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Abstract  43 

The human genome forms thousands of “contact domains”, which are intervals of enhanced 44 

contact frequency. Some, called “loop domains” are thought to form by cohesin-mediated loop 45 

extrusion. Others, called “compartmental domains”, form due to the segregation of active and 46 

inactive chromatin into A and B compartments. Recently, Hi-C studies revealed that the 47 

depletion of cohesin leads to the disappearance of all loop domains within a few hours, but 48 

strengthens compartment structure. Here, we combine live cell microscopy, super-resolution 49 

microscopy, Hi-C, and studies of replication timing to examine the longer-term consequences 50 

of cohesin degradation in HCT-116 human colorectal carcinoma cells, tracking cells for up to 51 

30 hours. Surprisingly, cohesin depleted cells proceed through an aberrant mitosis, yielding a 52 

single postmitotic cell with a multilobulated nucleus. Hi-C reveals the continued disappearance 53 

of loop domains, whereas A and B compartments are maintained. In line with Hi-C, microscopic 54 

observations demonstrate the reconstitution of chromosome territories and chromatin 55 

domains. An interchromatin channel system (IC) expands between chromatin domain clusters 56 

and carries splicing speckles. The IC is lined by active chromatin enriched for RNA Pol II and 57 

depleted in H3K27me3. Moreover, the cells exhibit typical early-, mid-, and late- DNA 58 

replication timing patterns. Our observations indicate that the functional nuclear 59 

compartmentalization can be maintained in cohesin depleted pre- and postmitotic cells. 60 

However, we find that replication foci – sites of active DNA synthesis – become physically 61 

larger consistent with a model where cohesin dependent loop extrusion tends to compact 62 

intervals of replicating chromatin, whereas their genomic boundaries are associated with 63 

compartmentalization, and do not change. 64 

  65 
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Abbreviations  66 

3D FISH = 3D fluorescence in situ hybridization 67 

3D SIM = 3D structured illumination microscopy 68 

AID = auxin inducible degron 69 

ANC / INC = active / inactive nuclear compartment 70 

CT = chromosome territory 71 

CD(C) = chromatin domain (cluster) 72 

CTCF = CCCTC binding factor 73 

DAPI = 4',6-diamidino-2-phenylindole 74 

EdU = 5-Ethynyl-2’-deoxyuridine 75 

Hi-C = chromosome conformation capturing combined with deep sequencing 76 

IC = interchromatin compartment 77 

MLN = multilobulated nucleus 78 

NC = nucleosome cluster 79 

PBS = phosphate buffered saline 80 

PBST = phosphate buffered saline with 0.02% Tween 81 

PR = perichromatin region 82 

RD = replication domain 83 

RL = replication labeling 84 

TAD = topologically associating domain 85 

86 
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Introduction 87 

Cohesin, a ring-like protein complex with its major subunits RAD21, SMC1 and SMC3 is 88 

involved in numerous nuclear processes, such as in double strand break repair and gene 89 

regulation, by exerting its key function of tethering distant genomic loci [1-7]. In addition, 90 

cohesin entraps sister chromatids to ensure faithful chromosome segregation during mitosis 91 

(reviewed in [1]).  92 

 In recent years cohesin’s ability as shaper of chromatin loops in the sub-Mb range 93 

anchored at CTCF/cohesin binding sites [8, 9] has moved into the spotlight of research. Hi-C 94 

studies have indicated that these loops, which manifest as bright peaks in contact frequency 95 

in a Hi-C map, demarcate contact domains [10, 11]. They manifest as squares of enhanced 96 

contact frequency in a Hi-C map and correspond to self-interacting genomic intervals between 97 

50kb and 1Mb where DNA sequences physically interact with each other more frequently 98 

compared to sequences outside a given domain [12, 13]. Loop domains thus comprise a 99 

structural unit of chromatin organization [14, 15].  100 

 Studies on the impact of cohesin in nuclear functions have become highly facilitated by 101 

an approach, which triggers a rapid and selective proteolysis of RAD21 by integrating an auxin-102 

inducible degron (AID) system and its fusion to both endogenous RAD21 alleles into a given 103 

cell line [16] (for review see [17]). Addition of auxin results in RAD21 proteolysis with the 104 

concomitant disintegration of cohesin from chromatin [18]. 105 

 Using this system in the colon cancer derived HCT116-RAD21-mAC cell line, we 106 

recently demonstrated the rapid disappearance of loop domains in Hi-C contact matrices 107 

averaged over large cell populations [18]. Compartments, manifesting when chromatin 108 

intervals with common histone signatures co-localize [13], were retained and even 109 

strengthened, leading to the presence of compartment domains and even compartment loops 110 

(but no loop domains) in the treated cells [18]. Other studies, using different cell types and 111 

approaches for cohesin elimination yielded similar results [19-21], (reviewed in [22]). 112 

 Here, we study the longer-term consequences of cohesin depletion and its effects on 113 

the higher order nuclear architecture via a combination of super-resolution and live cell 114 

microscopy, as well as Hi-C and Repli-Seq. We found that cohesin depleted interphase cells 115 
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proceed through a greatly prolonged mitosis resulting in a single cell with one multilobulated 116 

nucleus (MLN) after chromatid segregation. With Hi-C we confirm both the continued 117 

disappearance of loop domains and the maintenance of A and B compartments in MLN. With 118 

super-resolved microscopy we demonstrate that nuclei of pre- and postmitotic cohesin 119 

depleted cells maintain principal structural features of the ANC-INC model (reviewed in [23-120 

25]). According to this model, which has been supported by electron microscopy and 3D super-121 

resolution fluorescence microscopic studies from various species and cell types, the global 122 

nuclear landscape is shaped by chromosome territories (CTs) built up from chromatin domains 123 

(CDs) and chromatin domain clusters (CDCs). CDCs show a multilayered shell-like 124 

organization with increasing chromatin compaction levels from the periphery toward the interior 125 

CDC core. An interconnected system of interchromatin channels, called the interchromatin 126 

compartment (IC), pervades the spaces between CDCs. The IC carries splicing speckles and 127 

nuclear bodies within IC-lacunas and plays a central role in the formation of various nuclear 128 

machineries. IC-channels penetrate the layer of heterochromatin beneath the nuclear 129 

envelope and form direct contacts with nuclear pore complexes. The IC is lined by CDs with 130 

less compacted chromatin, first described in electron microscopic studies as the perichromatin 131 

region (for review see [26]). The PR serves as the preferential nuclear subcompartment for 132 

transcription and co-transcriptional splicing. The IC and PR form the active nuclear 133 

compartment (ANC), whereas CDs with a more compact, ‘closed’ chromatin configuration are 134 

located further away from the IC and comprise the INC. 135 

 We also examined replication timing, which has been linked to domain structure [27]. 136 

Strikingly, the absence of cohesin did not lead to major changes in replication timing or in the 137 

genomic extent of replication domains (RDs), indicating that the two structures form by 138 

independent mechanisms. Instead, we find that the boundaries of RDs closely match those of 139 

the A and B compartments both before and after cohesin degradation. This matches the Repli-140 

Seq findings reported in [28] and is consistent with the observation of [29]. Taken together, our 141 

findings indicate that replication domains correspond with compartment domains, but not with 142 

loop domains. However, we find that the physical size of replication foci is smaller, suggesting 143 

that cohesin-depending extrusion may play a role in the physical compaction of replicating 144 
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chromatin. 145 

 146 

Results  147 

Validation of auxin induced proteolysis of the cohesin subunit RAD21 148 

All experiments of this study were performed with the human colon cancer derived cell line 149 

HCT116-RAD21-mAC [16], where an auxin-inducible degron (AID) is fused to both 150 

endogenous RAD21 alleles and to a fluorescent reporter (see Suppl_Fig.1). The complete loss 151 

of RAD21-mClover fluorescence was seen in live cell observations ~1:30h after incubation in 152 

500 μM auxin (Suppl_Fig.2A). Degradation of RAD21 was confirmed by negative 153 

immunostaining with a RAD21 antibody, while epitopes of cohesin subunits SMC1 and SMC3 154 

remained intact under auxin shown by persisting positive immunodetection with respective 155 

antibodies (Suppl_Fig.2B). Notably, a small fraction of cells in our cultures (~2-4%) escaped 156 

auxin induced RAD21 degradation. In order to exclude non-responsive cells from further 157 

analyses of the impact of cohesin depletion, RAD21-mClover fluorescence was routinely 158 

recorded in all experiments with auxin treated cell populations except for 3D-FISH experiments 159 

since DNA heat denaturation destroys the reporter fluorescence [30].  160 

 161 

Cohesin depletion leads to delayed mitosis and final transition into a single postmitotic 162 

cell with a multilobulated nucleus (MLN) 163 

Using time lapse imaging over 21h at t=15min, we compared in parallel entrance into mitosis, 164 

mitotic progression and exit in untreated controls and in cohesin depleted HCT116-RAD21-165 

mAC cells, where auxin was added just before starting life cell observations. In control cells 166 

(Fig. 1A) ~80% of all recorded mitoses (n=45) passed mitosis within <1h and formed two 167 

inconspicuous daughter nuclei. A second mitosis observed for individual nuclei ~20h after the 168 

first division demonstrates their capacity to divide again under the given observation 169 

conditions. Notably, about 20% of mitoses recorded in untreated control cells revealed 170 

prolonged mitoses of >2h followed by transition into an abnormal cell nucleus, a feature which 171 

is not unusual in tumor cell lines (reviewed in [31]). Mitotic entrance of auxin treated cells 172 
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(n=32) did not show any conspicuous differences to controls (Fig.1B). However, their passage 173 

through mitosis was consistently delayed up to 14h (median 4.5h). This prolonged mitotic stage 174 

raised the mitotic index in cohesin depleted cell cultures fixed after 6h in auxin to almost 30% 175 

versus ~4% in control cultures (Suppl_Fig.3). The delayed mitotic passage was associated 176 

with the formation of abnormal multipolar mitotic figures persisting over several hours. Fig. 1C 177 

depicts a typical telophase stage of ~30 min with two apparent daughter nuclei preceding the 178 

formation of a single MLN. Despite their seemingly separation, these daughter nuclei, however, 179 

were presumably still connected by filaments (see below) and did not enter into cytokinesis. 180 

Instead, all cohesin depleted cells that were followed through an entire mitosis (n=19) resulted 181 

in a single MLN (Fig.1B-C). As a consequence, in cell cultures fixed 28-30h after cohesin 182 

depletion, MLN accumulated up to ~60% versus ~2% in control cultures (Suppl_Fig.3). MLN 183 

were noted in cell cultures kept up to 50h where a considerable fraction of apoptotic cell nuclei 184 

indicated their decline (data not shown). 185 
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186 

Fig. 1: Live cell microscopy demonstrating highly prolonged abnormal mitosis and 187 
subsequent formation of one multilobulated nucleus (MLN) in cohesin depleted cells  188 
 (A) Selected points from time lapse imaging (∑ t=21h, ∆t=15min) of untreated control cells (DNA 189 
stained with SiR-DNA, red) with accomplishment of mitosis (M1) within 1h (time 02:45 – 03:45) and 190 
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subsequent formation of two daughter nuclei. A second mitosis (M2) of one daughter nucleus is 191 

shown at time 20:15. (B) Selected time lapse images of nuclei after cohesin degradation conducted 192 

in parallel to control cells demonstrate a prolonged mitotic stage. Mitosis (M) emerges at time 6:30 193 

after auxin treatment, transition into one abnormal multilobulated daughter nucleus (MLN) is seen 194 

14:45h later (time 21:15). Mitosis (M’) emerges 7h after auxin treatment (time 07:00), transition into 195 

an MLN is seen 4:45h later (time 11:45). (C) Time lapse imaging from the same series at a higher 196 

zoom shows the formation of an aberrant mitosis apparently reaching telophase at time 6:30. 15 197 

min later two seemingly separated daughter nuclei, presumably connected by filaments, become 198 

fused into one MLN at time 7:15. Scale bar: 10 µm 199 

 200 

Global features of higher order chromatin organization persist after cohesin depletion 201 

and are re-established in MLN after mitosis despite the loss of loop domains 202 

 203 

Maintenance and re-formation of chromosome territories (CTs)  204 

Maintenance of a territorial organization of interphase chromosomes in cohesin depleted cell 205 

cultures was tested by chromosome painting of CTs 4, 12 and 19 (Fig. 2). In line with the near-206 

diploid karyotype of HCT116 cells [32, 33], two homologous territories of each painted 207 

chromosome were detected in interphase nuclei of both control (Fig. 2A) and cohesin depleted 208 

cells fixed after 6h auxin treatment (Fig. 2B). Segregation of chromatids in cohesin depleted 209 

cells was noted in anaphase (Fig. 2C, mid). Accordingly, a substantial fraction of postmitotic 210 

MLN revealed four painted territories often located in different lobuli (Fig. 2D). Unexpectedly, 211 

chromosome painting, however, detected also MLN with more than four variably sized painted 212 

segments for a given painted chromosome (Fig. 2E and Suppl_Fig. 4). Arguably, chromatids 213 

were torn apart by mechanic forces during an aberrant anaphase and/or during lobe formation. 214 

This disruption was possibly enhanced by a higher level of relaxation / decondensation in 215 

cohesin depleted chromatin (see below).  216 
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 217 

Fig. 2: Maintenance of chromosome territories (CTs) in cohesin depleted nuclei and 218 

their re-establishment after mitosis  219 

(A-E) Z-projections of entire DAPI stained nuclei (gray) with painted territories of chromosomes 4 220 

(yellow), 12 (green) and 19 (red) acquired by confocal fluorescence microscopy. (A) Control nuclei 221 
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and (B) cohesin depleted premitotic nuclei with normal phenotypes after 6h in auxin show two 222 

inconspicuous copies for each CT. (C) Mitoses from 6h auxin treated cultures with two coherent 223 

chromosomes in an (early) metaphase plate (left), segregated chromatids in anaphase (mid) and 224 

missegregation of chromosome 12 (arrow) in an abnormal mitotic figure (right). (D) Postmitotic 225 

multilobulated nuclei (MLN) with four copies for each CT. Arrow marks two CTs 4 that cannot be 226 

distinguished in the z-projection. (E) MLN with >4 painted regions for each CT (compare also 227 

Suppl_Fig. 4). Scale bar: 5 µm 228 

 229 

Maintenance of co-aligned functionally interacting active and inactive nuclear compartments 230 

(ANC-INC) in nuclei of cohesin depleted pre- and postmitotic cells 231 

3D structured illumination microscopy (3D-SIM) revealed similar chromatin compaction 232 

patterns both in DAPI stained control and cohesin depleted nuclei, including postmitotic MLN. 233 

This and other findings described below provide evidence for major structural and functional 234 

features of the ANC-INC model (Fig. 3 and 4, and introduction). For a quantitative analysis of 235 

nuclear serial sections, DAPI fluorescence was divided into seven intensity classes with equal 236 

intensity variance (color code in Fig.3). This representation of nuclear landscapes as color heat 237 

maps with increasing DNA densities (Fig 3 A-C) served as proxy for classes with increasing 238 

chromatin compaction [34]. Class 1 (lowest DNA density) represents the interchromatin 239 

compartment (IC), classes 2 (and 3) comprise low compaction CDs lining the IC. At the nuclear 240 

periphery IC-channels expand between lamina associated domains toward nuclear pores (Fig. 241 

3D-F). The quantitative assessment of voxels attributed to the seven DAPI intensity classes 242 

showed a slight shift towards less compacted chromatin (classes 1 and 2) in cohesin depleted 243 

nuclei compared to controls (Fig. 3G), in line with a slight increase of nuclear volumes after 6h 244 

cohesin depletion. The ~2-fold increased nuclear volume in MLN (30h auxin) reflects the 245 

double amount of DNA in these postmitotic cells. (Fig. 3H). 246 
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 247 

Fig. 3: Topological chromatin compaction mapping  248 

(A-C) DAPI stained mid-sections of representative nuclei acquired by 3D-SIM from (A) control 249 

nucleus; (B) Cohesin depleted nucleus (6h auxin); (C) Cohesin depleted multilobulated nucleus 250 

(MLN) (30h auxin). Chromatin compaction of nuclei based on seven DAPI intensity classes is 251 

displayed in false colors. Class 1 (blue) represents pixels close to background intensity, largely 252 

reflecting the interchromatin compartment (IC), class 7 (white) pixels with highest intensities. All 253 

nuclei in A-C reveal a network of chromatin domain clusters (CDCs) comprising a compacted core 254 

and a surrounding low-density layer co-aligned with class 1 regions that meander between CDCs 255 

as part of the IC. Likewise, all nuclei display a rim of compacted (hetero)chromatin at the nuclear 256 

periphery and around nucleoli. N = nucleolus; IC = interchromatin channels/lacunae. The green 257 

lines indicate the section plane for xz/yz cross sections of the respective nuclei shown in (D-F). 258 

Scale bar: 5 µm. (D-F)(left column): cross sections from nuclei shown in (A-C) demonstrate 259 

connections from the IC with nuclear pores (arrowheads); (right column): nuclear pores from 260 

respective nuclei shown in apical z–sections. Scale bars: 2 µm in cross sections; 0.5 µm in apical 261 

z-sections; (G) Relative 3D signal distributions of DAPI intensity classes in control nuclei, in 6h 262 

auxin treated nuclei and 30h auxin treated MLN reveal an overall similar profile for each series, yet 263 

with a relative increase of classes 1 and 2 (p<0.05 for control vs 6h and 30h auxin) and a relative 264 

decrease of classes 3 and 4 (p<0.05 for control vs 6h and 30h auxin) in cohesin depleted nuclei. 265 

Error bars= standard error of the mean (SEM) (H) Average nuclear volumes from the same series 266 

of nuclei show an increase of nuclear volumes after cohesin depletion. Note that MLN after 30h 267 

auxin are assumed to contain the double DNA amount compared to controls (for statistical tests 268 

and significance see Suppl_Table 1). 269 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/816611doi: bioRxiv preprint 

https://doi.org/10.1101/816611


 13 

 For a quantitative mapping of functionally relevant markers on DAPI intensity classes, 270 

we performed immunostaining of SC35, an integral protein of splicing speckles, involved in co-271 

transcriptional splicing and transcriptional elongation [35, 36], of RNA Pol II, phosphorylated 272 

at Ser5, representing the transcription initiating form of RNA Pol II [37], and of histone 273 

H3K27me3 conveying a repressed chromatin state [38] (Fig. 4). SC35 was greatly enriched in 274 

the IC (intensity class1), while H3K27me3 chromatin was preferentially located in higher 275 

compacted CDs of both controls and cohesin depleted nuclei (Fig. 4A-C). RNA Pol II was 276 

enriched in the PR, i.e. decondensed chromatin lining the IC (Fig. 4D-F). Notwithstanding the 277 

significantly different distributions of SC35, RNA Pol II and H3K27me3 with regard to the seven 278 

DAPI intensity classes, a highly similar distribution was found for each marker both in controls 279 

and pre- and postmitotic cohesin depleted cells (Fig. 4G,H).  280 
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 281 

Fig. 4: Maintenance of the 3D topography in cohesin depleted nuclei for nuclear markers 282 
SC35, H3K27me3 and active RNA Pol II on chromatin compaction maps  283 
(A-F) SIM optical mid-sections from whole 3D acquisitions of DAPI stained nuclei (gray) with 284 
representative zoomed magnifications also displayed as classified DAPI intensity heat maps. (A-285 
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C) Immunostaining of SC35 (red) and H3K27me3 (green), (D-F) of active RNA Pol II with 286 

(A,D)=controls, (B,E) = 6h auxin treatment, (C,F) = postmitotic MLN after 30h auxin treatment. 287 

SC35 is mostly seen in class 1 reflecting the interchromatin compartment (IC), H3K27me3 is 288 

enriched in more compacted chromatin regions (classes 3-5). RNA Pol II shows a preferential 289 

localization at decondensed chromatin sites lining the IC in D-F. Scale bar: 5 µm in mid-sections; 290 

1 µm in insets. (G) Relative signal distribution of SC35 (red) and H3K27me3 (green), (H) of active 291 

RNA Pol II (green) on DAPI intensity classes 1-7 (DAPI distribution is marked as gray dots). The 292 

different color shades denote controls, 6h auxin and 30h auxin treated cells. With exception for 293 

SC35 in controls and cohesin depleted nuclei marker distributions between controls and cohesin 294 

depleted nuclei do not show significant differences (for statistical tests and significance see 295 

Suppl_Table 1). 296 

 297 

In situ Hi-C data indicate a consistent disappearance of chromatin loops in cohesin depleted 298 

pre- and postmitotic nuclei but maintenance of A and B compartments  299 

In situ Hi-C confirmed the disappearance of loop domains previously described in cohesin 300 

depleted premitotic cells [18, 20] also in postmitotic cell cultures, which were treated with auxin 301 

for 28h before fixation (Fig. 5A). In these cultures, most cells carried MLN (compare 302 

suppl_Fig.3). A and B compartments are reconstituted in these postmitotic MLN (Fig. 5B). A 303 

heightened compartmentalization was noted in particular in B-type chromatin of MLN, as 304 

previously described for premitotic cohesin depleted cells [18]. Even in our low depth data from 305 

28h auxin treated postmitotic MLN cells, the strengthened interactions between this B-type 306 

subcompartment could be readily observed (Fig. 5C,lower right panel). While the functional 307 

identity or significance of this particular B-type subcompartment remains unknown, by k-means 308 

clustering of histone modification data for HCT116-RAD21-mAC cells [18], we were able to 309 

identify a histone modification cluster (consisting of depletion of both activating marks like 310 

H3K36me3 and H3K27Ac and repressive marks such as H3K27me3 and H3K9me3, but a mild 311 

enrichment of H3K79me2) that corresponded to the positions of this particular B-type 312 

subcompartment (Fig 5D).  313 
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 314 

Fig. 5: Hi-C data indicate elimination of chromatin loops, but maintenance of A and B 315 

compartments in cohesin depleted pre- and postmitotic cells  316 

(A) Aggregate peak analysis (APA) plots using loops identified in HCT116-RAD21-mAC cells [18] 317 

before and after 6h of auxin treatment (top) or before and after 28h of auxin treatment (bottom). 318 

The plot displays the total number of contacts that lie within the entire putative peak set at the 319 

center of the matrix. Loop strength is indicated by the extent of focal enrichment at the center of 320 

the plot. (B) Pearson’s correlation maps at 500 kb resolution for chromosome 8 before (left) and 321 

after (right) 28h of auxin treatment. The plaid pattern in the Pearson’s map, indicating 322 

compartmentalization, is preserved in cohesin depleted nuclei even after 28h of auxin treatment. 323 

(C) Contact matrices for chromosome 4 between 70 Mb and 191 Mb at 500 kb resolution before 324 

(left) and after (right) cohesin depletion. The 6h cohesin depletion time is shown on top, and 28h 325 

depletion time on the bottom. Interactions for loci in cluster 4 (annotated in yellow on top tracks) 326 

are strengthened after both 6h or 28h of cohesin depletion. All loci belonging to clusters other than 327 

cluster 4 are annotated in gray in the top track. (D) Clustering of histone modifications at 25 kb 328 

resolution into six clusters reveals consistent clusters of histone modification before and after 329 

cohesin depletion. For each cluster, the average log2-fold enrichment for each histone modification 330 

over all loci in that cluster is shown.  331 
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 332 

Same replication timing for cohesin depleted and non-depleted control cells seen by Hi-C and 333 

Repli-Seq data  334 

Using Repli-Seq and Hi-C analysis replication timing was measured by the ratio of early to late 335 

replicating DNA and was found preserved upon cohesin depletion (Suppl_Fig. 5A,B). 336 

Additionally, the tight relationship between genome A/B compartmentalization and replication 337 

timing was similarly maintained in the absence of cohesin (Suppl_Fig. 5C). 338 

 339 

Persistence of typical S-phase stage replication patterns after cohesin depletion and their 340 

restoration in postmitotic MLN 341 

The temporal order of DNA replication occurring at distinct replication sites as replication foci 342 

is highly coupled with genome architecture, resulting in typical patterns for early, mid and late 343 

replication timing [39]. These replication sites persist as stable chromatin units (replication 344 

domains, RDs) throughout interphase and during subsequent cell cycles [40-43] and were 345 

chosen in our study as reference structures for CDs (see Discussion). Replicating DNA was 346 

visualized by pulse replication labeling (RL), using an approach where fluorophore-conjugated 347 

dUTPs are incorporated by a short scratch of S-phase cells [42, 44]. RDs could then be 348 

visualized through the remaining and the next cell cycle without further detection steps. Images 349 

were acquired by 3D-SIM.  350 

RD patterns were recorded in cells with the following culture conditions: Control 351 

cultures were fixed 6h after RL (Fig. 6A). Cultures prepared for cohesin depletion were further 352 

grown after RL for 1h under normal medium conditions and then exposed to auxin for 6h (Fig. 353 

6B,C) or 30h respectively (Fig. 6D), before fixation. Both, controls and auxin-treated cells 354 

revealed typical RD patterns for all S-phase stages. Fig. 6C shows a labeled nucleus that has 355 

entered mitosis. Our observations demonstrate that a given RD pattern not only persists during 356 

the subsequent interphase and along mitotic chromosomes (Fig. 6B,C) but can also be fully 357 

reconstituted after mitosis in MLN (Fig. 6D).  358 

 Moreover we showed that de novo DNA synthesis with the formation of typical 359 

replication patterns still occurs in cohesin depleted postmitotic MLN. Fig. 6E shows examples 360 
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where RL was performed under continuous auxin treatment in cells that were kept in auxin for 361 

30h prior to RL.  362 

 363 

Fig. 6: Maintenance, postmitotic re-establishment and de novo formation of typical 364 
replication patterns after cohesin depletion  365 
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(A-E) Representative SIM sections of DAPI stained nuclei (red) with replication domains (RDs, 366 

green in overlay images) in different cell cycle stages. Respective RDs are in addition separately 367 

shown in gray. (A) Control nuclei fixed 6h after replication labeling (RL) delineating the typical 368 

patterns for early, mid and late replication. (B) Maintenance of typical replication patterns in cohesin 369 

depleted nuclei. For complete cohesin depletion nuclei were incubated for 6h in auxin after 370 

replication labeling performed in normal medium conditions. (C) Mitosis with RDs emerging from a 371 

replication labeled nucleus under conditions as described in (B). (D) Replication patterns in a 372 

postmitotic multilobulated nucleus (MLN). RL was performed in normal medium conditions and cells 373 

subsequently treated with auxin for 30h. Re-established RDs form typical early and mid-to-late 374 

replication patterns in individual lobuli. (E) De novo DNA synthesis with formation of typical 375 

replication patterns in MLN. Cells were treated with auxin for 30h prior to replication labeling under 376 

continuous auxin conditions. Scale bar: 5 µm. 377 

 378 

Individual replication domains (RDs) and DNA halo induced chromatin loops are 379 

enlarged in cohesin depleted cells 380 

Finally, we tested whether cohesin depletion following RL during early S-phase results in 381 

numerical and/or structural changes of individual RDs (Fig. 7). We compared numbers of 382 

segmented RDs plotted as the mean value of counts / nucleus (Fig. 7B) and the total volumes 383 

of all segmented RDs, plotted as the mean total RD volume / nucleus (Fig. 7C) between control 384 

nuclei grown for 6h after RL in normal medium conditions, premitotic nuclei grown for 6h in 385 

auxin after RL, and postmitotic MLN grown for 30h in auxin after RL. Both, total volumes and 386 

counts of segmented RDs were higher in cohesin depleted nuclei and slightly increased with 387 

the duration of auxin induced degradation of cohesin, hinting to chromatin relaxation at the 388 

level of individual RDs. 389 
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 390 

Fig. 7: Segmentation of individual replication domains established in early S-phase 391 
(A) SIM optical mid-sections of DAPI stained nuclei (blue) from a control (left), a 6h auxin treated 392 
nucleus (mid) and a 30h auxin treated MLN (right). Replication labeling was performed prior to 393 
cohesin depletion. RDs are displayed in red with segmented borders lined in yellow. The lower 394 
density of RDs in the postmitotic MLN is clearly evident. (B) Average counts of segmented RDs 395 
plotted as the mean value of object counts / nucleus in each series. (C) Volumes of segmented 396 
RDs plotted as the mean total volume of RDs/nucleus in each series. Significance (p<0.05) 397 
between series indicated by asterisks. Scale bar: 4 µm  398 
 399 

 An effect of cohesin depletion on RD structure was supported by a DNA halo approach, 400 

a technique to investigate changes in chromatin organization at the level of DNA loops [45]. 401 

Histone extraction in interphase nuclei by high-salt incubation triggers the extrusion of 402 

chromatin loops from a densely stained central chromatin core thus providing a measure of 403 

their size. DAPI stained nuclei of cohesin depleted cells (6h auxin treatment) exhibited halos 404 

that were significantly larger and more variable in shape in comparison to the defined and 405 

compacted halos of control cells (Suppl_Fig. 6).  406 

 407 

 408 

 409 

 410 
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Discussion  411 

Perturbed mitoses with formation of a single postmitotic multilobulated nucleus (MLN) 412 

in cohesin depleted cells   413 

 Our Repli-Seq data and live cell observations confirm an undisturbed cell cycle progress of 414 

cohesin depleted cells towards mitosis [28] and a disturbed course of mitotic progress [46]. In 415 

addition our time lapse observations reveal a so far unreported arrest of telophase in 416 

conjunction with a lack of cytokinesis, resulting in a single postmitotic cell harboring one MLN. 417 

Several factors may contribute to this outcome: cohesin loss was previously shown to prompt 418 

a defect of centrosome duplication and spindle pole integrity, as well as a compromised 419 

cohesin-mediated kinetochore-microtubule attachment [46] (reviewed in [1, 2]). Notably, in 420 

vertebrates cohesin is loaded onto DNA already in telophase [1, 5], which may be relevant for 421 

correct cytokinesis and daughter cell formation. Loss of cohesin is, however, not mandatory 422 

for the formation of MLN. MLN are found in cells with a mutant CTD Thr4-phosphorylation in a 423 

mitosis-specific form of RNA Pol II [47]. Multilobulation also arises in terminally differentiated 424 

granulocytes [48] and in tumor cells with extensive chromosomal rearrangements, such as 425 

Hodgkin lymphoma associated Reed-Sternberg cells [49]. Our observation of MLN as the 426 

mitotic outcome in ~2% of HCT116-RAD21-mAC control cells exemplifies the spontaneous 427 

occurrence of MLN in a near-diploid tumor cell line. Overall, the complex interactions of factors 428 

promoting MLN are still poorly understood [50, 51].  429 

 430 

Maintenance of principle features of higher order chromatin architecture in cohesin 431 

depleted nuclei in line with the ANC-INC model  432 

Hallmarks of the ANC-INC model (reviewed in [23-25], see Introduction) were retained in 433 

cohesin depleted pre- and postmitotic cell nuclei. These hallmarks include the preservation of 434 

chromosome territories (CTs), chromatin domain clusters (CDCs) structurally organized by 435 

different compaction levels, an interchromatin (IC) channel system and the maintenance of an 436 

active compartment (ANC), represented by markers for transcriptional competence (here 437 

active RNA Pol II and splicing speckles) and a co-aligned inactive compartment (INC) with 438 
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repressed chromatin (H3K27me3).  439 

  We also examine replication domains (RDs). RDs defined by genome-wide Repli-Seq 440 

analyses are often considered to correspond to TADs mapped by Hi-C methods [27, 52] and 441 

as molecular equivalents of replication foci / domains observed by microscopic methods [53]. 442 

Yet, a direct comparison of these structures is a delicate issue since neither RDs nor TADs 443 

are strictly defined: microscopically observable replication sites were initially reported in rat 444 

fibroblast nuclei with an average DNA content of ~1 Mb [54]. Later studies with conventional 445 

and super-resolution microscopy [40, 44, 55] showed that RDs with an average DNA content 446 

of 400–800 kb [56] can be optically resolved down to a few single replicons (150–200 kb) 447 

clustered per replication site. Similarly, the definition of TADs with a size range of ~0.1-1Mb 448 

(and further grouping into subTADs and metaTADs) has remained somewhat fuzzy, likely due 449 

to their dynamic behavior [57], differences of evaluation mode and interpretation [58, 59].  450 

A recent review rejected the above hierarchy of metaTADs, TADs, and subTADs, and 451 

instead argued for a very different classification of contact domains into two types [60]: 452 

compartmental domains which originate due to the co-segregation of chromatin intervals with 453 

similar marks, and loop domains, which emerge from cohesin extrusion.  454 

Critically, in our study, we report the maintenance of replication domains (RDs) in 455 

cohesin depleted nuclei over mitosis with re-formation of typical patterns for all S-phase stages 456 

in postmitotic MLN. Thus, replication domains remain despite the loss of all loop domains 457 

(whether classified as TADs, subTADs, metaTADs, etc). Instead, we find that the boundaries 458 

of replication domains align with the boundaries of compartmental domains. Thus, our work is 459 

consistent with the view that there are two types of domains. Compartmental domains, which 460 

do not depend on cohesin extrusion, correspond closely to replication domains. By contrast, 461 

loop domains, which result from cohesin extrusion, do not correspond to the boundaries of 462 

replication domains. 463 

 464 

Disappearance of loop domains and concomitant persistence of functional higher order 465 

chromatin arrangements underpins different mechanisms for their structural organization 466 
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The disappearance of chromatin loops as basic chromatin folding structures demonstrated by 467 

Hi-C experiments may lead to the expectation of a profound effect on the global higher order 468 

chromatin organization, like a house of cards falling together when a basal card is removed. 469 

Apparently, this is not the case as has been previously shown by the maintenance and even 470 

strengthening of compartmentalization into A and B domains after cohesin depletion [18, 20]. 471 

In the present study the persistence of compartment domains was also demonstrated for 472 

cultures highly enriched with postmitotic MLN.  473 

Chromatin loop domains are formed by means of an extrusion mechanism where by 474 

the gradual expansion of a loop through a cohesin ring two opposite CTCF sites are tethered 475 

together and anchored at CTCF/cohesin binding sites (reviewed in [6, 61-64]). These anchor 476 

sites manifest as bright peaks in Hi-C maps. Based on cohesin depletion experiments this loop 477 

extrusion mechanism was shown to be cohesin dependent ([18, 20, 21] and this study). 478 

Elimination of cohesin dependent chromatin loop domains visualized in Hi-C maps by the 479 

respective disappearance of squares of enhanced contact frequencies does, however, not 480 

necessarily reflect a complete loss of chromatin loops. An effect of cohesin depletion on 481 

chromatin decompaction / relaxation with a modest increase of RD diameters as found in our 482 

present study may already result in a major decrease of 3D contact frequencies and contribute 483 

to the failure to detect loop domains. Our observation that replication foci become physically 484 

larger after cohesin depletion also suggests cohesin dependent extrusion may play a role in 485 

the physical compaction of replicating chromatin. This is consistent with a model where 486 

cohesin extrusion tends to compact intervals of replicating chromatin, but where their genomic 487 

boundaries are associated with compartmentalization [29]. 488 

Moreover, cohesin rings as chromatin loop anchors may in part be replaced after 489 

cohesin depletion by other factors with less defined anchor points (reviewed in [6, 7, 63]). The 490 

entrance of cells into mitosis provides a case in point for a structural change of chromatin loop 491 

organization which prompts a loss of the Hi-C plaid or check-board pattern in mitotic 492 

chromosomes [65]: upon entering mitosis, cohesin is lost from chromosome arms (reviewed 493 

in [1]) and helically arranged nested loop arrays are formed by condensins I and II. The 494 

organization of chromatids in mitosis can be described as a linearly organized, longitudinally 495 
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compressed array of consecutive chromatin loops [66]. Notwithstanding this major change of 496 

chromatin loop organization between interphase and mitosis, major features of higher order 497 

chromatin organization persist and are transmitted from one cell cycle to the next [67, 68]. 498 

Chromatin loop clusters attributed to distinct CDs during interphase continue to be present in 499 

close spatial arrangements along mitotic chromosomes which allows the rapid re-500 

establishment of loops, domains and compartments early in G1. 501 

 Cohesin-independent maintenance of Hi-C detectable A and B compartments was 502 

reported in several studies (reviewed in [22]). In line with only minor effects of cohesin depletion 503 

on gene expression [18], the present study underpins that mechanisms that direct the 504 

maintenance of individual RDs and their spatio-temporal order, as well as the spatial 505 

arrangement of higher order chromatin organization in the context of the ANC-INC model are 506 

also independent of cohesin and sufficient to instruct accurate reformation of these structures 507 

upon exit from mitosis into a subsequent cell cycle in the absence of cohesin. We argue that 508 

RDs correspond with compartment domains in line with [29] where discrete cis-regulatory 509 

elements which orchestrate domain-wide replication timing, A/B compartmentalization and 510 

loop architecture, were identified.  511 

 512 

An integrated view of the functional nuclear landscape based on Hi-C and microscopic 513 

data  514 

Although microscopically derived distance maps were reported in excellent agreement with Hi-515 

C maps [69], Hi-C and microscopy yield different views on the nuclear landscape and 516 

unexplored gaps between findings obtained with these approaches have to be closed. Hi-C 517 

has made possible the genome wide identification of the spatial proximity of DNA segments in 518 

cis and trans [12-14, 70] and genome wide data on chromatin modifications and architectural 519 

proteins mapped along the DNA can be easily integrated into the resulting architectural 520 

landscape. However, as a method based on 3D DNA-DNA contact frequencies Hi-C lacks the 521 

power to identify the system of IC-channels and the lining PR. These features have been 522 

demonstrated consistently in many cell types and species with super-resolved microscopy [24, 523 

25]. The relationship of compartments A and B identified by Hi-C with the co-aligned 524 
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compartments described by the ANC-INC model has not yet been clarified. Some studies 525 

traced genomic features within a range of few Mb with a combination of super-resolved 526 

microscopy and Hi-C [71, 72]. Using stochastic optical reconstruction microscopy, Bintu et al. 527 

[71] demonstrated domain-boundary-like structures in single cohesin depleted nuclei. Loss of 528 

cohesin, however, abolished preferential boundary sites with a corresponding loss of loop 529 

domains detectable by Hi-C at the population-average level in cohesin depleted cells. 530 

 Furthermore, Hi-C is not an appropriate method to measure absolute chromatin 531 

compaction. Simply put, Hi-C does not measure absolute contact frequency, and 3D 532 

reconstructions of higher order chromatin organization from Hi-C data have sometimes been 533 

used to argue for relatively open and accessible lariat-like chromatin loop structures [69, 73-534 

76]. In contrast, recent studies using advanced microscopic strategies have suggested 535 

nucleosome clusters (NCs) as basic entities of chromatin organization beyond the nucleosome 536 

level [77-79]. Chromatin loops built from NCs imply more compacted and less accessible CDs 537 

with profound consequences for their accessibility for macromolecules (see below). Cartoons 538 

of 3D TAD structures [69, 73-76] suggest an unconstrained access of individual 539 

macromolecules, such as transcription factors, into the interior and also a constrained 540 

accessibility of macromolecular complexes. In contrast, we and others [80] consider the 541 

possibility that the accessibility of CDs may be impeded to an extent that the diffusion of 542 

individual macromolecules is constrained, and macromolecular complexes are fully excluded. 543 

We postulate that this basic organization is maintained in cohesin depleted nuclei.  544 

 545 

Outlook 546 

The polymer melt model of the CD structure proposed by Maeshima and colleagues [81] 547 

argues for dense packaging of ~10 nm thick chromatin fibers in the interior of CDs. Based on 548 

Monte Carlo simulations Maeshima et al. [80] proposed that nucleosome densities >0.3 to 0.5 549 

mM, corresponding to DNA densities of ~40 – 60 Mb/µm3, result in an accessibility barrier for 550 

molecule complexes with diameters >20 – 25 nm. Estimates of DNA densities based on super-551 

resolved microscopy of CDs in various human and mouse cell nuclei indicate a range in the 552 

order of 5 - 200 Mb/µm3 (C. Cremer, unpublished data). These estimates argue for an 553 
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exclusion of macromolecular complexes from the interior of CDs with higher compaction levels 554 

and thus favor models proposing that macromolecular complexes involved in transcription and 555 

other important nuclear functions act at the periphery of CDs [24, 25, 80, 82]. The implications 556 

of this model for the mobility of CDs and functional DNA targets have remained elusive. In line 557 

with current views of chromatin organization based on the formation of chromatin droplets with 558 

distinct chromatin states [60], a recent Hi-C based genome-wide model depicts contact 559 

domains and TADs as separated chromatin balls [83]. We have postulated that the IC may 560 

provide preferred routes for imported transcription factors to their target sites, for the 561 

intranuclear passage of regulatory RNAs to remote functional sites, and for export routes of 562 

mRNPs towards nuclear pores [25]. In order to test this hypothesis, it is necessary to explore 563 

the space-time compaction and accessibility of CDs. Super-resolved fluorescence microscopy, 564 

including single molecule localization microscopy (SMLM) and stochastic optical 565 

reconstruction microscopy (STORM), may become the methods of choice to measure absolute 566 

differences of DNA/chromatin compaction with spatial resolution at the nanometer scale [79, 567 

84, 85], whereas chromatin accessibility can be probed indirectly with methods that allow to 568 

measure molecular diffusion rates [86-89].  569 

 570 

Materials & Methods 571 
Cells and culture conditions 572 
HCT116-RAD21-mAID-mClover cells (referred to as HCT116-RAD21-mAC cells in the 573 
manuscript) were generated and kindly provided by the Kanemaki lab (Mishima Shizuoka, 574 
Japan; [16]). For a detailed description see Suppl_Fig. 1. Cells were cultured in McCoy’s 5A 575 
medium supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/ml 576 
streptomycin at 37oC in 5% CO2.  577 
 578 
Auxin induced RAD21 proteolysis  579 
Degradation of the AID-tagged RAD21 was induced by addition of auxin (indole-3-acetic acid; 580 
IAA, Sigma Aldrich) to the medium at a final concentration of 500 µM (auxin stock solution 2 581 
M in DMSO). In long term cultures fresh auxin-medium was added after 20-24h. 582 
 583 
Immunodetection 584 
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Cells were grown on high precision coverslips (Roth, LH22.1, #1.5) to 80% confluency and 585 

washed two times in PBS before fixing them in 2% formalin/PBS for 10 min. After a stepwise 586 

formalin exchange with PBS/Tween 0.02%, cells were permeabilized with 0.5% Triton X-587 

100/PBST for 10 min and then incubated in 2% BSA/PBST as blocking solution for 1h to 588 

minimize non-specific antibody binding. For immunodetection, primary and secondary 589 

antibodies were diluted in blocking solution and incubated each for 1h in a dark humified 590 

chamber to prevent drying and fluorescence fading. Primary antibodies against cohesin 591 

subunits RAD21, SMC1, SMC3 (Abcam), all raised in rabbit, were detected with Cy3-592 

conjugated goat anti rabbit antibodies (Abcam). Primary antibodies against SC35 (Sigma), 593 

RNA Pol II (Abcam) and H3K27me3 (Active Motif) were detected with either donkey anti mouse 594 

Alexa 488 (Life technologies) or donkey anti rabbit Alexa 594 (Life technologies). A postfixation 595 

step in 4% formalin/PBS helped to stabilize bound antibodies. Cells were counterstained in 1 596 

µg/ml DAPI, mounted in antifade mounting medium Vectashield (Vector Laboratories) and 597 

sealed with nail varnish (for details see [90]).  598 

 599 

Replication pulse labeling 600 

1. replication scratch labeling: Cells cultivated on high precision coverslips (thickness 0.170 601 

mm) grown to 50-80% confluency were transferred into a dry empty tissue dish after draining 602 

off excess medium. 30 µl of the prewarmed labeling solution (20 µM Cy3-dUTP (homemade) 603 

or Alexa 594-5-dUTP (Life technologies)) was evenly distributed over the coverslip. With the 604 

tip of a hypodermic needle parallel scratches at distances of ~100 µm were quickly applied to 605 

the cell layer. Cells were incubated for 1 min in the incubator, then a few ml of pre-warmed 606 

medium was added to the dish. After 30 min medium was exchanged to remove non-607 

incorporated nucleotides (for details see [42, 91]). Avoidance of any chemical treatments 608 

preserves the RAD21-mClover fluorescence after labeling and was therefore used for all RL 609 

experiments with exception for the labeling experiment shown in Fig. 6E.  610 

 611 

2. Incorporation of 5-Ethynyl-dU (EdU) and detection by „click chemistry“  612 

This approach was used for RL in MLN since these cells are prone to detachment upon 613 

scratching (compare Fig. 6E) taking the degradation of the protein-tagged RAD21-mClover 614 

fluorescence caused by the acidic reaction [92]. EdU was added at a final concentration of 10 615 

µM to the medium for 15min. Incorporated EdU was detected according to manufactures 616 

instructions (baseclick) by a Cu(I) catalyzed cycloaddition reaction that covalently attaches a 617 

fluorescent dye containing a reactive azide group to the ethynyl-group of the nucleotide [93]. 618 

For visualization of RDs, the dye 6-FAM-Azide (baseclick) at a final concentration of 20 µM 619 

was used.  620 

After either labeling approach cells were washed in 1xPBS and fixed with 4% formaldehyde / 621 

PBS for 10 min. After a stepwise exchange with PBST, cells were permeabilized with 0.5% 622 
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Triton X-100/PBS/Tween 0.02% for 10 min and washed again in 1xPBS. Cells were 623 

counterstained in 1 µg/ml DAPI and mounted in antifade mounting medium Vectashield (Vector 624 

Laboratories); for details see [90]).  625 

 626 

HI-C in situ analysis of untreated and auxin treated cells 627 

HCT-116-RAD21-mAC cells were plated in 6 well plates with either complete media, or 628 

complete media with 500uM auxin (IAA) for 6 hours (as in [22]) or 28 hours (to enrich for post-629 

mitotic cells with multilobulated nuclei). Cells were crosslinked with 1% formaldehyde directly 630 

on the plate for 10 minutes and then quenched with glycine. The crosslinked cells were then 631 

scraped off and in situ Hi-C was performed as in [14]. In brief, cells were permeabilized with 632 

nuclei intact, the DNA was digested overnight with MboI, the 5’-overhangs were filled in while 633 

incorporating bio-dUTP, and the resulting blunt end fragments were ligated together. 634 

Crosslinks were then reversed overnight, the DNA was sheared to 300-500bp for Illumina 635 

sequencing, biotinylated ligation junctions were captured using streptavidin beads and then 636 

prepped for Illumina sequencing. We prepared 3 libraries (two biological replicates) each for 637 

each time point (untreated 6 hours, treated 6 hours, untreated 28 hours, treated 28 hours). All 638 

Hi-C data was processed using Juicer  [94, 95]. The data was aligned against the hg19 639 

reference genome. All contact matrices used for further analysis were KR-normalized with 640 

Juicer. Comparison of compartment strengthening to histone modification clusters was done 641 

as in [22]. Histone modification data for 9 marks (H3K36me3, H3K27Ac, H3K4me1, H4K16Ac, 642 

H3K79me2, H2AZ, H4K20me3, H3K27me3, H3K9me3) generated from untreated and 6-hour 643 

treated cells in [22] was grouped into 6 clusters using k-means clustering. For the k-means 644 

clustering, the histone modification data was first converted into a z-score value for each mark 645 

in order to account for differences in the dynamic range between marks. 646 

 647 

 648 

Repli-Seq of untreated or auxin-treated cells  649 

HCT116-RAD21-mAC cells were synchronized in G1 with lovastatin as previously described 650 

[96]. Briefly, cells were incubated with 20 µM Lovastatin (Mevinolin) (LKT Laboratories M1687) 651 

for 24 hours to synchronize in G1. 500 µM auxin or DMSO was added 6 hours before release 652 

from lovastatin block. To release from G1 block, lovastatin was washed away with 3 washes 653 

of PBS and warm media plus 2 mM Mevalonic acid (Sigma-Aldrich M4667) and 500 μM Auxin 654 

or DMSO. Cells were released for 10, 14, 18, and 22 hours. 2 hours before the time point 100 655 

μM BrdU was added to label nascent replication. After fixation, equal numbers of cells from 656 

each release time point were pooled together for early/late repli-seq processing [97]. Repli-657 

Seq data was processed as described in [97]. In brief, data was aligned to the hg19 reference 658 

genome using bowtie2, deduplicated with samtools, and the log-2 ratio between early and late 659 

timepoints was calculated.  660 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2019. ; https://doi.org/10.1101/816611doi: bioRxiv preprint 

https://doi.org/10.1101/816611


 29 

 661 
 662 
3D DNA-FISH  663 
Hapten - or directly labeled chromosome painting probes delineating human chromosomes 4-664 
(BIO), 12-(DIG) and 19-Cy3, generated from flow sorted chromosomes as previously 665 
described in detail [30] were kindly provided by Stefan Müller (LMU). 30 ng of each labeled 666 
probe and a 20-fold excess of COT-1 DNA was used per 1 µl hybridization mix (50% 667 
formamide/ 2xSSC/ 10% dextran sulfate).  668 
Cells were washed in 1xPBS and fixed with 4% formaldehyde/PBS for 10 min. After a stepwise 669 
exchange with 0.5% Triton X-100/PBS, cells were permeabilized with 0.5% Triton X-100/PBS 670 
for 10 min, washed in 1xPBS. Further pretreatment steps included incubation in 20% glycerol 671 
(1h), several freezing/thawing steps in liquid N2, and incubation in 0.1 N HCl (5 min). Cells 672 
were stored in 50% formamide/2xSSC overnight. After simultaneous denaturation of probe and 673 
cells (2 min at 76oC), hybridization was performed at 37oC for 48h. After stringent washing in 674 
0.1xSSC at 60oC, biotin was detected by streptavidin-Alexa 488 and DIG by a mouse-anti-DIG 675 
antibody conjugated to Cy5. Cells were counterstained in 1 µg/ml DAPI, mounted in antifade 676 
mounting medium Vectashield (Vector Laboratories) and sealed with nail varnish (for details 677 
see [30]).  678 
  679 
DNA halo preparation  680 
HCT116-RAD21-mAC cells were incubated for 6h in 500 µM auxin for cohesin depletion. DNA 681 
halo preparation was largely performed according to [98]. After washing the cells in 1xPBS 682 
they were incubated for 10 min in a buffer at 4°C containing 10 mM Tris pH 8, 3 mM MgCl 2, 683 
0.1 M NaCl, 0.3 M sucrose, protease inhibitors (freshly added to the buffer prior to use) 1 μM 684 
pepstatin A, 10 μM E64, 1 mM AEBSF and 0.5% Nonidet P40. All the following procedures 685 
were performed at room temperature. Subsequently DNA was stained for 4 min with 2 μg/ml 686 
DAPI. After 1 min in a second extraction buffer (25 mM Tris pH 8, 0.5 M NaCl, 0.2 mM MgCl2; 687 
protease inhibitors as in nuclei buffer and 1 mM PMSF were added fresh pr ior to use), cells 688 
were incubated 4 min in halo buffer (10 mM Tris pH 8, 2 M NaCl, 10 mM EDTA; protease 689 
inhibitors as in nuclei buffer and 1 mM DTT were added fresh prior to use). Eventually cells 690 
were washed 1 min each in two washing buffers (25 mM Tris pH 8, 0.2 mM MgCl2; the first 691 
buffer with and the second without 0.2 M NaCl). After 10 min fixation in 4% formaldehyde/PBS, 692 
cells were washed twice in 1xPBS, mounted on slides with Vectashield and sealed with nail 693 
varnish. 694 
Nuclear scaffolds and the faded DNA halos were imaged at a widefield microscope (Zeiss 695 
Axioplan 2, 100x/1.30 NA Plan-Neofluar Oil Ph3 objective; Axiovision softare; AxioCam mRM 696 
camera). Both the total area (At) and the scaffold area (As) of each cell were manually 697 
segmented using the software Fiji and the DNA halo area (Ah) calculated as a subtraction of 698 
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the two (Ah = At – As). The DNA halo radius was subsequently derived with the formula R = 699 

√(Ah/π). Four biological replicates were prepared and measured. For generation of plots and 700 

statistical analysis (Wilcoxon test) the software RStudio was used.  701 

 702 

Confocal fluorescence microscopy 703 

Confocal images were collected using a Leica SP8 confocal microscope equipped with a 704 

405nm excitation laser and a white light laser in combination with an acousto-optical beam 705 

splitter (AOBS) which allows tunable filtering of excitation from 470 to 670 nm and freely 706 

programmable emission detection. The used confocal system has three different detectors, 707 

one photomultiplier tube (PMT) and two hybrid photodetectors (HyD). The microscope was 708 

controlled by software from Leica (Leica Application Suite X, ver. 3.5.2.18963). For excitation 709 

of DAPI, the 405 nm laser was used. For excitation of Alexa488, Cy3, STAR635P and Cy5, 710 

the white light laser was set to 499, 554, 633 and 649 nm, respectively. The emission signal 711 

of DAPI was collected by the PMT (412-512 nm), the emission signals of Alexa488 (506-558 712 

nm), Cy3 (561-661 nm), STAR635P (640-750 nm) and Cy5 (656-780 nm) were collected by 713 

the two HyD detectors. Images were acquired with 42 nm pixel steps, 102 µs pixel dwell time 714 

and 2-fold line accumulation using a Leica HC PL APO 63x/1.30 NA Glycerol immersion 715 

objective. The frame size was 37 x 37 µm and the scan speed was 700 Hz. The size of the 716 

confocal pinhole was 1 A.U. Confocal image z-stacks were acquired with a step size of 330 717 

nm.  718 

 719 

Live cell microscopy for long term observations  720 

For live cell imaging, cells were plated on poly-L-Lysine-coated glass bottom 2-well imaging 721 

slides (ibidi), allowing to image control and auxin-treated conditions in parallel. For DNA 722 

staining cells were grown in media containing 500 nM SiR-DNA (Spirochrome) for 1h before 723 

imaging. Timelapse acquisitions were carried out on a Nikon TiE microscope equipped with a 724 

Yokogawa CSU-W1 spinning disk confocal unit (50 µm pinhole size), an Andor Borealis 725 

illumination unit, Andor ALC600 laser beam combiner (405 nm / 488 nm / 561 nm / 640 nm), 726 

and Andor IXON 888 Ultra EMCCD camera. The microscope was controlled by software from 727 

Nikon (NIS Elements, ver. 5.02.00). Cells were imaged in an environmental chamber 728 

maintained at 37°C with 5% CO2 (Oko Labs), using a Nikon PlanApo 60x/1.49 NA oil 729 

immersion objective and a Perfect Focus System (Nikon). Images were recorded every 15 min 730 

for 21h as z-stacks with two planes and a step size of 6 µm, unbinned and with a pixel size of 731 

217 nm. For excitation of mClover and SiR-DNA, the 488 and 640 nm laser lines were used, 732 

respectively. Fiji software (ImageJ 1.51j) [99] was used to analyze images.  733 

 734 

Semi-automatic quantitative evaluation of multilobulated nuclei (MLN) / mitoses 735 
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Image acquisitions were carried out on the Nikon spinning disk system described above. Using 736 

a Nikon PlanApo 100x/1.45 NA oil immersion objective tiled images (3x3 with 5% overlap and 737 

131 nm pixel size) were acquired for each condition to increase the number of cells per field 738 

of view. Confocal image z-stacks were acquired in two planes with a step size of 6 µm in order 739 

to encompass cells, in particular mitotic cells, in different plane levels. DAPI and mClover were 740 

excited with 405 or 488 nm laser lines, respectively. All nuclei from each image (average 280 741 

nuclei per image frame) were classified visually into morphologically normal nuclei, mitoses 742 

and multilobulated nuclei (MLN). In auxin treated cells nuclei with persistent RAD21-mClover 743 

fluorescence (~2%) were excluded.  744 

 745 

Structured illumination microscopy (SIM) 746 

Super-resolution structured illumination imaging was performed on a DeltaVision OMX V3 747 

system (Applied Precision Imaging/GE Healthcare) equipped with a 100x/1.4 NA UPlan S Apo 748 

oil immersion objective (Olympus), Cascade II:512 EMCCD cameras (Photometrics) and 405, 749 

488 and 593 nm lasers (for detailed description see [100]). For sample acquisition oil with a 750 

refractive index of RI=1.512 was used. 3D image stacks were acquired with 15 raw images per 751 

plane (5 phases, 3 angles) and an axial distance of 125 nm and then computationally 752 

reconstructed (Wiener filter setting of 0.002, channel specific optical transfer functions (OTFs)) 753 

and color shift corrected using the SoftWoRx software (Applied Precision Imaging/GE 754 

Healthcare). After establishing 32-bit composite tiff stacks with a custom-made macro in 755 

Fiji/ImageJ2 (http://rsb.info.nih.gov/ij/), the data were subsequently aligned again to get a higher 756 

alignment precision. These images were then used for measurements in the Volocity software 757 

(Perkin Elmer). 758 

 759 

Segmentation and quantification of replication domain (RD) signals 760 

Aligned 3D SIM image stacks were used as RGB for object counting and volume 761 

measurements in the Volocity software. For each series between n=7 and n=11 nuclei were 762 

measured. The image stacks were separated in their respective channels and then structures 763 

were obtained and segmented separately. The segmentation of cohesin structures was 764 

performed with the following software commands: 1. “Find Objects” (Threshold using: Intensity, 765 

Lower: 32, Upper: 255), 2. “Separate Touching Objects” (Object size guide of 0,002 µm³) and 766 

3. “Exclude Objects by Size”, excluding structures < 0,005 µm³. Exclusion of signals outside a 767 

selected nucleus was achieved by the commands “Intersect” and “Compartmentalize”. 768 

Segmentation of nuclei was realized by the following commands: 1. “Find Objects” (Threshold 769 

using: Intensity), 2. “Dilate”, 3. “Fill Holes in Objects” and 4. “Erode”.  Measured values for 770 

volumes and object counts were plotted as histograms using bins for volume classes (0,01-0,4 771 

µm³) and object counts within each bin. To compare different series, averaged values from all 772 

nuclei of a given series were used. To confirm statistically significance the Mann-Whitney test 773 
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was applied for both object counts and volumes. For comparability of the results, the same 774 

protocol was applied for all conditions 775 

 776 

Chromatin compaction classification by 3D assessment of DAPI intensity classes  777 

Nuclei voxels where identified automatically from the DAPI channel intensities using Gaussian 778 

filtering and automatic threshold determination. For chromatin quantification a 3D mask was 779 

generated in ImageJ to define the nuclear space considered for the segmentation of DAPI 780 

signals into seven classes with equal intensity variance by a previously described in house 781 

algorithm [34], available on request. Briefly, a hidden Markov random field model classification 782 

was used, combining a finite Gaussian mixture model with a spatial model (Potts model), 783 

implemented in the statistics software R [101, 102]. This approach allows threshold-784 

independent signal intensity classification at the voxel level, based on the intensity of an 785 

individual voxel. Color or gray value heatmaps of the seven intensity classes in individual nuclei 786 

were performed in ImageJ.  787 

 788 

Quantitative allocation of defined nuclear targets on 3D chromatin compaction classes  789 

Individual voxels of fluorescent signals of the respective marker channels were segmented 790 

using a semi-automatic thresholding algorithm (using custom built scripts for the open-source 791 

statistical software R http://www.r-project.org, available on request). XYZ-coordinates of 792 

segmented voxels were mapped to the seven DNA intensity classes. The relative frequency 793 

of intensity weighted signals mapped on each DAPI intensity class was used to calculate the 794 

relative distribution of signals over chromatin classes. For each studied nucleus the total 795 

number of voxels counted for each intensity class and the total number of voxels identified for 796 

the respective fluorescent signals for SC35, RNA Pol II, H3K27me3 was set to 1. As an 797 

estimate of over/under representations (relative depletion/enrichment) of marker signals in the 798 

respective intensity classes, we calculated the difference between the percentage points 799 

obtained for the fraction of voxels for a given DAPI intensity class and the corresponding 800 

fraction of voxels calculated for the respective signals. Calculations were performed on single 801 

cell level and average values over all nuclei used for evaluation and plotting. For a detailed 802 

description see [34].  803 

 804 
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