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Abstract 

The coupling of the phase of slower electrophysiological oscillations with the amplitude of faster 

oscillations, termed phase-amplitude coupling (PAC), is thought to facilitate dynamic 

connectivity in the brain. Though the brain undergoes dramatic changes in connectivity during 

the first few years of life, how PAC changes through this developmental period has not been 

studied. Here, we examined PAC through electroencephalography (EEG) data collected 

longitudinally during an awake, eyes-open EEG collection paradigm in 98 children between the 

ages of 3 months and 3 years. We implement a novel technique developed for capturing both 

PAC strength and phase preference (i.e., where in the slower oscillation waveform the faster 

oscillation shows increased amplitude) simultaneously, and employed non-parametric clustering 

methods to evaluate our metrics across a range of frequency pairs and electrode locations. We 

found that frontal and occipital PAC, primarily between the alpha-beta and gamma frequencies, 

increased from early infancy to early childhood (p = 1.35 x 10-5). Additionally, we found frontal 

gamma coupled with the trough of the alpha-beta waveform, while occipital gamma coupled with 

the peak of the alpha-beta waveform. This opposing trend may reflect each region’s 

specialization towards feedback or feedforward processing, respectively.  

Significance Statement 

The brain undergoes significant changes in functional connectivity during infancy and early 

childhood, enabling the emergence of higher-level cognition. Phase-amplitude coupling (PAC) is 

thought to support the functional connectivity of the brain. Here, we find PAC increases from 3 

months to 3 years of age. We additionally report the frontal and occipital brain areas show 

opposing forms of PAC; this difference could facilitate each region’s tendency towards bottom-

up or top-down processing. 
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Introduction 

Communication between spatially separated brain regions is a critical component of healthy 

brain function. Oscillatory brain activity, created by the synchronous firing of large ensembles of 

neurons, is suggested to facilitate this communication: low frequency oscillations may reflect 

long distance connections, while high frequency oscillations may reflect local connections (von 

Stein and Sarnthein, 2000). Cross frequency coupling, which describes the interaction between 

different oscillatory frequencies, may therefore serve to integrate information spatially and 

temporally (Canolty and Knight, 2010). 

One form of cross-frequency coupling is Phase-Amplitude Coupling (PAC), in which the phase 

of the low frequency activity modulates the amplitude of the high frequency activity. Increasing 

evidence implicates PAC in a variety of important functional processes. PAC reflects strength of 

functional connectivity (Weaver et al., 2016), and PAC strength and location has been shown to 

shift with task demands (Voytek et al., 2010). Additionally, differences in PAC have been found 

in a variety of brain disorders, including schizophrenia, autism, attention deficit hyperactivity 

disorder, and Parkinson’s (Salimpour and Anderson, 2019), highlighting the importance of PAC 

for healthy brain functioning.  

Moreover, underlying characteristics of PAC may reflect an area’s functional configuration within 

neural networks. Phase preference, or the phase of the low frequency waveform corresponding 

to the largest amplitude of the high frequency waveform (Figure 1), has been found to differ by 

brain area (Ninomiya et al., 2015), coupling frequencies, and task performance (Lega et al., 

2016). Additionally, phase preference can vary between cortical layers: recordings from multi-

electrode arrays implanted in the striate cortex V1 of macaque monkeys found layers IV and VI 

to exhibit opposing phase preferences with respect to alpha oscillations (Bollimunta et al., 

2011). This may relate to how these layers interact with the thalamus, where alpha rhythms are 

often thought to originate or project; layer IV tends to receive thalamic input, while layer VI tends 
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to project back to the thalamus (Guillery and Sherman, 2002). Thus, it is possible that primary 

phase preference (as measured on the scalp) could reflect an underlying area’s dynamic 

functional configuration as predominantly either feedforward or feedback during the recording 

period. Though typical measures of PAC are agnostic to phase preference, these findings 

suggest that not just if, but how gamma interacts with lower frequency waveforms may reflect a 

region’s role in either the intake or modulation of information for neural processing.  

Dramatic developmental changes in functional connectivity have been documented across 

fMRI, MEG, and EEG studies (Grayson and Fair, 2017), suggesting PAC and phase preference 

would show developmental changes as well. However, no studies have examined the 

development of phase preference, and few have examined the development of PAC. Of note, 

theta-gamma PAC has been found to increase from 8 to 16 years in response to audio click-

trains, and begins to decrease from 16 to 22 years; it has been hypothesized that this may 

relate to developmental changes in GABA transmission and synaptic pruning (Cho et al., 2015). 

Still, studies on infancy and early childhood, a period when the brain is highly plastic and shows 

significant structural and functional developmental changes, have not been conducted. Only one 

study examined PAC during infancy: PAC recorded during sleep decreased over the first two 

weeks after birth (Tokariev et al., 2016).  

Thus, though the brain continues to demonstrate high plasticity and significant developmental 

changes from birth to early childhood (Gao et al., 2017), no studies have examined how PAC or 

phase preference develops in this age range. Here we sought to address these gaps by 

characterizing, through both PAC strength and phase preference, how PAC develops from 

infancy to early childhood. Through this process, we have also developed a novel measure 

reflecting both PAC strength and phase preference simultaneously.   
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Methods 

Participants 

The data for this study were drawn from a larger longitudinal study of neuro-cognitive 

development across the first 3 years of after birth. This study included later born infants who 

had at least one typically developing older sibling (Table 1, n = 98). The study was conducted at 

Boston Children’s Hospital/Harvard Medical School and Boston University. All infants had a 

minimum gestational age of 36 weeks, no history of prenatal or postnatal medical or 

neurological problems, no known genetic disorders (e.g., fragile X, tuberous sclerosis) and no 

family history of autism spectrum disorder or other neuropsychiatric conditions (based on parent 

report). Institutional review board approval was obtained from both institutions (#X06-08-0374).  

EEG Acquisition / Processing 

Baseline EEG data were collected at 3, 6, 9, 12, 18, 24, and 36 months of age, as previously 

described (Gabard-Durnam et al., 2019). Infants were seated on their caregiver’s lap while a 

research assistant blew bubbles and/or presented toys to ensure the infant remained calm. 

Continuous EEG was recorded for up to 5 minutes using either a 64-channel Geodesic Sensor 

Net System or 128-channel Hydrocel Geodesic Sensor Nets (Electrical Geodesics, Inc., 

Eugene, OR). Data were sampled at either 250 or 500 Hz, and referenced at collection to a 

single vertex electrode (Cz). Impedances were kept below 100 kΩ (within recommended 

guidelines for young children, given the high-input impedance capabilities of this system’s 

amplifier).  

Raw EEG files were exported from NetStation to MATLAB (versionR2017b, MathWorks, Natick, 

MA, USA) for preprocessing. Files were processed using the Batch EEG Automated Processing 

Platform (BEAPP) (Levin et al., 2018). Within BEAPP, the Harvard Automated Preprocessing 

Pipeline for EEG (HAPPE), which was developed specifically to optimize preprocessing of 
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developmental EEG data with potentially high levels of artifact and short recordings, was used 

to automate preprocessing and artifact minimization (Gabard-Durnam et al., 2018). Data were 

first filtered using a 1 Hz high-pass filter and a 100 Hz low-pass filter. Data sampled at 500 Hz 

were then downsampled to 250 Hz for consistency. Only electrodes in the international 10-20 

system were included in this pipeline; all other electrodes were removed before further analysis. 

Regions of signal with any channel’s amplitude >40 μV (the HAPPE default threshold, reflecting 

the reduced signal amplitude that results from wavelet-thresholding and independent 

components analysis in HAPPE) were removed prior to segmenting data into 2 second windows 

for PAC analysis. For each participant, 30 segments (60 seconds of data) were then randomly 

selected for further analysis; files with fewer than 30 segments of data at this stage were not 

analyzed (Table 2). Primary PAC metrics were then obtained using code added to the BEAPP 

software. 

Five EEG recordings were more than 3 standard deviations from the mean on one of the 

following HAPPE data quality output parameters: percent good channels, mean retained artifact 

probability, median retained artifact probability, percent of independent components rejected, 

and percent variance retained after artifact removal. These EEGs were evaluated for differences 

in overall PAC (averaged across frequencies and channels); all files were found to be within 2 

SD’s of the mean at the time point of collection, so these files were included in later analyses.  

Computation of PAC Metrics 

Modulation Index: PAC was first quantified using the Modulation Index (MI) (Tort et al., 2010). 

For each frequency pair, the raw signal in each segment was exported from MATLAB into 

Python and filtered into a low frequency and high frequency signal using code adapted from 

(Dupré la Tour et al., 2017). Because the frequency pairs at which PAC occurs in our age group 

have not been previously well defined, we began by examining PAC across a range of 

frequencies. To do so, for each EEG the raw signal was filtered across a range of low frequency 
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(2-20 Hz in 2 Hz steps) and high frequency (20-100 Hz in 4 Hz steps) combinations. 

Subsequently, the time series of phases of the low frequency signal and the amplitude of the 

high frequency signal were computed. The phases of the low frequency signal were then binned 

into 18 20o intervals (-180o to 180o), and the mean of the amplitude of the high frequency signal 

occurring within each phase bin was calculated. Data were then imported into MATLAB, where 

the amplitude of the high frequency signal (HFamp) at each phase of the low frequency signal 

(LFϕ) was then averaged together across segments before computing the MIraw as the Kullback-

Leibler divergence from a uniform amplitude distribution (Tort et al., 2010). To control for factors 

not of interest that have been shown to affect PAC (such as spectral power), for each 

participant, 200 surrogate MI values (MIsurr) were generated by repeating the procedure after 

offsetting HFamp from LFϕ by a randomized time shift between 0.1 to 1.9 seconds. From this 

distribution, the mean (μ(MIsurr)) and standard deviation were then calculated. A normalized MI 

(MInorm) was then computed as the z-score of the MIraw compared to the distribution of MIsurr 

values (Canolty et al., 2007). Consequently, for each EEG, a single MIraw, μ(MIsurr), and MInorm 

were obtained. 

Phase Bias: The Tort method used here to quantify PAC captures the presence of coupling, 

irrespective of where in the LFϕ the high frequency signal demonstrates increased amplitude. 

However, PAC can result from an increase high frequency amplitude anywhere in the low 

frequency waveform, including at either the positive or negative phases, corresponding to the 

peak and trough of the waveform respectively (Lega et al., 2016) (Figure 1). Therefore, we 

created a new metric to quantify the phase range (positive phases or negative phases) of the 

low frequency signal where the high frequency signal showed increased amplitude. 

To do so, we quantified the bias of the HFamp to the positive phases of LFϕ. Specifically, we 

defined the phase bias (ϕ bias) of a given LFϕ, HFamp pair (i.e., proportion of HFamp occurring in 

the positive phases of the LFϕ) as: ϕ bias = (ΣHFamp in positive phases of the LFϕ) / Σ(HFamp in 
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all phases of the LFϕ). Thus, a value below .5 indicates the HFamp shows a preference for the 

negative phases of LFϕ, while a value above .5 indicates the HFamp shows a preference for the 

positive phases of LFϕ. Additionally, a larger distance from .5 (where HFamp shows no 

preference for either positive or negative phases of LFϕ) indicates stronger ϕ bias. The ϕ bias 

metric was computed on the original signal to obtain the ϕ biasraw. Then, in the same manner 

MIsurr values were computed, ϕ bias was additionally computed after offsetting HFamp from LFϕ 

by a randomized time shift to obtain 200 surrogate ϕ bias values (ϕ biassurr), of which the mean 

was taken (μ(ϕ biassurr)). 

Statistical Analysis 

Cluster Correction: For every electrode, we now had obtained PAC values for each frequency 

pair. To identify statistically significant regions of interest both across frequency pairs and 

across channels, we first employed a clustering method. We used the clustering techniques 

described below to identify regions of interest for three PAC metrics. First, we clustered on MI to 

identify regions that exhibited PAC (PAC+). Second, we clustered on ϕ bias to identify regions 

where HFamp is significantly increased in the negative phases of LFϕ (-LFϕ preference); i.e., ϕ 

bias < 0.5. Third, we clustered again on ϕ bias, this time to identify regions where HFamp is 

increased in the positive phases of LFϕ (+LFϕ preference); i.e., ϕ bias > 0.5. All three of these 

techniques used data from all useable EEGs, at every age (3 months to 3 years) at which they 

were collected. We then modified the clustering metrics to identify regions where these three 

PAC metrics changed with age.  

Whereas most clustering procedures involve comparing one condition to another (i.e., task vs. 

baseline stimuli), our task analyzed resting EEG data and therefore had no analogous 

comparison condition (or baseline) against which to test. In its place, we used the mean of the 

metric across the surrogate values (μ(MIsurr) or μ(ϕ biassurr)). These data serve as an effective 

‘control’ set as it retains the characteristics of the signal (power, noise), while any coupling 
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present in the actual signal should not be retained. Thus, we used clustering against μ(MIsurr) or 

μ(ϕ biassurr) to reveal regions where the PAC metric of interest is present to a significant degree.  

Identification of PAC+ Regions across all ages: For our clustering procedure, we implemented a 

method that closely followed that by (Maris and Oostenveld, 2007).  

1. For every channel, between every filtered low frequency signal and high frequency 

signal, a t-test was used to compare the MIraw values across all files and the μ(MIsurr) 

values across all files. 

2. Data points where the null hypothesis was rejected (p < .05, 2-sided t-test) were 

selected. 

3. Selected data points on the same channel adjacent to one another in terms of low 

frequency or high frequency were grouped together into clusters (MATLAB function 

bwlabel, connectivity = 4). 

4. After subtracting the minimum t value needed to achieve p < .05 from all data points, 

cluster level statistics were computed by taking the sum of t values within each cluster. 

Then, to compute which clusters were significant (i.e. unlikely to occur with that strength or size 

by chance, or to remove clusters that may be spurious), we implemented the following: 

1. For half of the participants, selected randomly, the MIraw and μ(MIsurr) data were ‘flipped’, 

such that their μ(MIsurr) data were treated as MIraw, and their MIraw were treated as 

μ(MIsurr). 

2. Test statistics and cluster sizes were calculated in the same manner as used previously. 

3. The previous steps were repeated 200 times, creating a distribution of cluster sizes. 

4. Clusters < 95th percentile of this distribution were removed from further analysis. 

Identification of -LFϕ preference and +LFϕ preference regions across all ages: This procedure 

was then repeated using ϕ biasraw and μ(ϕ biassurr) as the PAC metric, with the goal of identifying 
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-LFϕ preference regions and +LFϕ preference regions. Unlike comparing MIraw and MIsurr, where 

PAC should lead to MIraw being greater, not less, than MIsurr, PAC can lead to ϕ biasraw being 

greater than or less than μ(ϕ biassurr). When HFamp is increased in the negative phases of LFϕ, ϕ 

biasraw will be less than μ(ϕ biassurr), and when HFamp is increased in the positive phases of LFϕ, 

ϕ biasraw will be greater than μ(ϕ biassurr). As a result, clusters where the t-statistic is significantly 

negative highlight regions where HFamp is increased in the negative phases of LFϕ, while 

clusters where the t-statistic is significantly positive highlight regions where HFamp is increased in 

the positive phases of LFϕ. For this reason, the clustering procedure was implemented twice, 

once with a left-tailed t-test, and once with a right-tailed t-test (p < .025 to reject Ho). This 

prevented grouping of regions where some data points exhibited -LFϕ preference and some 

exhibited a +LFϕ preference.  

Development of PAC Metrics with age: Several different regions of interest survived cluster 

correction, where PAC metrics (MI or ϕ bias) were found to be significant when EEGs from all 

ages (3 months to 3 years) were included. To investigate how our PAC metrics in these regions 

changed with age, age was correlated with MInorm averaged in each area (PAC+, -LFϕ 

preference, +LFϕ preference), as well as in all frequencies and channels tested. This was 

repeated with ϕ bias as the metric; however, because averaging ϕ bias in regions that exhibit 

opposing phase preference will cancel out these phase preferences, ϕ bias was only analyzed 

in regions grouped by phase preference (-LFϕ preference, +LFϕ preference).  

The above-mentioned clustering techniques determined regions in which PAC metrics were 

significant when EEGs from all ages were included. However, it is possible that a different set of 

regions would be significant when clustering techniques were altered to explicitly determine 

regions in which PAC metrics demonstrated significant change across age. Therefore, we 

developed two additional clustering techniques that aim to capture regions where PAC metrics 

change with age. 
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Identification of regions where MI changes with age: We designed a clustering metric to capture 

regions where MI values change with age. To do so, we ran the clustering algorithm as 

described previously with the exception of the test statistic. For each channel and frequency 

pair, the MIraw and μ(MIsurr) data of each participant were collected. Data were given a label for 

an additional variable ‘raw’, such that MIraw data were labeled as 1 and μ(MIsurr) data as 0. A 

linear regression was then run, where MI was predicted by the variables age, raw, and the 

interaction between age and raw. The test-statistic (t value and p value) was then defined as the 

respective values for the coefficient of this interaction term. Consequently, a positive and 

significant t value indicates MIraw increased more with age than μ(MIsurr), and positive clusters 

therefore indicate regions where PAC is increasing with age.  

Identification of regions where ϕ bias changes with age: This procedure was then repeated 

using ϕ biasraw and μ(ϕ biassurr) as the PAC metric, with the goal of identifying regions where ϕ 

bias changed with age. As with clustering on ϕ bias over all ages, the clustering procedure was 

implemented twice, once with a left-tailed t-test, and once with a right-tailed t-test (p < .025 to 

reject Ho in each case). 

Results 

Identification of PAC+ Regions across all ages: Clustering on MI of all participants regardless of 

age selected 67.12% of low frequency, high frequency, and channel combinations (Figure 2, 

Table S1). All channels analyzed contained at least one significant cluster of PAC, with the 

largest clusters centered primarily occipitally (channels O1, O2, and P7) and frontally (Fp1 and 

Fp2). 

Identification of -LFϕ preference and +LFϕ preference regions across all ages: Clustering on ϕ 

bias of all participants regardless of age revealed two sets of clusters: -LFϕ preference regions, 

which occurred primarily frontally, where ϕ bias was significantly less than μ(ϕ biassurr), and +LFϕ 

preference regions, which occurred more posteriorly, where ϕ bias was significantly greater than 
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μ(ϕ biassurr) (Figure 3a, Table S2). Phase amplitude plots for each area confirm each area shows 

opposing phase preference. -LFϕ preference regions demonstrate a peak in high frequency 

amplitude occuring at approximately -90o low frequency phase, as well as a trough occurring at 

+90o (Figure 3b), while +LFϕ preference regions show a peak in high frequency amplitude 

occurring at approximately +90o low frequency phase, and a trough occurring at -90o phase 

(Figure 3c).  

Development of PAC Metrics with age: We then investigated how our PAC metrics in these 

clusters changed with age (Table 3). MInorm in PAC+ regions increases with age (Table 3, Figure 

4) and does not differ as a function of net type (p > .1). Changes in ϕ bias depend on region 

(determined regardless of age): in -LFϕ preference regions, ϕ bias decreases with age, while in 

+LFϕ preference regions, ϕ bias increases with age (Table 3, Figure 5). ϕ bias in these two 

regions has a strong inverse correlation (r = 0.612, p = 4.25 x 10-41).  

Identification of regions where MI changes with age: We then conducted an analysis of all 

electrodes and frequency pairs to determine which regions showed significant changes in MI 

with age. All regions found to be significant in this analysis showed an increase (as opposed to 

a decrease) in MI with age. We found increases in MI occurred most prominently in the posterior 

regions (Figure 6, Table S3). Specifically, we found the largest cluster in the alpha-beta and 

gamma frequency pairs centered on O2, and extending to electrodes O1, Pz, P8, and P7.  

Identification of regions where ϕ bias changes with age: We then examined which regions 

showed changes in ϕ bias with age. In posterior regions, ϕ bias showed similar increases with 

age as MI (Figure 7). Additionally, ϕ bias showed a group of negative clusters largely anteriorly, 

highlighting regions which develop a stronger preference for the negative phases of LFϕ with 

age (Table S4). 
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Discussion 

Though the brain exhibits significant changes in functional connectivity during infancy and early 

childhood, how PAC and its underlying phase preference develops over this period has not 

been studied. Here, we demonstrate the typical development of PAC from 3 months through 3 

years of age. This PAC occurs most prominently between alpha-beta and gamma, largely 

consistent with several reports of alpha-gamma PAC in resting state recordings (Roux et al., 

2013; Berman et al., 2015; Gohel et al., 2016), but is also present between theta and beta, theta 

and gamma, and alpha and beta. We observe PAC broadly across the scalp, suggesting a 

relatively ubiquitous presence of cross-frequency coupling. The phase preference of this PAC 

shows opposing trends, separated by scalp region: PAC in posterior areas (particularly over 

occipital lobes) is driven by a peak in gamma amplitude during the positive phases of LFϕ, while 

PAC in anterior areas (particularly over frontal lobes) is driven by a peak in gamma amplitude 

during the negative phases of the LFϕ. Though these areas appear to demonstrate similar PAC 

as indicated by MI, these two forms can be separated effectively using a measure of ϕ bias 

newly described above.  

It is possible that phase bias may reflect the functional specialization of feedback (e.g., 

corticothalamic) and feedforward (e.g., thalamocortical) activity in the frontal and occipital areas 

respectively. Gamma amplitude is maximal at the peak (90°) of the alpha-beta wave in the 

occipital cortex, but gamma amplitude is maximal at the trough (-90°) of the alpha-beta wave in 

the frontal cortex. It has been previously described that cortical layer 4 (which predominantly 

accepts thalamic input) and layer 6 (which predominantly provides thalamic input) (Guillery and 

Sherman, 2002) exhibit opposing phase preferences in respect to alpha oscillations (Bollimunta 

et al., 2011). This functional specialization is also reflected structurally: layer IV tends to be thick 

posteriorly but thin anteriorly in the cortex, whereas layer VI tends to be thick in frontal cortex 

but thin in occipital and other predominantly sensory cortices (Wagstyl et al., 2019). Scalp 
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recordings cannot classically differentiate among the cortical layers that may be driving findings 

in particular electrodes. In the context of these prior findings, however, the possibility should be 

considered that gamma amplitude synchronizing with the alpha-beta peak (i.e., +LFϕ 

preference) could reflect a predominance of feedforward, bottom-up processes (e.g., processing 

of visual information entering the occipital cortex), while synchronization with the alpha-beta 

trough could reflect a predominance of feedback, top-down processes (e.g., internal regulation 

of attention by the frontal cortex). In this case, the findings would thus suggest that over the first 

years of life, there is a specialization of regions for their particular functions: while there is 

indeed a developmental shift towards primarily feedforward activity with age measured over 

occipital regions (where incoming visual information is processed) there is also a shift towards 

more feedback activity measured over frontal regions (which provide top-down regulation of how 

the brain processes information).   

An alternative (though not necessarily incongruous) explanation for the opposing phase 

preferences across regions involves a dipole effect. Dipole effects are frequently observed in 

EEG data (Ebersole, 1991; Ochi et al., 2001) and reflect a single tangentially oriented source 

(Osipova et al., 2008). However, the broad (rather than more localized) dipole effect seen here 

would likely reflect a deep source (e.g., originating from thalamus rather than cortex). While 

alpha and surrounding frequencies can indeed originate in the thalamus (or involve 

thalamocortical circuitry) (Bollimunta et al., 2011; Seeber et al., 2019), higher-frequency activity 

such as gamma is typically thought to originate more locally (Buzsáki and Wang, 2012). 

Therefore, while a single deep source may determine or coordinate LFϕ across multiple regions, 

this source is unlikely to be generating the coupled HFamp portion of the signal. Additionally, 

while high frequency activity can occur as a result of muscle artifact, we would not expect such 

artifactual activity to be coupled the phase of the lower frequency activity. 
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It has been suggested PAC may serve to connect spatially and functionally segregated regions 

depending on the task; here, participants were not given an explicit task. Interestingly, the 

electrodes and frequencies where we observe the strongest PAC largely overlap with the 

electrodes (O1/O2, P3/P4, P7/P8, F3/F4, and Fz) frequency bands (alpha and beta) implicated 

in the DMN, a network thought to be active during resting state (Buckner et al., 2008). However, 

due to the limited spatial resolution of EEG, alternative methods are needed to better test this 

hypothesis. 

This study has several limitations. First, our sample size at the 3 month time point was relatively 

small (n=14); more participants would allow for a more exact description of PAC at this age. 

Additionally, because most participants did not provide useable data for all time points, the 

study did not analyze trajectories of PAC on an individual level. Finally, though EEG’s temporal 

resolution lends itself to analyzing PAC, weak spatial resolution prevents more exact description 

of the PAC development across brain regions and layers; research using alternative 

neuroimaging methods, or source analysis, could answer some of the questions we leave open 

here. 

In summary, this study documents the emergence of PAC in early childhood. We describe a 

new metric for measuring phase bias, which reflects more fine-grained information about PAC 

than the modulation index. We find HFamp is increased at opposing phases of LFϕ in anterior 

areas as compared to posterior areas. Future studies would be beneficial in further assessing 

the potential functional relevance of this metric; we suggest laminar differences in the direction 

of information flow (feedforward vs. feedback) as one potential avenue for further exploration.  

Code Accessibility 

The code to process EEG data is publically available under the BEAPP and HAPPE software 

licenses (BEAPP: https://github.com/lcnbeapp/beapp; HAPPE: 
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https://github.com/lcnhappe/happe). Additional code used for calculation of metrics and 

statistical analysis is available upon request. 
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Table Legends 

Table 1: Participant Demographics. 

Table 2: Number of EEG files (for each net type and in total) collected and analyzed per age 

group studied. 

Table 3: Correlations between PAC metrics (averaged across specific regions) and age. 

Table S1: PAC+ regions. Regions demonstrating significant MI across age. Low frequency and 

high frequency values refer to the frequency pair demonstrating the absolute maximum t test 

value. 

Table S2: -LFϕ preference and +LFϕ preference regions. Regions demonstrating significant 

ϕ bias across age. -LFϕ preference regions are indicated by negative cluster sizes, while +LFϕ 

preference regions are indicated by positive cluster sizes. Low frequency and high frequency 

values refer to the frequency pair demonstrating the absolute maximum t test value. 

Table S3: Regions demonstrating change in MI over age. Low frequency and high frequency 

values refer to the frequency pair demonstrating the maximum t test value in a given cluster.  

Table S4: Regions demonstrating change in ϕ bias with age. Regions where ϕ bias 

decreased with age are indicated by negative cluster sizes, while regions where ϕ bias 

increased with age are indicated by positive cluster sizes. Low frequency and high frequency 

values refer to the frequency pair demonstrating the absolute maximum t test value. 
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Figure Legends 

Figure 1: Phase-amplitude Coupling Schema. No phase bias is present when PAC is not 

present (red). Positive phase bias occurs when the amplitude of the high frequency signal 

increases at the peak of the low frequency signal waveform (yellow), and negative phase bias 

occurs when the amplitude of the high frequency signal increases at the trough of the low 

frequency signal (blue). 

Figure 2: PAC+ regions across all ages. Comodulograms of t-scores, for each electrode, 

showing MI of each area. White lines outline regions with significant MI (PAC+ regions, p < .05, 

corrected for multiple comparisons). In some cases (e.g. Fp1, Fp2, O1, and O2) PAC+ regions 

cover most of the comodulogram; therefore, in these cases, white lines outlining blue regions 

mark the border of a small area that is not PAC+. Comodulograms indicate the level of coupling 

between phase frequencies (x-axis, 0-20Hz), and amplitude frequencies (y-axis, 20-100Hz). 

Each electrode is plotted at approximate electrode location on scalp. All analyzed EEGs were 

included (regardless of age at collection).  

Figure 3: -LFϕ preference and +LFϕ preference regions across all ages, and resulting 

phase-amplitude plots. A) Comodulograms of t-scores, for each electrode, showing ϕ bias of 

each area. White lines outline regions where ϕ bias is high (+LFϕ preference regions, yellow) 

while blue lines outline regions where ϕ bias is low (-LFϕ preference regions, blue) (p < .05, 

corrected for multiple comparisons). All participants were included (regardless of age). B) 

Amplitude as a function of phase, averaged over all frequency pairs and channels belonging to 

clusters where ϕ bias is negative (left) and positive (right). All participants were included 

(regardless of age).   

Figure 4: Development of MInorm with age. Median MInorm in PAC+ regions plotted as a 

function of age. Regions between the 25th and 75th percentiles are shaded.  
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Figure 5: Development of ϕ bias with age. ϕ bias is plotted as a function of age, in all regions 

(blue), -LFϕ preference regions (yellow), and +LFϕ preference regions (red). 

Figure 6: Regions where MI changes with age. Comodulograms of t-scores, for each 

electrode, showing regions where MI changes with age. White lines outline regions that 

increase with age (p < .05, corrected for multiple comparisons). 

Figure 7: Regions where ϕ bias changes with age. Comodulograms of t-scores, for each 

electrode, showing regions where ϕ bias changes with age. White lines outline regions where ϕ 

bias increased with age, and blue lines outline regions where ϕ bias decreased with age (p < 

.05, corrected for multiple comparisons). 
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Tables 

Glossary 

 
Term Definition 

Signals   

 LFϕ The phase distribution of the low frequency signal 

 HFamp The amplitude distribution of the high frequency signal 

Metrics 
  

 
MI  A measure of PAC strength 

 MIraw MI of the actual HFamp and LFϕ distributions 

 MIsurr MI of HFamp offset from LFϕ by a randomized time shift 

 μ(MIsurr) Mean of 200 MIsurr values 

 
MInorm Normalized Modulation Index 

 
ϕ bias The proportion of HFamp occurring in the positive phases of the LFϕ 

 ϕ biasraw ϕ bias of the actual HFamp and LFϕ distributions 

 ϕ biassurr ϕ bias of HFamp offset from LFϕ by a randomized time shift 

 μ(ϕ biassurr) Mean of 200 ϕ biassurr values 

Regions 
  

 
PAC+ Regions that show significant MI across age 

 
-LFϕ  preference 

Regions where HFamp is significantly increased during the negative 

phases of the LFϕ across age 

 +LFϕ  preference  

Regions where HFamp is significantly increased during the positive 

phases of the LFϕ across age 
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Table 1: Participant Demographics 

  
Participants (n=98) 

Sex 
 

53(M) 45(F) 

Maternal Education 
 

 
<4 year degree 13 (13%) 

 
4 year degree 26 (27%) 

 
Graduate degree 49 (50%) 

 Did not answer 10 (10%) 

Paternal Education 
 

 
<4 year degree 19 (19%) 

 
4 year degree 34 (35%) 

 
Graduate degree 34 (35%) 

 
Did not answer 11 (11%) 

Race 
  

 
White or Caucasian 82 (84%) 

 
Black or African American 3 (3%) 

 
Asian 2 (2%) 

 American Indian or Alaskan Native 0 (0%) 

 Native Hawaiian or Pacific Islander 0 (0%) 

 More than one reported 10 (10%) 

 Not reported  1 (1%) 

Ethnicity 
  

 
Not Hispanic or Latino 93 (94%) 

 
Hispanic or Latino 4 (4%) 
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Not reported 1 (1%) 
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Table 2: Number of EEG files (for each net type and in total) collected and analyzed per age 

group studied 

Age (months) 

64-channel 

Geodesic 

collected 

64-channel 

Geodesic 

analyzed 

128-

channel 

HydroCel 

collected 

128-

channel 

HydroCel 

analyzed 

Total EEGs 

Collected 

Total EEGs 

Analyzed 

3 5 2 13 12 18 14 

6 19 14 56 48 75 62 

9 21 14 65 54 86 68 

12 18 16 67 53 85 69 

18 9 6 56 46 65 52 

24 10 6 58 53 68 59 

36 0 0 76 62 76 62 
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Table 3: Correlations between PAC metrics (averaged across specific regions) and age. 

Metric Area  R P Value 

MInorm All 0.213 2.69x10-5 

MInorm PAC+  0.220 1.35x10-5 

MInorm -LFϕ preference  0.136 0.00759  

MInorm +LFϕ preference 0.221 1.25x10-5 

ϕ bias -LFϕ preference -0.158 0.0018 

ϕ bias +LFϕ preference 0.270 7.77x10-8 
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Table S1: PAC+ regions. 

Cluster size Low Frequency (Hz) High Frequency (Hz) Channel 

50.29 6 20 Fz 

52.01 4 68 F7 

57.01 12 56 C3 

59.36 2 72 F3 

62.35 2 56 F4 

83.73 18 20 C3 

91.32 8 20 Pz 

150.2 12 72 Pz 

280.8 18 20 C4 

317.0 18 76 Fz 

392.2 18 20 F3 

466.9 6 20 F7 

472.2 18 20 P3 

472.2 18 20 F4 

559.3 18 20 P4 

636.9 18 20 F8 

678.0 18 20 P8 

678.6 18 20 T8 

689.4 16 20 T7 

801.0 6 20 Fp1 

827.1 18 20 Fp2 

842.7 16 72 P7 
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844.4 6 20 O2 

943.8 6 20 O1 
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Table S2: -LFϕ preference and +LFϕ preference regions.  

Cluster size Low Frequency (Hz) High Frequency (Hz) Channel 

-1580 16 40 Fp2 

-1468 16 32 Fp1 

-941.6 10 24 Fz 

-841.4 12 20 F4 

-758.5 18 72 F8 

-740.8 20 56 F3 

-521.9 6 28 F7 

-121.2 4 40 C3 

-111.0 4 76 C4 

-103.5 20 20 O2 

-32.13 8 28 O1 

195.2 20 36 C3 

432.9 20 44 C4 

475.3 12 80 Pz 

639.4 18 68 T8 

888.5 14 56 P3 

895.2 12 28 T7 

1014 18 72 P8 

1056 12 72 P4 

1207 12 76 O2 

1375 14 80 O1 

1486 16 72 P7 
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Table S3: Regions demonstrating change in MI over age.  

Cluster size Low Frequency (Hz) High Frequency (Hz) Channel 

15.60 6 44 F8 

19.10 16 84 Fp1 

27.99 12 88 F4 

34.46 12 52 Fp1 

41.95 20 40 F7 

51.40 20 84 T8 

52.02 16 84 P7 

71.67 12 88 P8 

105.3 12 80 Pz 

203.3 12 60 O1 

313.1 14 72 O2 
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Table S4: Regions demonstrating change in ϕ bias with age.  

Cluster size Low Frequency (Hz) High Frequency (Hz) Channel 

-106.9 6 44 F3 

-100.3 4 76 Fp1 

-87.85 10 60 T7 

-70.98 10 64 F8 

-47.87 2 92 Fz 

-38.61 2 20 F8 

-23.31 18 56 F7 

30.54 4 52 O2 

34.37 2 100 C3 

75.84 8 64 P7 

80.59 4 56 Pz 

201.9 12 84 Pz 

234.8 10 28 P8 

525.5 14 56 O2 

595.6 16 44 O1 
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