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Abstract 

Assessing vegetation feedbacks with the climate system and planning sustainable management in 

tropical forests requires efficient, yet accurate, predictions of the joint dynamics of hundreds of 25 

tree species. With increasing information on tropical tree life-histories, our predictive 

understanding is no longer limited by species data, but by the ability of existing models to make 

use of it. Using a demographic forest model, we show that the basal area and compositional 

changes during forest succession in a Neotropical forest can be accurately predicted by 

representing tropical tree diversity (hundreds of species) with only five functional groups 30 

spanning two essential tradeoffs – the growth–survival and stature–recruitment tradeoffs. This 

data-driven modeling framework substantially improves our ability to predict consequences of 

anthropogenic impacts on tropical forests. 
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Main Text 35 

Tropical forests are highly dynamic. Only about 50% of the world’s tropical forests are 

undisturbed old-growth forests (1). The remaining half comprises forests regenerating after 

previous land use, timber or fuelwood extraction, or natural disturbances. Even unmanaged old-

growth forests are a dynamic mosaic of patches recovering from single- or multiple treefall gaps 

(2). Thus, understanding how forest structure and composition of the diverse tree flora change 40 

during recovery from disturbance is fundamental to predict carbon stocks and fluxes and 

vegetation feedbacks to the climate system (3), as well as to plan sustainable forest management 

(4). Despite the importance of regenerating tropical forests for the global carbon cycle and 

timber industry, our mechanistic understanding and ability to forecast compositional changes of 

these forests remains severely limited (5).  45 

So far, forest succession has been viewed mostly through a one-dimensional lens 

distinguishing early-, mid-, and late-successional species (5, 6). This classification corresponds 

to the well-known fast–slow life-history continuum or the growth–survival tradeoff (7). ‘Fast’ 

species grow quickly but survive poorly and dominate early successional stages, while ‘slow’ 

species grow slow but survive well and reach dominance in later successional stages. In addition, 50 

several studies suggest that tropical tree communities are also structured along a second major 

tradeoff axis that is orthogonal to the growth–survival tradeoff: the stature–recruitment tradeoff 

(8, 9). The stature–recruitment tradeoff distinguishes long-lived pioneers (LLPs) from short-lived 

breeders (SLBs). LLPs grow fast and live long and hence attain a large stature, but suffer low 

recruitment. SLBs grow and survive poorly and hence remain short-statured, but produce large 55 

numbers of offspring (9). However, we are lacking a systematic assessment of how important 

these tradeoffs are for predicting forest composition and carbon dynamics. 

We parameterized a forest model based on height-structured competition for light (10, 

11) with demographic tradeoffs derived from forest inventory data to uncover the essential 

number of demographic niches needed to accurately predict compositional changes during 60 

tropical forest succession. The model simulates the dynamics of a potentially large number of 

species based on a small set of demographic rates (growth, survival, recruitment) and accounts 

for height-structured competition for light by distinguishing up to four dynamic canopy layers 

(12). Canopy gaps are filled by the tallest trees from lower canopy layers, without regard for 

their horizontal position (10). 65 

Our study site is the tropical moist forest at Barro Colorado Island (BCI), Panama, where 

recruitment, growth and survival of individual trees has been monitored in a 50-ha plot for over 

30 years (2, 12, 13). To account for height-structured competition, we assigned all monitored 

individuals of 282 tree and shrub species to one of four canopy layers based on their size and the 

size of their neighbors (12, 14) and estimated model parameters (annual diameter growth and 70 

survival rates) for each species in each canopy layer (9). Additionally, we calculated species 

recruitment rates per unit of basal area. A dimension reduction of model parameters (weighted 

PCA, 15) reveals the two demographic tradeoffs, i.e. the growth–survival tradeoff and the 

stature–recruitment tradeoff, which together explain 65% of demographic variation among the 

282 species (Fig. 1). 75 
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Fig. 1: Demographic tradeoffs. Demographic variation of 282 tree species at BCI, Panama 

(grey dots), is characterized by the growth–survival tradeoff (1st axis) distinguishing fast and 80 

slow species and a stature–recruitment tradeoff (2nd axis) distinguishing long-lived pioneers 

(LLP) and short-lived breeders (SLB). Arrows show loadings of a weighted PCA on annual 

diameter growth and survival rates of individuals ≥ 1 cm diameter in four canopy layers and the 

number of sapling recruits per unit of basal area. Colored dots are locations in demographic 

space of plant functional types that were used in model scenarios 1 and 3. 85 

Our goal here is to explore whether this low-dimensional demographic tradeoff space can 

explain tropical forest dynamics, and if so, how much diversity along the tradeoff axes is 

necessary to accurately predict successional changes in species composition and basal area (a 

proxy for biomass carbon storage). We used species’ positions in the tradeoff space to back-

calculate model parameters for all 282 species (12), thus smoothing across observed 90 

relationships between demographic rates. We simulated forest dynamics under four scenarios 

that differed in the number of tradeoffs (1 versus 2) and level of demographic diversity (number 

of simulated species or plant functional types (PFTs), Table 1, Fig. 2A). 

 

Table 1: Model scenarios. Model scenarios differ in the number of included tradeoffs and level 95 

of demographic diversity (few PFTs vs 282 species). LLP – long-lived pioneers, SLB – short-

lived breeders. 

Scenario Tradeoffs Demographic diversity 

1 Growth–Survival 3 PFTs (fast, intermediate, slow) 

2 Growth–Survival 282 species 

3 Growth–Survival, Stature–Recruitment 5 PFTs (fast, slow, LLP, SLB, 

intermediate)  

4 Growth–Survival, Stature–Recruitment 282 species 
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Fig. 2: Predicted and observed basal area in four model scenarios (Table 1). (A) Locations 100 

of species (colored dots) and representative plant functional types (PFTs) or species used for 

model scenarios (black dots) in demographic space; each species was assigned to a PFT based on 

proximity in demographic space and color-coded as in Fig. 1. (B) Predicted (lines) and observed 

(asterisks) basal area by PFT in old-growth tropical forest (BCI, black is total basal area) and (C) 

secondary tropical forest (BCNM). RSME is the root mean square error of prediction of total 105 

basal area, MASE is the mean absolute scaled error of PFT-level predictions (12). 

 

As a first test of predictive ability, we compared the observed dynamics of the 50-ha old-

growth plot in BCI over 25 years with model predictions. We initialized the model with 

inventory data from 1985 and simulated forest dynamics until 2010. When only the growth–110 

survival tradeoff was used, basal area was predicted to decline because of a decline of the 

number of trees >20 cm diameter, especially of fast species (Figs. 2B, S1). Including the stature–

recruitment tradeoff axis improved the match between predicted and observed basal area (Fig. 

2B) and above-ground biomass (AGB, Fig. S2) for different PFTs and size classes (Figs. S3, S4). 

However, when all species were simulated individually (scenario 4), the number of large trees 115 

(>60 cm diameter) and basal area were predicted to increase (Fig. S1). Maximum diameters were 
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accurately predicted by all scenarios, except for scenario 2, where observed maximum diameters 

>150 cm were not reproduced (Fig. S5). The species-level parameterizations (scenarios 2 and 4) 

also reproduced the rank-abundance curve (Fig. S6). 

As a second test of model performance, we initialized the model with data from 40-year 120 

old secondary forests in the Barro Colorado Nature Monument (BCNM) that are regenerating 

after abandonment from agricultural land use (16). We compared model predictions with 

observations from a chronosequence of 60, 90, and 120-year old secondary forests (two 1-ha 

plots in each age class). This is a strong test of model performance, because the model was 

parameterized with demographic data only from old-growth forest.  125 

As in old-growth forest, predictions of secondary succession were most accurate when 

forest diversity was represented by 5 PFTs spanning both demographic tradeoffs. When only the 

growth–survival tradeoff was used, the increase of basal area (Fig. 2C) and AGB (Fig. S2) 

during succession was underestimated, because the number of large trees (>60 cm diameter) was 

underestimated (Fig. S7). In contrast, when both tradeoffs were included, observed successional 130 

changes in basal area, AGB, and abundance for different PFTs and size classes were accurately 

reproduced (Figs. 2C, S2, S7–S9). However, when all species were simulated individually 

(scenario 4), the number of large trees (>60 cm diameter) and basal area of fast species and LLPs 

was overestimated. The observed peak in basal area in the 90-year old secondary forest is likely 

caused by remnant trees in the study plots and disappears when larger spatial scales are 135 

considered (17). The diameter distribution after 400 years of simulation closely matched the 

observed diameter distribution only when both demographic tradeoffs were used (Fig. 3A). 

In a simulated long-term succession of scenario 3, slow species reached similar levels of 

basal area and AGB as LLPs after 400–500 years, and slow species and LLPs co-dominated the 

forest (Fig. S10). Fast species died out because the canopy gaps that they require for persistence 140 

(18) are treated in our model in a simplistic (non-spatially-explicit) manner. In reality, the forest 

is comprised of a mosaic of patches of different successional age since the last disturbance event 

(19). Comparing simulated successional trajectories of the fast and slow PFTs with observed 

species composition at the 0.1-ha scale allows inference of the patch-scale age distribution and 

suggests that the majority of the 0.1-ha patches within the BCI 50-ha plot are between 50 and 145 

250 years old (Fig. S11, 12). This model-inferred age distribution is consistent with LiDAR data 

collected on BCI, which suggest that between 0.43 and 1.6% of the area is disturbed every year, 

corresponding to an average disturbance interval between 63 and 233 years (12, 20). When we 

use the estimated proportion of 0.1-ha patches in each age class to generate the PFT-composition 

at equilibrium with the disturbance regime, predictions closely match observations (Fig. 3B). 150 
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Fig. 3: Model validation. (A) Diameter distribution in 400-year old simulated forest for the four 

model scenarios. (B) Predicted and observed basal area per PFT in model scenario 3 (5 PFTs 155 

spanning two demographic tradeoffs). Observed basal area is from an old-growth tropical forest 

in BCI, Panama. Predicted basal area is based on the estimated number of 0.1-ha patches in each 

age class (Fig. S11, 12). 

 

Our results clearly show that two demographic tradeoffs are needed to accurately predict 160 

successional patterns in tropical forest structure and composition. Considering only the fast–slow 

continuum of life-histories is not sufficient, because it ignores long-lived pioneers, one of the 

most important (in terms of tree size and AGB) components in many tropical forests. Although 

the existence of long-lived pioneers has long been recognized (5), they have often been assumed 

to be part of the fast–slow continuum, i.e. considered to be mid-successional, because they reach 165 

their highest basal area in intermediate stages of succession (6). However, recent analyses show 

that long-lived pioneers lie on a second demographic dimension (9), and we demonstrate here for 

the first time that this second dimension is needed to accurately predict tropical forest dynamics. 

Understanding general patterns of tropical forest dynamics will require moving away from 

viewing succession through a one-dimensional to a two-dimensional lens of demographic 170 

strategies.  

Our results suggest that the forest at BCI is in equilibrium with the local disturbance 

regime. This helps to resolve a long-standing dispute of whether long-lived pioneers are a 

transient feature of successional forests (6, 21, 22) and shows that, in this forest, they are not 

transient, but an integral and dominant component of the old-growth forest. In fact, long-lived 175 

pioneers dominate most successional stages and contribute more AGB than any other 

demographic group, except in very young forests (<40 years) or patches that have remained 

undisturbed for a long time (>400 years). Long-lived pioneers are able to maintain populations in 

the absence of large-scale disturbances and compensate for their low recruitment by growing 

quickly up to the canopy or emergent layer where they may remain as seed sources for several 180 

centuries (9). 

Our results also suggest that a small number of demographic niches is sufficient to 

capture the dynamics of the BCI forest. Specifically, just 5 PFTs were sufficient to adequately 

capture successional patterns of forest composition and carbon dynamics. This result does not 

rule out the importance of additional functional axes (e.g., drought tolerance) at broader spatial 185 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/808865doi: bioRxiv preprint 

https://doi.org/10.1101/808865
http://creativecommons.org/licenses/by-nd/4.0/


 

 

7 

 

or temporal scales, or the potential importance of individual species for ecosystem functioning. 

Nevertheless, our results suggest that functional diversity in species-rich tropical forests may be 

much smaller than taxonomic diversity, and that tropical forest diversity could be accurately 

represented in Earth System Models by a small number of PFTs that span the relevant functional 

axes (23). 190 

This systematic assessment of the optimal demographic resolution was only possible 

because all model parameters are directly observable in the field, and because tradeoffs in model 

parameters capture the relevant dimensions of functional variation among species, with no need 

for perfect information for each species (23, 24). Most importantly, the close match between 

field observations and the definition of model parameters avoids the necessity for time-195 

consuming and error-prone manual parameter tuning (25) or computationally-intensive inverse 

parameter fitting (26). More complex tropical forest models require data that are not available for 

most species, e.g. light transmission, light-use efficiency, respiration rates, seed-dispersal 

kernels, germination rates etc. (27). While such details can provide mechanistic insights, our 

simplified approach, based on observed recruitment rates, and growth, and mortality rates in 200 

different canopy layers, allowed for direct tests of hypotheses about demographic tradeoffs and 

functional diversity (e.g. 5 PFTs vs many species) in structuring tropical forest dynamics. 

Together, the demographic forest model and the empirical demographic tradeoffs define 

an objective, reproducible, and automated workflow that scales up from demographic rates of 

individual species to community structure and dynamics. Given its ease of application and the 205 

increasing availability of tropical forest inventory data, this workflow has the potential to 

substantially advance theoretical understanding of tropical forest dynamics by comparing 

demographic diversity, structure, and dynamics of forests that differ in climate, floristic 

composition, and/or disturbance regime. It also has the potential to facilitate the evidence-based 

planning of forest restoration and sustainable tropical forest management by providing improved 210 

quantitative tools for predicting rates and trajectories of forest regrowth (4, 9). Lastly, the two-

dimensional tradeoff studied here could also be combined with other key axes (e.g. drought 

tolerance) in a low-dimensional tradeoff space, allowing for improved representation of tropical 

forest functional diversity in Earth System Models (23). 

 215 

Materials and Methods 

 

The PPA model 

We used a version of the PPA model that is based on Purves et al. (11), where tree crowns are 

assumed to be flat. The simulation area was 1 ha and the model time step was 5 years. The model 220 

works on cohorts of trees that share the same age, diameter at breast height (dbh, in cm) and 

species/plant functional type (PFT). The number of trees in a cohort can be fractions of 

individuals, including numbers <1. Cohorts are removed from the simulation when they have 

<0.001 individuals. We extended the model from two to four canopy layers (14) and 

species/PFTs are characterized by growth and mortality rates in each of the four layers. We 225 

modified several aspects of the model. Cohorts are removed if they are assigned to a layer >4. 

Sapling cohorts enter the model at 1 cm dbh (originally 0.01 cm). Recruitment rates are constant 

(see below, originally they scaled with a species’ crown area in the canopy layer). Sapling 
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cohorts recruit to layer 4. The dbh (cm)-crown radius (m) relationship is nonlinear (originally 

linear),  230 

crown radius = 0.5*dbh0.62. 

Likewise, the dbh (cm)-height (m) relationship is non-linear and parameters for both 

allometries were determined using data from BCI (28),  

height = 11*(dbh/10)0.5. 

As a single allometry for all trees worked equally well as species-specific allometries in 235 

determining structural and dynamics properties of the forest (14), we used a single allometry for 

crown radius and height. 

To calculate above-ground biomass (AGB, Mg), we followed ForestGEO protocols and used 

allometric equations based only on dbh and wood density (wd), but not height, from Chave et al. 

(29) for moist tropical forest: 240 

AGB = (wd*exp(−1.499+2.148*log(dbh)+0.207*log(dbh)²−0.0281*log(dbh)³) / 1000), 

where dbh is measured in cm and wd in g/cm³. 

 

Parameterization 

In a previous study, we performed a weighted PCA (15) on nine demographic parameters for 282 245 

species from the BCI 50-ha plot, namely growth rate in the four canopy layers, survival 

(expressed as lifespan) in the four canopy layers, and the number of recruits per unit of adult 

basal area, which were derived from forest inventory data (9, 30). We follow the taxonomy as of 

2017 (31). The first two principal components of this PCA correspond to the fast−slow 

continuum (37% explained variation) and a stature−recruitment tradeoff (28% explained 250 

variation), respectively. Here we used a slightly modified version of the PCA using the number 

of recruits per unit of total species’ basal area, and used the first two principal components 

(henceforth ‘axes’ or ‘tradeoffs’) to determine model parameters. An exception are recruitment 

rates, which we determined directly from forest inventory data (independent of the basal area of 

a species and independent from the PCA). We assumed recruitment rates to be constant over 255 

time because the 50-ha plot is embedded within a larger forest area from which seeds 

continuously arrive into the study area. Moreover, relationships between recruitment rates per 

PFT and total basal area in 31.25 x 31.25 m² subplots or basal area of the respective PFT were 

weak or absent (not shown). 

To determine growth and mortality rates, we specified coordinates of five PFTs 260 

symmetrically in the two-dimensional demographic space (Fig. 1 in main manuscript): 

- Intermediate (location x1=0, x2=0) 

- Fast (location x1=−1.5, x2=0) 

- Slow (location x1=1.5, x2=0) 

- Long-lived pioneer (LLP, location x1=0, x2=1.5) 265 

- Short-lived breeder (SLB, location x1=0, x2=−1.5) 

Coordinates of +/−1.5 on the two tradeoff axes correspond to between 9 and 19% of species 

having more extreme demographic strategies.  

For the simulations including all species, we used their PCA scores along the 1st or 1st and 

2nd PCA tradeoff axis, depending on the scenario.  270 

We then solved the linear system of equations consisting of the PCA loadings of the nine 

parameters (Table S1) and species’ scores (setting all species’ scores on axes 3 to 9 to 0, i.e. 

x3…x9 = 0) to obtain transformed input parameters to the PCA. These were then back-
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transformed to model parameters by de-centering, de-scaling, and de-logging. Lifespan was 

transformed into mortality, i.e. mortality = 1/lifespan (Tables S2,S3). 275 

From these strategies, we simulated four scenarios, differing in the number of species/PFTs: 

1. 1 tradeoff, 3 PFTs (fast, intermediate, slow) 

2. 1 tradeoff, 282 species 

3. 2 tradeoffs, 5 PFTs (slow, fast, LLP, SLB, intermediate) 

4. 2 tradeoffs, 282 species. 280 

Annual recruitment rates (at 1 cm dbh) for each PFT were determined as the average number 

of recruits (per ha) of species that were assigned to the PFT. For scenarios (2) and (4), species 

without observed recruits (25 species) were assigned one recruit in 25 years and 50 ha, i.e. 

0.0008 recruits per year and ha. New recruits enter the simulation every year and experience 

deterministic mortality every year. However, annual recruit numbers were determined from 5-285 

year census intervals. Thus, we adjusted annual recruit numbers by species/PFT-specific 

mortality such that, after a 5-year time step, simulated recruit numbers matched observed 

average recruit numbers in 5-year census intervals in the 50-ha plot at BCI. 

Wood density (wd) for PFTs was determined as the volume-weighted mean of wd in old-

growth forest. Wood density is from bci.spptable (32; sometimes to genus or family level only). 290 

Individual tree volume was calculated as 

volume = exp(−1.499+2.148*log(dbh)+0.207*log(dbh)²−0.0281*log(dbh)³) / 1000. 

Volume-weighted wood density of the PFTs in secondary forest was slightly different from 

that of the PFTs in the old-growth forest, due to differences in species’ abundance. We used the 

volume-weighted wood density of the PFTs in old-growth forest, when we calculated AGB in 295 

simulations of old-growth forest dynamics, and wood density of the PFTs in secondary forest 

plots, when we calculated AGB in simulations of secondary forest succession.  

 

Species assignment to PFTs, model initialization and validation 

Old-growth forest – In the 50-ha permanent plot in tropical moist forest on Barro Colorado 300 

Island (BCI), Panama, every tree ≥ 1 cm dbh is tagged, mapped, and measured approximately 

every five years (30). In this paper our analyses are based on six censuses (conducted between 

1985 and 2010). We leave out the first census of 1982 because in this census some tall trees with 

buttresses were measured at lower heights than in subsequent censuses introducing a bias in 

basal area and AGB estimates. Detailed methods for the plot censuses can be found in (2) and 305 

(13). 

For comparison of model predictions with data, we assigned species to PFTs based on their 

PCA scores along the 1st or 1st and 2nd PCA axis. For scenarios (1) and (3), we assigned species 

to the PFT with the closest location that was used for parameterization (Figs. 1, 2A in main 

manuscript). For scenario (1), 98 species were assigned to the ‘fast’ PFT, 83 to the ‘slow’ PFT, 310 

and 101 to the ‘intermediate’ PFT. For scenario (3), 75 species were assigned to the ‘fast’ PFT, 

76 to the ‘LLP’ PFT, 60 to the ‘slow’ PFT, 30 to the ‘SLB’ PFT, and 41 to the ‘intermediate’ 

PFT. For visualization purposes, we used the same PFT assignments for scenarios (2) and (4), 

where all species were simulated individually. 

For simulation of old-growth forest dynamics, we initialized the model with the average (in 315 

terms of species abundances and tree sizes) of the 50-ha plot on Barro Colorado Island in 1985. 

Individuals of species that were not included in the PCA (mostly palms and hemiepiphytes, 1.4% 

of individuals, 3.5% of basal area) were omitted in these calculations as they could not be 

associated with a PFT. Thus, the initial state of the model is slightly less populated than the real 
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forest. Species were assigned to one of 111 size classes and tree numbers were aggregated by 320 

size class and species/PFT. Size classes were 1 cm wide for individuals between 1 and 50 cm 

dbh, 2 cm wide for individuals between 50 and 100 cm dbh, and 5 cm wide for larger 

individuals. The lower limit of the size class was used as initial cohort size in the PPA model. 

We validated the model against field data in terms of overall basal area, AGB, and 

abundance per PFT, as well as in different size classes. Forest structure and composition was 325 

determined from the six censuses of the 50-ha plot (1985−2010). Basal area and AGB were 

compared for the size classes 1−20 cm, 20−60 cm, ≥ 60 cm, ≥ 1 cm dbh (total). Abundance was 

compared for the size classes 5−20 cm, 20−60 cm, ≥ 60 cm, ≥ 5 cm dbh (total).  

As measures of predictive power, we calculated the root mean square error (RMSE) of 

prediction for total basal area. RMSE measures the average deviation of the predicted value from 330 

the observed value and is in the same unit as observations (m²/ha). We also calculated the mean 

absolute scaled error (MASE) to compare the predictive power of different model 

parameterizations at the PFT level that are at different scales (33). MASE is scale-independent 

and measures the predictive power of a model relative to a naïve random walk forecast. 

We compared simulated (after 100 years of simulation) and observed maximum diameters. 335 

Maximum diameter for each PFT in the field data and the simulations was calculated as the 

largest 5-cm diameter class with >0.1 individuals per ha. For parameterizations (2) and (4) (282 

species), it was calculated for each species as the largest 5-cm diameter class with >0.005 

individuals per ha. For parameterizations (2) and (4) (282 species), we additionally compared 

simulated and observed rank-abundance curves. Observed abundance was calculated as average 340 

abundance per ha over six censuses (1985−2010). We used the ‘RADanalysis’ package in R (34) 

to construct a rank abundance distribution using the max rank normalization method. 

We compared the diameter distribution of simulated 400-year old forest with the observed 

diameter distribution of the old-growth forest. The observed diameter distribution again is an 

average of six censuses and includes palms and hemiepiphytes.  345 

 

Secondary forest – Data on secondary forests is from eight forest plots (1 ha each) <7 km away 

from the old-growth forest plot (16, 35, 36). There were two plots in each of four age classes (40, 

60, 90, and 120 years). All secondary forest stands had been in agriculture, including pasture, 

swidden farming, and plantation farming, for undetermined lengths of time prior to fallow (16). 350 

The plots were inventoried between 2011 and 2014. In all plots, every tree ≥ 5 cm dbh was 

tagged, mapped, and measured, and in most of the plots, in a 0.5-ha subset of the plot every tree 

≥ 1 cm dbh was tagged, mapped, and measured. We only considered the largest stem of multi-

stemmed individuals to match old-growth forest data. 

We excluded 254 individuals without recorded dbh as well as palms (8 species, 474 355 

individuals), hemiepiphytes (1 species, 4 individuals), cultivated species (1 species, 1 

individual), and unidentified individuals (214). Of the remaining 242 species (9935 individuals), 

we had no information on demographic strategy from the old-growth forest for 50 species (1212 

individuals). We assigned some of these species to the PFTs of a closely related species, and 

others based on average demographic characteristics of taxonomically-related species and/or 360 

species with similar functional traits, i.e. wood density and growth form. Wood density and 

growth form is from bci.spptable (32; sometimes to genus or family level only). 

For simulation of secondary forest succession, we initiated the model with the average of 

two 1-ha 40-year old secondary forest plots. Species were assigned to one of 111 size classes and 

tree numbers were aggregated by size class and PFT. Size classes were 1 cm wide for individuals 365 
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between 1 and 50 cm dbh, 2 cm wide for individuals between 50 and 100 cm dbh, and 5 cm wide 

for larger individuals. The lower limit of the size class was used as initial cohort size in the PPA 

model. 

We validated the model against field data in terms of total basal area, AGB, and abundance 

per PFT, as well as in different size classes. Basal area, AGB, and abundance were compared for 370 

the size classes 5−20 cm, 20−60 cm, ≥ 60 cm, ≥ 5 cm dbh (total), because sampling of the 

different secondary forest plots <5 cm dbh was inconsistent. To calculate RSME and MASE, we 

averaged the observations in the two 1-ha plots per age class to yield a single time series of basal 

area. 

 375 

Disturbance regime 

Analyses from detailed LiDAR data from the year 2009 estimated 0.43% of the area of BCI to be 

canopy gaps with <2 m canopy height and 1.6% of the area to be canopy gaps <5 m canopy 

height (20). Assuming that the vegetation can re-grow to a canopy height between 2 and 5 m 

within one year, the fraction of the forest that is disturbed every year is between 0.43 and 1.6%. 380 

This corresponds to an average disturbance interval between 62.5 (100/1.6) and 232.6 (100/0.43) 

years.  

 

Age distribution and simulated equilibrium mixed forest 

We divided inventory data from the six censuses between 1985 and 2010 from the 50-ha plot 385 

into 512 31.25 m x 31.25 m subplots and calculated the basal area (m²/ha) of species assigned to 

the slow and fast PFTs of scenario (3) for each subplot. Then, we determined the year (in steps of 

5 years) in a simulated succession to which the basal area of fast and slow PFTs in each subplot 

was most similar, respectively, and took their mean. As the model was initialized with inventory 

data from 40-year old forest, we linearly extrapolated the basal area of PFTs for younger ages 390 

between 0 m²/ha for year 0 and the observed basal area at year 40. The resulting combined 

(across censuses) age distribution of subplots (Fig. S11) was then used to generate a ‘simulated’ 

equilibrium of the mixed forest as the sum of simulated basal area or AGB of the respective ages, 

weighted by the proportion of subplots in the respective age class. Note: We only considered the 

fast and slow PFTs because they show a clear successional pattern, while LLPs maintain high 395 

and SLBs and the intermediate PFT maintain low basal area throughout much of the succession. 
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Supplementary Figures and Tables 

 515 

 

Fig. S1. 

Predicted and observed abundance in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) abundance per PFT in an old-520 

growth tropical forest in Barro Colorado Island, Panama. Color code: purple – slow, yellow – 

fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S2. 

Predicted and observed aboveground biomass (AGB) in four model scenarios that differ in the 525 

number and demographic characteristics of simulated species or PFTs. (A) Predicted (lines) and 

observed (asterisks) biomass per PFT in an old-growth tropical forest in Barro Colorado Island, 

Panama (≥ 1 cm dbh) and (B) in secondary tropical forest in Barro Colorado Nature Monument 

National Park, Panama (≥ 5 cm dbh). Color code: purple – slow, yellow – fast, green – LLP, blue 

– SLB, red – intermediate, black – total.  530 
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Fig. S3. 

Predicted and observed basal area in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) basal area per PFT in an old-growth 535 

tropical forest in Barro Colorado Island. Color code: purple – slow, yellow – fast, green – LLP, 

blue – SLB, red – intermediate, black – total. 
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Fig. S4. 

Predicted and observed above-ground biomass (AGB) in four model scenarios (rows; A: 1 540 

tradeoff – 3 PFTs, B: 1 tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 

species) and three size classes (columns). Simulated (lines) and observed (asterisks) biomass per 

PFT in an old-growth tropical forest in Barro Colorado Island, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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 545 

Fig. S5. 

Simulated and observed maximum diameters of the PFTs or species for four model scenarios. 

1:1 lines are shown in grey. See Suppl. for details. 

 

  550 
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Fig. S6. 

Observed and predicted rank-abundance curves after 100 years of simulation of old-growth 

forest at Barro Colorado Island, Panama. 

 555 
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Fig. S7.  

Predicted and observed abundance in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 560 

classes (columns). Simulated (lines) and observed (asterisks) abundance per PFT in secondary 

tropical forest in Barro Colorado Nature Monument National Park, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S8. 565 

Predicted and observed basal area in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) basal area per PFT in secondary 

tropical forest in Barro Colorado Nature Monument National Park, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 570 
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Fig. S9. 

Predicted and observed above-ground biomass (AGB) area in four model scenarios (rows; A: 1 

tradeoff – 3 PFTs, B: 1 tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 

species) and three size classes (columns). Simulated (lines) and observed (asterisks) biomass per 575 

PFT in secondary tropical forest in Barro Colorado Nature Monument National Park, Panama. 

Color code: purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – 

total.
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 580 

Fig. S10. 

Simulated long-term succession of scenario 3 (2 tradeoffs, 5 PFTS) starting from inventory data 

of 40-year old secondary forest. Basal area and above-ground biomass of individuals ≥ 5 cm dbh 

for comparison with secondary forest data (asterisks). Recruitment rates of the PFTs are constant 

and set to annual averages of the number of observed recruits of species assigned to the five 585 

PFTs. Color code: purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, 

black – total.  
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Fig. S11. 590 

Estimated age distribution of ~0.1-ha subplots from six censuses (1985, 1990, 1995, 2000, 2005, 

2010). 
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Table S1. 

Loadings of demographic parameters in the wPCA. Survival and growth of trees (≥ 1 cm dbh) in 595 

four canopy layers is indicated by ‘Survival 1’ etc. Recruitment is the number of recruits per unit 

of total species basal area. Only the first one or two principal components are used to back-

calculate model parameters from species scores in PCA space, depending on the scenario. 

 
Parameters Parameter loadings 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Survival1 0.2103 0.2947 -0.5398 -0.4130 -0.4612 0.3415 -0.2380 0.1407 -0.0356 

Survival2 0.3370 0.4051 -0.0063 -0.2672 0.3237 0.0814 0.7127 -0.0482 0.1712 

Survival3 0.4376 0.2396 0.2830 0.2505 0.0200 0.1136 -0.4280 -0.1090 0.6323 

Survival4 0.4541 0.2032 0.2832 0.2428 0.1178 0.2067 -0.1305 0.1782 -0.7127 

Growth1 -0.1943 0.2070 -0.6090 0.5235 0.4575 0.2204 -0.0746 -0.1046 -0.0014 

Growth2 -0.3504 0.1586 0.2375 -0.5400 0.5401 0.2434 -0.3889 0.0320 -0.0285 

Growth3 -0.3899 0.3775 0.1968 0.2308 -0.1839 0.0735 0.1434 0.7262 0.1622 

Growth4 -0.3609 0.3588 0.2738 0.1188 -0.3651 0.3276 0.1296 -0.6163 -0.1215 

Recruitment 0.0415 -0.5578 0.0858 0.0571 0.0069 0.7750 0.2025 0.1228 0.1404 

  600 
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Table S2. 

PPA model parameters for 3 PFTs (1 demographic tradeoff axis). G1 to G4 and mu1 to mu4 are 

annual growth (mm/y) and mortality (1/y) rates in four canopy layers, respectively. F is the 

number of new recruits over the 1 cm dbh threshold per year and hectare and wd is wood density 

(g/cm³). 605 

 

 
PFT Model parameters 

 G1 G2 G3 G4 mu1 mu2 mu3 mu4 F wd 

slow 2.46028 0.68289 0.40415 0.36858 0.0174 0.0097 0.01037 0.01641 79.22 0.566 

fast 4.34277 2.21993 0.89384 0.67679 0.02851 0.02614 0.04981 0.06728 22.65 0.412 

intermediate 3.2687 1.23125 0.60104 0.49945 0.02227 0.01592 0.02272 0.03323 12.62 0.620 
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Table S3. 

PPA model parameters for 5 PFTs (2 demographic tradeoff axes). G1 to G4 and mu1 to mu4 are 610 

annual growth (mm/y) and mortality (1/y) rates in four canopy layers, respectively. F is the 

number of new recruits over the 1 cm dbh threshold per year and hectare and wd is wood density 

(g/cm³). 

 

 615 
PFT Model parameters 

 G1 G2 G3 G4 mu1 mu2 mu3 mu4 F wd 

slow 2.46028 0.68289 0.40415 0.36858 0.0174 0.0097 0.01037 0.01641 65.37 0.635 

Fast 4.34277 2.21993 0.89384 0.67679 0.02851 0.02614 0.04981 0.06728 20.83 0.403 

LLP 4.42383 1.6079 0.88258 0.67557 0.01576 0.00877 0.01479 0.02423 6.22 0.480 

SLB 2.4152 0.94283 0.40931 0.36925 0.03148 0.0289 0.03492 0.04557 16.83 0.653 

intermediate 3.2687 1.23125 0.60104 0.49945 0.02227 0.01592 0.02272 0.03323 6.24 0.600 
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