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Abstract

Within a species’ range, intraspecific diversity in the form of adaptive standing genetic variation (SGV) may

be non-randomly clustered into different geographic regions, reflecting the combined effects of historical range

movements and spatially-varying natural selection. As a consequence of a patchy distribution of adaptive

SGV, populations in different parts of the range are likely to vary in their capacity to respond to changing

selection pressures, especially long-lived sessile organisms like forest trees. However, the spatial distribution

of adaptive SGV across the landscape is rarely considered when predicting species responses to environmental

change. Here, we use a landscape genomics approach to estimate the distribution of adaptive SGV along

spatial gradients reflecting the expansion history and contemporary climatic niche of balsam poplar, Populus

balsamifera (Salicaceae), a widely distributed forest tree with a transcontinental distribution in North Amer-

ica. By scanning the genome for signatures of spatially varying local adaptation, we estimated how adaptive

SGV has been shaped by geographic distance from the rear range edge (expansion history) versus proximity to

the current center of the climatic niche (environmental selection). We found that adaptive SGV was strongly

structured by the current climatic niche, with surprisingly little importance attributable to historical effects

such as migration out of southern refugia. As expected, the effect of the climatic niche on SGV was strong

for genes whose expression is responsive to abiotic stress (drought), although genes upregulated under biotic

(wounding) stress also contained SGV that followed climatic and latitudinal gradients. The latter result could

reflect parallel selection pressures, or co-regulation of functional pathways involved in both abiotic and biotic

stress responses. Our study in balsam poplar suggests that clustering of locally adaptive SGV within ranges

primarily reflects spatial proximity within the contemporary climatic niche – an important consideration for

the design of effective strategies for biodiversity conservation and avoidance of maladaptation under climate

change.
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Introduction

Adaptive standing genetic variation (SGV) is of fundamental importance to the response of populations to

environmental change. R.A. Fisher1 first identified that the response to selection is proportional to the genetic

variance in fitness, but also assumed that most populations exist at or near their current fitness optima such

that selection primarily acts on new mutations as opposed to SGV2. However, several processes are known

to maintain SGV over broader temporal and spatial scales. For example, fluctuating or balancing selection

may favor the long-term persistence of multiple alleles within populations, and this has been particularly well

documented for genes associated with mating type3,4 or immunity5–7. Similarly, spatial population structure

and local selection can maintain adaptive SGV at range-wide scales, for example due to polygenic selection

shifting adaptive allele frequencies along environmental gradients8 or when hard or soft selective sweeps act

locally within different populations9.

For many species, the current spatial distribution of adaptive SGV will in part reflect historical events such as

range contractions and expansions in response to past glaciation, as well as effects of environmental selection

during or since these events10–13. Hampe & Petit14 argued that populations distributed along the rear edge of

a species’ range may be closely descended from refugial populations, and hence are predicted to be older and

harbor higher levels of SGV compared to younger populations in areas of recent expansion14,15. Reduced SGV

with distance from the rear range edge is also a predicted consequence of serial founder effects during range

expansion16, which can lower adaptive potential with distance from rear edge source populations17. Moreover,

rear edge populations at lower latitudes may be subject to increased levels of abiotic stress, hybridization

with congeners, or experience higher disease or pathogen incidence compared to populations in the core of

the species’ range14,15,18–20, suggesting that the strength or nature of selection may vary with proximity to

the rear range edge21,22. However, the effect of range limits on adaptive genetic variation remains poorly

understood13,23, and only a handful of experimental studies have quantified how SGV under selection varies

along a continuum from the core to the edge of a species’ range (e.g.24–28).

While proximity to the rear range edge may predict if SGV for ancestral polymorphism has been reduced

by colonization bottlenecks, it may not adequately capture how SGV has been shaped by spatially-varying

selection after expansion29. In this context, populations inhabiting ecologically marginal environments are

of particular interest13,30. Marginal environments may impose intense selection pressures on populations to
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locally adapt, but such adaptation may be constrained by demographic effects of genetic drift23,31 or the im-

migration of maladapted alleles from more abundant populations elsewhere in the range32. On the other hand,

gene flow of beneficial alleles may facilitate adaptation to marginal environments33,34, and could contribute

substantially to the global pool of adaptive SGV present across a species’ range. Identifying local populations

containing unique adaptive variation relative to the rest of the range has gained increased importance in the

context of contemporary global change22, as efforts are needed to identify and conserve adaptive germplasm

in situ for crop breeding35, or to forecast the adaptive response of natural populations to climate change36,37.

North American tree species provide excellent study systems for addressing the effects of range context on

locally adaptive SGV, as their expansion history into formerly glaciated regions is well documented in the

fossil pollen record, and is known to have tracked the changing climate during the Holocene38,39. Due to their

long individual lifespans, frequently spanning hundreds of years, trees occur in populations characterized by

overlapping generations in which SGV for fitness traits can be maintained by demographic or selective pro-

cesses over eons40. Furthermore, many tree species show strong clines across their ranges for functional traits

and adaptive allele frequencies that occur across complex spatial gradients of expansion history and climatic

environment27,41–45. This makes forest trees important systems in which to understand the spatial landscape

of adaptive variation46, and the roles of history and selection in shaping where SGV is concentrated within

the range39.

In this study, we report a landscape genomics analysis investigating the importance of range context for the

distribution of locally adaptive genomic variation in the widely distributed boreal tree, Populus balsamifera L.

(Salicaceae). The occurrence of P. balsamifera is spread across 30 degrees of latitude and over 100 degrees of

longitude47, and as such populations span a massive range in climate and growing season length48. Previous

genetic studies place the likely refugial location of P. balsamifera during the last glacial maximum (LGM)

in the central Rocky Mountains49,50, where P. balsamifera currently exists in relatively isolated populations

along its southern range edge19,48. The current center of abundance of the species lies to the north of these

rear edge populations across central Canada, where population genetic and species distribution models suggest

the presence of a large effective population size (Ne) with high historic levels of gene flow to the northern and

eastern peripheries of the range49. Populus balsamifera is also known to exhibit strong clinal variation for

phenology and ecophysiological traits51–53 and for nucleotide diversity and divergence in flowering time genes,

suggesting pervasive local adaptation to climate and photoperiod across its range43,54.
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Here, we use a combination of approaches to scan the genome for signals of local adaptation, conditioned on

the spatial pattern of neutral population structure, and show that adaptive SGV varies strongly with proximity

to the species’ core climatic niche, with weaker effects of distance from the rear range edge. The predominant

influence of the contemporary climatic niche shaping adaptive SGV is largely robust across genes involved in

defense vs. drought stress, suggesting similar processes have shaped variation in genomic pathways involved

in response to biotic and abiotic stress. Our landscape genomics approach gives spatially-explicit insights

into where and why SGV is clustered within a species’ range, and serves as a guide for developing strategies

aimed at identifying and conserving areas of unique genetic diversity and mitigating loss of adaptation under

environmental change.

Results

Our GBS libraries for 508 individuals generated 3.9 billion single-end reads passing filter, of which 1.35 billion

passed QC in the GBS pipeline as “good, barcoded reads” sensu Glaubitz et al.55, consisting of a perfect match

to one of the barcodes and no ambiguous base calls. Reads passing QC clustered into 3,755,656 sequence tags

that mapped uniquely to 220.9 Mb of the P. trichocarpa reference genome v3.0. Variant calling produced

1,107,538 sites which, after filtering, resulted in 167,324 biallelic SNPs for inference of population structure

and selection, with a median (across individuals) per-site depth of 21.8X.

Population Structure

Inference of population structure via discriminant analysis of principal components (DAPC) revealed support

for 3 to 4 genetically distinct clusters, with mean BIC over the 1000 iterations minimized at K=3 (Fig. S1 A,

B). Clustering assignments at K=3 separated individuals into a northwestern cluster in Alberta and British

Columbia, a central cluster throughout the range core from Saskatchewan to Ontario including the Great

Lakes region, and an Atlantic Canada cluster along the eastern coast (Fig. 1C inset). In about 10% of the

iterations, DAPC favored a model of K=4 that showed a slightly higher BIC averaged across iterations com-

pared to K=3. At K=4, the dominant solution split the range core into eastern and western clusters that

formed distinct groups but were only weakly differentiated (FST = 0.008) (Fig. 1C).
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Figure 1 Sample collection map of the 437 individuals analyzed in selection scans. The red line represents the estimated
location of the southern range edge based on occurrence records (A). The range boundary of P. balsamifera is denoted
by the black line and is adapted from47. 19 BIOCLIM variables and latitude were included in a PCA and PC1 and PC2
were used in gene-environment analyses (B). Discriminant analysis of principal components (DAPC) at K=4 separates
Northwestern Rocky Mountains from populations east of Saskatchewan along DAPC axis 1. DAPC axis 2 separates an
Atlantic Canada clusters and two range core clusters. Shapes in the sample map, PCA plot correspond to the DAPC
(C). ADMIXTURE clustering of all 508 individuals sequenced in the study at K=7, the level of K with the lowest cross
validation error. Colors represent the following clusters: blue & goldenrod: range core, lightgreen: Rocky Mountain
region, red: Atlantic Canada, yellow: New Glasgow, NS, Canada with introgression from P. deltoides, pink: admixture
from Northwestern cluster reported by Keller et al49. Individuals with less than 90% P. balsamifera ancestry were
removed prior to performing selection scans.
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The genetic clusters from DAPC aligned along major gradients of climate and growing season length, as cap-

tured by the first two principal components of the climate PCA (Fig. 1B). Large values of PC1 represented

dry environments with high temperature and precipitation seasonality, and were primarily occupied by the

western core and northwestern Rockies groups, while small values of PC1 (wet, low seasonality) were occu-

pied by individuals with ancestry in the Atlantic Canada cluster. PC2 represented a north-south gradient of

growing season length, with large values representing high latitude, cool sites occupied by the northwestern

Rockies and a subset of the Atlantic Canada clusters, while small values of PC2 (low latitude, warm sites)

were dominated by members of the eastern core cluster (Fig. 1B). Ancestry clusters were also non-randomly

distributed with respect to distance from the rear range edge and proximity to the species-wide climatic niche

centroid (Fig. 1A). Notably, the Atlantic Canada cluster was farthest from the climatic centroid while span-

ning a range of distances from the rear edge. In contrast, the western and eastern core clusters were close to

the climatic centroid, with many eastern core populations also proximate to the rear range edge (Fig. 1A).

ADMIXTURE analysis largely corroborated the population structure found by DAPC, but also revealed ex-

tensive mixed ancestry among P. balsamifera clusters, as well as introgression with other Populus species (Fig.

1D). At lower levels of K (2–3), introgression was especially prevalent with P. trichocarpa along the rear range

edge and in the northwestern Rockies (Fig. S2; see also Chhatre et al19). At K=4, a separate source of in-

trogressed ancestry was apparent in the Atlantic Canada population of NEG, representing hybridization with

P. deltoides20. Scattered introgression was also apparent at a low frequency throughout other portions of the

range. At higher levels of K (5–6), ancestry within P. balsamifera separated into an Atlantic Canada cluster

and a subdivided central range core split into eastern and western clusters, as observed in DAPC (Fig. 1D).

Individual ancestry assignments to the eastern and western range core revealed a longitudinal cline, indicating

extensive shared ancestral polymorphism and/or gene flow between these two weakly differentiated groups.

At K=7, the best model supported by ADMIXTURE cross-validation, an additional distinct ancestry cluster

was evident in the far northwestern Rockies (WLK and FNO; Fig. 1C).

Genomic Signals of Local Adaptation

After eliminating individuals with less than 90% P. balsamifera ancestry (N=26 individuals; Fig. 1D), we

retained 437 individuals and 129,251 SNPs to test for genomic signatures of local adaptation, with 67% of

SNPs within 5 kb of an annotated gene model. Genome scans identified 397 outlier SNPs in tests for elevated
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Figure 2 Venn diagrams showing overlap of local adaptation outliers among four selection scans using the Range-Wide
and Range-Core samples. Bayenv2 and LFMM test for gene-environment associations (GEA), whereas Bayescan and
XTX test for elevated population differentiation.

population differentiation (Bayescan and XTX) that exceeded the empirical Type I error rate based on the

distribution of intergenic SNPs (α=0.0006) – an enrichment of more than 2.5X over neutral expectations. Most

differentiation outliers were significant only in Bayescan (321/397 loci, 81%) or to a lesser extent, in XTX (5

loci, 1%), while 71 outliers (18%) overlapped between the two differentiation tests (Fig. 2a). Gene-environment

association (GEA) tests (LFMM and Bayenv2) returned 535 outliers associated with either climate PC1 or

PC2, more than 1.7X greater than neutral expectations. Similar to differentiation tests, most outliers in GEA

tests were sensitive to the method used to detect them, with 16 of 535 loci (3%) in the range-wide set shared

between Bayenv2 and LFMM (Fig. 2a). Combining across all four genome scan approaches, we identified

814 loci within 5kb of 724 genes that showed evidence of either elevated differentiation or gene-environment

association relative to the empirical neutral distribution, with most loci unique to a single analysis (85%) and

only 6 loci (0.7%) shared across all four methods.

Outliers unique to a single method may be false positives caused by inadequate control of background structure

due to residual relatedness or departure from the assumed demographic history. Alternatively, these loci may

be true positives that are not detected by the complimentary GEA or differentiation method, for example if

the statistical modeling of background genetic structure over-corrects the allele frequencies and dilutes the
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Landscape genomics of adaptive standing genetic variation 9

selection signal. To explore this possibility further, we performed each selection scan again on just those

populations belonging to the eastern and western range core clusters, where background population structure

was minimal (Fig. 1; N=336 individuals; FST < 0.01). This greatly increased the frequency of shared outliers

among differentiation methods to 44% (106/242 loci; Fig. 2b), and confirmed several prominent genomic re-

gions of high differentiation in both the range-wide and core sets (Fig. 3). These genomic regions included a

large peak encompassing ca. 168 kb on the distal arm of chromosome 3, a second prominent peak spanning

ca. 369 kb on chromosome 4, and an outlier marked by a single SNP on chromosome 8 (Fig. 3).

Figure 3 Manhattan plots of XTX outlier scan for the set of range-wide individuals (A) and the range core individuals
(B). Highlighted in each panel are outlier loci that were also identified in Bayescan; 106 loci in panel A and 71 in panel B.
The horizontal black line indicates the -log10P-value significance threshold based on the empirical neutral distribution

A more modest increase in the frequency of shared outliers was evident between GEA methods performed

on the range core set (13%; 71/559 loci); however, the number of outliers identified by Bayenv2 increased

dramatically, suggesting the selection signal in the range-wide set likely contained false negatives due to over-

correction of population structure (Fig. 2b). Genomic regions of shared outliers in the range-wide set were

limited to a few scattered chromosomal regions, whereas in the range core, shared outliers were clustered into

prominent peaks on chromosomes 3, 4, 8, 12, 15, and 17 (Fig. 4).
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Figure 4 LFMM results for gene-environment association tests for the range-wide (A,B) and range core (C,D) sample
sets with climate PC1 (A,C) and PC2 (B, D). Loci in orange were also significant in the Bayenv2 gene-environment test.
The horizontal black line indicates the -log10P-value significance threshold based on the empirical neutral distribution
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Across all four methods, inference of loci under local adaptation appeared to be sensitive to the genome

scan approach (differentiation vs. GEA) and the specific method used. Despite multiple controls in place for

background genetic structure, false positives are inevitably part of these differences. However, the genetic

architecture of local adaptation is likely to be dominated by many loci of small effect that exhibit weak al-

lele frequency (co)variance among populations, making it difficult to distinguish these loci from the genomic

background.

Additionally, some loci likely experienced selection along portions of the climatic gradients that run parallel

with the neutral genetic structure (e.g, climate PC2 and the Atlantic Canada cluster; Fig. 1). Accordingly,

we retained two sets of outliers for further investigation: (1) an inclusive set of all 814 outlier loci identified

by one or more selection scan methods in the range-wide analyses, and (2) only those outliers corroborated

by both methods within a given genome scan approach (differentiation or GEA), resulting in a reduced set

of 203 loci. The former is more likely to retain true positive cases of weakly selected loci or those spatially

confounded with neutral structure at the expense of including more false positives, while the latter is less

likely to contain fewer false positives but will be biased towards loci of large effect (e.g., large allele frequency

differences) that are not closely aligned with neutral population structure.

Distribution of adaptive SGV along geographic and climatic range edges

We investigated the spatial turnover in SGV by determining the relative contribution of individual populations

to the adaptive variation we observed across the entire set of populations. For each population, we estimated

the population adaptive index (PAI) of Bonin et al.56:

PAIj =
n∑

i=1

|pij − p̄i|

where pij is the minor allele frequency of the ith outlier locus in the j th population, and p̄i is the mean fre-

quency across all populations. Populations with high values of PAI contribute disproportionately to the pool

of adaptive allele frequencies; while populations with low PAI have allele frequencies closer to the range-wide

average. To assess how this among-population component of SGV varied across the landscape, we modelled

PAI as a function of distance from the rear edge and the climatic niche centroid. When considering the inclu-

sive set of 814 selection outliers as an index of genomic beta diversity, over 75% of the variability in PAI was
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explained by jointly accounting for geographic distance from the rear edge and the euclidean distance from the

climatic niche centroid (Table 1). Contrary to predictions based on expansion history12,14, PAI showed little

effect of distance from the rear range edge except through an interaction with climate distance, which revealed

a dramatic increase in PAI with combined distance away from both the rear edge and climatic niche centroid,

consistent with divergent local selection in climatically marginal environments that are geographically located

far from the current rear range edge (Fig. 5a). Driving this trend were large values of PAI for populations in

Atlantic Canada that inhabited the easternmost portion of the species’ range – a region climatically distinct

from the majority of the species’ niche (Fig. 1A, B; Fig. 5a). The overall trend in PAI was similar for the large

effect outliers (N=203 loci), although this set of loci showed some rear edge populations exhibiting slightly

elevated levels of PAI but still far below levels seen in marginal climates (Table 1; Fig. 5b).

Table 1 Response of population adaptive index (PAI) to distance from the rear range edge and from the climatic
niche centroid. (a) The inclusive set of significant outliers identified across all four selection scan methods; (b) large
effect outliers corroborated by both GEA-based tests and/or both FST-based tests; (c,d) outliers proximate to (¡5kb)
genes differentially expressed in response to (c) biotic (beetle or mechanical) or (d) abiotic (drought) stress. Values are
coefficients (SE) from multiple regression.

(a) Inclusive (b) Large effect (c) Biotic stress (d) Abiotic stress

N SNPs 814 203 48 174

Rear edge -1.71e-08 (1.26e-08) -3.10e-08 (2.12e-08) 2.30e-08 (1.51e-08) -1.64e-08 (1.31e-08)

Climate centroid -2.16e-03 (6.53e-04)∗∗ -3.26e-03 (1.10e-03)∗∗ -7.40e-04 (7.75e-04) -2.33e-03 (6.89e-04)∗∗

Rear edge:climate centroid 3.46e-09 (5.67e-10)∗∗∗ 4.40e-09 (9.51e-10)∗∗∗ 1.20e-09 (6.73e-10)† 3.35e-09 (5.91e-10)∗∗∗

Model R2 0.772 0.593 0.547 0.733

†P < 0.1, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001

The historic and selective processes shaping the geographic distribution of SGV may differ for adaptive vari-

ation underlying responses to abiotic vs. biotic stress13,18. To test this prediction, we calculated PAI sepa-

rately for outlier SNPs that tagged genes showing differential expression under controlled drought (abiotic) or

beetle/mechanical wounding (biotic) based on the gene expression atlas on the Populus Genome Integrative

Explorer (PopGenIE)57. Among the 724 genes associated with the set of inclusive outliers, 105 genes were

differentially expressed under drought (N=174 outlier SNPs), and 30 were differentially expressed under beetle

or mechanical wounding (48 outlier SNPs). Both types of stressor showed a strong increase in PAI towards
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climatically marginal range edges, although the effects were more pronounced for loci associated with abiotic

stress response (Table 1, Fig. 5c,d). Interestingly, PAI for biotic stress outliers increased consistently with

distance from the rear edge in a trend that was not evident among drought-associated loci (Fig. 5c).

(a) Inclusive outliers (N=814)
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(b) Large effect outliers (N=203)
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(c) Biotic outliers (N=48)
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Figure 5 Predicted model fit surface of the relationship between population adaptive index (PAI) and two predictor
distances (distance from the rear range edge and distance from the climate centroid). PAI estimates are summed over
all outliers and normalized for comparison between data sets (see definitions in Table 1). Surface colors show PAI
magnitude from low (blue) to high (red).

As an index of genetic beta diversity, PAI identifies populations whose allele frequencies deviate most from
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the sample-wide mean, and thus this estimator is inherently on the among-population component of SGV.

To investigate the effects of range position on within-population SGV (i.e., alpha diversity), we estimated

the variance in allele frequencies at biallelic sites (pq=p*(1-p)) for each population averaged across outlier

loci. The inclusive set of 814 outliers showed a highly significant interaction between rear edge and climatic

distances (Table 2), with pq for locally-adaptive alleles highest with increasing distance from the rear edge

but close to the center of the climatic niche (Fig. 6a).

Table 2 Response of allele frequency variance (pq) averaged over outlier loci to distance from the rear range edge and
from the climatic niche centroid. Variable definitions and outlier groups are as described in Table 1

(a) Inclusive (b) Large effect (c) Biotic stress (d) Abiotic stress

N SNPs 814 203 48 174

Rear edge 2.02e-08 (4.10e-09)∗∗∗ 9.79e-09 (8.79e-09) 1.41e-08 (5.46e-09)∗ 2.13e-08 (4.20e-09)∗∗∗

Climate centroid 5.46e-04 (2.11e-04)∗ 4.17e-04 (4.55e-04) -1.22e-04 (2.83e-04) 3.52e-04 (2.17e-04)

Rear edge:climate centroid -7.63e-10 (1.83e-10)∗∗∗ -6.67e-10 (3.95e-10)† -2.57e-11 (2.46e-10) -7.31e-10 (1.89e-10)∗∗

Model R2 0.386 0.111 0.388 0.466

†P < 0.1, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001

For large effect outliers and those associated with drought stress, allele frequency variance was lowest on average

for climatically distant populations where PAI was high, suggesting selection has depleted SGV locally (pq)

while increasing the genetic distinctiveness (PAI) of climatically marginal populations (Fig. 6). In contrast,

within-population SGV for outliers associated with biotic stress increased significantly with distance from the

rear edge (Table 2), but showed no consistent effect of position along the climate gradient (Fig. 6).

The effects of distance from the rear range edge and climatic niche on components of adaptive SGV are evident

when population values of pq and PAI are mapped onto the landscape (Fig. 7). With the exception of the biotic

outliers, the overall trend showed higher within-population SGV and lower among-population SGV nearer to

the geographic and climatic center of the range, per theoretical expectation of the ecological and evolutionary

processes structuring range limits58. Two exceptions to this general trend were evident. First was the clearly

elevated among-population SGV seen in the Atlantic Canada populations, and that featured prominently in

all outlier sets. Second was the unusual combination of SGV associated with biotic stress response genes, in

which Atlantic Canada populations harbored high levels of SGV both within- and among-population (Fig. 7).
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(b) Large effect outliers (N=203)
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(c) Biotic outliers (N=48)
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(d) Drought outliers (N=174)
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Figure 6 Predicted model fit surface of the relationship between allele frequency variance (pq) and two predictor
distances (distance from the rear (southern) range edge and distance from the climate centroid). Panels (a) through
(d) correspond to categories of outliers decribed in Figure 5. The z-axis is scaled to span the range of allele frequency
variance observed across all four comparisons (min=0.04; max=0.17). Surface colors indicate strength of allele frequency
variance from low (blue) to high (red).
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Figure 7 Landscape level comparison of the relationship between allele frequency variance (color: blue to red) and population adaptive index (size:
small to large) among four groups of selection scan outliers. PAI point sizes are not comparable between individual subplots.
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Functional enrichment of adaptation outliers

We found 52 gene ontology (GO) terms significantly enriched among genes associated with the 814 outlier

set (Supplementary Information). These included clusters of terms relating to enzyme transferase activity,

biosynthesis of cell wall components such as cellulose and lipids, signal transduction and ROS activity, response

to stress and/or DNA damage repair, and transport across cell membranes (Fig. 8). Genes associated with

the 203 outlier set showed significant enrichment for 28 GO terms including many similar functions as the 814

outliers set, but with the addition of several terms associated with vessicle transport within and across cell

membranes, and response to foreign bodies (Supplementary File S1).

Several of the enriched GO terms were associated with candidate genes tagged by SNPs that were selection out-

liers in all four genome scan methods in the range-wide and core sets (Table 3) These included candidate genes

within the selected region on chromsome 3: the flavonoid biosynthesis gene CHALCONE SYNTHASE, CEL-

LULOSE SYNTHASE-LIKE D1.1, and two FERRODOXIN genes. Chromosome 12 also contained candidate

genes with enriched GO terms associated with DNA repair: an ATPase-like family protein (Potri.012G096300),

RESPIRATORY BURST OXIDASE HOMOLOG C, a Tyrosyl-DNA phosphodiesterase, and a UvrD DNA

helicase. Chromosomes 15 and 17 each contained a single gene with enriched GO terms: the MADS-box tran-

scription factor TRANSPARENT TESTA 16, and the stress-responsive molecular chaperone HEAT SHOCK

PROTEIN 90-1 (Table 3).

Discussion

The current period of rapid global climate change has created an immediate need to understand the genetic

basis of climate adaptation in natural populations. For long-lived sessile organisms such as forest trees, adap-

tation to ongoing climate change will depend in large part on the availability of adaptive standing genetic

variation (SGV) within the species, as well as the distribution of SGV across a potentially expansive land-

scape. Numerous studies have shown the post-glacial biogeography of forest trees shaped SGV over millennia,

involving complex cycles of range contraction and expansion, and also local adaptation along climatic gra-

dients10,14,40,41. But while forest trees have become important models for understanding the genetic basis

of climate adaptation at landscape scales46,59,60, few studies have explicitly addressed how adaptive SGV is

partitioned along spatial gradients reflecting expansion history and current climatic niche13.
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Figure 8 Redundancy clustering of functionally enriched GO terms associated with the 814 loci significant in the
range-wide local adaptation scans. Color indicates significance of the enrichment for each GO term, and symbol size is
proportional to the frequency of each GO term in the P. trichocarpa v3.0 genome annotation

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/817411doi: bioRxiv preprint 

https://doi.org/10.1101/817411
http://creativecommons.org/licenses/by-nc-nd/4.0/


Landscape genomics of adaptive standing genetic variation 19

Table 3 Candidate genes for local adaptation in range-wide and range core datasets. Annotated genes are located
within 5kb of outlier SNPs identifed by all four selection scan methods.

Gene Chr Description Enriched Gene Ontology (GO) terms A. thaliana homolog

Both sets:

Potri.003G176500 Chr03 RING/U-box superfamily protein AT1G04790

Potri.003G176600 Chr03 Dehydratase family protein AT3G23940

Potri.003G177800 Chr03 CELLULOSE SYNTHASE-LIKE D1 GO:0016760-cellulose synthase activity AT2G33100

Potri.003G177900 Chr03 AT4G13690

Potri.008G089700 Chr08 PtMYB186 MYB-like DNA binding protein AT3G01140

Range-wide only:

Potri.007G082600 Chr07

Potri.007G082700 Chr07 Cold-regulated protein, similar to LATE EMBRYOGEN-

ESIS ABUNDANT (LEA)

AT2G42560

Potri.012G096300 Chr12 AAA family ATPase-like family protein GO:0009378-Holliday junction helicase activity;

GO:0006281-DNA & repair; GO:0006310-DNA re-

combination

AT4G02480

Potri.012G096400 Chr12 Similar to translational ELONGATION FACTOR 1 SUB-

UNIT B BETA (EF1B)

AT2G18110

Potri.012G096500 Chr12 Hypothetical protein AT5G63440

Potri.012G096600 Chr12 Similar to 60S ribosomal protein L17-1 AT1G27400

Range core only:

Potri.002G068100 Chr02

Potri.002G068200 Chr02 TUBBY-LIKE PROTEIN 5 AT1G43640

Potri.003G176400 Chr03 2Fe-2S FERREDOXIN-LIKE family protein GO:0009055-electron carrier activity; GO:0051536-iron-

sulfur cluster binding

AT1G32550

Potri.003G176700 Chr03 CHALCONE SYNTHASE 4 GO:0004315-3-oxoacyl-[acyl-carrier protein] synthase ac-

tivity

AT5G13930

Potri.003G182000 Chr03 NAD(P)-binding Rossmann-fold superfamily protein AT4G27760

Potri.003G182100 Chr03 FERREDOXIN 2 GO:0009055-electron carrier activity; GO:0051536-iron-

sulfur cluster binding

AT4G21090

Potri.004G138000 Chr04 MYB4 transcription factor AT4G38620

Potri.004G138200 Chr04 Sec14p-like phosphatidylinositol transfer family protein AT1G72160

Potri.004G138400 Chr04 Ferrochelatase 2 / Protoheme ferro-lyase AT2G30390

Potri.004G138500 Chr04 Hypothetical protein; homology to UDP-

Glycosyltransferase

Potri.004G140300 Chr04 Protein kinase domain / Subtilase family Peptidase S8 AT3G19300

Potri.006G174800 Chr06 AT5G41980

Potri.006G175100 Chr06 AT5G57700

Potri.008G008000 Chr08 Pt-RPL7.3 60S ribosomal protein AT3G13580

Potri.008G008100 Chr08 AUTOINHIBITED Ca(2+)-ATPase 9 AT3G21180

Potri.012G111600 Chr12 Similar to RESPIRATORY BURST OXIDASE HO-

MOLOG C (AtRBOHC)

GO:0009055-electron carrier activity AT5G51060

Potri.012G111700 Chr12

Potri.012G111800 Chr12 Tyrosyl-DNA phosphodiesterase GO:0006281-DNA repair; GO:0005634-nucleus AT5G07400

Potri.012G114100 Chr12 UvrD DNA helicase GO:0006281-DNA repair AT4G25120

Potri.012G114200 Chr12 Protein disulfide isomerase / S-S rearrangase AT5G61670

Potri.015G125500 Chr15 MADS-box transcription factor, TRANSPARENT TESTA

16

GO:0005634-nucleus AT5G23260

Potri.015G125600 Chr15 F28K20.6 protein related AT5G44860

Potri.015G125700 Chr15 Calmodulin-binding family protein AT3G58480

Potri.017G146600 Chr17 HEAT SHOCK PROTEIN 90-1 GO:0006950-response to stress AT5G52640

Potri.017G146700 Chr17 RNA binding Plectin/S10 domain-containing protein AT4G25740,

AT5G52650
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Our approach fills an important gap in identifying geographic regions where adaptive genomic diversity is

concentrated within the range, while also revealing the relative importance of historic and selective processes

shaping the current distribution of SGV13,29,61,62. Our findings in a widespread forest tree species suggest that

adaptive SGV clusters non-randomly along geographic and climatic gradients, with decreasing alpha diversity

and increasing compositional turnover (i.e., beta diversity) with distance away from the center of the current

climatic niche (Fig. 5 and 6). Contrary to expectations of loss of diversity due to founder effects during ex-

pansion from refugia, we observed relatively low SGV in low latitude populations14. These findings strongly

suggest that regionally common SGV is maintained in the climatic center of the range, while climatically

marginal populations are unique in harboring locally reduced but regionally rare adaptive variation.

In many ways, our findings mirror the Centre-Periphery Hypothesis (CPH), that predicts within-population ge-

netic diversity should be highest near the abundant center of the range, while population differentiation should

increase towards the range periphery where environments become less optimal and abundance drops13,58.

Gougherty et al.63 also found support for the CPH in poplar, using a larger range-wide sample of populations

and focusing exclusively on the alpha diversity of putatively neutral SNPs sampled randomly from the genomic

background. This suggests that both neutral and adaptive genomic diversity follows the predictions of the

CPH because both are jointly influenced by N e. That is, we might expect higher alpha and lower beta diver-

sity across the genome where the region of largest N e (which presumably reflects the demographic abundance

of the species) is centered with the species’ environmental niche. This assumes the major selective influences

shaping range limits are climatic in origin, thus aligning climate-adaptive variation with spatial locations of

demographic abundance; however, this expectation might break down for genes under strong selection for

functional responses not directly related to climate13. The majority of the genomic outliers for adaptation

studied here fit this prediction, with high alpha diversity (pq) and low beta diversity (PAI) near the geographic

and climatic center of the range, consistent with the CPH.

One notable exception occurred for outliers associated with response to biotic stress, which showed alpha

diversity increased monotonically away from the rear edge, while beta diversity also increased with distance

from the climatic niche (Fig. 6). Thus, genes associated with defense response appear to harbor regionally

high levels of diversity in the same climatically marginal region of Atlantic Canada, while also maintaining

high levels of within-population polymorphism for these genes. High levels of within-population polymorphism

that are also regionally unique could be caused by several evolutionary processes, such as a history of spatial
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or temporally varying balancing selection, or selection-driven introgression from congeners. Both processees

would be expected to lead to high levels of polymorphism within populations that may also be unique to the

region where the selection or introgression is occurring. Regardless of the mechanism, the high alpha and beta

diversity for biotic response in Atlantic Canada suggests the selective history on defense-related genes may be

unique in this portion of the range.

The Atlantic Canada populations (in our study, populations CBI, HWK, MBK & FIS) occupy a maritime

climate quite different from the rest of the range, characterized by cool temperatures and high precipitation

amounts with low seasonality48. We previously showed that balsam poplar in this region were divergent from

the rest of the range for a suite of phenology and ecophysiological traits associated with climate adaptation, and

that this phenotypic divergence was in excess of that predicted by background genetic structure, suggesting a

unique history of local selection in Atlantic Canada52. In a separate study of P. balsamifera, Meirmans et al64

similarly reported a genetically distinct Atlantic Canada group that showed little admixture with the nearby

range core ancestry group to its west, which they suggested was likely rooted in the local adaptation of the

Atlantic Canada group to the unique maritime climate. Consistent with this proposition, the PAI for most

of the local adaptation outliers in our study peaked in the Atlantic Canada group, whereas within-population

allele frequency variances were lowest in this group, suggesting local selection driving SGV adaptive under

these climate conditions towards fixation (Fig 5b, d & 6b, d).

It is important to note that landscape genomic studies of local adaptation invariably capture other selective

gradients that are geographically aligned with climate; thus, what we infer as genes under climate-driven se-

lection based on associations with temperature or precipitation gradients may actually reflect other unknown

causal agents of selection. In our range-wide analysis, we found outlier genomic regions were significantly

enriched for a variety of functions, including oxidoreductase activity, response to stress/DNA damage repair,

cell signaling/transport, metal (iron) binding, and biosynthesis of cellulose, lipids, fatty acids, and flavonols

(Fig. 8). Many of these enriched functions suggest a shared genetic architecture of response to abiotic and

biotic stress, mediated through the action of heme oxygenases such as the diverse and biochemically active

family of plant cytochrome P450 monooxygenases (450s)65. In plants, P450s are known to be key components

of biosynthesis, metabolism, and signaling, involving responses to osmotic and temperature stress and the pro-

duction of a variety of growth and defense compounds including phenylpropanoids, fatty acids, and hormones

such as auxin and jasmonic acid65,66. Among the candidate genes repeatedly identified by all four selection
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scan methods, several are involved in phenylpropanoid biosynthesis (orthologs of Arabidopsis thaliana MYB4,

CHALCONE SYNTHASE 4 (CHS4), a UDP-glycosyltransferase (UGT), and TRANSPARENT TESTA 16

(TT16) (Table 3). Phenylpropanoids are physiologically and ecologically important compounds that include

lignins, anthocyanins, and condensed tannins (proanthocyanidins). Many of these compounds are known to

be inducible in response to light and osmotic stress, and are also active as plant defenses against fungi, insects,

and other natural enemies67–69. For example, MYB4 and CHS4 are both known to be responsive in Populus

to infection by the fungal rust Melampsora medusae, a common leaf pathogen of poplars70. MYB4 expression

is also responsive to jasmonic and salicylic acid, and UV-B light treatments in Arabidopsis thaliana71, while

in Populus, CHS4 expression is induced by wounding72,73. A recent study of selection in 25 genes in ten steps

of the condensed tannin synthesis pathway that included six CHS genes in Populus found elevated levels of

nonsynonymous divergence at CHS genes74. The transcription factor PtMYB186 presents another intriguing

example suggesting the action of local selection on genes with dual roles in both growth and defense (Table

3). This homolog of AtMYB206 is associated with trichome initiation – an established defense against plant

herbivores; however, over-expression of PtMYB186 in transgenic poplar results in pleiotropic effects on plant

growth rate, even in the absence of herbivory75. Overall, the functional enrichment we observed among outlier

genomic regions implicates pathways, individual genes, and functional domains associated with responses to

environment and plant defense, suggesting the genetic architecture of locally adaptive SGV in Populus may

have a large pleiotropic component, shared between both abiotic and biotic stress responses.

The landscape of natural genetic variation involved in adaptation has become the increasing focus of attention

of breeders, conservation biologists, and natural resource managers alike, who are facing the uncertain question

of how existing populations are likely to respond to the novel pressures of global change, and where adaptive

variation will be most needed in the future. Climate change conservation and mitigation strategies such as

restoration or assisted gene flow76 increasingly require spatially-explicit solutions that rely on identifying and

preserving locally adaptive SGV in different parts of a species’ range. Thus, understanding local adaptation

and the distribution of adaptive SGV in the context of range position has become prerequisite for global

biodiversity conservation15,37,77,78. Our novel combination of landscape genomics analyses has revealed the

current climatic niche is of primary importance in shaping the spatial distribution of locally adaptive SGV

across the range of Populus balsamifera, and offers a promising general approach that could be used to prioritize

regions for the conservation of unique genetic resources in other crop and wild species.
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Methods

Biological Material

We targeted southern (rear) edge and nearby regions in the core of Populus balsamifera’s range for sampling,

spanning from northern BC to Atlantic Canada (Fig. 1). The current sampling scheme therefore covers both

the rear range edge, the central core of the range, and the climatically maritime region to the east. During

winter 2013, we collected dormant stem cuttings from 508 trees from 57 populations (Fig. 1) spanning 9

Canadian Provinces and 7 US States (Longitudes 55-128◦W and Latitudes 39-60◦N; Table S1). The cuttings

were flushed under greenhouse conditions and fresh foliage was used for extracting whole genomic DNA using

DNeasy 96 Plant Mini Kits (Qiagen, Valencia, CA, USA). DNA was quantified using a fluorometric assay

(Qubit BR; Invitrogen) and confirmed for high molecular weight using 1% agarose gel electrophoresis.

Estimation of Geographic and Climatic Range Edges

We used two distance metrics to describe the position of each P. balsamifera population relative to the broader

range of the species: geographic distance from the southern range edge, and a measure of climatic distance

from the center of the range in climatic space (Supplementary Information). Both metrics were calculated

from a set of P. balsamifera occurrences distributed throughout the range, collected from the Global Biodiver-

sity Information Facility and US and Canadian forest inventory programs79,80. To reduce spatial bias in the

occurrences, we thinned the occurrences in geographic space, such that occurrences were no nearer than 75

km, resulting in 401 unique occurrences throughout the range. Occurrences were thinned using the spThin81

package in R.

Geographic distances from the southern range edge were calculated by first fitting an alpha hull around

the 401 occurrences. Alpha hulls are similar to convex hulls, but are recommended as a way to minimize

effects of spatial bias and outliers when defining a species range polygon82. The southern range edge was de-

fined as the southern-most line segments of the alpha hull, from which we calculated the minimum great

circle distance to each P. balsamifera population. Next, we used Mahalanobis distance to quantify the

distance of each population from the climatic centroid of the species. We used 19 bioclimatic variables

(http://www.worldclim.org/bioclim), elevation, and latitude to calculate the Mahalanobis distance, with the

climatic center being defined as the average value of these variables across the 401 P. balsamifera occurrences.
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Mahalanobis distance is a unit-less, scale-invariant, multivariate distance metric that accounts for correlation

among variables by scaling distances by their covariance (thereby ensuring correlated variables do not arti-

ficially inflate the measure of distance between locations). We used squared distances calculated with the

Mahalanobis function in R83.

GBS Sequencing

We used genotyping-by-sequencing (GBS)84 to obtain genome-wide polymorphism data for 508 trees. Genomic

sequencing libraries were prepared from 100ng of genomic DNA per sample digested with EcoT22I restriction

endonuclease followed by ligation of barcoded adapters of varying length from 4–8bp, following Elshire et al84.

Equimolar concentrations of barcoded fragments were pooled and purified with QIAquick PCR purification

kit. Purified products were amplified with 18 PCR cycles to append Illumina sequencing primers, cleaned

again using PCR purification kit, and the resulting library was screened for distribution of fragment sizes us-

ing a Bioanalyzer. These libraries were sequenced at 48plex (i.e., each library sequenced twice) using Illumina

HiSeq 2500 to generate 100bp single end reads. Cornell University Institute of Genomic Diversity (Ithaca,

NY) performed the library construction and sequencing steps.

We employed the Tassel GBS Pipeline55 to process raw sequence reads and call variants and genotypes. In

order to pass the quality control, sequence reads had to have perfect barcode matches, presence of restriction

site overhang and no undecipherable nucleotides (N’s). Filtered reads were trimmed to 64bp and aligned

to the P. trichocarpa reference assembly version 3.085 using the Burrows-Wheeler Aligner (BWA)86. Single

Nucleotide Polymorphisms (SNPs) were determined based on aligned positions to the P. trichocarpa reference,

and genotypes called under the maximum likelihood framework in Tassel55. SNP genotype data along with

sequence quality scores were stored in Variant Call Format v4.1 (VCF) files, which were further processed

with VCFTools 0.1.1187. SNP genotypes were filtered to retain only biallelic sites with no indels, individuals

with <50% missingness, sites with <20% missingness, genotype quality (GQ) >90, and site depth >5. We

further removed SNPs that showed excess heterozygosity in tests of Hardy Weinberg Equilibrium (P <0.001).

After filtering, the final dataset consisted of 167,324 SNPs for downstream analyses. Bioinformatic analyses

were performed on a local Dell PowerEdge Linux server (24 cpu, 64 Gb RAM) at the University of Vermont

and on the Teton computing environment88 at the University of Wyoming.
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Analysis of Population Structure

We characterized the genome-wide background genetic structure within our sample using the maximum like-

lihood clustering algorithm ADMIXTURE89. We evaluated the likelihood models for presence of up to 7

Hardy-Weinberg clusters (K=1 through K=7; Fig S2). Optimal K was inferred as the model that minimized

the error rate based on 2000 bootstrap replicates across 10X cross-validation iterations. Cluster membership

barplots were visualized using Distruct v2.3 Python script90,91. Individuals exhibiting ancestry of 10% or more

from other Populus sp. were removed from further analysis (N=26).

As a complementary approach to ADMIXTURE, we used Discriminant Analysis of Principal Components

(DAPC)92 to partition individuals along the major axes of genome-wide background genetic variation. The

K-means clustering function used in DAPC (find.clusters()) can return different results from run to

run; thus, we performed 1000 iterations of the function from K=1 to K=10, retaining the best unique solution

that was most frequently observed (Fig. S1). Discriminant analyses using the most commonly observed unique

solution was performed using 60% of the principal components and retaining two discriminant axes.

Identifying Genomic Regions of Local Adaptation

Genomic signals of natural selection appear as regions of elevated population differentiation across the genomic

background. Quantifying background levels of differentiation is necessary for accommodating the highly vari-

able levels of polymorphism found within the genome, and identifying SNPs potentially be under selection. In

order to generate a neutral distribution from which to infer putatively locally adapted variants, we annotated

the 167,324 SNPs with VCFCodingSNPs v1.5 using the P. trichocarpa reference genome annotation v3.0,

classifying SNPs as Downstream, Upstream, 3’ UTR, 5’ UTR, Synonymous, Non-Synonymous and Intronic.

SNPs >5kb away from an annotated gene (hereafter called intergenic) were selected as the null set of loci for

neutral parameterization of local adaptation genome scans following Lotterhos & Whitlock93.

For selection scans, we ranked every candidate outlier using its test statistic among the empirical null distri-

bution of intergenic SNPs (N=1,649 for range-wide and N=1,253 for range-core data sets) and determined

its empirical P -value. This approach caps the lower end of the empirical P -value proportionate with the size

of the null distribution. For example, the lowest possible empirical P -value for the range-wide data set is
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1

1649
= 0.0006064281 and that for the range-core data set is

1

1253
= 0.0007980846. To make the inference

robust, we considered an outlier a candidate if its empirical P -value equaled the lowest possible.

To scan for genomic regions showing elevated population differentiation, we applied the F -model implemented

in BAYESCAN v2.194 to identify SNPs under selection in range-wide as well as core groups of populations. We

optimized run conditions with 20 pilot runs of 5000 MCMC sweeps each, followed by 100,000 MCMC sweeps

after discarding the first 50,000 sweeps as burn-in. To minimize false positives, we used the recommendation

of Lotterhos & Whitlock93 by setting the prior expectation of selection to one in 10,000. Candidate SNPs

were then assigned empirical P -values based on the empirical null distribution of intergenic SNPS at an FDR

of 0.01 using the empPvals() function in the R package qvalue95.

Additionally we estimated XTX, analogous to FST using the correlated allele frequencies model in BAYENV2.

The maximum expected value of this statistic assuming neutrality is equal to the total number of populations

being tested. To avoid spurious selection candidates, we again performed neutral parameterization to obtain

empirical P -values for all XTX candidate loci and only retained those with lowest empirical P -value.

We tested for association between SNPs and the environment using latent factor mixed models96 with the R

package LFMM97. For environmental predictors, we ordinated each individual in multivariate climate space

based on a PCA of the 19 bioclimatic variables and latitude. Climatic PC1 and PC2 were then used as

separate predictors in association tests. Analyses were conducted on the full set of individuals with >90%

P. baslamifera ancestry (N=437) and on a subset of individuals from the range core (N=336) that showed

minimal background genetic structure (Fig. 1). To determine appropriate values for the number of latent

factors and genomic inflation factors for our datasets, we performed a cross-validation analysis across a range

of latent factors (K=1 to K=10) and at three values of the genomic inflation factor (1e-10, 1, and 1e+20).

We retained parameter values that minimized the cross-validation error, and used them to construct LFMMs

with the ridge penalty on a SNP-wise basis. The statistical tests of each model produced lambda-adjusted

z-scores, which we used to generate empirical P -values based on the empirical null distribution of intergenic

SNPs. We accepted only candidate SNPs with the most extreme empirical P -values as significant.

To allow for robust assessment of candidate outliers obtained from LFMM, we also performed gene-environment

association analysis with BAYENV298 on the same set of populations and climate PCs as above. First, a co-
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variance matrix of allele frequencies was estimated using the intergenic SNPs for range-wide and range-core

data sets. Two hundred matrices were drawn (once every 5000 iterations) and the final matrix (200th after

100,000 iterations) was used as a control for population relatedness in our sample. We then ran BAYENV2

on a SNP-wise basis to estimate Bayes Factors for each SNP, and ranked the outliers within the neutral dis-

tribution of intergenic SNPs to obtain empirical P -values. Similar to LFMM, we only retained those outliers

as candidates with the lowest empirical P -value.

Testing the Landscape Distribution of SGV

To investigate how locally adaptive standing genetic variation (SGV) was spatially distributed along landscape

gradients of distance from the rear edge and from the climatic niche centroid, we calculated two population-

level metrics of SGV based on the set of identified local adaptation outliers. We estimated a genetic index

of alpha diversity (i.e., within-population variation) by calculating the allele frequency variance (p × q). We

also calculated a genetic index of beta diversity (i.e., compositional turnover across regions) by calculating the

Population Adaptive Index (PAI) sensu Bonin et al56. Briefly, PAI is the absolute difference between adaptive

allele frequencies of a focal population and that of the entire metapopulation. It therefore represents the

among-population component of SGV contributed by each focal population compared to the rest of the range.

To test whether the alpha and beta diversity components of SGV varied with proximity to the rear range edge

or climatic niche center, we performed a multiple linear regression between each measure of SGV and the two

predictor distances. Regression models were weighted so that residual errors were inversely proportional to

the sample sizes (numbers of individuals) per population (Table S1).

Functional Enrichment

We tested for functional enrichment of genomic regions implicated in local adaptation based on the Gene

Ontology (GO) terms associated with the P. trichocarpa reference annotation v3.0. Enrichment of GO terms

associated with genes nearby to candidate SNPs was assessed based on the hypergeometric test implemented

in the R package SNP2GO99. We tested for enrichment within a 50kb window upstream and downstream

of each candidate SNP, and determined significance based on 1e+05 permutations and a false discovery rate

(FDR) of 10%. Significantly enriched GO terms were then clustered for redundancy with REVIGO100, using

the SimRel semantic similarity metric and a clustering threshold of 0.7.
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Data Archiving

Illumina sequencing data are archived under NCBI Bioproject SAMN04517823 and NCBI SRA Accession

Numbers SRX1605454-68. SNP genotyping data, climate PCA loadings, and outputs from selection scans

and enrichment tests are available at https://github.com/stephenrkeller/Pbalsamifera SGV.
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Supplementary Figures and Tables
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Figure S 1 DAPC model selection output from 1000 iterations of find.clusters from K=1 to K=10 on the range-
wide (N=437) data set (A). The best value of K is defined as the cluster with the lowest BIC. K=3 most frequently
had the lowest BIC score (B). For the K=3 clustering results, three unique solutions were recovered (C). The BIC
distribution of result A, the most common K=3 result (D). For the K=4 clustering results, more unique solutions were
recovered (E). The BIC distribution of result A, the most common result at K=4 (F).
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(a) K=2

(b) K=3

(c) K=4

(d) K=5

(e) K=6

Figure S 2 Admixture analysis of 508 individuals collected from across the range of P. balsamifera from K=2 to K=6.
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Table S 1 Population locality information for 508 Populus balsamifera individuals used in this study.

Pop Location State/Province N Individuals Longitude (◦W) Latitude (◦N)

CBI Cape Breton Island NS 8 -61.18 46.10

CHL Chaffey’s Lock ON 7 -76.25 44.58

CLK Cold Lake AB 14 -110.07 54.23

CPL Chapleau ON 14 -83.26 47.52

CYH Cypress Hills Prov. Park SK 11 -109.81 49.64

DCK Duck Mountain SK 13 -101.74 51.6

DPR Deep River ON 14 -77.51 46.09

FIS Fischells River NL 9 -58.41 48.2

FNO Fort Nelson BC 15 -122.4 58.51

GAM Matagami QC 15 -77.36 49.47

HBY Hudson Bay SK 15 -102.39 52.90

HST Hearst ON 12 -84.01 49.76

HWK Hawkes Bay NL 10 -57.00 50.41

JKH Jackson Hole WY 11 -110.48 43.83

KAP Kapuskasing ON 12 -83.16 49.38

LON London ON 9 -81.16 43.18

LPD Lake Placid NY 12 -73.73 44.35

LSM Limestone Mountain WV 2 -79.70 39.22

MBK Main Brook NL 12 -55.78 51.12

MMT Moose Mountain Area SK 14 -102.59 49.87

MSG Mosier Gulch WY 10 -106.87 44.32

NBY North Bay ON 11 -79.52 46.33

NEG New Glasgow NS 15 -62.57 45.32

NIC Nicolet WI 2 -88.38 44.62

OFR Over Flowing River MB 15 -101.10 53.14

OUT Outlook SK 14 -106.25 51.17

RAD Radisson QC 14 -77.67 53.43

SKN Saskatoon SK 14 -106.58 52.34

SLC St. Lawrence County NY 15 -75.17 44.79

SSR Shoeshone River WY 16 -109.61 44.46

TIM Timmins ON 14 -81.63 48.36

TUR Turtleford SK 13 -108.37 53.20

UMI Umiujaq QC 4 -76.28 56.34

USDA1 Kettle River MN 4 -92.98 46.50

USDA10 Iron River WI 6 -91.58 46.58

USDA11 Marenisco WI 1 -89.48 46.33

USDA12 Champion MI 7 -88.03 46.58

USDA13 Sagola MI 5 -88.03 46.08

USDA14 Pembine WI 4 -88.03 45.58

USDA15 Shingleton MI 5 -86.87 46.42

USDA16 Blaney Park MI 5 -85.85 46.08

USDA17 Hessel MI 7 -84.50 46.00

USDA18 Afton MI 7 -84.50 45.42

USDA19 Johannesburg MI 3 -84.30 45.00

USDA2 Floodwood MN 7 -92.98 46.75

USDA20 Glen Arbor MI 1 -85.85 44.92

USDA21 Antigo WI 4 -89.23 45.42

USDA3 Two Harbors MN 3 -91.67 47.17

USDA4 Ely MN 5 -91.67 47.92

USDA5 Hibbing MN 5 -92.98 47.42

USDA6 Cook MN 2 -92.98 47.92

USDA7 Kabetogama MN 4 -92.98 48.42

USDA8 Waskish MN 3 -94.52 48.33

USDA9 Blackduck MN 5 -94.52 47.92

VER Stowe/Waterbury VT 4 -72.63 44.38

WLK Watson Lake YT 13 -128.46 60.05

WTR White River ON 12 -85.27 48.59
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