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ABSTRACT 37 
Genome-wide association studies (GWAS) have identified over 150,000 links between 38 
common genetic variants and human traits or complex diseases. Over 80% of these 39 
associations map to polymorphisms in non-coding DNA. Therefore, the challenge is 40 
to identify disease-causing variants, the genes they affect, and the cells in which 41 
these effects occur. We have developed a platform using ATAC-seq, DNaseI 42 
footprints, NG Capture-C and machine learning to address this challenge. Applying 43 
this approach to red blood cell traits identifies a significant proportion of known 44 
causative variants and their effector genes, which we show can be validated by direct 45 
in vivo modelling.   46 
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INTRODUCTION 47 
Identification of the variation of the genome that determines the risk of common chronic and 48 
infectious diseases informs on their primary causes, which leads to preventative or 49 
therapeutic approaches and insights. Whilst genome-wide association studies (GWASs) 50 
have identified thousands of chromosome regions1, the identification of the causal genes, 51 
variants and cell types remains a major bottleneck. This is due to three major features of the 52 
genome and its complex association with disease susceptibility. Trait-associated variants 53 
are often tightly associated, through linkage disequilibrium (LD), with tens or hundreds of 54 
other variants, mostly single-nucleotide polymorphisms (SNPs), any one or more of which 55 
could be causal; the majority (>85%) the variants identified in GWAS lie within the non-56 
coding genome2. Although non-coding regions are increasingly well annotated, many 57 
variants do not correspond to known regulatory elements, and even when they do, it is rarely 58 
known which genes these elements control, and in which cell types. New technical 59 
approaches to link variants to the genes they control are rapidly improving but are often 60 
limited by their sensitivity and resolution3–6; and because so few causal variants have been 61 
unequivocally linked to the genes they affect, the mechanisms by which non-coding variants 62 
alter gene expression remain unknown in all but a few cases; and, third, the complexity of 63 
gene regulation and cell/cell interactions means that knowing when in development, in which 64 
cell type, in which activation state, and within which pathway(s) a causal variant exerts its 65 
effect is usually impossible to predict. Although significant progress is being made, currently, 66 
none of these problems has been adequately solved. 67 
 68 
Here, we have developed an integrated platform of experimental and computational 69 
methods to prioritise likely causal variants, link them to the genes they regulate, and 70 
determine the mechanism by which they alter gene function. To illustrate the approach we 71 
have initially focussed on a single haematopoietic lineage: the development of mature red 72 
blood cells (RBC), for which all stages of lineage specification and differentiation from a 73 
haematopoietic stem cell to a RBC are known, and can be recapitulated ex vivo by culture of 74 
CD34+ progenitor and stem cells7–9. GWASs have identified over 550 chromosome regions 75 
associated with changes in the phenotypes of mature RBC10,11; within these regions 1,114 76 
index SNPs are in high LD with 30,694 variants, of which, only eight have been claimed as 77 
causal regulatory variants through experimental validation12–16. 78 
 79 
We first identify the key cell type(s) throughout erythropoiesis by analysing enrichment of 80 
GWAS variants lying within regions of open chromatin. These regions contain the tissue-81 
specific regulatory elements of the genome (promoters, enhancers and boundary elements). 82 
We next focus on the ~8% of variants which lie within regulatory elements in the non-coding 83 
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genome; with the remaining variants assessed for effects on coding sequences and RNA 84 
processing using established programmes17–19. The platform addresses the fact that both 85 
causal and non-causal variants may lie in open chromatin. Using DNaseI footprinting and a 86 
machine learning approach the platform prioritises variants predicted to directly affect the 87 
binding of transcription factors or alter chromatin accessibility20,21. Having prioritised putative 88 
regulatory causal variants, the platform then links the regulatory elements in which they 89 
occur to genes using NG Capture-C, the highest resolution chromatin conformation capture 90 
(3C) method currently available for targeting numerous loci22,23. To validate the predicted 91 
molecular changes caused by such GWAS variants we use CRISPR/Cas9 facilitated 92 
Homology Dependent Recombination (HDR) to directly model SNP alleles and determine 93 
their effects. 94 
 95 
Testing our platform against 75 chromosome regions from a previous GWAS of RBC traits11 96 
we identified putative causal variants at ~80%, their candidate effector genes at ~70%, and 97 
three or fewer candidate variants at ~60%. By benchmarking with the eight validated causal 98 
variants from previous studies12–16, and genes at well characterised erythroid loci, we 99 
successfully predicted >87% of both causal variants and effector genes. Finally, we used 100 
genome editing to directly determine the in vivo molecular effects of candidate SNPs in two 101 
regions – showing both SNPs to be causal and verifying JAK2 as a novel RBC trait effector 102 
gene. As this platform was developed with methods appropriate for small numbers of cells, 103 
and therefore rare cell types, the approach will enable researchers across a wide range of 104 
traits or disorders to more readily identify causal variants, the cells in which they exert their 105 
effects, their target genes, and the mechanisms by which they alter cell biology, and 106 
ultimately, disease risk.  107 
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RESULTS 108 
Enrichment of variants influencing RBC traits in highly active erythroid enhancers. 109 
The first stage of an integrated platform for dissecting polygenic traits is the identification of 110 
key cell types (Supplementary Fig. 1). Recently, ATAC-seq allowed a comprehensive 111 
identification of cis-regulatory elements which remain constitutively present or dynamically 112 
change throughout haematopoietic lineage specification, differentiation, and maturation8,24. 113 
To identify regulatory regions in early, intermediate and late erythroid cells we generated 114 
ATAC-seq from such cells obtained by ex vivo erythroid differentiation of CD34+ stem and 115 
progenitor cells9 from three healthy, non-anaemic individuals (Supplementary Fig. 2). We 116 
also examined ATAC-seq profiles from a variety of haematopoietic cells, including erythroid 117 
progenitors (Fig. 1a,b); in total identifying 238,918 open-chromatin regions (496-4,136 bp) 118 
present at one or more stages of erythropoiesis. 119 
 120 
Previously, 1,114 index SNPs, each of which identifies a region of LD, have been associated 121 
with specific RBC traits in two extensive GWAS of Asian and European populations10,11. 122 
These index SNPs are associated, via LD (r2≥0.8), with a total of 30,694 variants. 123 
Approximately 8% of these variants, covering ~60% of RBC trait regions, intersected with 124 
open chromatin in erythropoietic cells (n=2,590). Intersections were predominantly found in 125 
fully committed, intermediate erythroid cells (days 10-13, cumulative binomial distribution, 126 
p=7x10-29) rather than in multipotent progenitor cells (Fig. 1a, Supplementary Figs. 3a,b). 127 
Enrichment was trait specific as variants associated with immune diseases25–27 showed 128 
minimal enrichment for intersection with erythroid open chromatin but strong enrichment in 129 
differentiated lymphocytes (Supplementary Fig. 3d-f) while non-haematological trait 130 
variants28–30 showed no enrichment in either red or white blood cells. For all traits, we saw 131 
no enrichment when we analysed ATAC-seq profiles from two non-haematopoietic cell lines. 132 
 133 
To further characterise the intersected regulatory elements, we generated ChIP-seq data to 134 
distinguish promoters (Histone-3 Lysine-4 trimethylation, H3K4me3), enhancers (H3K4 135 
monomethylation, H3K4me1), boundary elements (CTCF), and “active” sites (H3 Lysine-27 136 
acetylation, H3K27ac) in committed erythroid cells. We applied GenoSTAN31 to assign a 137 
chromatin signature to each element and thereby generated a high-resolution map of open 138 
chromatin in erythroid cells with seven functional classes (Fig. 1c, Supplementary Fig. 4). 139 
Intersected elements were enriched for enhancers and promoters with high levels of 140 
H3K27ac but not those with low levels of H3K27ac, nor ATAC-seq peaks with CTCF 141 
enrichment (Fig. 1c). When putative enhancers were ranked for their levels of H3K27ac (Fig. 142 
1d), elements containing RBC variants were significantly enriched amongst the highly 143 
activity erythroid enhancers (χ2: d.f.=3, p=7x10-54). 144 
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 145 
Cell-specific intersection is consistent with previous studies32–34, and as shown here, when 146 
applied to highly-stratified cell types may help identify the precise cells in which the variant 147 
affects function. For example, four variants including the predicted causative SNP 148 
rs117555013 intersect a cis-regulatory element in the Small Integral Membrane Protein 1 149 
(SMIM1; Vel Blood Group) encoding locus. This element is associated with a region of open 150 
chromatin which only appears in megakaryocytic-erythroid progenitors (MEPs) and 151 
early/intermediate erythroid precursors (Fig. 1b). A meta-analysis of all intersected open 152 
chromatin regions showed multiple trajectories of accessibility, including persistent 153 
nucleosome depletion, progenitor specific accessibility, and terminal or transient accessibility 154 
(Supplementary Figs. 5,6). While overall enrichment of predicted causal variants is strongest 155 
in intermediate erythroid cells (day 10-13), RBC traits may also be influenced by variants 156 
acting at earlier stages of erythropoiesis. 157 
 158 
Meta-genomic and machine learning approaches effectively prioritise causal variants. 159 
As both causal and non-causal variants fall within open chromatin, further assessment of 160 
their potential to alter the function of the underlying regulatory elements is required. We 161 
applied a combination of meta-genomics and machine learning to further characterise 162 
variants found within open chromatin in erythroid cells. Regulatory variants are likely to act 163 
by altering the dynamics of transcription factor binding, however only 10-20% of causal 164 
SNPs directly alter known transcription factor motifs35. This suggests that causal variants 165 
may either play an unexplained mechanistic role, or act through uncharacterised 166 
transcription factors. Sasquatch uses an unbiased approach to measure the average in vivo 167 
DNaseI-seq footprint for any given sequence in a specific cell type20, thus identifying likely 168 
transcription factor binding sites for both known and unknown transcription factors, and can 169 
therefore be used to evaluate variants in an unbiased manner (Fig. 2a). Using Sasquatch, 170 
we found 61.8% of variants in open chromatin in committed erythroid cells were predicted to 171 
have at least a weak effect on transcription factor footprints (762/1,233), accounting for 172 
variants at ~57% of RBC LD regions (Supplementary Fig. 7). While some of these changes 173 
were found in or adjacent to known haematopoietic transcription factors, including SCL/TAL, 174 
GATA1, SPI1/PU1, NF-E2, BACH1, and MAFK, footprint changes were also seen for motifs 175 
with no known associated transcription factor (Fig. 2, Supplementary Figs. 7,8). 176 
 177 
Changes in specific transcription factor binding predicted by Sasquatch were validated by 178 
analysis of heterozygous variants using ChIP-seq. Notably, for rs3747093 which falls within 179 
an SCL/TAL binding motif, significant allelic imbalance was seen in erythroid SCL/TAL ChIP-180 
seq in three independent datasets (Fig. 2b-c). Similarly, rs77222982 which is directly 181 
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adjacent to an AGATAA motif showed allelic imbalance in GATA1 binding (Fig. 2d-e). Often, 182 
skew in enrichment was seen across more than one factor in elements affected by a single 183 
variant, probably reflecting co-dependency in their binding (Supplementary Fig. 8). Such 184 
imbalance is consistent with the alteration of binding predicted by Sasquatch, demonstrating 185 
its ability to accurately detect causative variants. 186 
 187 
Convoluted neural network based machine learning can predict open chromatin36,37 and was 188 
also used to identify causal variants. We used 936 chromatin-accessibility and epigenetic 189 
datasets to train a deep convoluted neural network, deepHaem21, to predict chromatin 190 
accessibility based on DNA sequence across haematological cell-types (Fig. 3a, 191 
Supplementary Fig. 9a-d). Using deepHaem it is possible to predict the effect of variants on 192 
chromatin accessibility. DeepHaem identified 91 variants in open chromatin with changes 193 
greater than 10% of the maximum accessibility score (1.0), with the strongest effects seen in 194 
MEP and erythroid populations (Fig. 3b). 45 of the variants predicted to alter chromatin-195 
accessibility had scores greater than 0.1 in erythroid cells. Using ATAC-seq, we identified 196 
heterozygous alleles for 15 of these 45 variants in three healthy individuals. Comparison of 197 
sequencing from these alleles showed significant bias in ATAC-seq accessibility at 7 of the 198 
sites and skew at a further 5 sites (Fig. 3c, Supplementary Fig. 9e) indicating that 199 
deepHaem can accurately predict variant-induced changes in chromatin accessibility. 200 
 201 
To assess how well the platform performed at identifying causative regulatory variants we 202 
used previously characterised RBC trait variants. Currently, no RBC trait variants have been 203 
definitively shown to be causative using direct in vivo modelling; however, eight regulatory 204 
variants have strong support from functional assays12–16. The approach established here 205 
identified that seven of these eight variants lie in open chromatin in erythroid cells, and 206 
therefore had the potential to be regulatory causal variants. Characterisation with Sasquatch 207 
or deepHaem further prioritised six of these variants as likely to be causative 208 
(Supplementary Table 1). Therefore, the platform accurately prioritises causal variants, and 209 
thus identifies variants for functional analysis. 210 
 211 
A comprehensive search for all causal variants within an RBC GWAS. 212 
The first major RBC trait GWAS identified 75 index SNPs11; the associations identified in that 213 
study are likely to represent the most common variants with moderate effect sizes and some 214 
rare variants with large effect sizes, therefore we focused specifically on this dataset for in-215 
depth follow-up. A comprehensive GWAS decoding platform must prioritise causal variants 216 
by treating all mechanisms as plausible. By examination of the 75 index SNPs, as well as 217 
variants in high LD with them (r2≥0.8, 1000 Genomes Project; n=6,420), we identified 486 218 
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candidate regulatory variants within 61 of the 75 chromosome regions. In addition to 219 
regulatory variants, we considered the possibility for coding and splicing changes across 220 
these regions. Putative coding sequence changes were identified using ANNOVAR17 and 221 
then filtered for erythroid expressed genes. This identified 20 variants predicted to alter 222 
protein sequence at 14 regions (Supplementary Table 1B). Next, putative alternative-splicing 223 
variants were identified using a combination of Splicing Index18 and a deep learning 224 
approach, SpliceAI19. Together, these programmes identified 13 putative splice-altering 225 
SNPs in 11 erythroid expressed genes across nine regions; however, no variants were 226 
highlighted by both algorithms (Supplementary Table 1B). Using these integrated analyses 227 
for coding, splicing and regulatory mechanisms we identified candidate causal variants at 63 228 
of the 75 chromosome regions, with 43 of these having three or fewer strong candidates, 229 
and the majority of candidates being in tight linkage (r2≥0.9; n=394/515) with their index SNP 230 
(Fig. 4, Supplementary Figs. 10,11a). 231 
 232 
We next considered why no causal variants were predicted for 12 chromosome regions. 233 
Immediate possibilities are that the variant affects gene function in a way that is currently 234 
unrecognised, or exerts effects in an untested cell type. Consistently, rs855791, also 235 
identified in GWAS for iron status, haemoglobin levels, and erythrocyte volume38,39, is a 236 
missense variant of TMPRSS6. TMPRSS6 is expressed in the liver and encodes Matripase-237 
2, a suppressor of the iron homeostasis master regulator, Hepcidin40,41. It is also possible 238 
that the causal variant affects mRNA stability. However, there are currently no good 239 
predictive software programmes for this. Finally, it may be that causal variants were not 240 
identified because the initial GWAS study was not sufficiently powered or used a sub-optimal 241 
catalogue of variants; resulting in incompletely resolved genetics. Indeed, index SNPs in 242 
unresolved loci were less likely to be replicated in subsequent RBC trait GWAS10,42 than 243 
index SNPs at resolved loci (Supplementary Fig. 11b). Additionally, in a region with multiple 244 
unlinked causal variants, incompletely resolved genetics can lead to index SNPs being 245 
identified through weak association (r2<0.8) with two or more causal variants. Such index 246 
SNPs are referred to as tag SNPs43 (Supplementary Fig. 11a). At the TMCC2 locus, where 247 
rs9660992 is an index SNP11, moderate linkage (r2=0.51-0.82) is seen with two independent 248 
index SNPs from a subsequent RBC trait GWAS10. While rs12137294 and rs1172129 are 249 
themselves unlinked (r2=0.46), each is in tight linkage with several variants in open 250 
chromatin (Supplementary Fig. 12); suggesting rs9660992 may be a tag SNP. Therefore, 251 
both additional cell types and incomplete genetics can explain unresolved regions. 252 
 253 
 254 
 255 
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High resolution 3C mapping accurately identifies effector genes. 256 
The target or effector genes for splicing and coding variants can be directly inferred, but the 257 
effector genes of regulatory variants must be identified experimentally. For enhancers to 258 
regulate gene expression they often physically interact with target promoters, likely through 259 
loop-extrusion and/or phase-separation44,45. The close proximity required for regulation can 260 
be identified by chromosome conformation capture (3C) to map interactions46 and this 261 
provides a means by which to identify effector genes. NG Capture-C uses biotinylated 262 
oligonucleotide probes to target specific loci at high resolution in multiplexed 3C samples23; 263 
allowing statistical comparison for identification of enhancer-promoter interactions. We 264 
designed probes for 214 variant containing cis-regulatory elements covering 53/61 265 
chromosome regions with putative regulatory variants; then simultaneously generated 3C 266 
interaction data in intermediate erythroid cells, H1-hESCs and HUVECs to link cis-regulatory 267 
elements with their effector genes. Using a combination of tissue-specificity (DESeq2)23, 268 
Bayesian modelling (Peaky)47, and promoter proximity (≤5 kb) to call variant-promoter 269 
interactions we identified 194 candidate effector genes at 48 of the 53 targeted regions (Fig. 270 
5a-b, Supplementary Table 1). For each targeted region, NG Capture-C identified an 271 
average of four genes, which is consistent with the predicted number of gene targets for 272 
enhancers48–50, though whether multiple genes contribute to a GWAS trait at a single locus 273 
remains to be determined. Although some methods have indicated that GWAS variants are 274 
most frequently found within 20 kb of their target genes51 we detected interactions up to 992 275 
kb, with a median distance of 83.9 kb (±9.3 kb SE, Fig. 5c). Such long-range interactions 276 
were seen at several well characterised erythroid loci including CITED2 (139 kb), SLC4A1 277 
(47 kb), RBM38 (24 kb), ANK1 (25 kb), MYB (85 kb), and HBA1/2 (63 kb), showing that 278 
GWAS variants, as for other enhancer-promoter interactions, may act over large distances 279 
(Fig. 5d, Supplementary Figs. 13-18). 280 
 281 
The erythroid system and RBC traits have been intensively analysed and characterised; 282 
therefore, we were able generate a set of the 24 “most likely” effector genes within the 53 283 
targeted chromosome regions based on prior knowledge of their function (Supplementary 284 
Fig. 19a). This set of genes allowed us to benchmark our approach; finding that with NG 285 
Capture-C we correctly identified 22 of the 24 most-likely effector genes (Fig. 5a, 286 
Supplementary Fig 19b). Of the remaining regions, no genes were identified at one (miR-287 
181a), and four incorrect candidates were identified in the region where TAL1 is almost 288 
certainly the effector. With these exceptions, NG Capture-C performs with a high rate of 289 
success in identifying effector genes linked to potential causal variants. Three previous 290 
attempts with diverse methods to identify effector genes associated with RBC traits have 291 
been reported5,6,11. These were an annotation-based approach11, Promoter Capture-HiC5 292 
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(PC-HiC), and a gene-centric shRNA screen6. We directly compared these different 293 
approaches with NG Capture-C. There was little consistency between the candidate gene 294 
lists from these approaches (Supplementary Fig. 19c), with NG Capture-C the only method 295 
to identify HBA-1/2, the α-globin encoding genes, which are known to be associated with 296 
anaemia and changes in RBC traits52 (Supplementary Figs. 17,19c). Our approach was also 297 
unique in identifying RPL19, of interest because ribosomal genes are known to cause 298 
Diamond-Blackfan anaemia53. Across the 24 benchmark regions, NG Capture-C and the 299 
annotation-based approach were the most sensitive methods, respectively identifying 91.7% 300 
and 70.8% of the most-likely effector genes correctly (Supplementary Fig. 19 b,d). Overall, 301 
the direct comparison of different gene identification methods shows that NG Capture-C is 302 
the most successful tool. 303 
 304 
Direct modelling of rs9349205 shows reduced expression of its target gene CCND3. 305 
The most direct evidence that a particular variant alters gene expression comes from 306 
introducing both alleles to an isogenic background and observing an appropriate change in 307 
the relevant cell type. Previous studies characterising RBC trait variants have used reporter 308 
assays and/or targeted deletions of the regulatory element13–16. However, these may not 309 
faithfully recapitulate variants effects in vivo. Therefore, we used CRISPR/Cas9-facilitated 310 
homology directed repair (HDR) to directly model prioritised variants at five GWAS regions in 311 
the Human Umbilical Derived Erythroid Progenitor (HUDEP-2) cell line (Supplementary Fig. 312 
20,21); a model of human erythroid differentiation and maturation54,55. As previous studies 313 
have shown some clonal variation when using such cells56 it is essential to analyse multiple 314 
independently isolated clones. We were able to generate sufficient independent clones for 315 
robust analysis of two regions (CCND3 and JAK2). 316 
 317 
Using our platform, rs9349205 was identified as tightly linked to the index SNP (rs9349204, 318 
r2=0.841); rs9349205 is the only one of ten linked variants which lies within open chromatin 319 
in committed erythroid cells, and shows 3C interaction with CCND3 (Fig. 6a), which is the 320 
most-likely effector gene16. rs9349205 also had small effects on both the Sasquatch DNaseI 321 
footprint and deepHaem chromatin openness scores (Supplementary Figs. 20,22a). Editing 322 
was used to convert rs9349205A/A HUDEP-2 cells to rs9349205G/G; a non-erythroid locus 323 
was also edited to control for non-specific effects from editing (e.g. spontaneous 324 
differentiation). Using ATAC-seq to assess chromatin accessibility, we found that the 325 
identified regulatory element in the rs9349205G/G genotype was 54.5% less accessible than 326 
in rs9349205A/A cells (Fig. 6b, Supplementary Fig. 22b). The rs9349205G/G clones also 327 
showed significantly reduced CCND3 expression during erythroid differentiation (Fig. 6c). As 328 
previously discussed16, CCND3 regulates the G2 to S transition during erythropoiesis, and 329 
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thus knockout of CCND3 in mice leads to an increased erythrocyte volume, consistent with 330 
linkage to changes in mean cell volume (MCV) detected through GWAS. 331 
 332 
rs10758656 causes reductions in chromatin accessibility and JAK2 expression. 333 
Using NG Capture-C we identified JAK2, which encodes Janus Kinase 2, as an effector 334 
gene for variants in high LD with the index SNP rs2236496. We confirmed this interaction 335 
using NG Capture-C from the JAK2 promoter (Fig. 7a). Of the 18 linked variants, only two, 336 
rs10758656 and rs10739069, intersect open chromatin. Of these two SNPs Sasquatch 337 
characterised rs10758656 but not rs10739069 as having the potential to affect transcription 338 
factor binding, with the motif strongly matching that of the GATA1 binding motif (Fig. 7b, 339 
Supplementary Fig. 23a). DeepHaem also predicted that rs10758656 but not rs10739069 340 
would affect chromatin accessibility. Therefore, HUDEP-2 cells, which are heterozygous A/G 341 
for rs10758656, were edited to homozygosity. We generated 16 independent clones 342 
homozygous for either A (n=10) or G (n=6). ATAC-seq of these cells during expansion and 343 
differentiation showed up to 82% ablation of open chromatin in the rs10758656G/G clones, 344 
associated with 86.2% and 58.4% reductions in GATA1 binding and H3K27ac, respectively 345 
(Fig. 8a-b, Supplementary Figs. 24b-e). These findings match the prediction of both 346 
Sasquatch and deepHaem. Despite being closer to the promoter of RCL1 than JAK2, 347 
rs10758656G/G specifically reduced expression of JAK2 (Fig. 8c, Supplementary Fig. 24f,g), 348 
consistent with the specificity of the rs10758656-JAK2 interaction profile seen in NG 349 
Capture-C. JAK2 functions as part of the erythropoietin signalling pathway57. Our results 350 
demonstrate that JAK2 is a GWAS effector gene and most likely results in changes to the 351 
MCV noted in GWAS through altered signalling responses.  352 
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DISCUSSION 353 
Here we have developed and validated a platform to identify causative GWAS variants and 354 
link them to the genes whose function they affect. In our platform ATAC-seq analysis allows 355 
researchers to identify relevant cell types using the fundamental regulatory elements of the 356 
genome: enhancers, promoters and boundary elements. GWAS variants are then assessed 357 
in silico to predict which variants are likely to alter gene expression or function. Candidate 358 
regulatory variants are finally linked to their effector genes using NG Capture-C. Using this 359 
method to analyse variants in high LD to RBC trait index SNPs resulted in identification of 360 
candidate causal variants and effector genes at a majority of chromosome regions (>70%). 361 
Benchmarking also shows that this approach is robust, with 88% of validated causal 362 
variants, and 92% of most-likely effector genes identified. Application of this method to fine-363 
mapped GWAS variants is likely to further improve its success. Finally, the functional effects 364 
of candidate polymorphisms can then be assessed using allele-specific assays of chromatin 365 
accessibility and gene expression. 366 
 367 
This platform has been developed and benchmarked using data from purified 368 
haematopoietic cells at various stages of commitment, differentiation and maturation along 369 
the erythroid pathway to producing RBC. Using haematopoiesis as a model, we show how 370 
causal variants can be assigned to the cell types in which they exert their effects and the 371 
genes whose expression is perturbed. In principle, this method could be used for any GWAS 372 
datasets for which appropriate cell types are available. To ensure that this would apply to 373 
rare cell types and a wide range of diseases, we have established a platform that can be 374 
effectively applied using as few as 500 cells for ATAC-seq and 20,000 cells for NG Capture-375 
C24,58. These data can then be used to improve in silico processing and machine learning, 376 
meaning that damaging changes can be predicted and prioritised using data from rare cells 377 
and those grown under varying conditions of stimulation. 378 
 379 
Linking variants to their effector genes using NG Capture-C can easily and reproducibly be 380 
applied across a wide range of cell-types at hundreds of specifically targeted sites in either 381 
gene- or enhancer- centric designs22,23. The ability to compare 3C data from multiple cell 382 
types allows tissue-specific and tissue-invariant interactions to be called by a wide range of 383 
statistical approaches23,47,59–61, increasing the throughput of accurate effector gene 384 
identification. These candidates can then be validated with functional follow-up, such as 385 
screening approaches6, or as shown here, in vivo modelling, to help to explain associated 386 
cellular phenotypes. 387 
 388 
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In addition to elucidating the genes involved at GWAS regions, we have also addressed the 389 
multiple molecular mechanisms that may underlie such signals. To date, strong evidence 390 
supports a mixture of coding, splicing and regulatory mechanisms62. The approach 391 
described here identifies enhancer, promoter, RNA processing and coding variants. Despite 392 
this we were still unable to identify causative variants at 16% of chromosome regions. This 393 
could partly have resulted from the fact that initial variant identification used linkage 394 
disequilibrium, which could be improved with either fine mapping or whole genome 395 
sequencing62,63. Nevertheless, other factors are also likely to contribute. The cell types 396 
affected in any complex disease are not necessarily the most obvious candidates. For RBC 397 
traits, the most likely affected lineage is erythropoiesis itself. However, other cell types 398 
modify erythropoiesis, including those producing growth factors, cytokines, or mediating 399 
cell/cell interactions such as macrophages that facilitate enucleation of RBC precursors. 400 
Furthermore, causal variants may act in the identified cell type, but only in response to 401 
specific environmental cues or signalling. Therefore, platforms such as this must be 402 
implemented with a comprehensive appreciation of the systems involved. It is also important 403 
to consider that additional untested molecular mechanisms may underlie GWAS signals. 404 
Although we found no specific enrichment for variants in CTCF elements, numerous were 405 
within CTCF peaks. Recent evidence has shown that disruption of CTCF binding by 406 
common variants plays a role in determining the severity of influenza and breast cancer64,65, 407 
thus it likely represents a less common, yet important molecular mechanism. Additionally, 408 
modelling of rs10758656 showed near complete loss of open chromatin. It is equally 409 
possible that some variants generate, rather than abolish, open chromatin sites. Such a 410 
variant has already been described as causing anaemia at the 𝛼-globin locus66. These sites 411 
could only be detected by analysis of individuals with the correct genotype. 412 

 413 
Although this integrative platform efficiently identifies variants and genes, it shifts the 414 
bottleneck of GWAS follow-up to validation. Using direct in vivo modelling we have shown 415 
how alleles can alter enhancers and gene expression to different extents. Although we have 416 
shown in principle that prioritised variants can be proven to be functionally causative it 417 
requires an HDR editable cell type, is labour intensive, and does not work at all loci; this step 418 
will require rapid single base editing to enable significant progress. We expect that with the 419 
implementation of integrative platforms such as this, and with ongoing advancement of 420 
molecular techniques and editing technologies the benefits of GWAS for understanding 421 
human physiology and improving health will accelerate.  422 
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METHODS 423 
Separation of blood cells: Fresh blood was sourced either as whole blood collected from 424 
three healthy donors (two males, one female) using EDTA Vacuettes (Becton Dickson) or 5 425 
ml leukocyte cones (NHS Blood & Transport). Whole cell counts were performed on a 426 
Pentra ES60 (Horiba) for donor blood to ensure clinically healthy red blood cell counts 427 
(Supplementary Fig. 2). Blood was diluted with PBS and overlaid onto Histopaque-1077 428 
(Sigma) and centrifuged for 30 min at 630 rcf (no brake). Peripheral Blood Mononuclear 429 
Cells (PBMCs) were washed in PBS and MACS buffer (PBS, 2 µM EDTA, 0.5% BSA) and 430 
stained with Human CD34 Microbead kit (Miltenyi Biotec) following the manufacturer’s 431 
instruction for 30 minutes (4 ºC) before being passed successively through two LS Columns 432 
(Miltenyi Biotec) with three MACs buffer washes. Counting of cells was performed on a Luna 433 
FL (Logos) after staining with acridine orange (AO) and propidium iodide (PI). CD34+ cells 434 
were either stored in freezing buffer (90% FBS, 10% DMSO) or resuspended in Phase I 435 
medium for a three-phase differentiation9. CD34+ depleted PBMCs were then sequentially 436 
stained and passed over LS or MS columns for selective purification of CD8+, CD14+, 437 
CD4+, CD19+ and, NK cell populations using cell-type specific kits (Miltenyi Biotec). For NK 438 
cells, non-NK cells were first blocked with a biotin-antibody cocktail before binding to NK 439 
microbeads following the manufactures instructions. 440 
 441 
Differentiation of CD34+ cells: Cells were differentiated under a three phase ex vivo protocol 442 
adapted from that used for the BEL-A cell line7,9,67. Growth media are listed in 443 
Supplementary Table 2. Briefly, for differentiation 0.5-2.5x105 cells were resuspended on 444 
day 0 in Phase I media at 105 cells ml-1. Cell counts were performed on days 3 and 5 with 445 
additional Phase I media added to return the concentration to 105 cells ml-1. On day 7, cells 446 
were counted and pelleted (400 rcf, 5 min, RT) and resuspended in Phase II media at 3x105 447 
cells ml-1. Cells were counted on day 9 and diluted to 3x105 cells ml-1 Phase II media. On 448 
day 11, cells were counted and pelleted (400 rcf, 5 min, RT) and resuspended in Phase III 449 
media at 106 cells ml-1. Cells were counted on days 13 and 15 and diluted to 106 cells ml-1 in 450 
Phase III media. Reproducibility between differentiations was confirmed morphologically with 451 
cytospins, immunologically with six FACS cell surface markers and epigenetically with 452 
ATAC-seq enhancer staging24. For morphological analyses 105 cells were resuspended in 453 
200 ml PBS and spun (5 min, 400 rpm) in a Cytospin 4 (ThermoFisher), before staining with 454 
modified Wright’s Stain on a Hematek (Bayer Health Care), and mounting with DPX (Sigma). 455 
Images were taken on an Olympus BX 60 microscope at 10x and 20x magnification. For 456 
differentiation and enucleation FACS analyses 105 cells were resuspended in FACS buffer 457 
(90 % PBS, 10 % FBS) and stained with an erythroid differentiation panel of antibodies 458 
(Supplementary Table 4) against CD34, CD36/Fatty acid translocase, CD235a/Glycophorin 459 
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A, CD71/Transferrin Receptor, CD233/Band3, CD49d/α-Integrin, and with Hoescht-33258 460 
(ThermoFisher) for live/dead analysis, with Hoescht-33342 (ThermoFisher) for enucleation 461 
assays. For immune cell purities, cells were stained with cell-type specific panels of 462 
antibodies (Supplementary Fig. 25, Supplementary Table 4). FACS was carried out on an 463 
Attune NxT (ThermoFisher), voltages and compensation were set using Ultra Comp eBeads 464 
(ThermoFisher) for antibodies, and single stained cells for dyes. Gating was performed using 465 
fluorescence minus one (FMO) controls. Analysis was performed using either Attune NxT 466 
software (v3.0) or FlowJo (v10.4.2). 467 
 468 
Cell line culture and HUDEP-2 differentiation: Human ESC line H1 (H1-hESC; WiCell) was 469 
grown on Matrigel (Corning) coated plates in mTeSR1 medium (StemCell technologies). 470 
Cells were harvested as a single cell suspension using Accutase (EDM Millipore); ATAC-seq 471 
and fixation were carried out in mTeSR1 medium. Primary neonatal Human Umbilical Vein 472 
Endothelial Cells (HUVEC) were sourced from three suppliers to provide genetic diversity 473 
(Lonza, Gibco, PromoCell). HUVECs were expanded in endothelial cell growth medium 474 
(Sigma) up to five passages following the manufacturer’s protocol. Briefly, HUVECs were 475 
grown to 60% confluence, washed with HBSS at room temperature and sub-cultured 476 
following light trypsination using Trypsin-EDTA (Sigma) at room temperature and terminating 477 
the reaction with trypsin inhibitor (Sigma) upon rounding of the cells and gentle release from 478 
the flask. HUVECs were fixed in RPMI supplemented with 10 % FBS. Human Umbilical 479 
Derived Erythroid Progenitor line 2 cells54 (HUDEP-2; RIKEN) were maintained at 0.7-480 
1.5x106 cells ml-1 in HUDEP expansion media (SFEM, 50 ng/ml SCF, 3 IU/ml EPO, 10 µM 481 
DEX, 1% L-Glu, 1% Penstrep) and changed into fresh media containing 2x doxycycline 482 
(DOX) every two days. For differentiation we used a modified version of the CD34 483 
differentiation protocol. 2-3x106 cells were resuspended at 0.3-05x106 cells ml-1 in HUDEP 484 
Phase I media (IMDM, 200 µg/ml Holotransferrin, 10 g/ml Insulin, 3 IU/ml Heparin, 3% 485 
Inactivated AB plasma, 2% FBS, 3 IU/ml EPO, 1 ng/ml IL-3, 10 ng/ml SCF, 1x Pen/Strep) 486 
with 1x DOX on day 0. On days 1 and 3 cells were counted, pelleted (5 min, 250 rcf, RT) 487 
and resuspended to 0.3-0.5x106 cells ml-1 in fresh HUDEP Phase I media supplemented with 488 
2x DOX. On day 5, cells were counted, pelleted and resuspended to 0.5x106 cells ml-1 in 489 
HUDEP Phase II media (IMDM, 500 µg/ml Holotransferrin, 10 g/ml Insulin, 3 IU/ml Heparin, 490 
3% Inactivated AB plasma, 2% FBS, 3 IU/ml EPO, 1x Pen/Strep) without DOX. On days 7 491 
and 9 cells were counted, pelleted and resuspended to 0.5x106 cells ml-1 in fresh HUDEP 492 
Phase II media. Cytospins and FACS was carried out as for CD34+ differentiation. 493 
 494 
HUDEP-2 genome editing: Prior to guide RNA (gRNA) design HUDEP-2 SNPs were 495 
genotyped by either Sanger or Next Generation sequencing at MRC WIMM Sequencing 496 
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Facility with locus specific primers (Supplementary Table 3). For introduction of SNPs by 497 
CRISPR/Cas9 facilitated homology dependent repair (HDR), gRNAs were designed to cut in 498 
close proximity to the SNP of interest with the PAM overlapping the SNP where possible, 499 
additionally single stranded DNA donors (ssODN; IDT) were offset and thioated to promote 500 
integration and reduce degradation. To control for global effects on HUDEP-2 cells caused 501 
by CRISPR/Cas9 editing, gRNA and ssODN were designed for a homozygous SNP 502 
(rs4508712) with no GWAS associations (www.ebi.ac.uk/gwas), and was not within an 503 
erythroid regulatory element or expressed gene. HUDEP-2 genotype specific gRNAs 504 
(Merck) were cloned into pX458 plasmid backbone68 by the Genome Engineering Facility 505 
(WIMM, University of Oxford) and purified using Plasmid Midi Kit (Qiagen). pX458 506 
(pSpCas9(BB)-2A-GFP) was a gift from Feng Zhang and is available from Addgene (plasmid 507 
#48138). HUDEP-2 cells were then transfected as previously described55. Briefly, ~1x106 508 
cells were transfected with pairs of 5 µg gRNA plasmid and 4 µg ssODN (Supplementary 509 
Table 3) using AmaxaTM Human CD34 Cell NucleofectorTM Kit (Lonza) in the 2B-510 
NucleofectorTM on the U-08 setting. Cells were transferred to 2.5 ml HUDEP expansion 511 
media supplemented with 2x DOX and 7.5 µM RAD51-stimulatory compound 1 (RS-1, 512 
Sigma). After two days cells were pelleted (5 min, 250 rcf, room temp.) and resuspended in 513 
2.5 ml HUDEP expansion media supplemented with 2x DOX with minimal light exposure. On 514 
day 3 cells were single cell sorted on BD FACSAria Fusion flow cytometers (BD Bioscience) 515 
into terazaki plates containing 20 µl of expansion media (2x DOX). When colonies reached 516 
more than 30 cells they were transferred to a 96-well plate and expanded over two weeks 517 
with fresh media and DOX every 2 days until filling two to four wells of a 96-well plate. Half 518 
of the cells for each expanded clone were frozen (90% FBS, 10% DMSO) as a stock for 519 
recovery post genotyping. For genotyping we followed a 96-well barcoding approach with 520 
Next Generation sequencing69. Clonally amplified cells were first lysed (50 mM Tris, 1 mM 521 
EDTA, 0.5% Tween 20) and the targeted locus was amplified with primers containing a 522 
modified m13 adaptor sequence (Supplementary Table 3), the adaptor was then used to for 523 
priming with row and column specific primers in a second PCR to barcode each well. Finally, 524 
all wells from a single plate were pooled and prepared for sequencing with the NEBNext 525 
Ultra II DNA Library Prep kit for Illumina (New England Biolabs). Plates were multiplexed 526 
and sequenced on the MiSeq platform (Illumina) using 250 bp paired-end reads (Nano kit, 527 
v2 chemistry). Sequences were analysed using platescreen9669 (v4.0.4, 528 
github.com/Hughes-Genome-Group/plateScreen96/releases) to genotype clones. Screening 529 
was carried out to exclude clones which appeared homozygous due to microhomology 530 
driven large deletions (200-4,000 bp)70,71 rather than HDR by PCR with locus specific 531 
primers (Supplementary Table 3) for rs9349205 and rs4508712. For rs10758656, two 532 
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upstream heterozygous SNPs rs7870037 (+129 bp) & rs7855081 (+132 bp) allowed for the 533 
exclusion of loss of heterozygosity. 534 
 535 
Gene expression analyses: 1-5x106 cells were fixed in 1 ml TRI-reagent (Sigma), snap 536 
frozen and stored at -80ºC for less than one year. RNA was extracted by addition of 0.1 ml 537 
1-bromo-3-chloropropane, pipette mixing and separation in a Phase Lock gel Heavy tube 538 
(5Prime) and then precipitation with 1 µl of GlycoBlue and an equal volume (~500 µl) 539 
isopropanol and centrifugation (10 min, 12,000 rcf, 4 ºC). The RNA pellet was washed with 540 
75% ethanol, resuspended in DEPC-treated water, and stored at -80ºC for less than one 541 
year. For RT-qPCR RNA was treated with 2U of rDNase I (Invitrogen) and then 1 µg of RNA 542 
was used to generate cDNA using SuperScript III First Strand Synthesis SuperMix 543 
(Invitrogen) following the manufacturers’ instructions. Real-time RT-qPCR was performed on 544 
a StepOne Thermocycler (ThermoFisher) using Taqman Universal PCR Master Mix II (Life 545 
Tech) and commercially available expression assays (Supplementary Table 5; Life Tech). 546 
For RNA-seq total RNA was treated with Turbo DNase (Invitrogen) at 25ºC for 60 min, then 547 
RNA was separated using phenol-chloroform isoamylalcohol and a PhaseLock Light-gel 548 
tube (5Prime). Treated RNA was precipitated at -80ºC overnight with sodium acetate, 549 
glycoblue, and 75% ethanol, before centrifugation (12,000 rcf, 4ºC), 75% ethanol wash and 550 
resuspension in DEPC-treated water. Globin and rRNA sequences were depleted from up to 551 
5 µg of treated RNA using Globin-Zero Gold (Illumina), before PolyA selection with NEBNext 552 
Poly(A) mRNA Magnetic Isolation module (New England Biolabs), and indexing with 553 
NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England Biolabs) following 554 
the manufacturers’ instructions. RNA-seq libraries were quantified by qPCR (KAPA) prior to 555 
sequencing on the NextSeq platform (Illumina) with 39 bp paired-end reads. Reads were 556 
mapped to hg19 (Supplementary Table 6) using STAR72 (v2.4.2a; --outFilterMultimapNmax 557 
1) and duplicates were filtered using samtools73 (v1.3; rmdup). For visualisation directional 558 
reads were normalised to RPKM using deepTools74 with no windowing (v2.2.2; 559 
bamCoverage --binSize 1 --normalizeUsingRPKM). Uniquely mapped reads were analysed 560 
in DESeq261 using variance stabilising transformation and exclusion of genes lacking 5 total 561 
reads. Violin plots were with the R package generated in ggplot275. Expressed genes were 562 
classed as having more than log2(FPKM) greater than -5. 563 

 564 
Chromatin conformation capture and target gene identification: For chromatin conformation, 565 
1-2x107, H1-hESC, HUVEC or erythroid cells were crosslinked with 2% formaldehyde which 566 
provides optimal cis/trans ratios and digestion efficiencies58. For each cell type triplicate 3C 567 
libraries were prepared using DpnII and standard methods23 with the following modifications: 568 
no douncing was performed, all spins were performed at 300 rcf, and after ligation intact 569 
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nuclei were pelleted (15 min, 300 rcf), supernatant was discarded, and nuclei were 570 
resuspended in 300 µl Tris-EDTA (TE; Sigma) for phenol chloroform extraction. Digestion 571 
efficiency was determined by RT-qPCR with TaqMan and custom oligonucleotides 572 
(Supplementary Table 5), and ligation efficiency qualitatively determined by gel 573 
electrophoresis. Only 3C libraries with >70% digestion efficiencies were used. 3C libraries 574 
were sonicated to 200 bp in a Covaris S220 and indexed with NEB Next Illumina library Prep 575 
reagents (NEB). Enrichment for specific viewpoints was performed with 70mer biotinylated 576 
oligonucleotides designed using CapSequm76 (http://apps.molbiol.ox.ac.uk/CaptureC/cgi-577 
bin/CapSequm.cgi). Double capture was performed in multiplexed reactions with pools of 578 
oligonucleotides targeting either promoter proximal (within 5 kb of a transcription start site) 579 
or promoter distal DpnII fragments (Supplementary Table 7) following the described 580 
method23 with each oligonucleotide at a working concentration of 2.9 nM. Captured 3C 581 
libraries were sequenced on the NextSeq platform (Illumina) with 150 bp paired-end reads. 582 
Reads were mapped and analysed using CCseqBasic5 (github.com/Hughes-Genome-583 
Group/CCseqBasic5) as previously described77 with the following custom settings (--bowtie2 584 
--globin 2). Briefly, CCseqBasic5 trims adaptor sequences, flashes read pairs, in silco 585 
digests fragments and uses bowtie2 to map reads before identifying capture and reporter 586 
reads. After primary analysis replicates were compared using the comprehensive 587 
CaptureCompare software (github.com/Hughes-Genome-Group/CaptureCompare). 588 
CaptureCompare normalises cis reporter counts per 100,000 cis reporters, generates per 589 
fragment mean counts for each cell type, calculates difference in mean interactions between 590 
cell types, compares differences in raw interaction counts per fragment using DESeq245 as 591 
previously described23,78,79, and provides input for peaky interaction calling47. Interaction 592 
calling using peaky was run with default settings (omega -3.8) and interactions were filtered 593 
based upon the Marginal Posterior Probability of Contact (MPPC) within local interaction 594 
domains (MPPC > 0.01) or within 1 Mb of the viewpoint (MPPC > 0.1) and assigned to either 595 
Refseq transcription start sites (tss) or variants within 500 bp of the interacting fragment. 596 
Target genes were first identified as those having a tss within 5kb of an intersecting variant 597 
(high proximity), being within 500 bp of a significantly enriched erythroid fragment (FDR 598 
<0.05) or with 500 bp of a peaky identified interaction. Candidate genes were subsequently 599 
filtered for detectable erythroid expression (log2(FPKM>-5)). 24 test genes most likely to be 600 
effectors were identified based on published functional data (IKZF1, KIT, TAL1, RBM38, 601 
SMIM1, CD164, CCND3, MYB, HBA1, HBA2, BCL11A, JAK2)12–14,16,42,80, presence in the 602 
Oxford Red Cell Panel for rare inherited anaemia (KLF1, TFRC, ANK1, HK1, SCL4A1)81, 603 
containing mutations causing hemochromatosis (TFR2)82, having an erythroid eQTL 604 
(ATP2B4)15, and causing altered RBC phenotypes in mouse and zebrafish (FBXO7, CCNA2, 605 
miR-181a, PIEZO1, AKAP10, CITED2)83–89. 606 
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 607 
Chromatin IP, ATAC-seq, and data processing: For ChIP-seq, chromatin was crosslinked 608 
with 1% formaldehyde (Sigma) by the addition of 1 ml 10x crosslinking buffer (50 mM 609 
HEPES, 1 mM EDTA, 0.5 mM EGTA, 100 mM NaCl, 10% formaldehyde) to 107 cells in 9 ml 610 
of media and incubation at room temperature for 10 minutes. Crosslinking was quenched 611 
with 130 mM glycine, and cells were washed with cold PBS before snap freezing pelleted 612 
cells. Fixed material was stored at -80ºC for less than 12 months. Chromatin 613 
immunoprecipitation was performed using Agarose ChIP Assay Kit (Merck Millipore). Briefly, 614 
107 cells were lysed by incubation on ice with 130 µl lysis buffer for 15 minutes. Lysed cells 615 
were transferred to Covaris microtubes and sonicated on the Covaris S220 (Duty cycle: 2%, 616 
Intensity: 3, Cycles per burst: 200, Power mode: Frequency sweeping, Duration: 480 sec, 617 
Temp.: 6ºC) to generate 200-400 bp fragments. Insoluble material was removed by 618 
centrifugation (15,000 rcf, 15 min, 4ºC) and soluble material was diluted to 4 ml with dilution 619 
buffer. Immunoprecipitation was performed by incubation of 2 ml diluted chromatin 620 
(equivalent to 5x106 input cells) with antibodies for H3K4me1 (3 µg ab195391, lot: 621 
GR304893-2; AbCam), H3K4me3 (1 µl 07-473, lot: 2664283; Millipore), H3K27ac (0.3 µg 622 
ab4729, lot: GR3205523-1; AbCam), CTCF (10 µl 07-729, lot: 2836929; Millipore) or GATA1 623 
(~7.2 µg ab11852, lot: GR208255-9; AbCam) overnight. Chromatin binding to Protein 624 
A/agarose slurry, washes and elution were performed according to the manufacturer’s 625 
instructions. DNA was purified by phenol-chloroform extraction with PhaseLock tubes 626 
(5Prime) and ethanol precipitation with NaOAc, and 2 µl GlycoBlue (Invitrogen). ChIP 627 
enrichment was determined by RT-qPCR (Supplementary Table 5) prior to addition of 628 
sequencing adaptors using NEBNext Ultra II DNA Library Prep kit for Illumina (New England 629 
Biolabs). ATAC-seq was performed as previously described77,90 using 7x105 cells. ChIP-seq 630 
and ATAC-seq libraries were quantified by RT-qPCR with the KAPA Library Quantification 631 
Complete Kit (KAPA) prior to sequencing on the NextSeq platform (Illumina) with 39 bp 632 
paired-end reads. ATAC-seq, DNaseI-seq and ChIP-seq reads were mapped to the hg19 633 
genome using NGseqBasic91 (V20; --nextera --blacklistFilter --noWindow) which utilises 634 
bowtie. Sequence depth and mapped reads for each sample are provided (Supplementary 635 
Table 6). Published GEO repositories24,66,92–99 were used for ATAC-seq and DNaseI-seq 636 
from HSC, CMP, MEP, MPP, Ery (GSE75384), and HUVEC (GSM736575, GSM736533), 637 
and ChIP-seq for SCL/TAL (GSE95875, GSE93372, GSE42390, GSE70660, GSE59087, 638 
GSE52924), GATA1 (GSE32491, GSE36985, GSE107726, GSE29196), NF-E2 639 
(GSE95875), BACH1 and MAFK (GSE31477), and SPI1/PU1 (GSE70660) were analysed 640 
by the same method. For visualisation PCR-duplicate filtered replicates were merged using 641 
samtools73 (v1.3) and converted to bigwigs with minimal smoothing using deepTools74 642 
(v2.2.2; bamCoverage --binSize 10 --normalizeUsingRPKM --minMappingQuality 30). 643 
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 644 
Imputation and in silico analysis of variants: The original 75 anaemia index SNPs were 645 
imputed with HapMap Phase 2 which is lower resolution than the 1000 Genomes Project 646 
Phase 3 dataset11,100. Therefore variants in linkage disequilibrium (LD) with index SNPs were 647 
identified using the rAggr proxy search online tool (raggr.usc.edu) with default settings 648 
(r2≥0.8, distance limit: 500 kb, population panels: All European, All South Asian) for the 1000 649 
Genomes Project Phase 3 database101, which generated 6,420 variants. LD variants for 650 
Astle et al. (2016) were provided by Lisa Schmunk, Tao Jiang, and Nicole Soranzo 651 
(University of Cambridge). Summary statistics for Malaria102, Multiple Sclerosis25, 652 
Inflammatory Bowel Disease27, Type 1 Diabetes26, Type 2 Diabetes103, Intelligence28, and 653 
Central Corneal Thickness29 were downloaded from the NHGRI-EBI GWAS Catalog1 654 
(www.ebi.ac.uk/gwas). For comparison of linkage between index SNPs from van der Harst 655 
et al. (2012)11 and Astle et al. (2016)10 we used LDmatrix on the LDlink web tool104 656 
(http://ldlink.nci.nih.gov/) for European populations. Variants were intersected with peak calls 657 
from ATAC-seq or DNaseI-seq for each cell type of interest using bedtools105. Enrichment 658 
was calculated as the -log(p-value) of a binomial cumulative distribution function b(x; n, p), 659 
describing the probability of x or more successes from n Bernoulli trials, with the probability 660 
of success for each trial being p. P-values were calculated using the R function pbinom 661 
(lower.tail=FALSE) where x was the number of intersecting variants, n was the total number 662 
of variants and p was the total number of base-pairs within cell specific peaks divided by the 663 
hg19 uniquely mappable base-pairs (2,644,741,479 bp). Variants within the exons and 664 
introns of expressed coding genes were tested for predicted damaging effects on coding 665 
ANNOVAR17 or splicing SPIDEX18 (z-score ≥1.65) and SpliceAI19 (AI score ≥0.2). Variants 666 
within open chromatin were assessed for potential damage to transcription factor binding 667 
footprints using Sasquatch20 (7-mer, WIMM Fibach Erythroid, Exhaustive). Variants within 668 
open chromatin were further classified based on their predicted effect on chromatin 669 
accessibility using a deep convolutional neural net21 (deepHaem). Model architecture and 670 
data encoding were adapted from DeepSEA36 with the following modifications. The number 671 
of convolutional layers was increased from three to five and batch normalisation was 672 
excluded as it did not improve convergence. The network was re-implemented in python 673 
using tensorflow (v1.8.0; https://www.tensorflow.org/about/bib). The ENCODE data 674 
compendium previously used36 was supplemented with ATAC-seq and CTCF ChIP-seq data 675 
from erythroid differentiations generated for this work, DNAseI-seq20, and ATAC-seq from 676 
sorted progenitor populations24. Full model details and architecture are available on GitHub 677 
(https://github.com/rschwess/deepHaem). 678 
 679 
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Chromatin segmentation and enhancer based PCA analysis: To ensure identification of all 680 
ATAC-seq peaks a combination of the traditional MACS2 approach106 (v2.0/10 callpeak -B -q 681 
0.01) and digital signal processing with Ritornello107 (v2.0 default settings) was used. Peak 682 
summits from both calls were extended to 500 bp and intersected with bedtools105 (v2.25.0), 683 
and filtered for high ploidy regions in MIG viewer108 to form peak calls for each cell type 684 
(Supplementary Tables 8a-p). Chromatin segmentation was performed using the 685 
GenoSTAN31 hidden Markov model (HMM) which allows a more fine-tuned analysis than 686 
ChromHMM109 as it uses continuous rather than binary signal counts. Segmentation used a 687 
peak centric approach, rather than signal across the whole genome, with triplicate 688 
H3K4me1, H3K4me3, H3K27ac, and CTCF from day 10 of ex vivo CD34 differentiation. 689 
Read coverage of each mark was calculated (deepTools v2.4.2) for 1 kb windows over open 690 
chromatin peaks (bedtools merge -d 10) to capture histone modifications. The HMM model 691 
was trained using Poisson log-normal distributions with 20 initial states. These were 692 
manually curated to 8 final states based on similarity of chromatin signature. For Principle 693 
Component Analysis (PCA) trajectory plotting combined peak calls from sorted 694 
hematopoietic populations covering 176,135 open chromatin regions not within 2 kb of 695 
transcription start sites were first used to generate a PCA map of erythroid differentiation 696 
from sorted populations of HSC, MPP, CMP, MEP and Erythroid populations24. Reads within 697 
peaks were normalised (R scale) and the PCA was calculated using the R function prcomp. 698 
The read counts from ex vivo differentiated cells within the same peak set were then used to 699 
calculate sample mapping onto PC1 and PC2, and thus to map differentiation timepoints 700 
onto the differentiation trajectory. Heatmaps of intersected peaks were generated with 701 
pheatmap110 (v1.0.8) using z-normalised counts of reads per basepair from all identified 702 
peaks. For enhancer activity, peak calls were extended by 250 bp in both directions 703 
(bedtools slop) to account for the spreading nature of H3K27ac ChIP-seq signal, enhancers 704 
were then ranked based on reads per base pair. To determine the point of inflection between 705 
low and high acting enhancers H3K27ac read counts were transformed so that the highest 706 
value equalled the number of ranked peaks. The point of inflection where the gradient of the 707 
curve became greater than one was used to define low and high enhancer activity. The 708 
gradient was calculated based on the local linear gradient of ±200 peaks. 709 
 710 
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Fig. 1 | Variants associated with RBC traits lie within highly active enhancers. a, Schematic of selected 
cells from human haematopoiesis showing enrichment (-log(p) of a cumulative Binomial Distribution) for RBC 
associated variants within open chromatin regions of haematopoietic stem cells (HSC), multi-potent progenitors 
(MPP), common myeloid progenitors (CMP), megakaryocyte-erythroid progenitors (MEP), early, intermediate, 
and late erythroid cells from in vitro culture, CD14 monocytes, CD4 helper and CD8 cytotoxic T-cells, CD19+ 
B-cells, natural killer cells (NK), human embryonic stem cells (H1-hESC) and human umbilical vein endothelial 
cells (HUVEC). b, ATAC-seq tracks showing location of open chromatin intersecting variants (red) at the SMIM1 
locus. Intersected peaks are highlighted with a dashed box. The index SNP rs1175550 is marked (circle). c, 
GenoSTAN classification and average signal of open chromatin based upon epigenetic marks with the 
enrichment/depletion in representation of each class amongst elements containing variants. Note, no 
intersection with inactive promoters was detected so was excluded from enrichment analysis d, Open chromatin 
regions distal (≥2kb) to annotated transcription start sites were ranked by level of H3K27ac ChIP-seq signal 
(FPKM), with highly active enhancers defined as those above the point of inflection of the curve (marked with 
a dashed line). Open chromatin regions containing RBC variants (dots coloured red) are enriched for highly 
active enhancer elements. Hypersensitive sites (HS) near important erythroid genes are shown. A violin plot of 
H3K27ac levels on all distal regions, highly active distal regions, and variant containing distal regions is inset; 
the median level is marked (black dot).  
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Fig. 2 | Sasquatch provides an unbiased prediction of variant effect. a, Sasquatch analyses in vivo 
generated DNaseI footprints over 7-mer motifs within open chromatin regions to generate meta-genomic 
footprints. Comparison of Relative cut frequency for each profile is used to generate predictive footprint-change 
scores. b, rs3747093 is within a 7-mer motif (grey bar) which is predicted to alter the DNaseI footprint of 
SCL/TAL based on presence of the SCL/TAL binding motif. c, SCL/TAL ChIP-seq shows allelic skew over 
rs3747093 as shown by percent of reads containing either allele (*P=0.0468, Ratio paired t-test, n =3). d, 
rs77222982 is within a 7-mer motif (grey bar) which is predicted to alter the DNaseI footprint of GATA1 based 
on presence of the GATA1 binding motif. e, GATA1 ChIP-seq shows allelic skew over rs77222982 as shown 
by percent of reads containing either allele (n=2). Error bars depict standard error of the mean. 
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Fig. 3 | Deep Learning predicts variant driven changes in chromatin accessibility. a, deepHaem, a deep 
convoluted neural network, calculates a chromatin openness score using 1 kb of DNA sequence which can be 
used to compare variant alleles. b, Comparison of alleles for all RBC trait variants in open chromatin (n=2,662) 
identifies variants with a predicted to change deepHaem openness scores by more than 0.1, or 10% of the 
maximum openness score (n=91). c, Mean percentage of day 10 and day 13 erythroid ATAC-seq reads on 
either the reference (dark bar) or variant (light dashed bar) allele from heterozygous individuals with a minimum 
of 5 reads. Error bars depict the standard error of the mean with the number of independent replicates from 
either multiple donors and/or multiple differentiations shown in parentheses. p-values shown are for a ratio 
paired t-test.  
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Fig. 4 | The integrated experimental and bioinformatics platform identifies candidate causal variants 
and effector genes at the majority of polygenic trait regions. a, Cumulative analysis of RBC trait associated 
variants at 75 GWAS chromosome regions identified candidate causal variants in 63 regions with three or fewer 
candidate causal variants at 43 regions (solid colouring) and more than three candidates at 20 regions (pale 
striped colouring). b, Pie charts with the number of regions, from a total of 75, with variants found in open 
chromatin, with variants predicted to alter a regulatory site (Sasquatch, deepHaem), or coding sequence 
(ANNOVAR), or splicing (SpiDEX, SpliceAI), and regions with identified candidate effector genes. Note, regions 
may have multiple candidate causal variants each with separate mechanisms of action. 
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Fig. 5 | NG Capture-C can detect long range variant-promoter interactions. a, NG Capture-C 
oligonucleotides were designed for 61 chromosome regions with candidate regulatory causal variants, regions 
were excluded from targeting based on sheer number of targets (>100 target sites at a single locus, n=1), or 
where probes were impossible to design due to repetitive elements. Following analysis of generated 3C data 
genes were identified at 48 of the 53 targeted regions, 24 of which were used for accuracy benchmarking. b, 
Histogram of the number of candidate effector genes identified by NG Capture-C at each region. c, Violin plot 
of the distance between variants and the target transcription start sites. Median (83,944 bp) shown as a thick 
dashed line and mean (168,148 bp) shown as a black circle. d, 3C interaction profile for open chromatin 
containing rs151288714 and rs589235 in erythroid, human embryonic stem (H1-hESC) and human umbilical 
vein endothelial (HUVEC) cells (n=3). Capture viewpoints and proximity exclusion regions (solid vertical lines) 
were designed for open chromatin regions and profiles show mean interactions (solid line) with one standard 
deviation (shading). CITED2-variant interactions were identified as erythroid specific interactions (dashed 
loops; DESeq2 q-value < 0.05 shown as bars). Peaky values depict the Marginal Posterior Probability of 
Contact (MPPC) in erythroid cells. Variants within open chromatin are red, as are variant interacting genes, the 
index SNP is marked with a circle. FPKM normalised ATAC-seq and ChIP-seq tracks are from erythroid cells. 
Interaction was found witch CITED2, which encodes the Cbp/p300 Interacting Transactivator with Glu/Asp 
(E/D)-rich tail 2 protein and required for normal haematopoiesis. 
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Fig. 6 | rs9349205 interacts with, and regulates CCND3. a, 3C interaction profile for rs9349205 in erythroid, 
embryonic stem (H1-hESC) and umbilical vein endothelial (HUVEC) cells (n=3). Profiles show windowed mean 
interactions (solid lines) with one standard deviation (shading). Peaky values depict the MPPC in erythroid 
cells. Interaction with CCND3 was detected by peaky (dotted loop; MPPC > 0.01). Variants within open 
chromatin are red, as are variant interacting genes, the index SNP is marked with a circle. FPKM normalised 
ATAC-seq and ChIP-seq tracks are from erythroid cells. b, Merged FPKM normalised ATAC-seq (n=3) from 
HUDEP-2 cells homozygous for either rs9349205 allele with overlaid track showing high similarity, and a slight 
reduction at the intersected peak for homozygous G clones (inset). c, Real time reverse-transcriptase PCR of 
CCND3 in differentiating HUDEP-2 clones (n=3) showed lower expression in G clones at day 7 (Student’s two-
tailed t-test, *p=0.0387). Bars show mean and one standard deviation of independent clonal populations 
(circles). 
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Fig. 7 | rs10758656 interacts with JAK2 and is predicted to alter chromatin accessibility. a, 3C interaction 
profiles for rs10758656 and JAK2 in erythroid, embryonic stem (H1-hESC) and umbilical vein endothelial 
(HUVEC) cells (n=3). Profiles show windowed mean interactions (solid lines) with one standard deviation 
(shading). Peaky values depict the MPPC in erythroid cells. JAK2-rs10758656 interaction was detected by 
peaky (dotted loop; MPPC > 0.01). Variants within open chromatin are red, as are variant interacting genes, 
the index SNP is marked with a circle. FPKM normalised ATAC-seq and ChIP-seq tracks are from erythroid 
cells. b, Sasquatch profiles for rs10758656 show loss of a GATA footprint. c, deepHaem openness scores 
rs10758656 predict a loss of chromatin accessibility in erythroid cells. 
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Fig. 8 | rs10758656 causes loss of open chromatin and reduced JAK2 expression. a, Overlaid FPKM 
normalised ATAC-seq (n=3) and H3K27ac ChIP-seq (n≥1) from differentiating HUDEP-2 clones homozygous 
for either rs10758656 allele. Dark shading indicated overlapping signal b, Real time quantitative PCR for 
GATA1 ChIP at rs10758656 (*Student’s two-tailed t-test, p=0.0136). c, Real time reverse-transcriptase PCR of 
JAK2 in differentiating HUDEP-2 clones (n≥6) showed lower expression in G clones (Mann-Witney test, 
*p=0.0160). Bars show mean and one standard deviation of independent clonal populations (circles).  
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