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Abstract 20 

Studies of microbiomes are booming, as well as the diversity of computational tools to make sense out 21 

of the sequencing data and the volumes of accumulated microbial genotypes. LEMMI 22 

(https://lemmi.ezlab.org) is a novel concept of a benchmarking platform of computational tools for 23 

metagenome composition assessments that introduces: a continuous integration of tools, their multi-24 

objective ranking, and an effective distribution through software containers. Here, we detail the workflow 25 

and discuss the evaluation of some recently released methods. We see this platform eventually as a 26 

community-driven effort: where method developers can showcase novel approaches and get unbiased 27 

benchmarks for publications, while users can make informed choices and obtain standardized and 28 

easy-to-use tools.  29 

  30 
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Introduction 31 

Metagenomics has made possible the study of previously undiscovered uncultured microorganisms. 32 

To probe the vast hidden microbial landscape, we need effective bioinformatics tools, notably 33 

taxonomic classifiers for binning the sequencing reads (i.e. grouping and labeling) and profiling the 34 

corresponding microbial community (i.e. defining the relative abundance of taxa). This is 35 

computationally challenging, requiring time and resources to query shotgun sequencing data against 36 

rapidly expanding genomic databases. Users have to choose a solution among the plethora of 37 

methods that are being developed in a quest for accuracy and efficiency, for instance lowering the 38 

runtime and memory usage by reducing the reference material while maintaining the representative 39 

diversity1,2. To date, at least one hundred published methods can be identified3, and new 40 

developments that may revolutionize the field cohabit with re-implementations of already explored 41 

strategies, complicating methods selection, fragmenting the community of users, and hindering 42 

experimental reproducibility. Papers describing these methods fall in the “self-assessment trap”4, in 43 

which all published methods are the best on carefully selected data, giving no indication to potential 44 

users about general performances, which should be a prerequisite before considering any case-45 

specific improvements or novel features. Independent comparative benchmarking studies5–9 and 46 

challenges10 are a major step towards a fair assessment of methods. They can also promote 47 

developments dedicated to specific technologies or problems11 and have brought valuable 48 

benchmarking resources12–14. While results in such publications are extensively discussed by the 49 

authors upon release, their content cannot be reinterpreted according to specific individual needs. 50 

More importantly, tools that were overlooked or made available after the list of methods was finalized 51 

cannot be added, maintaining a permanent uncertainty about the true state of the art and delaying the 52 

benefits that innovative developments bring in a fast-evolving field. To overcome these limitations, 53 

there is a need for a different workflow that enables continuous and generalizable comparisons of 54 

individual methods or multi-step pipelines while considering multiple objectives and their 55 

computational costs (e.g. accuracy versus memory usage).  56 

Recommendations for efficient “omics” tool benchmarking15–17 include using containers (i.e. isolated 57 

software packages) to allow reproducibility and long-term availability of tools18, reporting 58 

computational resources consumption (available hardware limits the choice to otherwise less efficient 59 
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methods), exploring parameters, and avoiding rankings based on a unique metric. In the particular 60 

case of taxonomic classification, a benchmark that uses the same reference for all methods is 61 

necessary to perform a valid evaluation of their respective algorithms, in addition to evaluating the 62 

variety of available databases. In line with this, we introduce LEMMI, standing for “A Live Evaluation 63 

of Computational Methods for Metagenome Investigation” (Figure 1), a web-based platform that hosts 64 

in its infrastructure, currently, a semi-automated benchmarking pipeline whose first available 65 

component presented here focuses on assessing taxonomic profilers and binners. Its novel workflow 66 

explicitly addresses key problems for the community: (i) closing the time gap between benchmarking 67 

publications by continuously evaluating new methods, (ii) allowing heterogeneous tools and pipelines 68 

to be evaluated together with a multi-objective exploration and ranking of their performances, (iii) 69 

reporting computational resources, (iv) exploring parameters and references, (v) facilitating the 70 

dissemination of easy-to-use software packages, and (vi) producing evaluations in a neutral and 71 

controlled environment to ensure published methods have a reliable benchmark on generic problems 72 

and unified hardware. Our solution can complement and support analyses of specific cases usually 73 

discussed in self-evaluations or discussed periodically in comparative studies. We describe below the 74 

advantages of the LEMMI workflow and discuss novel results from which conclusions about several 75 

methods released recently can be drawn. 76 

  77 
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Results 78 

A fully containerized evaluation 79 

LEMMI inputs consist of methods wrapped in containers resembling a previously suggested format, 80 

bioboxes14, that can be prepared by the LEMMI development teams, and envisioned to be contributed 81 

by method developers themselves. In the latter case, containers can be exchanged through public 82 

channels (e.g. https://hub.docker.com) to be loaded and run on the platform. In addition, evaluated 83 

containers can be downloaded by users from the LEMMI website along with their building sources, 84 

unless the method is commercialized and/or not under open source licensing. LEMMI is the first 85 

solution in its field to compel containerization to manage a benchmarking workflow (Supplementary 86 

Figure 1a) and therefore favor a simple access to evaluated tools. The benefits of such an approach 87 

regarding systematic re-evaluation (Supplementary Figure 1b) and re-usability are likely greater in the 88 

long term than the flexibility offered by mere results submission. As solutions that facilitate automated 89 

conversion between distribution channels are being explored (for instance from BioConda to 90 

biocontainers19), establishing standardized benchmarking processes that rely exclusively on these 91 

channels to obtain all methods ensure that the otherwise subjective question of installability is 92 

addressed unambiguously. 93 

A dynamic interface to explore alternative objectives 94 

Making informed decisions when designing analyses or pipelines requires a thorough exploration of 95 

the parameter space of available algorithms. Multiple runs of a container enable such exploration 96 

within the platform. LEMMI does not segregate methods into profilers and binners by conducting 97 

separate evaluations, as many tools now provide both features or have extra scripts that blur the 98 

demarcation (e.g. kraken20,21 is a read classifier that can be associated with its companion tool 99 

bracken22 to produce a valid taxonomic abundance profile). Instead, LEMMI is “results-oriented”, so 100 

comparisons can be made between multi-functional tools or their combinations to generate profiles, 101 

bins, or both, in a single run that informs on the full potential of a method. These two-dimensional 102 

results can be visualized from different perspectives through a dynamic multi-criteria ranking where 103 
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users can put the emphasis on the metric they recognize as important (Figure 2-3, Supplementary 104 

Figure 2-3, 5-9). Tradeoffs can be found to maximize the efficiency of a single tool or pipeline for both 105 

tasks. 106 

Pre-packaged and built reference databases 107 

Some method implementations provide pre-packaged reference databases while others provide 108 

scripts to generate them. LEMMI evaluates these pre-packaged references to include methods whose 109 

value lies in providing a curated database (e.g. marker genes23) and to keep track of reference 110 

genome catalogs available to method users. However, as the use of different reference databases is 111 

likely a major source of result discrepancies, methods accepting any nucleotide or protein files to 112 

construct their database can integrate the corresponding scripts in the container to be used as part of 113 

the benchmark. This enables LEMMI to report the resources (i.e. memory, runtime) required to build a 114 

reference in addition to those of the analysis, and assess the algorithm underlying the method 115 

independently from the taxa that constitute its default reference database. To provide a continuous 116 

evaluation that is unaffected by the publication of new genomic sequences, LEMMI maintains an in-117 

house repository currently based on all bacterial and archaeal RefSeq24 assemblies. However, only 118 

entries having both nucleotide and corresponding protein files are kept to offer the two types of 119 

molecules as a possible reference with equal representation (hereafter, the LEMMI/RefSeq 120 

repository). It can be subsampled by publication date, assembly states, or a fixed number of 121 

representatives per taxonomic identifier (taxid). As for parameters, this enables for each method the 122 

exploration of references, for instance by restraining the source material to what was available at a 123 

given date (Supplementary Figure 3) or to specific criteria (e.g. assembly states being only “Complete 124 

Genome”). Not every method can process the 125,000 genomes included in LEMMI/RefSeq with the 125 

resources provided (245 GB of RAM, representing a medium-scale environment). It is therefore 126 

relevant both to assess which subsets constitute good tradeoffs in terms of runtime, memory use, and 127 

accuracy of the predictions, and to track the impact of continuous database growth on different 128 

methods25. 129 
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In-silico datasets and genome exclusion 130 

LEMMI uses its repository not only as source material provided to each method to create their 131 

reference database, but also for sampling mock microbial communities to generate in-silico paired-132 

end short reads used to measure the accuracy of predictions made by each method. It implements a 133 

genome exclusion26 approach to simulate unknown organisms at various taxonomic ranks and to 134 

prevent overfitting by excluding the source of the analyzed reads from the reference (Supplementary 135 

Figure 4, see Online Methods). Simulating taxa that have no corresponding organisms in the 136 

reference also makes LEMMI datasets good proxies to real life scenarios and creates a challenging 137 

problem that can be useful to spot methods producing an excess of false positive matches (Figure 138 

3C). Datasets generated in-house by LEMMI contain randomly sampled bacteria and archaea, 139 

representing generic communities of variable complexity in terms of number of species, abundance 140 

distribution (i.e. absence or presence of taxa below 100 reads), and k-mers content. Their description 141 

is presented in Supplementary Table 1. Their detailed taxonomic compositions remain private as long 142 

as they are in use in the platform and will be published when LEMMI moves to its next major release. 143 

A demo dataset is available to exemplify their typical composition and help preparing a method 144 

container for evaluation. LEMMI datasets are complemented by others used in previously published 145 

benchmarking studies (CAMI110 and mockrobiota27). This enables comparisons with past results and 146 

introduces variety in the dataset creation methods, which is useful to identify behaviors inherent to the 147 

benchmarking design (Supplementary Note). Detailed evaluation results using up to 17 metrics are 148 

presented individually in interactive plots for each dataset and taxonomic rank, namely genus and 149 

species (Figure 3, Supplementary Figure 2-3, 5-9, Supplementary Table 2). 150 

Two benchmarking categories 151 

To allow a separate interpretation of evaluations conducted with pre-processed databases (meaning 152 

no genome exclusion and thus potential overfits of some references) from those conducted under an 153 

identical set of genomes absent from the source of in-silico reads, LEMMI distinguishes two 154 

benchmarking categories (Figure 2). When choosing “TOOLS & REFERENCES”, users can get an 155 

overview of all tools and references that exist, giving an outline of the ability of currently available 156 

approaches to capture the known microbial diversity, strongly influenced by the database sampling 157 
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strategy and creation date, but reflecting what practitioners will encounter when using ready-to-use 158 

solutions. The second category, “METHOD ALGORITHMS”, considers only methods and datasets 159 

that permit the creation of a reference, using genome exclusion, that will be identical for each run. 160 

This is the best possible benchmark for developers to support their algorithm improvement claims, 161 

and for advanced user interested in producing their own reference database after selecting the most 162 

efficient method. 163 

Evaluation of recent methods 164 

The release of the LEMMI benchmarking platform described here (beta01.20191002) includes the 165 

well-established methods Centrifuge1, Kraken120 and Kraken221 associated with Bracken22, Kaiju28, 166 

and Metaphlan22. They are a good representation of the field as it is today, as they stand among 167 

methods evaluated together recently6. This allows LEMMI users to judge additional methods never 168 

evaluated before side-by-side with tools they are already familiar with. We highlight on Figure 2, 169 

Figure 3, and Supplementary Figure 2, 5-8 a glimpse of the performances of the novel algorithms 170 

implemented by Ganon29, Metacache30, and CCMetagen31, which are described in their supporting 171 

publications but currently absent from comparative benchmarks. We report overall very good 172 

performances in recall and precision at the species level for Metacache and Ganon, which make them 173 

worth considering as alternatives to older solutions if their specific innovations, for instance the ability 174 

to update the database provided by Ganon, are beneficial to the user. These tools perform well when 175 

compared to other solutions using a freely selected references (Figure 2, Figure 3AB) as well as when 176 

compared to other tools using an identical built reference (Figure 3C, Supplementary Figure 5). They 177 

are also top scorers when taxonomic binning objectives are considered (Supplementary Figure 6). 178 

CCMetagen shows very good precision but suffers from a poor recall, except when analyzing the two 179 

datasets having a lower number of species (Figure 3ABC, Supplementary Figure 7). As LEMMI minor 180 

releases are continuously produced, the current list of methods and databases (Supplementary Table 181 

3) will rapidly be enriched. To appreciate the full extent of the results through detailed plots, we invite 182 

readers to visit the LEMMI web platform (https://lemmi.ezlab.org). 183 
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Evaluation of different references with Kraken2 184 

Taking advantage of LEMMI flexible reference construction, we appreciated the improvement of the 185 

Kraken algorithm in its second version21 regarding its ability to build comprehensive references 186 

without using a considerable amount of memory. It is the most efficient to that aspect among the 187 

methods evaluated in LEMMI so far (Figure 3D, Supplementary Figure 8) and it remains among the 188 

top scoring methods when combined with Bracken 2.0, being the top scorer in relative abundance 189 

estimation (Figure 2-3, Supplementary Figure 2). This lower memory usage enables LEMMI to run 190 

Kraken2 using of all entries in LEMMI/RefSeq to be compared to using the pre-built MiniKraken 191 

database, a reference intended for low memory environments and created by subsampling k-mers on 192 

“Complete genomes” (CG) sequences only. The diversity of datasets offered by LEMMI shows that 193 

good performances of Minikraken depend almost entirely on the source of the in-silico reads being 194 

CG sequences. This way of limiting source genomes, unrelated to the Minikraken k-mers 195 

subsampling strategy, ignores the large part of the diversity proxied by NCBI species taxids that have 196 

no CG representatives (Supplementary Note). This can be observed when analyzing CAMI1 datasets, 197 

in which a large proportion of taxa is overlooked while it could actually be recovered using 198 

LEMMI/RefSeq as reference (Supplementary Figure 9). 199 

Discussion 200 

Here, we introduce the first of its kind continuous integration benchmarking platform for metagenomics 201 

classifiers to enable immediate and independent evaluation of any newly published method using 202 

datasets of various compositions that can be generated or reused from previous effort. In addition, we 203 

highlight the high potential of some recently published methods unevaluated independently before, and 204 

ensure that future promising developments will join the ranking soon after they are identified as such. 205 

We also show the importance of considering all assembly states issued from RefSeq to avoid missing 206 

most of the diversity produced by year of microbial genome sequencing. Therefore, better subsampling 207 

strategies than simply keeping CG sequences should be explored by database creators to mitigate the 208 

problem of insufficient computational resources when conducting analyses. Moreover, future 209 
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benchmarking efforts should not rely exclusively on CG to evaluate methods in order to assess the true 210 

ability of methods to scale with the ever-growing diversity of sequenced taxa. 211 

 212 

LEMMI envisions a sustainable life cycle (Supplementary Figure 1b), encouraging feedback from the 213 

community of method developers and users. It ensures a traceable archive of past rankings through 214 

the use of unique “fingerprints” to be reported in publications. While the current major release of LEMMI 215 

uses the NCBI taxonomy32 and has put the focus on evaluating the lowest supported ranks, i.e. genus 216 

and species, it is designed to integrate alternative ranks or taxonomies. There are calls to revise NCBI 217 

taxonomy33,34 and future method implementations could be more agnostic regarding taxonomic 218 

authority (i.e. configuring the ranks and identifiers, instead of having the NCBI taxonomy entangled with 219 

the core classification algorithm). This would enable the exploration of new approaches meant to 220 

improve the classification resolution (e.g. reaching bacterial strains, viral operational taxonomic units35). 221 

New LEMMI datasets (e.g. also including long read technologies) will be produced for the next major 222 

release to replace those in use today, integrating newly discovered taxon or covering currently 223 

unsupported clades. Having all methods containerized will facilitate a systematic re-evaluation of all 224 

valuable ones. Developers interested in submitting their tools can visit https://lemmi.ezlab.org, where 225 

documentation, support, a discussion board, and evaluated containers are available. Future extensions 226 

of LEMMI may also include a standalone version to allow private assessment and help with 227 

development before submitting to the public platform for an independent evaluation. 228 

 229 

Benchmarking has become a must-have requirement for publishing novel methods. To bring credibility 230 

and facilitate the adoption by their target audience, it is essential that methods appear side-by-side with 231 

established competitors in a trusted independent ranking. The technology of containerization has a 232 

strong future in the bioinformatics community. Therefore, LEMMI will encourage developers to consider 233 

biocontainers to disseminate their work and to standardize the results formats so users will obtain easy-234 

to-use and stable implementations of up-to-date methods as they appear in the benchmark. 235 
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Online Methods 236 

Release strategy 237 

LEMMI rankings are identified by the major release version of the platform (e.g beta01) and the minor 238 

release date (e.g. 20191002). Until the next major release, the content of the LEMMI/RefSeq repository, 239 

the version of the NCBI taxonomy, and the datasets are frozen to a specific version that guarantees 240 

exact comparisons. Continuous additions or withdrawals of an entry in the rankings generate a new 241 

minor release date, while previous rankings remain accessible by requesting old fingerprints (e.g. 242 

https://lemmi.ezlab.org/#/rankings/SD.DEFAULT.beta01.20191002). 243 

Structure of the pipeline 244 

An in-house python3-based36,37 controller coordinates the many subtasks required to generate 245 

datasets, run the candidate containers, and compute the statistics. Snakemake 5.3.138 is used to 246 

supervise individual subtasks such as generating a dataset or running one evaluation. The process is 247 

semi-automated through configuration files, designed to allow a potential full automation through a 248 

web application. To be easily deployable, the benchmarking pipeline itself is wrapped in a Docker 249 

container. The plots presented on the user interface are generated with the mpld3 library39: 250 

https://mpld3.github.io. 251 

LEMMI containers 252 

The LEMMI containers are implemented for Docker 18.09.0-ce. They partially follow the design40 253 

introduced by http://bioboxes.org/ as part of the first CAMI challenge effort. The required output files 254 

are compatible with the profiling and binning format created for the CAMI challenge. Two tasks have 255 

to be implemented in order to generate a reference and conduct an analysis. To take part in the 256 

benchmark, a method developer has to build the container on their own environment, while ensuring 257 

that both tasks can be run by an unprivileged user and return the desired outputs. A tutorial is 258 

available on https://gitlab.com/ezlab/lemmi/wikis/user-guide. The containers or the sources to recreate 259 
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them are made available to the users. The sources of all method containers presented as results in 260 

this study are available on https://gitlab.com/ezlab/lemmi/tree/beta01.20191002/containers. 261 

Computing resources 262 

During the benchmarking process, the container is loaded on a dedicated server and given 245 GB of 263 

RAM and 32 cores. Reaching the memory limit will cause the container to be killed ending the 264 

benchmarking process unsuccessfully. All inputs and outputs are written on a local disk and the 265 

container is not given access to the Internet. 266 

Taxonomy 267 

The NCBI taxonomy is used to validate all entries throughout the process and unknown taxids are 268 

ignored (unclassified). The framework etetoolkit41 (ETE3) is used to query the taxonomy. The 269 

database used in beta01 was downloaded on 03/09/2018 and remains frozen to this version until a 270 

new major release of the LEMMI platform. 271 

RefSeq repository 272 

All RefSeq assemblies for bacteria, archaea, and viruses were downloaded from 273 

ftp.ncbi.nlm.nih.gov/refseq/release (download date for the beta01 release was 08/2018) with the 274 

conditions that they contained both a protein and a nucleotide file and that their taxid has a 275 

corresponding entry in the ETE3 NCBI taxonomy database, for a total of 132,167 files of each 276 

sequence type. The taxonomic lineage for the seven main levels was extracted with ETE3 277 

(superkingdom, phylum, class, order, family, genus, species). Viruses were not used for generating 278 

references and datasets in this proof of concept study and the number of genomes in the reference 279 

RefSeq/08.2018/All is 124,289. To subset the repository and keep one representative per species as 280 

inputs for the reference construction (for entries labelled as RefSeq/08.2018/1rep.), the list of bacterial 281 

and archaeal genomes was sorted according to the assembly states (1:Complete Genome, 282 

2:Chromosome, 3:Scaffold, 4:Contig) and the first entry for each species taxid was retained, for a total 283 

of 18,907 files. When subsampling the repository in the genome exclusion mode (i.e. for the 284 
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METHOD ALGORITHMS category, Supplementary Figure 4), if the entry to be selected was part of 285 

the reads, the next representative in the list was used instead when available. 286 

LEMMI datasets 287 

To sample the genomes included in the LEMMI datasets, a custom python script was used to 288 

randomly select representative genomes in the LEMMI/RefSeq assembly repository, among bacterial 289 

and archaeal content (Supplementary Table 1). Their abundance was randomly defined following a 290 

lognormal distribution (mean=1, standard deviation in Supplementary Table 1). In the case of 291 

LEMMI_LOWDIV datasets, additional low coverage species (abundance corresponding to < 100 292 

reads) were manually defined while in LEMMI_MEDDIV datasets, low coverage species were 293 

produced as part of the random sampling procedure. Each species abundance was normalized 294 

according to the species average genome size (as available in the LEMMI/RefSeq repository) to get 295 

closer to organisms’ abundance (considering one genome copy per cell), and the total was 296 

normalized to one to constitute a relative abundance profile. Therefore, both tools classifying all reads 297 

and those using markers genes can normalize their output to provide a unified answer. BEAR42 was 298 

used to generate paired-end reads, 2x150 bp, and DRISEE43 was used to extract an error profile from 299 

the SRA entry ERX2528389 to be applied onto the generated reads. The ground truth profile for the 300 

seven taxonomic ranks, and taxonomic bins for species and genus were kept. The non-unique 50-301 

mers and 31-mers diversity of the obtained reads were generated with Jellyfish 2.2.844 on the 302 

concatenated pair of reads using the following parameters: jellyfish count -m 31 -s 3G --bf-size 5G -t 8 303 

-L 1 reads.fq. 304 

Additional datasets 305 

The CAMI1 datasets were obtained from https://data.cami-challenge.org/ (accessed 09/2018) along 306 

with the metadata describing their content, already in the expected file format. The binning details 307 

were reprocessed to obtain distinct lists at the species and genus rank. The mockrobiota-17 dataset45 308 

was obtained through https://github.com/caporaso-lab/mockrobiota and reprocessed to obtain a 309 

taxonomic profile in the appropriate format. No binning detail is available for this dataset, therefore no 310 
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assessment of this aspect is based on this dataset. 50-mers and 31-mers diversity were computed as 311 

detailed above. 312 

Analysis of the results 313 

The profile and binning reports are processed with OPAL 0.2.812 and AMBER 0.7.013 against the 314 

ground truth to obtain a wide range of metrics. Binning reports are processed to obtain a file for each 315 

taxonomic rank (genus/species), moving reads up from lowest level. The profiles of the candidate 316 

methods and the ground truth are filtered to discard low coverage taxa at different thresholds (below 317 

values corresponding to 1/10/100/1000 reads) and all metrics are computed for all values. When a 318 

container is not able to provide a profile as output, the LEMMI platform generates one using the 319 

proportion of reported reads. Taxa detection metrics are based on OPAL and thus on the profile 320 

output. Methods reporting a profile with 0.0 for low abundance taxa despite being present in their 321 

binning files will shift the balance from recall to precision. The low abundance score takes into 322 

account both the profile and binning output and is a custom metric calculated separately to evaluate 323 

the ability of the method to correctly identify organisms represented with very low read coverage, but 324 

penalizing methods likely to recover them by recurrent report of the same taxids owed to very poor 325 

precision. To achieve this, as precision of low abundance organisms cannot be defined for a single 326 

dataset (false positives always have a true abundance of zero and cannot be categorized as low 327 

abundance), the metric is computed by pairing two datasets to judge if a prediction can be trusted. 328 

The datasets (D1 and D2) include sets of taxa T1 and T2 that contain a subset of low abundance taxa 329 

(T1_low ≠ T2_low, < 100 reads coverage,). Each taxon belonging to T1_low identified in D1 increases 330 

the low abundance score given to the method for D1 (recall) only when it is not identified in D2 if 331 

absent from T2. Otherwise, a correct prediction of the taxon in D1 is canceled and does not improve 332 

the score (acting as proxy for low abundance precision). This is illustrated with Supplementary Figure 333 

10. The score (0.0 - 1.0) is processed from both sides (D1, D2), to obtain an independent score for 334 

each of the paired dataset. This metric is only defined for the pair of LEMMI_LOWDIV and the pair of 335 

LEMMI_MEDDIV datasets (low abundance species: n=10, n=8, n=98, n=138 for 336 

LEMMI_LOWDIV_001, LEMMI_LOWDIV_002, LEMMI_MEDDIV_001, LEMMI_MEDDIV_002 337 

respectively). The runtime corresponds to the time in minutes during which the container is loaded. 338 
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The memory is the peak value of total_rss memory reported when the container is loaded to complete 339 

one task. Methods unable to deliver part of the expected outputs are assigned 0.0 for the 340 

corresponding metrics (e.g. methods unable to provide a read binning report). 341 

Ranking score 342 

All metrics that are not already values between 0.0 and 1.0, with 1.0 being the best score, are 343 

transformed. The L1 distance is divided by its maximum value of 2.0 and subtracted from 1.0, the 344 

weighted UniFrac score is divided by its maximum value of 16.0 and subtracted from 1.0. The 345 

unweighted UniFrac score is divided by an arbitrary value of 25,000 and subtracted from 1.0. The 346 

memory and runtime are divided by 2x the maximum value (as defined by the LEMMI user through 347 

the interface) and subtracted from 1.0, to obtain a range between 0.5 and 1.0. This approach allows 348 

the user to segregate methods that remain below the limit from those that exceed it and get the value 349 

0.0. Any transformed metric below 0.0 or above 1.0 is set to be 0 and 1 respectively. Each value is 350 

calculated for genus and species at 1, 10, and 100 reads low coverage filtering level and used or 351 

ignored according to the choice of the LEMMI user regarding these parameters. The final score 352 

displayed in the ranking is the harmonic mean of all metrics, taken into account 0, 1, or 3 times 353 

depending on the weight assigned to the metric by the LEMMI user.  354 

Data availability 355 

All containers representing evaluated methods are available on https://lemmi.ezlab.org. The LEMMI 356 

demo dataset is available in the Zenodo repository with the identifier. 357 

https://zenodo.org/record/2651062. 358 
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Figures 458 

 459 

 460 

Fig. 1 | Connecting users and developers through benchmarking. The LEMMI platform facilitates 461 

the access to up-to-date implementations of methods for taxonomic binning and profiling. LEMMI 462 

creates a link between developers and users as it provides independent and unbiased benchmarks 463 

that are valuable to both. Developers need comparative evaluations to keep improving the 464 

methodology and to get their work published in peer-reviewed journals. Method users need a 465 

resource that keeps track of new developments and provides a flexible assessment of their 466 

performances to match their experimental goals, resources, and expectations. The containerized 467 

approach of LEMMI guarantees the transfer of a stable and usable implementation of each method 468 

from the developer to the final user, as they appear in the evaluation. 469 
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 478 

 479 

Fig. 2 | LEMMI web interface. (i) The LEMMI users obtain a list of entries suited to their needs 480 

through the dynamic ranking interface that allows them to select and weight the criteria that are 481 

important. The ranking visible here shows the performances when identifying species while ignoring 482 

taxa under 100 reads, balancing precision and recall. The score assigned to each entry visible in 483 

LEMMI rankings averages selected metrics over all tested datasets. (ii) A unique “fingerprint” allows 484 

custom rankings to be shared and restored at any time on the LEMMI platform through the address 485 

bar. (iii) The benchmark category can be selected in the dashboard. (iv) Prediction accuracy metrics 486 

can be chosen along with their importance (Weight for “Important” is 3, “Somewhat” is 1, and “Not at 487 

all” is 0). This will cause the list to be updated with the corresponding scores. (v) Several presets 488 

corresponding to common expectations are available. (vi) Computational resources and the time 489 

required to complete the analysis can be included as an additional factor to rank the methods. 490 
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 491 

 492 

Fig. 3 | “Details by datasets” interface. Plots for up to 17 metrics are available for each dataset and 493 

the LEMMI user can toggle each line representing a method associated with a reference and specific 494 

parameters individually (*). Plots can be zoomed in to disentangle overlapping points and permit 495 

focused interpretations (**). The pages exist for all taxonomic ranks investigated, i.e. genus and 496 

species in the release beta01. The illustration shows in the upper panel (a) the precision-recall curve 497 

in species identification of a mix of methods using references freely provided or built using the current 498 

maximal capacity of LEMMI of 245GB, and (b) the corresponding area under the precision-recall 499 

curve. The lower panels show results when assessing methods using an identical built reference, with 500 

panel (c) illustrating how LEMMI assesses the precision improvement by filtering low abundance taxa, 501 

and (d) reporting the peak of memory necessary to construct the reference. 502 
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