretical considerations as well (see Appendix A). 6 

In the last scenario 6, all tests achieve substantial power, as expected, due to the LD structure 7 

that pushes power. The most powerful tests here are SKAT and RV-GDT, but MAX and HC test 8 

statistics achieve similar results. If we have different effect directions (scenario 2 and 4), the 9 

burden test loses power compared to the consistent effect direction scenarios 1 and 3, which 10 

is expected. The FBAT Burden test and GDT-AD have almost no power in scenarios 4 and 5. It 11 

is important to note that the GTDT-AD and the FBAT burden test are essentially based on the 12 

same test statistic idea, the only difference lies in the fact that the GTDT assigns haplotypes 13 

(with possible error) and our approach uses the robust conditional genotype distribution 14 

computed by the FBAT haplotype algorithm. 15 

There is a substantial difference between the power of the MAX statistic and the MAX-BF 16 

statistic in all scenarios, because the Bonferroni correction is conservative, and the p-value of 17 

the MAX statistic is evaluated based on the joint conditional genotype distribution. We note 18 

that this difference could be even larger if the genome-wide significance levels for region- and 19 

single variant based testing are considered.  20 

 21 

 22 

 23 

 24 
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Dense genetic regions with phased data 1 

For our second set of simulation studies, we utilized the 1006 EUR population haplotypes from 2 

the 1000 Genomes Project along 1,000 consecutive rare genetic variants with MAF below 3%. 3 

In this simulation study, we consider a large number of variants in combination with a sparse 4 

signal, which means a small subset of causal variants that are not in strong LD with any other 5 

variants. We simulated affected offspring trios as described in the first simulation study but 6 

also stored the phased haplotypes for all members of the trio. In the scenario where the 7 

haplotypes are observed, the conditional distribution identified by the FBAT haplotype 8 

algorithm equals the distribution where both parents transmit one of the observed haplotypes 9 

with equal probability of 0.5. We compared the performance of the FBAT, the GTDT, and the 10 

RV-TDT BRV 27 statistics to demonstrate the potential advantage of non-burden tests in the 11 

presence of sparse signals. Again, we also included the MAX-BF test, where we considered the 12 

Bonferroni corrected significance level based on 𝑝 = 1,000 tests. As mentioned above, the 13 

knowledge about the phased haplotypes is the preferred setting for the GTDT. Also, the RV-14 

TDT requires phased haplotypes 27. We considered a null hypothesis scenario and four 15 

different power scenarios (Table 3 and Figure 3). For the null hypothesis simulation and the 16 

first two power scenarios we simulated 1,000 trios; the last two power scenarios are based on 17 

10,000 trios. The four power scenarios include causal variants that are in almost no LD with 18 

other variants, and the number of causal variants is small compared to the overall number of 19 

𝑝 = 1,000 variants. All results are based on 1,000 replicates, and the p-values for all test 20 

statistics were evaluated empirically based on the same 1,000 draws from the conditional 21 

haplotype distribution. The results for this simulation are also visualized in Figure 3. 22 

In Table 3, we observe that all test statistics control the Type I error appropriately. Since all p-23 

values are evaluated empirically based on the conditional haplotype distribution by 24 
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simulation, this is expected. In the first power scenario 1, the MAX test statistic achieves the 1 

highest power as we simulated a sparse and rare, but strong signal in the genetic region, 2 

consisting of two rare variants. The HC test statistic also achieves substantial power, whereas 3 

all other tests (except MAX-BF) are almost powerless in this scenario. In the second scenario, 4 

where the MAF of the two causal variants is much higher, the MAX test statistics still 5 

outperforms the other tests, but also the SKAT and the HC test statistics show good 6 

performances. In scenario 3, where many very rare causal variants have a relatively small 7 

effect size, the HC is the most powerful test. This is in line with the results in Mukherjee et al. 8 

20 that describe a lower detection boundary in the mild sparse regime compared to the MAX 9 

test statistics. However, the RV-TDT BRV and MAX test statistic also achieve substantial power 10 

in this scenario. The power behavior differs more in the last scenario 4, where the effects are 11 

pointing in different directions. Here, the MAX and HC statistics have a significantly increased 12 

power compared to the other tests, while the HC test statistic is the most powerful one. We 13 

note that the FBAT burden and the GTDT-AD test are very close to the nominal level in 14 

scenarios 1, 2, and 4. Both tests are equivalent since the test statistics are the same. 15 

Overall, again, the MAX test shows higher power than the MAX-BF tests, as described in the 16 

context of the first simulation study. 17 

Real data analysis 18 

To demonstrate the applicability and the advantages of our proposed framework, we analyzed 19 

a whole-genome sequencing dataset consisting of 897 complete asthmatic trios from Costa 20 

Rica 28. After standard quality control, including Mendelian error rates, we excluded all 21 

variants with a MAF above 5%. The resulting 27,345,734 non-monomorphic variants were 22 

partitioned into approximately 547,000 consecutive windows of 50 rare variants. Other 23 

partitioning approaches could be considered here 29,30, but, as the focus of this data analysis 24 
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was to demonstrate the feasibility of our approach, we did not explore different window-1 

strategies here.  2 

For each window, we performed the Burden, SKAT, MAX, and HC test, using affection status 3 

as the phenotype. We evaluated the p-values by simulation, where we used an adaptive 4 

heuristic that increases the number of simulations if the estimated p-value is close to the 5 

minimum possible value. The smallest possible p-value was 𝑝 = 10−9, since the number of 6 

simulations was truncated at 109. In Figure 4, we plotted the corresponding quantile-quantile-7 

plot. The plot indicates that the test statistics control the Type I error rate but can also identify 8 

potential findings.  9 

Based on the approximately 4 ∗ 547,000 tests and a False Discovery Rate at 𝛼 = 0.05 31, our 10 

approach identified three single significant regions on Chromosome 1, 12, and 21, as well as 11 

multiple consecutive significant regions on Chromosome 10. The significance of the three 12 

regions on Chromosomes 1, 12, and 21 was declared by the Burden test, whereas the single 13 

variant FBAT p-values within the regions were not in the range of genome-wide significance. 14 

The other regions on Chromosome 10 were identified by the MAX, HC, and SKAT tests. The 15 

lowest p-value of 10−9 was reached by the SKAT test. For all these regions, the Burden test 16 

did not reach the magnitude of genome-wide significance. This shows the benefits of 17 

combining different test statistics to identify distinct genetic signal structures. 18 

 19 

 20 

Discussion 21 

In this manuscript, we propose a general framework for the region-based association analysis 22 

of sequencing datasets with family-based designs. The framework incorporates burden tests, 23 

SKAT, maximum and higher criticism approaches, and, given the flexibility of the framework, 24 
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any future approach can straightforwardly be implemented. In contrast to previously 1 

published approaches, the joint genotype distribution along the loci is not obtained by 2 

empirical estimates, but via the haplotype algorithm for FBATs 16,17. This allows our proposed 3 

testing framework for FBATs to assess the significance of an arbitrary test statistic based on 4 

simulations or based on the exact distribution. This approach is enabled by the recent 5 

improvements in the FBAT haplotype algorithm 16, which reduces the computational burden 6 

of the original approach by several magnitudes. Our simulation results illustrate that the 7 

optimal test for the region-based analysis depends on the specific genetic architecture of the 8 

disease, and any WGS analysis relying on just one single test statistic may not detect all 9 

associations contained in the data. While dense signals with consistent effect directions can 10 

be captured by burden tests, different effect directions and less dense signals can be identified 11 

by SKAT approaches. If the signal becomes more separated and sparser, the MAX and HC 12 

approaches can be the most powerful tests.  13 

The proposed implementation of the simulation-based p-values requires the user to pre-select 14 

the number of simulations that FBAT performs for each test. The computational burden can 15 

be decreased by adaptive strategies 23. The applications of the proposed analysis framework 16 

to simulated and real data illustrate that the theoretically expected advantages are also of 17 

practical relevance and that simulation-based p-values are not prohibitive in WGS settings. A 18 

subject of future research will be to integrate the existing FBAT approaches to multivariate 19 

phenotypes, longitudinal data, age at onset 32,32–34, gene-environmental interactions, and 20 

testing strategies into the proposed framework 3,6,7.  21 

 22 

 23 
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Appendix A: Detection of sparse signals 1 

We consider the scenario of an affected offspring trio.  Both parental genotypes are observed 2 

along with the 𝑝 variants in the analysis region. As noted in Chen et al. 26, if there is no variant 3 

where all three observed genotypes (mother, father, offspring) are heterozygous, the phase 4 

information can be recaptured from the observed unphased genotype data. However, as 5 

described in Hecker et al. 14, treating inferred haplotypes as observed haplotypes can lead to 6 

misspecification.  7 

Nevertheless, more specifically, if there is no variant for which both parental genotypes are 8 

heterozygous, haplotypes can be phased, and the resulting conditional genotype distribution 9 

obtained by the FBAT haplotype algorithm equals the conditional distribution where we treat 10 

the haplotypes as observed. If we restrict the genetic data to rare variants, this is true for most 11 

nuclear families. In addition, with relatively high probability, at least 1 parent has only 1 minor 12 

allele in the genetic region.  13 

Let us denote the phased parental mating type for such a trio by 𝐺 = (ℎ1
𝑀, ℎ2

𝑀) 𝑥 (ℎ1
𝐹, ℎ2

𝐹). The 14 

possible offspring genotypes are denoted by 𝑋1 = (ℎ1
𝑀 + ℎ1

𝐹),  𝑋2 = (ℎ1
𝑀 + ℎ2

𝐹), 𝑋3 =15 

(ℎ2
𝑀 + ℎ1

𝐹) and 𝑋4 = (ℎ2
𝑀 + ℎ2

𝐹). We assume the following, commonly used, disease model 16 

that describes the conditional offspring genotype distribution 17 

𝑃(𝑋𝑖|𝑇 = 1, 𝐺) =
exp(𝛽𝑇𝑋𝑖) 

∑ exp(𝛽𝑇𝑋𝑗)4
𝑗=1

 18 

where the 𝑝 dimensional vector 𝛽 describes the genetic effects of the variants in the region. 19 

If we denote the inherited offspring haplotypes by (ℎ𝑀, ℎ𝐹), this model factors into the 20 

product of the two likelihoods  21 
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𝑃(ℎ𝑔 = ℎ𝑗
𝑔

|𝑇 = 1, 𝐺) =
exp (𝛽𝑇ℎ𝑗

𝑔
)

exp(𝛽𝑇ℎ1
𝑔

) + exp (𝛽𝑇ℎ2
𝑔

)
,    𝑗 = 1,2, 𝑔 = 𝑀, 𝐹 1 

Since the haplotype data is sparse as described above, this setting matches the scenario of 2 

Weakly Correlated Designs that is described in the paper by Mukherjee et al. 20 about sparse 3 

binary regression (Definition 4.1). They showed that in the sparse regime, the higher 4 

criticism and the maximum statistic can identify sparse alternatives efficiently (see Theorem 5 

7.4).  6 

Although this motivates the application to affected offspring trios, the statistics can be 7 

applied in all FBAT scenarios. The Type I error is preserved because we utilize a simulation-8 

based approach. 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Figures 1 

 2 

Figure 1. Power results in six different scenarios for genetic regions consisting of 30 variants at a significance 3 
level of 𝛼 = 0.05. All results based on 1,000 replicates. 4 
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 1 

Figure 2. Power results in six different scenarios for genetic regions consisting of 50 variants at a significance 2 
level of 𝛼 = 0.05. All results based on 1,000 replicates. 3 
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 1 

Figure 3. Power results for four different scenarios for genetic regions consisting of 1,000 variants at a 2 
significance level of 𝛼 = 0.05. All results based on 1,000 replicates. 3 
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 1 

Figure 4. Real data analysis of 897 asthmatic offspring trios in a WGS study. Quantile-quantile plot for Burden, 2 
SKAT, MAX, and HC test statistics based on approximately 547,000 windows of 50 consecutive rare variants. 3 
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Tables 1 

  FBAT GTDT RV-GDT 

  Burden SKAT MAX HC MAX-

BF 

GTDT-

AD 

GTDT-

DOM 

GTDT-

CH 

RV-GDT 

𝒑 = 𝟑𝟎           

 null 4.7% 5.4% 5.7% 5.0% 2.9% 5.2% 5.6% 5.2% 4.4% 

 adm1 5.7% 5.5% 4.4% 5.3% 3.0% 6.2% 5.3% 5.4% 5.7% 

 adm2 4.8% 4.7% 3.9% 4.1% 2.3% 5.1% 6.2% 5.0% 0.0% 

 adm3 4.2% 4.6% 3.2% 4.0% 2.0% 4.5% 5.1% 4.9% 99.6% 

𝒑 = 𝟓𝟎           

 null 3.1% 3.6% 3.7% 4.0% 2.0% 3.4% 3.5% 3.8% 4.4% 

 adm1 4.3% 5.2% 4.0% 3.5% 1.2% 4.7% 4.8% 5.2% 4.0% 

 adm2 4.1% 4.4% 4.8% 4.7% 2.4% 4.0% 5.3% 4.9% 0.0% 

 adm3 4.5% 5.4% 6.4% 5.1% 2.7% 4.7% 4.5% 5.2% 35.4% 

Table 1. Type I errors at a significance level of 5% for the FBAT, GTDT and RV-GDT statistics. We considered four 2 
scenarios, separately for 𝑝 = 30 and 𝑝 = 50 variants. All results based on 1,000 replicates. 3 
null: no association between genetic variants and phenotype, no population admixture 4 
adm1: 1 parent generated from CEU haplotypes, 1 parent generated from GBR haplotypes. Parents unaffected, 5 
offspring affected. 6 
adm2: 1 parent generated from CEU haplotypes, 1 parent generated from GBR haplotypes. CEU parent 7 
affected, GBR parent unaffected, offspring affected. 8 
adm3: 1 parent generated from CEU haplotypes, 1 parent generated from GBR haplotypes. CEU parent 9 
unaffected, GBR parent affected, offspring affected. 10 
 11 
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  FBAT GTDT RV-GDT 

  Burden SKAT MAX HC MAX-BF GTDT-

AD 

GTDT-

DOM 

GTDT-

CH 

RV-GDT 

𝒑 = 𝟑𝟎 1 32.2% 87.9% 77.6% 79.2% 72.0% 32.7% 39.7% 17.2% 45.5% 

 2 19.2% 85.4% 75.1% 76.9% 69.7% 19.7% 21.5% 10.7% 27.4% 

 3 20.9% 83.7% 72.5% 73.1% 68.2% 21.9% 27.0% 11.0% 32.7% 

 4 7.1% 48.0% 48.8% 48.7% 41.4% 7.7% 8.7% 5.3% 0.17% 

 5 11.3% 11.5% 32.6% 39.5% 24.8% 11.6% 13.7% 7.5% 18.8% 

 6 65.9% 82.3% 71.5% 77.8% 64.2% 67.5% 29.1% 13.4% 77.2% 

𝒑 = 𝟓𝟎 1 50.2% 90.8% 77.8% 80.9% 67.9% 51.3% 31.8% 17.9% 64.1% 

 2 24.0% 88.3% 73.5% 75.3% 64.9% 25.2% 12.1% 9.9% 35.6% 

 3 32.9% 83.4% 68.6% 70.0% 61.3% 33.4% 18.9% 11.7% 47.6% 

 4 8.2% 50.6% 43.3% 45.8% 34.3% 8.7% 4.9% 6.4% 0.7% 

 5 8.3% 11.0% 26.8% 31.4% 17.9% 8.5%  9.0% 7.6% 13.5% 

 6 72.6% 84.9% 69.3% 78.5% 58.0% 73.7% 21.9% 13.5% 83.3% 

Table 2. Power estimates at a significance level of 5% for the FBAT, GTDT and RV-GDT statistics. We considered 1 
six scenarios, separately for 𝑝 = 30 and 𝑝 = 50 variants. All results based on 1,000 replicates. 2 
scenario 1: three causal variants, effect sizes 0.4| log10(𝑀𝐴𝐹) |, same direction 3 
scenario 2: three causal variants, effect sizes 0.4| log10(𝑀𝐴𝐹) |, different direction 4 
scenario 3: two causal variants, effect sizes 0.4| log10(𝑀𝐴𝐹) |, same direction 5 
scenario 4: two causal variants, effect sizes 0.4| log10(𝑀𝐴𝐹) |, different direction 6 
scenario 5: four very rare causal variants, effect size 1.0, same direction 7 
scenario 6: three causal variants, effect sizes 0.4| log10(𝑀𝐴𝐹) |, same direction, in strong LD with other 8 
variants. 9 
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 1 

 2 

 3 

  FBAT GTDT RV-TDT 

  Burden SKAT MAX HC MAX-BF GTDT-

AD 

GTDT-

DOM 

GTDT-

CH 

RV-TDT 

BRV 

𝛼 = 0.05 null 5.2% 4.5% 3.9% 5.0% 0.7% 5.2% 2.5% 5.9% 5.5% 

 1 5.6% 14.5% 81.2% 45.0% 56.0% 5.6% 1.7% 4.1%  8.0% 

 2 5.6% 85.0% 94.9% 80.8% 85.2% 5.6% 1.5% 6% 2.1% 

 3 43.8% 14.2% 67.4% 82.3% 59.7% 43.8% 3.3% 5.2% 56.2% 

 4 7.1% 6.3% 51.9% 60.4% 45.8% 7.1% 2.8% 4.1% 12.0% 

𝛼 = 0.01 null 1.3% 1.5% 0.7% 1.2% 0.0% 1.3% 0.4% 1.1% 1.3% 

 1 1.3% 3.4% 61.2% 39.9% 33.0% 1.3% 0.2% 0.8% 2.3% 

 2 0.9% 54.6% 87.6% 77.7% 71.0% 0.9% 0.2% 1.3% 0.5% 

 3 23.0% 2.7% 39.2% 48.3% 32.0% 23.0% 0.5% 1.3% 32.2% 

 4 1.8% 0.9% 27.3% 31.9% 20.8% 1.8% 0.5% 0.8% 3.1% 

Table 3. Type I error and power estimates at significance levels of 1% and 5%, all results based on 1,000 4 
replicates. MAX-BF refers to the test that at least one single variant test statistic reached the Bonferroni-5 
corrected significance level based on 𝑝 =1,000 tests. 6 
scenario 1: two causal variants, MAF~0.2%, almost no LD with other variants, effect size 1.8 7 
scenario 2: two causal variants, MAF~2%, almost no LD with other variants, effect size 0.7 8 
scenario 3: 16 causal variants, MAF~0.1%, almost no LD with other variants, effect size 0.7 9 
scenario 4: 16 causal variants, MAF~0.1%, almost no LD with other variants, effect size 0.7, effect direction 10 
alternates 11 
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