Prolonged oral coenzyme Q\textsubscript{10}-β-cyclodextrin supplementation increases plasma CoQ\textsubscript{10} concentration and skeletal muscle complex I+III activity in young, untrained healthy Thoroughbreds.

Short title: Coenzyme Q\textsubscript{10}-β-cyclodextrin supplementation in Thoroughbreds.

Mary F. Rooney1, Caitriona E. Curley1, James Sweeney2, Michael E. Griffin3, Richard K. Porter1, Emmeline W. Hill3 and Lisa M. Katz4*

1School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, 152-160 Pearse Street, D02R590, Ireland.
2RCSI Division of Population Health Sciences, RCSI, Dublin 2, Ireland.
3Plusvital Ltd, The Highline, Pottery Road, Dun Laoghaire, Co. Dublin, A96 KW29, Ireland.
4UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
*Corresponding author; email: lisa.katz@ucd.ie

Acknowledgements

The authors wish to thank the owners of the horses used in the study and the farm staff for the assistance provided during the study. The authors would also like to acknowledge the assistance provided by Plusvital Ltd. staff. This study has emanated from research conducted with the financial support from an Enterprise Ireland Innovation Partnership Programme Grant (IP/2016/0503).

Ethical Considerations

University College Dublin Animal Research Ethics Committee approval, a Health Products Regulatory Authority license and explicit owner/trainer informed consent were all obtained for the use of the horses in this study.

Conflict of interest statement/declaration

EWH is a shareholder in Plusvital Ltd, an equine nutrition and genetic testing company. Plusvital is the commercial developer of EnerGene-Q10, an equine nutritional supplement product containing MicroActive® CoQ10. Plusvital has a licence with Maypro Industries (New York, USA) for the equine use of MicroActive® CoQ10. LMK received remuneration for consulting on this project. MEG was employed by Plusvital Ltd during the project.
Prolonged oral coenzyme Q_{10}-\beta-cyclodextrin supplementation increases plasma CoQ_{10} concentration and skeletal muscle complex I+III activity in young, untrained healthy Thoroughbreds.

Short title: Coenzyme Q_{10}-\beta-cyclodextrin supplementation in Thoroughbreds.
Abstract
Coenzyme Q₁₀ (CoQ₁₀) is an essential component of the mitochondrial electron transport chain (ETC). Decreased skeletal muscle CoQ₁₀ content may result in decreased ETC activity and energy production. This study aimed to test the hypothesis that prolonged supplementation with oral CoQ₁₀ will increase plasma CoQ₁₀ concentrations and skeletal muscle CoQ₁₀ content in young, healthy untrained Thoroughbreds. Nineteen Thoroughbreds (27.5±9.7 months old; 11 males, 8 females) from one farm and maintained on a grass pasture with one grain meal per day were supplemented orally once per day for 9 weeks with 1.5 mg/kg body weight of a CoQ₁₀-β-cyclodextrin inclusion complex. Whole-blood and skeletal muscle biopsies were collected before (T₀) and after (T₁) 9 weeks of supplementation. Plasma CoQ₁₀ concentrations were determined via high-performance liquid chromatography. Skeletal muscle mitochondrial ETC combined complex I+III enzyme activity (an indirect measurement of CoQ₁₀ content) was assessed spectrophotometrically and normalised to mitochondrial abundance. Results were analysed using a paired two-tailed Students t-test with P≤0.05 significant. Horses accepted supplementation with no adverse effects. The mean change in plasma CoQ₁₀ concentration from T₀ to T₁ was significantly greater than zero (0.13±0.02 vs. 0.25±0.03 µg/ml, mean difference 0.12±0.03; P=0.004), although variability in absorbance resulted in only a 58% response rate. The mean change in skeletal muscle complex I+III activity from T₀ to T₁ was significantly greater than zero (0.36±0.04 vs. 0.59±0.05 pmol/min/mg of muscle, mean difference 0.23±0.05; P=0.0004), although T₁ values for 3/19 horses decreased on average by 23% below T₀ values. In conclusion, prolonged oral supplementation of the diet of young, healthy untrained Thoroughbreds with CoQ₁₀ increased mean plasma CoQ₁₀ concentration by 99% and mean skeletal muscle complex I+III activity by 65% with variability in absorbance among horses. Additional research is warranted investigating training and exercise effects on skeletal muscle CoQ₁₀ content in CoQ₁₀ supplemented and un-supplemented Thoroughbreds.

Keywords: bioavailability, CoQ₁₀-β-cyclodextrin inclusion complex, equine, skeletal muscle
Introduction

Coenzyme Q_{10} (CoQ_{10}, ubiquinone) is a small lipophilic molecule endogenously synthesised (Olson & Rudney, 1983; Tran & Clarke, 2007) in eukaryotic cells with a principal role in aerobic respiration. CoQ_{10} is a mobile component of the electron transport chain (ETC) within the mitochondrial inner membrane where it transfers electrons from NADH:ubiquinone oxidoreductase (complex I) and succinate dehydrogenase (complex II) to ubiquinol-cytochrome c oxidoreductase (complex III) (Mas & Mori, 2010).

In humans, chronic diseases such as chronic heart failure, hypertension and Parkinson’s disease are characterised by low plasma concentration and tissue CoQ_{10} content, with CoQ_{10} supplementation shown to improve clinical responses to treatment (Hofman-Bang, Rehnqvist, Swedberg, Wiklund, & Åström, 1995; Jankowski, Korzeniowska, Cieslewicz, & Jablecka, 2016; Mortensen et al., 2014; Yang et al., 2015). Healthy human athletes have also been found to develop CoQ_{10} deficiencies, believed to be due to increased metabolic demand (Cooke et al., 2008; M. Kon et al., 2007; Orlando et al., 2018; Zhou, Zhang, Davie, & Marshall-Grady, 2005). Deficiencies in skeletal muscle CoQ_{10} are thought to result in less efficient energy transduction due to decreased ETC activity and suboptimal ATP production (Lenaz et al., 1999), resulting in reduced effective skeletal muscle contractile function and earlier onset of fatigue (Cooke et al., 2008; M. Kon et al., 2007; Michihiro Kon et al., 2008; Kwong et al., 2002; Mizuno et al., 2008). Numerous studies support CoQ_{10} supplementation in human athletes to improve exercise capacity, aerobic power and recovery after exercise (Alf, Schmidt, & Siebrecht, 2013; Bonetti, Solito, Carmosino, Bargossi, & Fiorella, 2000; Cooke et al., 2008; Leelarungrayub, Sawattikanon, Klaphajone, Poqlongsun, & Bloomer, 2010; Mizuno et al., 2008).

Approximately 50% of the total body CoQ_{10} in humans is found in the mitochondrial inner membrane (Greenberg & Frishman, 1990; Kumar, Kaur, Devi, & Mohan, 2009), with organs containing large numbers of mitochondria such as skeletal muscle having the largest amount of CoQ_{10}. In healthy people, plasma CoQ_{10} concentrations are always higher than skeletal muscle with any movement of CoQ_{10} from plasma into skeletal muscle due to simple diffusion.

The rate of CoQ_{10} movement from the plasma into the mitochondrial inner membrane is limited by the large size and lipophilic nature of this molecule (Kaikkonen, Tuomainen, Nyyssönen, & Salonen, 2002; Turunen, Swiezewska, Chojnacki, Sindelar, & Dallner, 2002), with movement of exogenous CoQ_{10} into most tissues other than plasma previously believed to be low-to-absent (Svensson et al., 1999; Zhou et al., 2005). However, oral CoQ_{10} supplementation has been shown to elevate CoQ_{10} skeletal muscle mitochondrial content in rodents and humans (Cooke et al., 2008; Kamzalov, Sumien, Forster, & Sohal, 2003; M. Kon et al., 2007; Linnane et al., 2002). Although plasma CoQ_{10} concentrations can easily be measured, this only reflects the bioavailability of CoQ_{10} after oral supplementation and not the amount of uptake into skeletal muscle (Duncan et al., 2005; Zhang, Aberg, & Appelkvist, 1995). CoQ_{10} has not been extensively researched in horses, with a few studies demonstrating oral CoQ_{10} supplementation to increase plasma concentrations (Sinatra, Chopra, Jankowitz, Horohov, & Bhagavan, 2013; Sinatra, Jankowitz, Chopra, & Bhagavan, 2013). The aim of this study was therefore to test the hypothesis that prolonged oral supplementation of CoQ_{10} to the established diet of a group of young, healthy untrained Thoroughbreds would increase plasma CoQ_{10} concentrations and skeletal muscle CoQ_{10} content.

Materials and Methods

Animals and experimental design

This study took place from the last week of May — end of July 2017 in the Republic of Ireland. Approval was obtained from the University College Dublin Animal Research Ethics...
Committee with informed owner consent. The project was licenced under the Health Products Regulatory Authority (Ireland).

Nineteen clinically healthy and privately-owned Thoroughbreds from one farm (11 intact males [mean age 27.8±9.0 months], 8 females [mean age 27.1±11.1 months]) that were not currently and had never been in an exercise training programme were included into the study. Prior to and during the entire study, all horses had been maintained full-time in small groups of 5–6 horses on 5-acre grass pastures located next to each other. The diet of the horses at the time of entering into the study and during the study consisted of free-choice pasture grazing and one grain meal (one standard scoop of mixed oats) given in the morning. All horses had physical examinations, haematometry, biochemistry and faecal evaluations performed prior to inclusion into the study. Body weight (BW) was estimated for each horse at the beginning of the study using a weight tape and formula (Carroll & Huntington, 1988): BW (kg)=[Girth²(cm)×Length (cm)]/11,877.

Each horse acted as its own control with jugular whole-blood and skeletal muscle biopsy samples taken before (T₀) and after 9 weeks (T₁) of oral CoQ₁₀ supplementation to their established diet. All horses were supplemented and sampled during the same 9-week period. A dose of approximately 1.5 mg/kg BW of a CoQ₁₀-β-cyclodextrin inclusion complex in powder form (MicroActive® CoQ₁₀, Maypro Industries, New York, USA) containing 26% CoQ₁₀ w/w was used. For a 500 kg BW horse, this equated to a daily amount of approximately 200 mg of CoQ₁₀. The supplement was dissolved in water and administered via syringe immediately after the morning grain between 7–8 am. All blood and skeletal muscle biopsy samples were taken between 11 am–1 pm, 4–6 hrs after the morning grain. T₀ samples were taken the day before oral CoQ₁₀ supplementation had begun with T₁ samples taken on the last day of oral CoQ₁₀ supplementation.

Sample collection

Jugular venous whole-blood samples were collected from each horse into a lithium heparin vacutainer for measurement of plasma CoQ₁₀ concentrations. Plasma was separated from whole-blood within 3 hrs of collection via centrifugation (1,500 g for 5 mins) and stored at -20°C until batch analysis.

Skeletal muscle biopsies were taken from the middle gluteal muscle from standing unsedated horses as previously described by Ledwith and McGowan (2004). Once collected, all samples were immediately stored on dry ice for transport to the laboratory (within 3 hrs of collection) and subsequently stored at -70°C until analysis.

Quantification of plasma CoQ₁₀ concentrations

Plasma CoQ₁₀ concentrations were measured using a validated reverse-phase high-performance liquid chromatography (HPLC) assay by CAL Ltd (Dublin, Ireland) for a randomly chosen sub-set (n=12) of the study horses (www.randomizer.org). Plasma samples were extracted by liquid:liquid extraction (ethanol:methanol; 45:55, v/v) on a Synergi C₁₈ column with detection carried out at 275 nm with a UV detector. Each plasma sample was assayed in triplicate under oxidized conditions for total CoQ₁₀ (ubiquinone+ubiquinol) content. Plasma CoQ₁₀ concentrations were calculated from a standard curve produced by standard CoQ₁₀ (Sigma-Aldrich, Co. Wicklow, Ireland) in the concentration range 0.156–2.50 μg/ml.

Quantification of skeletal muscle CoQ₁₀ content

Skeletal muscle CoQ₁₀ content was measured spectrophotometrically by combined complex I+III assay (indirect measure of CoQ₁₀). All reagents were purchased from Sigma-Aldrich (Co. Wicklow, Ireland) unless stated otherwise. Enzyme activity assays were performed at 30°C on a Libra S12 spectrophotometer (Biochrom Ltd., Cambridge, UK) with absorbance changes
measured using an attached chart recorder. The activity of each enzyme was measured in triplicate on the same homogenate for each sample.

Preparation of skeletal muscle homogenates

Skeletal muscle homogenates were prepared from tissue stored at -70°C. Any fat/connective tissue was removed from the sample before it was weighed using a fine balance (ME104 Mettler Toledo [Mason Technology, Dublin, Ireland]. 0.08 mg repeatability). The tissue was then homogenised using an Ultra Turrax T25 (Janke & Kunkel IKA-Labortechnik, Staufen, Germany) in sucrose muscle homogenisation buffer (20mM tris-HCl, 40mM KCl, 2 mM EGTA, 250 mM sucrose, 1 mM ATP, 5 mM MgCl₂, pH 7.4). An aliquot of the sample was used to perform protein determination using the bicinchoninic acid assay as described by Smith et al. (1985).

Citrate synthase activity assay

Citrate synthase enzyme activity (a measure of mitochondrial abundance) was measured spectrophotometrically by a coloured coupled reaction, using a method adapted from Srere (1969). The activity of citrate synthase was determined by monitoring the rate of production of thionitrobenzoic acid at a wavelength of 412 nm. Skeletal muscle homogenate (approximately 5 μg) was incubated in a 1 ml cuvette with tris buffer (0.2 M, pH 8.1) with reaction components 5,5′-dithiobis-(2-nitrobenzoic acid) (0.1 mM), acetyl coenzyme A (0.3 mM) and Triton X (0.1%) added. A blank rate was measured for 2 mins before oxaloacetate (0.5 mM) was added to initiate the reaction with any increase in absorbance monitored for 3 mins. Specific enzyme activity was expressed as pmol/min/mg of muscle protein using the molar extinction coefficient 13,600 L/mol/cm for citrate synthase at 412 nm.

NADH cytochrome c oxidoreductase (Complex I+III) activity assay

The activity of NADH cytochrome c oxidoreductase (Complex I+III) is an indirect measure of CoQ₁₀. As part of the Q cycle in mitochondria, CoQ₁₀ transfers electrons from complex I and complex II to complex III. Thus, measurement of combined complex I+III activity gives an indirect measure of CoQ₁₀ content, as the activity of these two complexes in combination is dependent on CoQ₁₀ (Lerman-Sagie et al., 2001; Leshinsky-Silver et al., 2003). Complex I+III activity was determined in the present study by monitoring the reduction of cytochrome c at 550 nm as per the method described by Powers et al. (2007). Homogenate samples (approximately 20 μg) were incubated in distilled H₂O in a 1 ml cuvette to allow osmotic shock to occur. After 2 mins incubation, the reaction components potassium phosphate pH 7.5 (50 mM), oxidised cytochrome c (50 μM), KCN (0.3 mM), and fatty-acid free BSA (1 mg/ml) were added; a blank rate was measured for 2 mins. NADH (0.2 mM) was then added to initiate the reaction with any increase in absorbance monitored for 3 mins. Following this, rotenone (10 μM) was added and the rate monitored for a further 2 mins. Complex I+III combined specific activity was taken as the rotenone-sensitive activity determined by subtracting the rotenone-resistant activity from the total activity. Specific enzyme activity for complex I+III was expressed as pmol/min/mg of muscle protein using the molar extinction coefficient 18,500 L/mol/cm for reduced cytochrome c at 550 nm. Complex I+III activity was subsequently expressed as a ratio to citrate synthase activity to account for the mitochondrial enrichment of the skeletal muscle homogenates.

Statistical analysis

Statistical analyses were performed using R 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria). The effects of sex and age were investigated using multivariable linear regression models with interaction effects included for age and sex. Baseline age was set at 13...
months (the minimum age of horses in the dataset). Horse ages were subsequently not adjusted between measurement time-points as age was not identified as a significant factor in T₀ plasma values. Where age and sex effects were deemed non-significant and excluded from the model, mean values were compared using a paired two-tailed Students t-test with 95% confidence intervals. Spearman’s rank correlation was performed to assess correlation between plasma CoQ₁₀ concentrations and skeletal muscle CoQ₁₀ content. A P≤0.05 indicated significance, with all results expressed as mean ± SEM unless otherwise indicated.

Results

All horses readily accepted CoQ₁₀ supplementation with no adverse effects observed. Descriptive statistics are summarised in Table 1 and 2.

Multivariable linear models were used to evaluate for interactions between age, sex and plasma CoQ₁₀ values. Males had higher T₀ plasma CoQ₁₀ values than females (P=0.009), with no differences in T₁ values. For females, age was only significantly associated with T₁ plasma CoQ₁₀ values, with increasing age associated with increasing values (P=0.02). For males, increasing age was significantly associated with reductions in T₀ (P=0.03) and T₁ plasma CoQ₁₀ values (P=0.02). These results are all tenuous, however, since a single elevated T₀ plasma CoQ₁₀ value for a 13-month-old male horse skewed all statistical outcomes. For the paired differences in plasma CoQ₁₀ values between T₀ and T₁, a multivariable model including age and sex as factors identified increasing age to be linked to increasing plasma CoQ₁₀ values (P=0.02). However, the paired differences for plasma CoQ₁₀ values between time-points were not significantly associated with sex (males P=0.07, females P=0.45). When sex was subsequently excluded from the model, the significant association between age and plasma CoQ₁₀ values was lost (P=0.06). It appears that inadequate power (n=12) did not allow completely accurate statistical evaluation of sex and age effects on plasma CoQ₁₀ values.

The T₀ and T₁ intra-assay coefficient of variations were 13.3% and 5.7%, respectively. The average T₁ plasma CoQ₁₀ concentrations significantly increased by 99% above the average T₀ measurements (0.13±0.02 µg/ml vs. 0.25±0.03 µg/ml, mean difference 0.12±0.03; P=0.004; Table 1, Figure 1). Although the T₁ plasma CoQ₁₀ concentrations were higher than the T₀ measurement for all horses with an average mean of the ratios (i.e., the average of each individual horse’s difference between T₀ and T₁ values) showing a 162% of an increase of T₁ values above T₀ values, there was a large amount of individual variation ranging from a 0.6–617.4% of an increase above T₀ values. Using a measure of uniform bioavailability defined as at least a doubling of T₁ plasma CoQ₁₀ concentrations above T₀ values, there was a 58% response rate with 7/12 horses meeting this threshold.

Multivariable linear models were used to evaluate for interactions between age, sex and skeletal muscle complex I+III activity. Age (P=0.84) and sex (P=0.06) were not significantly associated with mean T₀ skeletal muscle complex I+III activity. Age (P=0.75) and sex (P=0.30) were also not significantly associated with T₁ skeletal muscle complex I+III activity. For the paired differences in skeletal muscle complex I+III activity between T₀ and T₁, neither age (P=0.98) nor sex (P=0.81) were significantly associated with skeletal muscle complex I+III activity. These results support that any change in mean skeletal muscle complex I+III activity between time-points is independent of both age and sex.

No differences in citrate synthase activity were observed between T₀ and T₁ time-points. The average T₁ skeletal muscle CoQ₁₀ content significantly increased above T₀ values by 65.1% (0.36±0.04 vs 0.59±0.05 pmol/min/mg of muscle protein, activity normalised to mitochondrial abundance/g muscle, mean difference 0.23±0.05; P=0.0004; Table 2, Figure 2). For 16/19 horses, T₁ skeletal CoQ₁₀ content had increased on average 85% above T₀ values with a degree of variation ranging from a 13.3–420.9% of an increase above T₀ values. However, for 3/19 horses, T₁ skeletal CoQ₁₀ content decreased by an average of 22.7% (range 11.4–32.4% of a
decrease) below T₀ values. There were no correlations between T₀ plasma and skeletal muscle CoQ₁₀ measurements nor between T₁ plasma and skeletal muscle CoQ₁₀ measurements.

Discussion

This study demonstrated that plasma CoQ₁₀ concentrations and skeletal muscle CoQ₁₀ content increased in young, healthy untrained Thoroughbreds after prolonged daily oral CoQ₁₀ supplementation of an established diet. In the present study, T₀ plasma CoQ₁₀ concentrations (0.13 µg/ml) were similar to a previous report evaluating 2 year-old Thoroughbreds in training (0.11 µg/ml) (Horohov et al., 2012; Sinatra, Chopra, et al., 2013; Sinatra, Jankowitz, et al., 2013), although other publications reported slightly higher basal plasma concentrations for Thoroughbreds of varying ages and fitness levels (0.19–2.1 µg/ml) (Sinatra, Chopra, et al., 2013; Topolovec et al., 2013). Following prolonged oral CoQ₁₀ supplementation the mean plasma CoQ₁₀ concentrations significantly increased as previously reported in studies using a similar oral cyclodextrin-CoQ₁₀-based delivery system (Horohov et al., 2012; Sinatra, Chopra, et al., 2013; Sinatra, Jankowitz, et al., 2013). Intestinal absorption of CoQ₁₀ has been found to be faster if CoQ₁₀ is given with food (Ochiai et al., 2007) which is why we chose to supplement the horses in the morning in conjunction with their grain meals. The dose of CoQ₁₀ supplementation in the present study was well tolerated by the horses with no adverse effects noted, and was chosen based on a previous study using a cyclodextrin-CoQ₁₀-based delivery system (HydroQSorb, a γ-cyclodextrin [~20%] CoQ₁₀ complex) (Sinatra, Chopra, et al., 2013). In humans and dogs, plasma CoQ₁₀ concentrations have been found to gradually increase as the oral dosage increases (Bhagavan & Chopra, 2007), so a higher dose may have resulted in greater increases in plasma CoQ₁₀ concentrations as observed in previous equine reports (Sinatra, Jankowitz, et al., 2013). However, the economic feasibility for owners and trainers were considered, as well as the fact that in humans the efficiency of oral CoQ₁₀ absorption significantly decreases at extremely high doses (>300 mg) (Bhagavan & Chopra, 2007). Most researchers now believe that the formulation of oral CoQ₁₀ (e.g., delivery system) is of equal if not more importance to the dosage, since this highly lipophilic molecule is typically poorly absorbed resulting in a low bioavailability despite the oral dose used as observed in humans, rats and dogs (Bank, Kagan, & Madhavi, 2011; Zhang et al., 1995; Zhang, Turunen, & Appelkvist, 1996).

CoQ₁₀ is widely distributed in the body in either a reduced (i.e., ubiquinol) or oxidised (i.e., ubiquinone) form (Desbats, Lunardi, Doimo, Trevisson, & Salviati, 2015). Regardless of its form, oral CoQ₁₀ is converted to ubiquinol by the enterocytes before being absorbed through the intestinal membrane, entering the systemic circulation via the lymphatic system (Bank et al., 2011) with nearly 95% of plasma CoQ₁₀ present as ubiquinol (Bhagavan & Chopra, 2007). Oral CoQ₁₀ bioavailability can be enhanced by altering pharmaceutical forms, with hydrophobicity of CoQ₁₀ decreased by using cyclodextrin-based delivery methods (Bank et al., 2011; Jankowski et al., 2016). This delivery method significantly enhances water solubility and bioavailability (Žmitek et al., 2008) by complexing each CoQ₁₀ molecule with 2 β-cyclodextrin molecules to form a water-soluble powder (Madhavi & Kagan, 2010). The oral CoQ₁₀-β-cyclodextrin inclusion complex used in this study has been previously shown to be highly bioavailable with a 100% response rate in humans (e.g., all subjects had at least a doubling of plasma concentrations) and a reduced inter-subject variance (Madhavi & Kagan, 2010). High inter-subject variance is a common problem for lipophilic compounds such as CoQ₁₀ because of the poor absorption, meaning that not all subjects will have the same amount of absorbance of the product (Bank et al., 2011). In the present study, there was a degree of variability between horses as has been reported for the other equine studies (Sinatra, Chopra, et al., 2013; Sinatra, Jankowitz, et al., 2013). Although budgetary restrictions meant only 12/19 horses had plasma CoQ₁₀ concentrations measured, there was a 58% response rate identified when using a uniform
bioavailability measurement defined as a minimum doubling of T_1 plasma CoQ$_{10}$ concentrations above T_0 values.

This was a field-based study using privately-owned horses with samples not obtainable prior to the morning meal, so only the accumulation and not acute phase (0–24 hrs) of oral CoQ$_{10}$ supplementation could be evaluated. The sample timing in the present study was based on prior studies in human subjects that demonstrated plasma concentrations to peak within 4–5 hrs of oral administration of a CoQ$_{10}$-β-cyclodextrin inclusion complex ((Cuomo & Rabovsky, 2000; Terao et al., 2006). The CoQ$_{10}$-β-cyclodextrin inclusion complex used in the present study has also been demonstrated in human subjects to have a sustained release resulting in the maintenance of plasma CoQ$_{10}$ concentrations approximately 6 times higher than baseline for 24 hrs following oral administration (Madhavi & Kagan, 2010). This effect has been reported for other oral cyclodextrin complex CoQ$_{10}$-based delivery systems, although lower sustained plasma CoQ$_{10}$ concentrations were achieved (Terao et al., 2006).

An increase in mean skeletal muscle CoQ$_{10}$ content was observed in the current study following prolonged oral CoQ$_{10}$ supplementation as reflected by significant increases in CoQ$_{10}$-dependent skeletal muscle mitochondrial function above basal activity. It has been theorised that improved CoQ$_{10}$ absorption into the systemic circulation, elevating CoQ$_{10}$ plasma concentrations, helps improve delivery rate into skeletal muscle (Cooke et al., 2008). The concurrent increase in plasma CoQ$_{10}$ concentrations following supplementation found in the present study thus supports the increased skeletal muscle complex I+III activity to be a result of supplementation.

It is interesting to note that the T_1 skeletal muscle CoQ$_{10}$ content of three horses had fallen marginally below baseline values, potentially indicating a requirement for some horses to have higher plasma concentrations to facilitate movement of CoQ$_{10}$ into the skeletal muscle mitochondria. There were no correlations with the degree of plasma CoQ$_{10}$ concentrations and skeletal muscle CoQ$_{10}$ content supporting the inability to use plasma CoQ$_{10}$ to assess skeletal muscle CoQ$_{10}$ content. The duration of oral CoQ$_{10}$ supplementation has been hypothesised to contribute to the limitation of how much CoQ$_{10}$ enters skeletal muscle mitochondria (Cooke et al., 2008). One group of researchers reported skeletal muscle CoQ$_{10}$ content in humans to increase within 2 hours of oral supplementation, but then decrease to just above baseline values after 2 weeks of oral supplementation (Cooke et al., 2008). These researchers hypothesised that CoQ$_{10}$ uptake into skeletal muscle may be similar to creatine monohydrate, in which there appears to be a maximal limit and/or down-regulation of transporters reached after chronic supplementation leading to a plateau and/or decrease in intramuscular content over time (Guerrero-Ontiveros & Wallimann, 1998). This warrants further investigation in the horse.

A limitation of this study was an inadequate number of horses available for a control group based on power calculations for statistical validity. A control group would have verified whether changes in dietary intake of CoQ$_{10}$ other than supplementation contributed to the observed increases in skeletal muscle CoQ$_{10}$ content. All study horses were housed on the same farm in adjacent pastures, with changes in grass CoQ$_{10}$ content over the 9-week study period unlikely to have occurred since plants contain an extremely small amount of CoQ$_{10}$, with any dietary intake for humans primarily coming from meat-based products (Kumar et al., 2009; Parmar, Jaiwal, Dhankher, & Jaiwal, 2015; Pravst, Žmitek, & Žmitek, 2010). Furthermore, even including meat-based products the typical human diet does not contain enough CoQ$_{10}$ to significantly raise plasma CoQ$_{10}$ concentrations above basal levels, with the daily CoQ$_{10}$ intake from food ranging between 3–5 mg/day which is too low to significantly raise blood and tissue concentrations above basal levels (Wajda, Zirkel, & Schaffer, 2007). Since the majority of tissue CoQ$_{10}$ content in mammals is endogenously synthesised by the mitochondria, a significantly large increase in plasma CoQ$_{10}$ concentration is required to incite movement into tissue with human and other animal studies reporting that plasma CoQ$_{10}$ concentrations and
skeletal muscle CoQ₁₀ content will not significantly increase without exogenous influences (Bhagavan & Chopra, 2007). Although plasma CoQ₁₀ concentrations in humans is typically not affected by diet alone, CoQ₁₀ supplementation has been shown to increase plasma CoQ₁₀ concentrations, the extent of which depends upon the dosage, duration and type of formulation (Pravst et al., 2010).

It has been hypothesised that increased skeletal muscle CoQ₁₀ should result in more efficient skeletal muscle energy transduction (Lenaz et al., 1999). For horses in active exercise training this may lead to improvements in responses to exercise training, delay in the onset of fatigue and enhanced recovery following intense exercise (Cooke et al., 2008; M. Kon et al., 2007; Michihiro Kon et al., 2008; Kwong et al., 2002; Mizuno et al., 2008). During exercise, movement of plasma CoQ₁₀ into skeletal muscle may increase due to increased metabolic demand (M. Kon et al., 2007; Orlando et al., 2018). This theory is supported by results from a study identifying increased post-exercise intramuscular CoQ₁₀ content in human athletes orally supplemented with CoQ₁₀ (Cooke et al., 2008). It has recently been shown that resting skeletal muscle CoQ₁₀ content is associated with myostatin (MSTN) genotype (SNP g.66493737C>T) in untrained Thoroughbred horses (Rooney, Porter, Katz, & Hill, 2017). ETC combined complex I+III and II+III activities (indirect measures of CoQ₁₀ content) were significantly lower in resting skeletal muscle from TT MSTN genotype horses as compared to CT and CC horses. In this same study, restoration of complex I+III and II+III activity was achieved following in vitro supplementation with exogenous coenzyme Q₁. Based on the observed differences in basal concentrations of skeletal muscle CoQ₁₀ between MSTN genotypes in Thoroughbreds, oral supplementation with CoQ₁₀ may have a greater efficacy in skeletal muscle of horses with the TT MSTN genotype, especially for TT horses training and competing in endurance-related competitions. In the present study, the number of horses with different MSTN genotypes was too small to assess for genotype-specific variation in plasma and skeletal muscle CoQ₁₀ concentrations after supplementation, but this certainly warrants further investigation.

Conclusion

In summary, this study demonstrates that prolonged daily oral supplementation of a grass and oat diet of young, healthy untrained Thoroughbreds with a CoQ₁₀-β-cyclodextrin inclusion complex significantly increases mean plasma concentration and skeletal muscle CoQ₁₀ content, although a degree of variability was identified for some horses. Additional research is warranted to investigate the effects of MSTN genotype, training and exercise on skeletal muscle CoQ₁₀ content in CoQ₁₀-β-cyclodextrin inclusion complex supplemented and un-supplemented Thoroughbreds.
References

Table 1. Summary statistics for plasma \(\text{CoQ}_{10}\) concentrations measured in triplicate from \(n=12\) young, healthy untrained Thoroughbred horses before \((T_0)\) and after \((T_1)\) 9 weeks of daily oral supplementation of the established diet with \(\text{CoQ}_{10}\) (\(\text{CoQ}_{10}-\beta\)-cyclodextrin complex with 26\% \(\text{CoQ}_{10}\), w/w).

<table>
<thead>
<tr>
<th></th>
<th>(T_0) (µg/ml)</th>
<th>(T_1) (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>25% percentile</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Median</td>
<td>0.11</td>
<td>0.27</td>
</tr>
<tr>
<td>75% percentile</td>
<td>0.14</td>
<td>0.29</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.33</td>
<td>0.49</td>
</tr>
<tr>
<td>Mean</td>
<td>0.13</td>
<td>0.25*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>95% Confidence Intervals</td>
<td>0.08–0.17</td>
<td>0.18–0.32</td>
</tr>
</tbody>
</table>

*denotes significant difference from \(T_0\) values (paired two-tailed Student’s \(t\)-test, \(P\leq0.01\)).
Table 2. Middle gluteal skeletal muscle CoQ\(_{10}\) content for 19 young, healthy untrained Thoroughbred horses before (T\(_0\)) and after (T\(_1\)) 9 weeks of daily oral supplementation of the established diet with CoQ\(_{10}\) (CoQ\(_{10}\)-β-cyclodextrin complex with 26% CoQ\(_{10}\), w/w). CoQ\(_{10}\) content was assessed by spectrophotometrically measuring skeletal muscle mitochondrial complex I+III activity. Complex I+III activity data (pmol/min/mg of muscle protein) was normalised to mitochondrial abundance (citrate synthase activity)/g of skeletal muscle.

<table>
<thead>
<tr>
<th></th>
<th>T(_0) (pmol/min/mg muscle protein)</th>
<th>T(_1) (pmol/min/mg muscle protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>25% percentile</td>
<td>0.23</td>
<td>0.44</td>
</tr>
<tr>
<td>Median</td>
<td>0.36</td>
<td>0.63</td>
</tr>
<tr>
<td>75% percentile</td>
<td>0.51</td>
<td>0.8</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.56</td>
<td>0.92</td>
</tr>
<tr>
<td>Mean</td>
<td>0.36</td>
<td>0.59†</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>95% Confidence Intervals</td>
<td>0.28–0.43</td>
<td>0.49–0.7</td>
</tr>
</tbody>
</table>

*denotes significant difference from T\(_0\) values (paired two-tailed Student’s \(t\)-test, \(P\leq0.01\)).
Figure Legends

Figure 1. Plasma CoQ₁₀ concentrations for 12 young, healthy untrained Thoroughbred horses before (T₀) and after (T₁) 9 weeks of daily oral supplementation of the established diet with CoQ₁₀ (CoQ₁₀-β-cyclodextrin complex with 26% CoQ₁₀, w/w). *Significantly different from T₀ values (paired two-tailed Student’s t-test, P ≤ 0.01).

Figure 2. Middle gluteal skeletal muscle CoQ₁₀ content for 19 young, healthy untrained Thoroughbred horses before (T₀) and after (T₁) 9 weeks of daily oral supplementation of the established diet with CoQ₁₀ (CoQ₁₀-β-cyclodextrin complex with 26% CoQ₁₀, w/w). CoQ₁₀ content was assessed by spectrophotometrically measuring skeletal muscle mitochondrial complex I+III activity. Complex I+III activity data (pmol/min/mg of muscle protein) was normalised to mitochondrial abundance (citrate synthase activity)/g of skeletal muscle. *Significantly different from T₀ values (paired two-tailed Student’s t-test, P ≤ 0.01).
Figure 1

Plasma CoQ₁₀ concentration (µg/ml)

*T P=0.004
Figure 2

Skeletal muscle CoQ$_{10}$ content (complex I+III activity)

$P=0.0004$