



SUPPLEMENTAL FIGURES

Xenopus laevis T1 T3 PAM Mismatch
FXR1 5S Sequence WT
GTAGCCGCAGGCGTCGCTTCAGGGGTCAGGCAGAAGATAGACAGCCAGg
N1 GTAGCTTCAGGGGTCACGCCGAGGATCAAGNNCCACG
N2
GTAGCCGCGTCGCTNCTGGC-GGGG-A-GCAGAA-ACNNGg N3
GTAGCCGCAGGCGGG <u>-ANGCNG-AGNA-A-A</u> N4
GTAGCCGCAGTCGCTTCAGGGGTCAGGCA-AAAGATAGCCAGg N5
GTAGCCGCGNCNCTTCTGGGGTCAGGCAGAAGATAGACAGACAGg
FXR1 5L Sequence WT
GTAGCCGCAGGCGTCGCTTCAGGGGTCAGGCAGAAGATAGACAGCCAGg
N1 GTAGCCGCAGGGGTCAGGCAGAAGATANAGAGg
N2 GTAGCCGCGGGGTCATGCAGAGGATAGG-CAGg
N3 GTAGCCGCAGG-GGTCAGGC-GGAAG-AGA-A-ACGGCTA-G N4
GTAGCCGCANGCGTCTCGCTTCAGGGGGTCANGA-AAAATA N5
GTAGCCGCA-NCCG-TTCCTGGGNGGGGCAG

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure S1. Sequences of *fxr1* **exon 15 from sgRNA treated embryos**. Sequences of *fxr1.S fxr1.L* from five randomly selected *X. laevis* embryos injected with the sgRNA T1 (green) and T3 (underlined). sgRNA injected embryos had deletions (dashed) uncallable nucleotides (N) and mismatches (red) compared to reference sequences. Deletions roughly correspond to 3-4 nucleotides upstream of the PAM sequences (magenta). **Supplemental Figure S1** is linked to **Figure 1E-F**.

Supplemental Figure S2. Alternative splicing events in exons 12 and 13 of *Fxr1* pre-mRNA and expression of FXR1 protein isoforms during tissue development. A. Scheme of part of *Fxr1* gene showing the alternative splicing events in exons 12 (insert of 87 nt) and exon 13 (alternative splice site leading to the inclusion or skipping of a 78-nt region). To evaluate the splicing patterns by RT-PCR, the primers designed to target the constitutive flanking exons were Fxr1-87-78-f (forward) and Fxr1-87-78-r (reverse). B. Different tissues were collected from neonatal (postnatal day 4.5, P4.5) and adult (4 months) mice. Alternative splicing was evaluated by RT-PCR and quantified by densitometry. *N*=3-4 (P4.5 tissues) samples from 2-9 pooled neonates each depending on tissue type, *N*=4 (adult tissues) animals. C. Adult mouse tissues were evaluated by Western blots utilizing a monoclonal antibody against the N-terminus of FXR1 protein that thus recognizes all of the splice variants. *N*=2 animals. Results: mean \pm s.e.m. *p<0.05 (one-way ANOVA test with Bonferroni correction for multiple comparisons). bp: base pairs, sk. muscle: skeletal muscle. Supplemental Figure S2 is linked to Figure 2.

Supplemental Figure S3. FXR1 is required for myogenesis. C2C12 myoblasts were transfected with two different si-RNAs targeting *Fxr1* (#1, #2) or a control siRNA (si-luc) and the next day differentiation was induced. **A.** Protein and RNA were collected at differentiation day 4 and FXR1 depletion was confirmed by Western blot and qPCR assays. **B.** Cells were evaluated by immunofluorescence to confirm knock down. Scale bars 100 μ m. **C-D.** Myosin heavy chain (MYH) expression was evaluated by immunofluorescence (**C**), and the fusion index was estimated (**D**). **E.** The number of nuclei per field of view was estimated from the microscopy images. Results: mean ±

s.e.m. *p≤0.05 *versus* mock and si-luc (Student T-test), *N*=4-8 independent experiments. Scale bars 200 µm. **Supplemental Figure S3** is linked to **Figure 3**.

Supplemental Figure S4. Modulation of endogenous *Fxr1* splicing in C2C12 cells using morpholinos. Morpholinos (MOs) were delivered in undifferentiated myoblasts and the next day cells were differentiated for four days. **A.** Scheme of the MOs used to target exons 15 (mo-1) and 16 (mo-2). Control denotes cells treated with a MO control. **B.** Efficiency of MO action was evaluated by RT-PCR. **C.** Total *Fxr1* mRNA levels were evaluated by qPCR. Results: mean \pm s.e.m. *p<0.05 versus mock and control (Student T-test), *N*=3-8 independent experiments. **Supplemental Figure S4** is linked to **Figure 4**.

Supplemental Figure S5. RNA addition and protein phosphorylation influence FXR1 aggregation *in vitro*. A. Luciferase RNA accelerates isoform E aggregation. Representive images for either 4 μ M or 2 μ M isoform E with or without luciferase RNA after 3, 4, 5, 6, and 24 h. Scale bars 10 μ m. B. FMR1 Predicted disorder (IUPRED) and unspecified kinase score for serine are marked for each amino acid. Predicted phosphorylated serines are uniformly distributed across the protein. C. Coomassie staining of the *in vitro* purified FXR1 isoforms A and E. Phosphorylation results in a band shift with respect to the control or mock treated samples. D. Representive images of 2 μ M of FXR1 isoform E (shown in white) with or without RNA and with or without phosphorylation (phos) at 3, 4, 5, 6, and 24 h. Scale bars 10 μ m.

SUPPLEMENTARY TABLES

Strain	Genotype	Parent	Reference
AGB828	P _{CMV} -eGFP-FXR1 (HeLa isoform A) KAN/NeoR Amp ^R	pEGFP-C1	Generous gift from Sumara group, IGBMC
AGB879	Р _{смv} -Fxr1isoE-tGFP Amp ^R	pCMV6-AC- GFP	Origene
AGB1070	mNeonGreen Amp ^R	pNCS	Allele Biotechnolo gy
AGB1103	P _{CMV} -mNeonGreen-Fxr1isoE Amp ^R	pCMV6-AC- GFP	This study
AGB1111	P _{CMV} -mNeonGreen Amp ^R	pAGB1103	This study
AGB1139	$P_{CMV}2xTetO_2 Amp^R Zeo^R$	pcDNA4/TO	This study
AGB1162	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1189	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoA Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1171	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE ^{T236D K237D} Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1172	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE ^{K299D N300D} Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1173	AGB1173 P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE ^{T236D K237D K299D N300D} Amp ^R Zeo ^R		This study
AGB1174	P _{CMV} 2xTetO₂-mNeonGreen- Fxr1isoE ^{∆464-490} Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1175	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE ^{Δ464-490} T236D K237D K299D ^{N300D} Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1176	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE ¹⁻³⁷⁴ Amp ^R Zeo ^R	pcDNA4/TO	This study
AGB1177	P _{CMV} 2xTetO ₂ -mNeonGreen- Fxr1isoE ¹⁻⁴⁹⁰ Amp ^R Zeo ^R	pcDNA4/TO	This study

Supplementary Table 1. Plasmids used in this study

Primer name	Primer sequence (5' to 3')
AGO2195	actggatccggtaccgaggaggagcaggtgcaggtgcaggtgCTCGAGATGGTGA GCAAG
AGO2196	caggaaacagctatgaccgcggagcaggtgcaggtgcaggtgGCGGCCGCTTAC TTGTAC
AGO2202	gcatggacgagctgtacaaggcgcgtacgcggccgctcgagATGGCGGAGCTGA CGGTG
AGO2203	caggaaacagctatgaccgctcaTGAAACACCATTCAGGACTGCTG
AGO2206	caggaaacagctatgaccgctcaCTGCTCATCAATCTGCAGACGTTC
AGO2207	caggaaacagctatgaccgctcaGCCACCACGTGGTCCACC
AGO1869	GGGCCTGGCGATAGGAGACGATGGCAGTAACATACAGCAAGC
AGO1870	GCTTGCTGTATGTTACTGCCATCGTCTCCTATCGCCAGGCCC
AGO1871	CCCAGGAATCTTGTTGGAAAAGTAATTGGAGACGATGGCAAAGT TATTCAAGAAATAGTGG
AGO1872	CCACTATTTCTTGAATAACTTTGCCATCGTCTCCAATTACTTTC CAACAAGATTCCTGGG
AGO1873	GATGATCGAGAGACTCGACATAAATCCTCCATCAGTTCTGTGC
AGO1874	GCACAGAACTGATGGAGGATTTATGTCGAGTCTCTCGATCATC
AGO2350	cgtttaaacttaagcttggtaccgagctcgATGGTGAGCAAGGGCGAG
AGO2351	agcggccgccactgtgctggatatctgcagTCATGAAACACCATTCAGGACTG
AGO2374	agcggccgccactgtgctggatatctgcagTCACTGCTCATCAATCTGCAG
AGO2375	agcggccgccactgtgctggatatctgcagTCAGCCACCACGTGGTCC
AGO1863	CCTCAGTTAATGAGAATGGGCTAGGCAAGAGGTGCGACACGCG TACGCGGCCGCTCGAGATGGAGAGC
AGO1864	GCTCTCCATCTCGAGCGGCCGCGTACGCGTGTCGCACCTCTTG CCTAGCCCATTCTCATTAACTGAGG
AGO1867	GCAGCTGCGACAGATTGGTTCTAGGTCTTATAGTGGAAGAGG
AGO1868	CCTCTTCCACTATAAGACCTAGAACCAATCTGTCGCAGCTGC
AGO2486	gcggccgcgtacgcgcCTTGTACAGCTCGTCCATGC
AGO2487	gacgagctgtacaaggcgcgtacgcggccgctcgagATGGCGGAGCTGACGGT G
AGO2488	agcggccgccactgtgctggatatctgcagCTAGTCGCACCTCTTGCCTAG

Supplementary Table 2. Sequence of the primers (IDT) used for plasmid generation. Upper case denotes sequences that will directly base pair with the plasmid being amplified while lower case bases are overhangs for NEBuilder HiFi DNA assembly reaction (NEB).

Tissue	Sex	Age of individual				Lot number
heart	male	21 years		Amsbio (R1234139-50)	B707146	
heart	male	51 years		Cell Applications Inc (1H30-50)	1369	
heart	male	30-39 years		TakaRa (636532)	1610293A	
skeletal muscle	female	48 years		Amsbio (R1234171-50)	B207200	
skeletal muscle	male	58 years		Cell Applications Inc (1H60-50)	1376	
skeletal muscle	male, female	20-68 years		TakaRa (636534)	1609179A	
heart	female	22-week gestation	of	Cell Applications Inc (1F30-50)	2739	
heart	male	20-21 weeks gestation	of	Agilent (540165)	0006262824	
skeletal muscle	female	22-week gestation	of	Cell Applications Inc (1F60-50)	2739	
skeletal muscle	female	18 weeks gestation	of	Agilent (540181)	0006260887	

Supplementary Table 3. Commercially available human RNA samples.

Species	Primer name	Primer sequence (5' to 3')	Analyzed region	Expected bands (bp)
mouse	Fxr1-81-92-f	TGCTGTTCTGATGGA TGGAC	exon 15 (81 nt) and	300 219
mouse	Fxr1-81-92-r	GAAGCGCTAGTTGG ACCATT	exon 16 (92 nt)	208 217

mouse	Fxr1-87-78-f	AGAAAGCATTGGGA ATGTGC	87-nt insert in exon	377 299
mouse	Fxr1-87-78-r	TGTCTCGCTGATGTC GAGTC	12 and alternative 3' splice site in exon 13	290 212
human	FXR1-81-92-f	TGCTGTTCTGATGGA TGGAA	exon 15 (81 nt) and	298 217
human	FXR1-81-92-r	AGCACTAGTTGGGC CGTTTA	exon 16 (92 nt)	206 125
X.tropic alis	fxr1-F1	TCTCACCACAACACA AACCG	even 15 (01 mi)	266
X.tropic alis	fxr1-R1	GCGGAATCTACCTA AAGAACC	exon 15 (81 nt)	185
X.tropic alis	eef1a1-F	CCCCTCTTGGTCGTT TTGCTGTCC	Forward primer spans exons 7-8	
X.tropic alis	eef1a1-R	TTGCCTTTCTGTGCT TTCTGAGCAG	junction; reverse is end of coding sequence in exon 8.	135

Supplementary Table 4. Sequence of the primers (Sigma, IDT) utilized to evaluate *FXR1* alternative splicing in mouse, human, and frog samples. eef1a1 was used as a loading control. bp: base pairs, nt: nucleotides.