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Abstract 9 

The Theory of Island Biogeography (TIB) promoted the idea that species richness within 10 

sites should depend on site connectivity, i.e. its connection with surrounding potential 11 

sources of immigrants. TIB has been extended to a wide array of fragmented ecosystems, 12 

beyond archipelagoes, surfing on the analogy between habitat patches and islands and the 13 

patch-matrix framework. However, patch connectivity often little contributes to explaining 14 

species richness in empirical studies. Before interpreting this trend as questioning the broad 15 

applicability of TIB principles, one first needs a clear identification of methods and contexts 16 

where strong effects of patch structural connectivity are likely to occur. Here, we use spatially 17 

explicit simulations of neutral metacommunities to show that patch connectivity effect on 18 

local species richness is maximized under a set of specific conditions: (i) patch delineation 19 

should be fine enough to prevent dispersal limitation within patches, (ii) patch connectivity 20 

indices should be scaled according to target organisms’ dispersal abilities and (iii) habitat 21 

amount and fragmentation should both lie in some intermediary range that still needs an 22 

empirically tractable definition. When those three criteria are met, the absence of effect of 23 

connectivity on species richness should be interpreted as contradicting TIB principles. 24 
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Introduction 28 

Since the Theory of Island Biogeography (TIB) [1], it is commonly acknowledged that species 29 

presence within local community depends on their ability to immigrate, and that geographic 30 

isolation of communities can negatively affect species richness. TIB principles have been 31 

extended to a wide array of ecosystems beyond archipelagoes (see [2,3] for reviews and 32 

critical appraisal), leading to studying how the availability of suitable habitat nearby can act 33 

as a source of immigrants and affect species richness within local communities. Such 34 

generalization of TIB relied on adopting a “patch-matrix” description of habitat in space, 35 

where one decomposes the map of some suitable habitat into patches that correspond to 36 

potential communities (analogous to islands in an archipelago), the rest of space being 37 

considered unhospitable for species. 38 

The geographic isolation of patches has been developed into the concept of “patch structural 39 

connectivity”, which quantifies the potential exchanges of immigrants between a focal patch 40 

and the surrounding habitats [4]. Most of the indices that aim at quantifying patch structural 41 

connectivity consist in counting patches around the focal patch, using weights proportional to 42 

patch area (or quality) and decreasing with distance to the focal patch. For instance, the 43 

“distance to nearest neighbor” index gives weight 1 to the closest patch and 0 for others. 44 

Buffer indices give positive weights to patches closer to the focal patch than some threshold 45 

distance, and weight 0 to patches outside this range. More generally, indices based on a 46 

distance kernel give to patches weights that decrease with distance to the focal patch 47 

according to some pre-defined kernel function (e.g. [5]). 48 

In a meta-analysis of 1’015 empirical studies on terrestrial systems covering a broad 49 

taxonomical range and spread at global scale, [6] evidenced that patch structural connectivity 50 

measured as distance to the nearest patch tend to have weak predictive power on species 51 

presence within patches (median deviance explained equaled c.a. 20%). This study brings 52 

some evidence showing that the limited success of patch connectivity indices may come 53 

from: inadequate use of structural connectivity indices based on surrounding habitat rather 54 

than functional connectivity indices based on surrounding populations, inadequate 55 

delineation of patches for species harboring multiple life stages with contrasted requirements 56 

and overlooking the type of matrix surrounding the habitat patch, hence questioning the 57 

validity of the patch-matrix framework for terrestrial systems.  58 

Questioning the validity of the TIB or the patch-matrix framework for terrestrial systems or 59 

arguing for the use of functional rather than structural patch connectivity indices are sound 60 

criticism of current practices. However, the TIB framework based on structural connectivity is 61 
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has the strong advantage of being quite simple and straightforward to implement in a broad 62 

array of empirical systems. Before discarding it for more involved methodologies, one should 63 

make sure that its limited success in past studies does not come from methodological 64 

limitations that can be fixed. For instance, another review of 122 empirical studies [7], which 65 

covered terrestrial and aquatic systems and analyzed the presence or abundance of 954 66 

species, evidenced that effects of local environmental conditions within a patch on species 67 

presence or abundance occurred more frequently (71% of species analyses) than the effects 68 

of patch structural connectivity (55% of species analyses). These authors mentioned 69 

methodological limits as a major explanation of the limited success of patch structural 70 

connectivity indices: the lack of statistical power, i.e. insufficient number of patches and the 71 

inadequate patch structural connectivity metrics, buffer indices being more performant than 72 

widely used isolation metrics. Here we argue that a critical appraisal of the TIB framework 73 

needs identifying first which methods for measuring patch structural connectivity and which 74 

properties of the habitat spatial distribution of studied systems are expected to yield strong 75 

effects of patch structural connectivity on local species richness. If the TIB framework fails 76 

when both methods and context are expected to be adequate then the conceptual ground of 77 

the approach can be undoubtedly questioned. 78 

The lack of strong effects of patch structural connectivity indices on local species richness 79 

may come from the fact that the patch structural connectivity indices used in empirical 80 

studies do not efficiently capture the immigration intensity. For instance, [8,9] showed that 81 

indices based on the distance to the nearest patches are poor predictors of species presence 82 

compared indices based on a distance kernel, like buffers. [9] further showed that even when 83 

complementing distance to nearest patches with the area of the focal patch, buffer were still 84 

better predictor of species richness. This tend to suggest that patch connectivity indices can 85 

intrinsically differ in their ability to capture the contribution of immigration to species richness 86 

within a focal patch. Here, we aimed at comparing how three types of patch connectivity 87 

indices coming from contrasted frameworks differed or not in their explanatory power of 88 

species richness. 89 

Among indices based on a distance kernel, the tuning of “scaling parameters” (i.e. 90 

parameters driving the speed of patch weight decrease with distance) with respect to target 91 

organisms dispersal also modulates the explanatory power of patch connectivity indices. 92 

Using simulations of a metacommunity on patch networks, [10] showed that changing the 93 

scaling of patch connectivity indices (i.e. how fast patch weights decrease with distance) can 94 

change the effect size of connectivity on species Simpson diversity. They further showed that 95 

the higher the dispersal ability of species, the larger the scaling of indices should be to reach 96 

the best possible explanatory power. Similarly, a metapopulation simulation study [11] 97 
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showed that there exists some optimal buffer radius that maximizes the effect size of 98 

connectivity upon local presence of a target species. They further suggested that this optimal 99 

size, called the “scale of effect” should lie between four and nine times the average dispersal 100 

distance of the target species. Therefore, choosing an appropriate scaling of patch 101 

connectivity indices with respect to typical dispersal distances of target organisms should 102 

improve the ability of patch connectivity indices to capture a negative effect of geographic 103 

isolation on species richness. Here, we aimed at testing whether the scaling of patch 104 

connectivity indices that maximizes the explanatory power upon species richness increased 105 

with dispersal distance of target organisms, as suggested by previous findings. 106 

Patch definition and delineation must adapt to the questions and patterns under study [12]. 107 

For instance, in studies about foraging strategies, defining a patch according to the 108 

perceptual range of target organisms can be adequate. By contrast, in the context of the TIB, 109 

patches should correspond to discrete areas of habitat within which individuals from multiple 110 

species have access and compete for all the resource without space limitation over their 111 

lifetime, hence making relevant entities for community-scale studies. [12] extensively 112 

developed how focusing on inappropriate patch scale in optimal foraging could lead to 113 

unexpected patterns. Similarly, [13] showed in a simulation study that the negative 114 

relationship between species richness and distance to mainland in the classic TIB may 115 

collapse when applied to entire archipelagoes rather that single islands, because of internal 116 

limited dispersal. Therefore, a decisive step in the analysis of patch connectivity effects on 117 

local species richness is therefore to convert the raw raster of habitat pixels into patches of 118 

appropriate size. Often, the delineation of patches follows a “vector map” perspective, 119 

according to [14] terminology : set of contiguous pixels corresponding to “habitat” are lumped 120 

together to form polygons denoted as patches. However, this approach brings no guarantee 121 

that emerging patches have the appropriate size to constitute potential communities for 122 

target organisms. In particular, when habitat is little fragmented, it creates large patches and 123 

subsequent connectivity indices potentially miss a large part of connectivity effects, which 124 

may take place within patches. Such mismatch may weaken the link between patch-based 125 

connectivity and community features measured from a local sample. We propose that 126 

building patches from a “raster” perspective (still following [14] terminology), using a grid with 127 

mesh size smaller or equal to the average dispersal distance of target organisms should 128 

ensure the appropriate patch delineation for the study and contribute to increase the 129 

explanatory power of patch connectivity indices on species richness. In particular, large 130 

contiguous sets of habitat pixels should be split to obtain patches of adequate dimension. 131 

Here, we aimed at comparing the performance of patch connectivity indices computed from a 132 

vector map perspective to those obtained from a raster perspective with mesh size adapted 133 
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to the dispersal distance of target organisms. We expected that using a raster with mesh size 134 

smaller or equal to the dispersal distance of target organisms would greatly improve the 135 

performance of indices. 136 

Patch connectivity indices with appropriate scaling used in on patches with adequate 137 

delineation can still yield limited effects on local species richness. This occurs for instance if 138 

structural connectivity little fluctuates among patches or if immigration does not act as a 139 

source of species diversity. Limited fluctuation in patch connectivity indices arises when most 140 

patches have similar surrounding habitat availability. For a given quantity of habitat in a 141 

landscape, we anticipated that the variance of surrounding habitat availability among patches 142 

increased with habitat aggregation. Here, we therefore aimed at testing whether, habitat 143 

amount being kept constant, a stronger aggregation of the habitat map would lead to 144 

stronger fluctuation of patch connectivity indices, hence creating opportunities to observe 145 

connectivity effects on local species richness.  146 

Furthermore, even if patch structural connectivity adequately depicts immigration and varies 147 

among patches, it can affect local species richness only if the immigrant pool coming to the 148 

focal patch harbors a moderate-to-high species diversity. The immigrant pool is made of a 149 

mixture of emigrants from patches in the surrounding landscape. Consequently, the diversity 150 

of the immigrant pool is tightly linked to the concept of γ-diversity [15] of the surrounding 151 

landscape (i.e. mixing all patches together). For a given amount of surrounding habitat 152 

(controlled by patch connectivity indices), the gamma diversity of the surrounding landscape 153 

depends on the spatial configuration of the habitat, although the relationship can be labile. If 154 

the surrounding habitat has high landscape connectivity in the absence of the focal patch, it 155 

may increase the local species diversity in each patch contributing to the immigrant pool (α-156 

diversity in the surrounding landscape; e.g. [16]). However, it may also decrease the 157 

dissimilarity in species composition among contributing patches (β-diversity in the 158 

surrounding landscape; e.g. [16]), resulting in uncertain global effect on the γ-diversity. 159 

Nonetheless, a robust conclusion is that the spatial configuration of the surrounding habitat is 160 

likely to generate “noise” on the patch connectivity – species richness relationship, and such 161 

noise may contribute to weaken the explanatory power of patch connectivity indices on 162 

species richness. Patch-based “connector” indices [17] can contribute to pinpoint fluctuation 163 

in landscape connectivity around the focal patch. These indices capture to what extent the 164 

focal patch contributes to the connection among the other patches in the landscape. For a 165 

given amount of habitat around the focal patch, a lower connector score of the focal patch 166 

therefore indicates that surrounding patches depend less on the focal patch to connect one 167 

with another, i.e. that direct fluxes among surrounding patches are stronger. Here we aimed 168 

at testing whether the explanatory power of patch connectivity indices on the local species 169 
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richness decreased when the connector status of sampled patches have strong independent 170 

fluctuations, which we called “connector noise”. Because [18] showed that connector indices 171 

are often decoupled from patch connectivity indices in space, this situation was likely to 172 

occur in our simulations and in the real world, hence worth considering here. 173 

In our analysis, we successively focused on how patch delineation, scaling of patch 174 

connectivity indices, index type and landscape features (including variation of patch 175 

connectivity index and connector noise) affect the explanatory power of patch structural 176 

connectivity on local species richness. We used a virtual ecologist approach [19] relying on 177 

metacommunity simulations in a spatially-explicit model. Virtual datasets stemming from 178 

such models constituted an ideal context to assess the impact of our factors of interest, for 179 

they offered perfect control of the spatial distribution of habitat and the ecological features of 180 

species. In particular, they only included processes related to the TIB (immigration, 181 

ecological drift; [20]), thus maximizing our ability to study how methodological choices and 182 

landscape features affect the explanatory power of patch structural connectivity. We 183 

anticipated that explanatory powers generated by this approach would necessarily be an 184 

over-estimation of what occurs in real ecosystems, where many processes unrelated to TIB 185 

may be at work. However, feedbacks from our virtual approach to real ecosystems readily 186 

arise when considering that settings that negatively affects the explanatory power of patch 187 

structural connectivity in our approach have very little chance to yield strong explanatory 188 

power of patch structural connectivity on local species richness in empirical studies. 189 

Materials and methods 190 

Landscape generation - We considered binary landscapes made of suitable habitat cells 191 

and inhospitable matrix cells. We generated virtual landscapes composed of 100×100 cells 192 

using a midpoint-displacement algorithm [21] which allowed us covering different levels of 193 

habitat quantity and fragmentation. The proportion of habitat cells varied according to three 194 

modalities (10%, 20% of 40% of the landscapes). The spatial aggregation of habitat cells 195 

varied independently, and was controlled by the Hurst exponent (0.1, 0.5, and 0.9 in 196 

increasing order of aggregation; see Fig. S1 for examples). Ten replicates for each of these 197 

nine landscape types were generated, resulting in 90 landscapes. Higher values of the Hurst 198 

exponent for a given value of habitat proportion increased the size of sets of contiguous cells 199 

and decreased the number of distinct sets of contiguous cells (Fig. S2). Higher habitat 200 

proportion for a constant Hurst coefficient value also resulted in higher mean size of sets of 201 

contiguous cells. 202 
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Neutral metacommunity simulations - We simulated spatially explicit neutral 203 

metacommunities on virtual heterogeneous landscapes. We resorted to using a spatially 204 

explicit neutral model of metacommunities, where all species have the same dispersal 205 

distance. We used a discrete-time model where the metacommunity changes by steps. All 206 

habitat cells were occupied, and community dynamics in each habitat cell followed a zero-207 

sum game, so that habitat cells always harbored 100 individuals at the beginning of a step. 208 

One step was made of two consecutive events. Event 1: 10% of individuals die in each cell – 209 

they are picked at random. Event 2: dead individuals are replaced by the same number of 210 

recruited individuals that are randomly drawn from a multinomial distribution, each species 211 

having a weight equal to 0.01×χi + ∑k Aik exp(-dkf /λs) where χi is the relative abundance of 212 

species i in the regional pool, Aik is the local abundance of species i in habitat cell k, dkf is the 213 

Euclidean distance (in cell unit) between the focal habitat cell f and the source habitat cell k, 214 

λs is a parameter defining species dispersal distances and the sum is over all habitat cells k 215 

of the landscape. The regional pool was an infinite pool of migrants representing biodiversity 216 

at larger spatial scales than the focal landscape, it contained 100 species, the relative 217 

abundances of which were sampled once for all at the beginning of the simulation in a 218 

Dirichlet distribution with concentration parameters αi equal to 1 (with i from 1 to 100). 219 

Metacommunity were simulated forward in time, with 1000 burn-in steps and 500 steps 220 

between each replicates. Simulation was structured as a torus to remove unwanted border 221 

effects in metacommunity dynamics. Metacommunities were simulated with three levels of 222 

species dispersal λs = 0.25, 0.5, 1 cell, which corresponded to median dispersal distance of 223 

0.6, 0.7, 0.9 cell and average dispersal distance of 0.6, 0.8,1.2 cells. Because dispersal 224 

distance distribution is skewed, it is also insightful to give the 95% quantile of dispersal 225 

distance, which corresponded to 1.2, 1.7, 3.1 cells respectively, and shows the potential of 226 

species in terms of long-distance dispersal. We performed 10 replicates for each dispersal 227 

value and in each landscape. In total, we obtained of 3 Hurst coefficient values × 3 habitat 228 

proportion × 3 species dispersal level × 10 landscape replicates × 10 community replicates = 229 

2700 metacommunity simulations. For each metacommunity simulation, species richness 230 

was computed at the cell level with R [22].  231 

Finally, we built one virtual dataset per simulation. We considered communities in habitat 232 

cells away from each other’s for a minimal distance of 12 cells, to reduce spatial auto-233 

correlation (e.g. Fig. 1A). We also reduced potential landscape border effect (that could 234 

decouple landscape indices and actual migrants received) by excluding cells near landscape 235 

borders (to a distance inferior or equal to eight cells, equivalent to the longest buffer radius). 236 

Each landscape counted in average 25 sampled cells (CI-95% = [23, 27]). 237 

238 
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Figure 1 – Example of analysis of the explanatory power of a patch connectivity index 239 

in a virtual dataset. Panel A: a virtual landscape obtained through midpoint displacement 240 

algorithm, with controlled habitat proportion (here 0.4) and Hurst coefficient (here 0.1). Brown 241 

cells stands for unhospitable matrix. Red to yellow cells denote habitat cells with increasing 242 

patch connectivity indices (here a Buffer index with radius 8 cells). Sampled cells are 243 

selected (blue circles) with minimal distance from border and among cells. We simulated 244 

metacommunity dynamics in the whole landscape. At the end of simulation, species richness 245 

is recorded in sampled cells. Panel B: the relationship between patch connectivity and 246 

sampled cells is analysed using a quadratic model (red curve), and the R2 of the model, 247 

called R2spec, is recorded for future analyses. When not significant, the quadratic term is 248 

dropped. The community dispersal in the simulation presented here is λs = 1 cell. 249 

 250 

Local connectivity indices - We first computed patch connectivity indices using a raster 251 

perspective for patch delineation, considering each habitat cell in the landscape as a patch. 252 

We called this approach “fine” patch delineation below. In the context of our simulation, it is 253 

the appropriate patch delineation to consider, since habitat cells correspond to communities 254 

in the metacommunity model. We computed three contrasted types of patch connectivity 255 

indices (Table 1) for each sampled cell of virtual datasets: Buffer, dF and dIICflux. Buffer 256 

indices correspond to the proportion of area covered by habitat patches within circles of 257 

different radius (rbuf = 1, 2, 4, 5, 8 cells) around the focal sampled patch. dIICflux and dF were 258 

based on nodes corresponding to patches. Pairs of nodes were connected to each other by 259 

links. Links’ weights wij between cells i and j in the network decreased according to the 260 

formula exp(-dij/λc), where dij is the Euclidean distances between cells i and j and λc is a scale 261 

parameter [14,23]. λc may be interpreted as the hypothesized scale of dispersal distance of 262 

target organisms in the landscape (which may differ from the “true” simulated scale of 263 

dispersal distance, which is λs). We considered four scale parameter values (λc = 0.25, 0.5, 1 264 

and 2 cells). dF quantified the sum of edges weights between the focal patch (i.e. the 265 
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sampled cell) and all the other patches (i.e. all the other habitat cells of the landscape). 266 

dIICflux considered a binary graph, where each cell pair was considered either connected (1) 267 

or not (0) relatively to a minimal link weight wmin = 0.005. Scale parameters λc = 0.25, 0.5, 1 268 

and 2 cells thus lead to connect all pairs of habitat cells separated by a distance inferior to 269 

1.3, 2.6, 5.3 and 10.6 cells respectively. In particular, binary graph for λc = 0.25 hence 270 

corresponded to the classic stepping-stone on a grid. dIICflux captured a notion of node 271 

centrality, like dF, but based on topological distance in the graph rather than Euclidean 272 

distance. All indices were computed with Conefor 2.7 (command line version for Linux, 273 

furnished by S. Saura, soon publicly available on www.conefor.org; [24]). 274 

Table 1 — Patch connectivity indices considered in the study 275 

Index Definition Ref. 

Buffer buf� � �

���
∑ 1�����

�
�	

���

  [8] 

dIICflux dIICflux� � 
��



�
�2∑ ����


�nl��

�
�	

���

�  [17] 

Flux dF� � 2∑ ���
�
�	

���

  [14,23] 

Notations: �: total number of nodes (patches or cells) in a graph;  �: area of a cell; ��: area of patch �; �: radius of a buffer; nl��: 276 

shortest path between nodes � and � in a binary graph; IIC= ∑ ∑ ���� �1 � nl���⁄�
���

�
��� : integral index of connectivity of a graph; 277 

���: Euclidean distance between nodes � and �; ���: probability weight of the link between nodes � and � in a weighted graph. 278 

Then, we switched to a vector perspective in patch delineation, lumping together the groups 279 

of contiguous habitat cells in the map to form patches (Fig. S3), which we call a “coarse” 280 

patch delineation below. For each sampled cells, we computed the connectivity of the patch 281 

it belonged to. With this coarse patch delineation, patches contained several communities 282 

connected by limited dispersal. Altogether, we computed 28 distinct patch connectivity 283 

indices in each sampled cell of each simulation. 284 

General statistical approach – We analyzed the explanatory power of patch connectivity 285 

indices on local species richness in simulated datasets. The explanatory power of a patch 286 

connectivity index on species richness is defined as the R2 coefficient of the model Species 287 

richness ~ Patch connectivity + (Patch connectivity)2, where we dropped the quadratic term 288 

when not significant (e.g. Fig. 1B). We denoted these R2 coefficients as “R2spec” below. Most 289 

of our analyses consisted in analyzing how patch delineation, index scaling and landscape 290 

features affect R2spec, using linear models with R2spec as a dependent variable. 291 

Patch delineation – We first considered dF and dIICflux patch connectivity indices 292 

computed with a fine patch delineation. In each of the 2700 simulated dataset, we recorded 293 
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R2spec for dF or dIICflux. Both dF and dIICflux had 4 possible scaling values, potentially 294 

yielding four distinct R2spec values per index for the same virtual dataset. However, we only 295 

kept the best value out of four in our analysis of patch delineation. We thus obtained 2’700 296 

datasets × 2 indices  = 5’400 R2spec values. 297 

Then we considered patch connectivity indices computed with a coarse patch delineation. In 298 

each of the 2700 simulated dataset, we fitted a linear model with species richness as a 299 

dependent variable. We used the connectivity index (dF or dIICflux) and the area of the patch 300 

containing the sampled cell as independent variables. We included patch area in the analysis 301 

to ensure fair comparison with the fine patch delineation analysis. Here again we included 302 

quadratic terms (dF2 or dIICflux2, and area2) when significant. We recorded R2spec of the 303 

models and kept only the highest values across possible scaling parameters, which yielded 304 

again 2’700 × 2 = 5’400 R2spec values. 305 

We then analyzed the 10800 R2spec values generated above with one linear model per index 306 

type (dF or dIICflux), where the dependent variable R2spec was modelled as a function of the 307 

patch delineation (“coarse” or “fine”) in interaction with landscape Hurst coefficient, 308 

landscape habitat proportion and species dispersal distance (all these dependent variables 309 

being considered as factors). We expected R2spec to be significantly higher at fine patch 310 

delineation (despite the fact that area is included in the analysis at coarse patch delineation), 311 

which we tested using the model R2spec~resolution. We also expected the positive effect of 312 

switching from coarse to fine resolution to increase when Hurst coefficient or habitat 313 

proportion increase, because sets of contiguous cells become larger on average, leading to 314 

stronger limited dispersal effects within patches. We tested this second hypothesis using two 315 

models with interactions: R2spec~resolution × Hurst coefficient and R2spec~resolution × habitat 316 

proportion. At last, we expected the positive effect of switching from coarse to fine patch 317 

delineation to decrease when species dispersal increases, because limited dispersal within 318 

sets of contiguous cells weakens. We tested this last hypothesis using the model: 319 

R2spec~resolution × dispersal. 320 

Index scaling – We then considered Buffer, dIICflux and dF patch connectivity indices 321 

computed with a fine patch delineation. In each of the 2700 simulated dataset, we recorded 322 

R2spec for each patch connectivity index and each scaling parameter value. We thus obtained 323 

2’700 datasets × 3 indices × 4 or 5 scaling parameter values = 35’100 R2spec values. We then 324 

built one linear model per index type (Buffer, dF or dIICflux), where R2spec was the dependent 325 

variable, modelled as a function of species dispersal distance in interaction with index scale 326 

parameter R2spec ~ dispersal × scaling value. We expected that the scale parameter yielding 327 
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the highest R2spec values increase with the dispersal distance of species, following previously 328 

published results in the literature. 329 

Landscape features – For each patch connectivity index type and each virtual dataset, we 330 

considered a fine patch delineation and selected the scaling parameter value (within the 331 

explored range) that maximized R2spec. We recorded this maximal value of R2spec, hence 332 

generating 2700 virtual datasets × 3 index types = 8100 R2 values.  333 

We explored separately for each index at each species dispersal level how landscape 334 

features (i.e. the habitat proportion and the Hurst coefficient) affected R2spec using the linear 335 

model R2 ~ Hurst coefficient × habitat proportion. We expected that landscapes the highest 336 

Hurst coefficient value yield highest R2spec. 337 

We finally explored whether additional landscape features, beyond Hurst coefficient and 338 

habitat proportion, could bring additional explanatory power on the variation of the R2spec with 339 

optimal scaling and resolution among virtual datasets. We focused on Buffer index and 340 

considered two additional landscape features.  341 

For each of the 2700 virtual datasets, we computed the standard deviation of Buffer among 342 

sampled cells (“Buffer s.d.”) and the explanatory power of Buffer over sampled cells’ 343 

connector value (“Connector R2”). We defined Connector R2 as the R2 coefficient of the 344 

model connector value ~ Buffer + Buffer2. We used dIICconnector [17] as a connector value. 345 

Like dIICflux presented above, dIICconnector is an index based on representing the habitat 346 

map as a binary network of patch (recall that at fine resolution patches are cells). To obtain 347 

the binary network, we used the same weighting procedure than for dF and dIICflux, and 348 

chose a scaling parameter λc = 2 cells (the largest value considered in our study). We used 349 

the same threshold on edges weight than above (wmin = 0.005) to decide whether patches 350 

should be connected or not in the binary graph. We defined our two additional landscape 351 

features of interest as the residual variation of Buffer s.d. and Connector R2 with respect to 352 

Hurst coefficient and habitat proportion. We computed them as the residuals of linear models 353 

Buffer s.d. ~ Hurst coefficient × habitat proportion and Connector R2 ~ Hurst coefficient × 354 

habitat proportion respectively (we applied one linear model per dispersal level). 355 

For each species dispersal level, we fitted the model R2spec ~ Hurst coefficient × habitat 356 

proportion + residual Buffer s.d. + residual connector R2 over the 900 virtual datasets. We 357 

expected that residual Buffer s.d. have a significant positive effect on R2spec. We also 358 

predicted that residual connector R2 have a significant positive effect on R2spec. We 359 

assessed the relative contribution of Hurst coefficient × habitat proportion, residual Buffer s.d. 360 

and residual connector R2 using an analysis of variance. 361 
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Results 362 

Patch delineation – For both dF and dIICflux, using a fine patch delineation yielded higher 363 

R2spec on average than using a coarse resolution (+0.18 with p<2e-16 for dF; +0.07 with 364 

p<2e-16 for dIICflux). 365 

For dF index, the Hurst coefficient did not significantly affect the positive effect of refining 366 

patch delineation on R2spec. By contrast, a larger proportion of habitat in the landscape 367 

increased the positive effect of refining patch delineation on R2spec (Fig. 2A): the effect of 368 

refining patch delineation on R2spec reached +0.23 (estimate s.d. 0.01) for a habitat 369 

proportion of 0.4 while it equaled +0.14 (estimate s.d. 0.01) only for a habitat proportion of 370 

0.1. Higher species dispersal decreased the positive effect of refining patch delineation on 371 

R2spec (Fig. 2B): the effect of refining patch delineation on R2spec reached +0.27 (estimate s.d. 372 

0.01) when species had low dispersal abilities while it equaled +0.06 (estimate s.d. 0.01) 373 

when species had high dispersal abilities. 374 

For dIICflux index, a higher Hurst coefficient increased the positive effect of refining patch 375 

delineation on R2spec (Fig. 2C): the effect of refining patch delineation equaled +0.10 376 

(estimate s.d. 0.01) in highly aggregated landscapes with a Hurst coefficient of 0.9 while the 377 

effect of refining patch delineation equaled +0.05 only (estimate s.d. 0.01) in landscapes with 378 

a Hurst coefficient of 0.1. Habitat proportion and species dispersal did not significantly affect 379 

the effect of refining patch delineation on R2spec. 380 

Figure 2 — Hurst coefficient, habitat proportion and species dispersal modulating the 381 

effect of refining patch delineation on the explanatory power of patch connectivity 382 

indices. Bars show the average R2spec over simulated datasets for distinct levels of habitat 383 

proportion (panel A), community dispersal (panel B) and Hurst coefficient (panel C), with 384 

asymptotic 95% confidence intervals (half width = 1.96 x standard error). Panel A and B 385 

come from the analysis of the dF index while Panel C comes from the analysis of dIICflux, 386 

hence the different colors. 387 

 388 
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Index scaling and species dispersal –For Buffer, dF and dIICflux, the scaling parameter 389 

value yielding the highest R2spec increased with species dispersal (Fig. 3).  390 

For Buffer indices, the optimal scaling parameter value (i.e. Buffer radius rbuf) corresponded 391 

to about 8 times the true scale of species dispersal (λs; Fig. 3A). For dF indices, the optimal 392 

scaling parameter (λc) corresponded to about 2 times the true scale of species dispersal (Fig. 393 

3B). For dIICflux indices, the optimal scaling parameter (λc) rather corresponded to about 0.5 394 

times the true scale of species dispersal (Fig. 3C; although the scope of scaling parameters 395 

explored was not sufficient to ascertain this point for all the three dispersal levels explored).  396 

For all species dispersal levels and all indices, R2spec varied broadly (by about 0.2) when 397 

browsing possible scaling values. However, the optimal scaling value rarely yielded R2spec 398 

markedly different from those obtained from neighboring scaling values, except in some 399 

specific cases were the optimal value lied at the boarder of the explored range (suggesting 400 

that the true optimal scaling value is actually outside the explored range; see e.g. dIICflux 401 

with species dispersal 0.25 on Fig. 3C). 402 

Figure 3 — Scaling parameter value effect on patch connectivity indices explanatory 403 

power as a function of the scale of species dispersal. Panels A, B and C correspond to 404 

Buffer, dF and dIICflux indices respectively. Shapes correspond to the distinct community 405 

dispersal levels tested in our analysis. The y-axis corresponds to the average R2 observed 406 

across our virtual datasets for the target index when using the scaling parameter value 407 

reported on the x-axis. Error bars correspond to asymptotic 95% confidence intervals (half 408 

width = 1.96 x standard error). 409 

 410 

 411 

Global performance of indices - 95% of R2spec values at fine patch delineation with optimal 412 

scaling lied between 0.30 and 0.96, with an average value of 0.74. Buffer and dF stood out 413 

as the most performant index on average. The average R2spec of Buffer was R2spec=0.78. 414 

Average R2spec for dF index differed from Buffer by -0.01 only, which was a significant (z-test; 415 
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p=0.03) but very weak difference. By contrast, the average R2spec for dIICflux index differed 416 

from Buffer by -0.12, which was a more significant (z-test; p<2e-16) and stronger difference. 417 

Landscape effects - R2spec of patch connectivity indices were generally maximized for 418 

landscapes combining intermediary levels of the Hurst coefficient and intermediary levels of 419 

habitat proportion, irrespective of species dispersal (Fig. 4). The only exception occurred for 420 

dIICflux with medium or high species dispersal level, where landscapes with low habitat 421 

proportion and high aggregation yielded the highest R2spec. 422 

Figure 4 — R2spec of patch connectivity indices as a function of landscape 423 

characteristics and dispersal level of species. Each panel corresponds to one index type 424 

applied to virtual datasets with one species dispersal level (i.e. 900 virtual datasets). 425 

Columns correspond to dispersal levels (in cell unit), and lines to index type. Within a panel, 426 

average R2spec is reported for each combination of habitat proportion (y-axis) and Hurst 427 

coefficient (x-axis). Within a panel, the heat map shows the ordination of R2spec values with 428 

red corresponding to lowest values and white to highest ones. The maximum R2spec value is 429 

reported in bold letters, and all the other R2spec that are not significantly different from the 430 

maximum based on a z-test with threshold 5% are also reported. 431 

 432 

For Buffer index, the variation in Hurst coefficient and habitat proportion among virtual 433 

datasets explained between 97% and 99% of the variance in R2spec (Fig. 5). Residual Buffer 434 

s. d. had a significant positive on R2spec, with standardized effect size (i.e. after scaling 435 
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residual Buffer s. d.) equal to 0.05 (estimate s.d. = 0.004), 0.05 (estimate s.d. = 0.002) and 436 

0.06 (estimate s.d. = 0.004) for low, intermediate and high species dispersal respectively. 437 

The effect of residual Buffer s.d. was therefore significant but consistently low and explained 438 

a very limited amount of R2spec variance (around 0.5%; Fig. 5). The residual Connector R2 439 

had a significant positive effect on R2spec at high species dispersal level only, but the 440 

magnitude of the contribution was then negligible (Fig. 5). 441 

Figure 5 — Analysis of the variance in Buffer R2spec among virtual datasets. Variance is 442 

decomposed into the contributions of: (i) the variation in landscape features (Hurst coefficient 443 

in interaction with habitat proportion); (ii) the variation of Buffer standard deviation among 444 

landscapes of similar features (“Buffer s.d.”); (iii) the variation in the explanatory power of 445 

Buffer on the connector index in sampled cells among landscapes of similar features 446 

(“Connector R2”). Contributions (y-axes) are expressed in percentages of the total variance 447 

of R2spec. Panel A shows the whole decomposition. Panel B shows all the contributions 448 

except that of landscape features, for better readability. 449 

 450 

Discussion 451 

Patch delineation – We have illustrated the problem of patch delineation in a binary design 452 

comparing outputs of considering each elementary cell as a patch (the appropriate resolution 453 

with respect to simulations) versus considering sets of contiguous cells as patches. Effects of 454 

patch connectivity indices on local species richness were higher at fine patch delineation, 455 

where no dispersal limitation occurred within patches. The coarser patch delineation 456 

considering sets of contiguous habitat as patches led to important drop of explanatory power 457 

in our results, reaching about -0.2 when species harbored strong dispersal limitation (Fig. 458 

2B). In the light of our results, we therefore champion the “raster” perspective of [14]: even 459 

when target habitats form “intuitive” patches (e.g. forest patches in agricultural landscapes), 460 

one should define a priori a grid with appropriate mesh size, equal or lower to the scale of 461 

dispersal for target organisms and use it to decompose the habitat map in elementary units. 462 

We also insist on the fact that the raster perspective is perfectly compatible with the use of 463 
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graph theory concepts among cells, as we illustrated with the use of indices such as dIICflux 464 

or dIICconnector on fine patch delineation. 465 

Determining a priori the appropriate mesh size is not an easy task, especially since in real 466 

communities – contrary to our simulations - movement capacity and dispersal are 467 

heterogeneous among species. Beyond the binary comparison between coarse and fine 468 

patch delineation that we proposed here, one should now explore the sensitivity of patch 469 

connectivity indices explanatory power to varying mesh size (as suggested by [25] in real 470 

empirical studies) This would allow assessing whether some degree of uncertainty on that 471 

parameter is acceptable. We anticipate that using a too fine patch delineation should not lead 472 

to heavy loss of explanatory power of patch connectivity indices on species richness, as long 473 

as patch connectivity indices are rescaled appropriately. For instance, in our study design, 474 

the range of probable dispersal distances (95% quantile) is closer to mesh size for low 475 

species dispersal (1.2 cells) than for high species dispersal (3.1 cells). When species 476 

dispersal is high, one could therefore argue that mesh size is unnecessarily small. However, 477 

we did not observe important drops of power of patch connectivity indices when moving from 478 

low to high species dispersal (e.g. Fig. 4). If using too fine a mesh size is harmless, mesh 479 

size should thus be adjusted on the limiting species in terms of movement capacity in 480 

communities with heterogeneous movement and dispersal, i.e. those that are the less mobile 481 

in space and interact with other organisms only at fine scale. This approach should probably 482 

be preferred to approaches based e.g. on the average movement capacity across species of 483 

the community. 484 

However, choosing very fine patch delineation can be computationally challenging, since it 485 

can increase by several orders of magnitude the number of spatial units. This particularly 486 

affect indices stemming from graph theory that needs to determine shortest paths between 487 

all pairs of spatial units. Here we have been able to compute dIICflux and dIICconnector 488 

indices in all the virtual landscapes at fine resolution (up to 4000 habitat units in a single 489 

landscape). Consequently, indices based on binary networks seem to pass the test of 490 

computational time. By contrast, we were unable to compute analogous indices in weighted 491 

networks (dPCflux and dPCconnector; [26]). 492 

Index scaling – The scaling of patch connectivity indices leading to maximal explanatory 493 

power on species richness (the “scale of effect” sensu [11]) increased with the dispersal 494 

distance of target organism, in line with previous findings on virtual studies [10,11]. This is a 495 

strong argument to prefer patch connectivity indices with a scaling parameter that can be 496 

modulated to match the dispersal ability of organisms rather that indices that cannot be 497 

adapted like distance to nearest patch. It also confirms that the scale of effect should capture 498 
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some quantitative features of species dispersal, as it is often contended in the empirical 499 

literature (e.g. [27,28]).  500 

However, the scale of effect should not be used as a quantitative estimate of dispersal 501 

distance for two reasons. First, we observed that scaling parameter values around the 502 

optimal one often generated a very small loss of explanatory power, suggesting that the 503 

explanatory power was not highly sensitive to errors on scaling parameter value. Therefore, 504 

finding the scaling parameter that maximizes the correlation is probably not an accurate 505 

method to obtain estimate of species dispersal level. This is consistent with the fact that, in 506 

empirical systems, buffer radii maximizing the explanatory power over species presence or 507 

abundance can spread over a large array of distances without significant drop of explanatory 508 

power, sometimes covering several orders of magnitude (e.g. [29]). Second, the quantitative 509 

relationship between the scale of effect and species dispersal was labile. We identified linear 510 

relationships between the scale of effect and the scale of species dispersal used in 511 

simulations (λs), but the slope was very different depending on the index used. In addition, no 512 

analogous linear relationships arose when considering average, median or 95% quantile of 513 

species dispersal, contrary to what was evidenced by [11] on abundance in a virtual 514 

metapopulation study. 515 

Therefore, the relationship between the scale of effect and the scale of species dispersal 516 

distance can contribute to ranking dispersal distance among species or groups of species 517 

with marked differences. It can also contribute, when some a priori information is available 518 

about the dispersal distance of target organisms, to defining the range of scaling parameter 519 

values in which the scale of effect should be searched for. 520 

Here we considered neutral metacommunities where all the species have the same dispersal 521 

distance. This greatly simplified the analysis of the relationship between the scale of effect of 522 

indices and species dispersal distances. However, species dispersal distances in real 523 

communities are known to be heterogeneous [30,31], as polymorphism on dispersal is a 524 

strong driver of species coexistence at metacommunity scale [32,33]. On may therefore 525 

question how our findings can transfer to real empirical studies. We already commented 526 

earlier that for a given species dispersal distance a quite broad range of scaling parameters 527 

for a given index can lead to levels of explanatory power similar to that of the scale of effect. 528 

While we presented this pattern as an obstacle to species dispersal estimation, it could turn 529 

out to be an advantage when species have heterogeneous species dispersal strategy. As a 530 

matter of fact, a scaling parameter value adapted to the average dispersal distance of 531 

species in the community might be fairly adapted to all the species in the community. Of 532 
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course, this should not be valid anymore if species dispersal is highly heterogeneous among 533 

species. 534 

Global performance of indices – Indices used with appropriate scaling and fine spatial 535 

resolution yielded very high explanatory power values on species richness, way above what 536 

usually occurs in empirical studies. We expected that result, which stems from the fact that 537 

our simulations only include processes compatible TIB, i.e. limited dispersal and ecological 538 

drift, and force species dispersal to be equal. By doing so, it creates ideal conditions for high 539 

explanatory power of patch connectivity on species richness to occur and offers us 540 

magnifying glasses to focus on how patch delineation, indices properties and landscape 541 

features can modulate it. Any downward effects on the explanatory power in our approach 542 

could result in a total disappearance of patch connectivity explanatory power in real studies, 543 

and should therefore be interpreted as bad conditions to study patch connectivity contribution 544 

in empirical systems. 545 

Buffer and dF indices lead to high and very similar performance when used with appropriate 546 

scaling. This stemmed from the fact that these two indices are highly correlated (average 547 

correlation across landscapes above 0.95; Figure S4). In our study, Buffer resembled dF 548 

index when the buffer radius was about 4 times the dF scaling parameter value. [8] had 549 

already evidenced that correlations between IFM index (a generalization of the dF index; 550 

[34]) and buffers could reach 0.9 in a real landscape (their study did not focus on how the 551 

scaling of both indices could affect the correlation). Such a similarity between Buffer and dF 552 

on patches with fine delineation was quite expected since both indices share the same 553 

general structure: a weighted sum of surrounding habitat cells contribution where weights 554 

decreases with Euclidean distance following some kernel function. Regarding the shape of 555 

the kernel, Buffer is based on a step function while dF is based on an decreasing exponential 556 

kernel. We therefore interpret our results as the fact that changing the decreasing function 557 

used as a kernel may little affect the local connectivity as long as scaling is adjusted. This 558 

may explain why [5] found that: (i) switching from buffer to continuously decreasing kernel 559 

little affected AIC or pseudo-R2 of models used to predict species abundances; (ii) neither 560 

continuously decreasing nor step function was uniformly better to explain species abundance 561 

across four case studies; (iii) different continuous shapes of kernel had quite indiscernible 562 

predictive performance. 563 

The dIICflux index had a lower explanatory power than Buffer and dF indices on average (-564 

0.12 on Rspec). This difference in global performance was made possible by the fact that 565 

dIICflux harbored a different profile than dF and Buffer in landscapes (Fig. S4), because it 566 

considers topological rather than Euclidean distance to compute connectivity. The use of five 567 
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scaling values only in our analysis calls for some caution in the interpretation dIICflux lower 568 

explanatory power. The optimal scaling value of dIICflux for low and intermediate dispersal 569 

seemed to lie below the lower limit of the range explored in our study. Consequently the 570 

explanatory power of this index might be underestimated compared to the other ones and 571 

partly explain why it seems less efficient in predicting species richness. 572 

Part of the relative success of dF and Buffer over dIICflux may also stem from the fact that 573 

we did not include different resistance values to habitat and matrix cells. When 574 

heterogeneous resistance occurs, landscape connectivity including displacement costs (e.g. 575 

least cost path, circuit theory) can be markedly different from prediction based on Euclidean 576 

distance only [35], and may better capture the movement of organisms in real case study 577 

[36,37]. This probably also applies to patch connectivity. By connecting only cells that contain 578 

habitat, dIICflux and other indices based on topological distance within a graph could prove 579 

more performant when matrix has high resistance cost, and we may not find the same 580 

superiority of Euclidean indices as in our simulations. However, some of our results here 581 

should remain true when resistance is heterogeneous in space, at least qualitatively. Indeed, 582 

since our study is purely virtual, we could as well consider that distances among cells in the 583 

habitat map are not Euclidean but ecological distances. This would have amounted to saying 584 

that landscapes considered in our study are “distorted” maps compared to reality. Based on 585 

this mind experiment, we would still expect that the optimal scaling of indices, expressed in 586 

ecological distance, would increase with species dispersal, expressed in ecological distance 587 

too. We also expect that our conclusion about the adequate delineation of patches should 588 

also hold, but the mesh size in the real map should then fluctuate in space depending on the 589 

resistance cost, shrinking in habitat areas with high resistance and expanding in habitat 590 

areas with low resistance cost.  591 

Landscape effects - Landscapes combining intermediary levels of the Hurst coefficient and 592 

intermediary levels of habitat proportion yielded highest explanatory of dF and Buffer indices 593 

used with adapted scaling at fine spatial resolution. We understood the unpredicted unimodal 594 

effect of habitat proportion on the explanatory power as follows: high connectivity is unlikely 595 

in landscapes with a very low amount of habitats while low connectivity is unlikely in 596 

landscapes with a very low amount of habitats. As a result, the maximal range of variation in 597 

patch connectivity lies in intermediary landscapes in terms of habitat proportion (Figure S5). 598 

Our findings are reminiscent of the conceptual model of [38], which promoted the idea that 599 

habitat spatial configuration should affect species abundance or persistence only in when 600 

habitat amount lies in a intermediary range of values. The latter range is comprised between 601 

a lower limit where the species cannot maintain in the landscape whatever the spatial 602 

configuration and an upper limit where the species can maintain in the landscape whatever 603 
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the spatial configuration. Whether and how the levels of habitat proportion at which, one the 604 

one hand, patch connectivity – local species richness relationship arises and, on the other 605 

hand, species persistence is sensitive to landscape-scale configuration overlap is an open 606 

question of practical interest. In particular, one may ask whether the presence of a patch 607 

connectivity – local species richness could indicate that the habitat amount at landscape 608 

scale has entered the intermediary range where considering the spatial configuration in 609 

management plans becomes critical. 610 

Contrary to what we predicted, the Hurst coefficient had a modal effect on the explanatory 611 

power of dF and Buffer on species richness. The increasing part of the relationship actually 612 

followed the predicted behavior: low aggregation creates landscapes where the habitat is 613 

homogeneously spread in space, leading to low variance in patch connectivity among 614 

sampled cells (Fig. S5), hence low explanatory power on species richness. Landscape with 615 

high aggregations contained few distinct sets of large contiguous cells (Fig. S1, S2). The 616 

variance in patch-connectivity of cells thus depended on the ratio between the distance to the 617 

border of these sets and the scaling parameter of the patch connectivity index. When 618 

dispersal was low, variation in patch connectivity could occur only in a thin stripe along the 619 

border of the sets of contiguous cells, the rest of cells harboring a uniformly high, saturating 620 

connectivity. There was therefore little opportunity for low connectivity, hence creating low 621 

variance of patch connectivity indices (Fig. S5) leading to low explanatory value of indices on 622 

species richness (Fig. 4). By contrast, when dispersal is medium or high, there was a 623 

smoother contrast between border and interior of patches in term of connectivity, yielding 624 

more opportunity for variance in patch connectivity and no negative effect of Hurst coefficient 625 

on patch connectivity variance (Fig. S5). However, the effect size Buffer indices on species 626 

richness still became smaller when switching from medium to high Hurst coefficient because 627 

the average value of Buffer index increased and the variation in Buffer then fell within a 628 

range of values where the corresponding species richness tended to saturate at an upper 629 

threshold (Fig. S6). Given the tight level of correlation between Buffer and dF, our 630 

conclusions about Buffer can be harmlessly transferred to dF index.  631 

The variance in Buffer index among landscapes with identical Hurst coefficient and habitat 632 

proportion had an additional positive effect on its explanatory power, as expected, but this 633 

effect was clearly negligible compared to landscape influence. We had the same type of 634 

conclusion regarding the potential perturbation induced by fluctuation in the connector status 635 

of patches independently from their connectivity. We only detected a weak negative effect of 636 

connector noise (the contrary of Connector R2) on the explanatory power of patch 637 

connectivity indices at high species dispersal. 638 
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Conclusion 639 

Our results suggest that finding a strong effect of patch structural connectivity on local 640 

species richness can occur only if: (i) spatial units used as patches are sufficiently small to 641 

prevent internal dispersal limitation within patches, which can be obtained by using a raster 642 

perspective with appropriate mesh size for patch delineation; (ii) the scaling of the patch 643 

connectivity index is adapted to the dispersal ability of species considered, which can be 644 

obtained by browsing scaling parameters over a range of values defined from a priori 645 

knowledge about species dispersal distance; (iii) the studied landscape shows intermediate 646 

habitat amount and intermediate habitat fragmentation, so that the patch connectivity index 647 

can harbor high variance among sampled patches. Notwithstanding the success of Buffer in 648 

our approach, we suggest that similar analyses as ours should be performed with 649 

heterogeneous resistance cost before recommending kernel-based indices using Euclidean 650 

distance upon other choices. To date, point (iii) seems less straightforward to use in 651 

empirical studies because it is not clear a priori what should be an “intermediate” habitat 652 

amount or fragmentation and a “sufficient” level of variance in patch connectivity index for 653 

some target set of species. It probably depends on species dispersal but maybe also on the 654 

spatial extent of the study. Further work, dedicated to this point, is now needed in order to 655 

define a full set of empirically verifiable conditions necessary for observing connectivity 656 

effects on local species richness. 657 
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Supplementary figures 764 

Figure S1: Four examples of extreme landscapes in terms of aggregation (hurst) and 765 

habitat proportion (prop) in our study. Habitat is pictured in green, matrix in brown. 766 

 767 
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Figure S2: Average size and number of patches in the virtual landscapes used in our 769 

study. Colors correspond to distinct combinations of Hurst exponent and habitat proportion. 770 

Ellipses correspond to 95%-CI of a fitted bivariate Student distribution. 771 
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Figure S3: Lumping of contiguous cells generating the coarse patch delineation 775 

perspective. Panel A shows a habitat map where fine delineation of patches has been 776 

applied. Panel B shows the same habitat map where coarse patch delineation has been 777 

applied, i.e. sets of contiguous cells has been lumped together. Contiguity is based on the 778 

Von Neuman neighborhood of cells. 779 
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Figure S4: Dendrogram of Pearson correlation coefficients among patch structural 781 

connectivity indices across all landscapes. We presented correlations among Buffer, dF 782 

and dIICflux using ascending hierarchical classification. Within each of the 90 simulated 783 

landscapes, we computed the values of the 13 indices (accounting for distinct scaling values) 784 

in all habitat cells, which yielded 13 vectors of length 1000 to 4000 depending on the habitat 785 

proportion. We scaled each of the 13 vectors to mean 0 and variance 1, divided them by the 786 

square root of the number of habitat cells in the landscapes and computed pairwise 787 

Euclidean distances among them. We thus obtained one 13×13 distance matrix among patch 788 

connectivity indices in each of the 90 landscapes. Note that the distance between two indices 789 

corresponds to √2 	 2
, where r is the Pearson correlation between the indices across all 790 

habitat cells of the considered landscapes. We then averaged the 90 distance matrices to 791 

obtain one single 13×13 distance matrix as a basis for classification. We ran an ascending 792 

non-supervised classification (hclust function of R base package), using the complete 793 

method for group merging. A monophyletic group G with common ancestor located at value r 794 

means that any pair of indices within G has a correlation above r. Indices labels in the 795 

dendrogram are made of three parts separated by underscores “_”. The first part of the name 796 

indicates the type of the index (“buf”, “dF”, “dIICflux”). The second part of the name indicates 797 

the scale parameter of the index (“d025”, “d050”, “d100”, “d200”  corresponding to λc = 0.25, 798 

0.5, 1, 2 cells respectively, and “1”, “2”, “4”, “6”, “8” corresponding to buffer radius rbuf in 799 

cells). The last part in meaningless here. 800 

 801 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/640995doi: bioRxiv preprint 

https://doi.org/10.1101/640995
http://creativecommons.org/licenses/by-nc/4.0/


Figure S5: Standard deviation of Buffer with optimal scaling as a function of 
landscape characteristics and dispersal level of species. Each panel corresponds to one 
species dispersal level (i.e. 900 virtual datasets). Within a panel, average standard deviation 
of Buffer index among sampled cells is reported for each combination of habitat proportion 
(y-axis) and Hurst coefficient (x-axis). Within a panel, the heat map shows the ordination of 
standard deviation values with red corresponding to lowest values and white to highest ones. 
The maximum average standard deviation value is reported in bold letters, and all the other 
values that are not significantly different from the maximum based on a z-test with threshold 
5% are also reported. 

 

 

Figure S6: Buffer response to high landscape Hurst coefficient. In all panels, the 
species dispersal is λs=1, the highest value explored in our study. Buffer index has a radius 
rbuf= 8 cells which is the optimal scaling given λs. Left panel: an example of fit of the model 
species richness ~ Buffer + Buffer2 for intermediary habitat proportion and intermediary Hurst 
coefficient. The coefficient of determination Rspec is reported in bold. Center panel: an 
example of fit of the model species richness ~ Buffer + Buffer2 for intermediary habitat 
proportion and high Hurst coefficient. The coefficient of determination Rspec is reported in 
bold. Right panel: boxplot of average Buffer value across sampled cells as a function of Hurst 
coefficient. The thick horizontal line shows the median value, boxes delimit first and third 
quantiles, and whiskers encompass all the data. 
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