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Abstract 

 

Mood is thought to integrate across our experiences, yet we do not know how the relative timing 

of past events shapes how we feel in the moment. Here, we investigate the relationship between 

the timing of previous experiences and mood by combining a novel closed-loop mood controller 

alongside computational modelling and neural data. We first present the development of a Mood 

Machine Interface which allows us to individualize rewards in real-time in order to generate 

substantial mood transitions, across healthy as well as depressed, adolescents and adults. We 

then show that early-experiences have a larger effect on mood than recent ones, and that the 

longer one is exposed to a given context, the harder it is for new events to change mood. We find 

that ACC neural activity underlies the influence of early experiences on mood. This provides a 

neuro-computational account of mood regulation by early events and suggests new directions for 

individualized mood interventions. 
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Introduction   

 

Mood is thought to integrate over the history of our experiences1. Yet, it remains unclear how the 

timing of our experiences influences how we feel in the moment. Existing models of mood2-5 

assume that recent experiences are most important in shaping mood. However, it is commonly 

found that early events, such as poor performance at the beginning of a job interview, or a mishap 

at the start of the day, can have a lasting negative impact on our mood overshadowing more recent 

positive experiences6-9. Resolving this question has two important implications. First, knowledge 

of environmental events timing could help predict their impact on individuals’ mood at any given 

time point. Second, knowledge of the relative influence of event timing may help optimize the 

design of artificial environments (clinical or otherwise) that induce mood changes.   

 

To address this central issue of the relation between previous experiences and mood, we took the 

following steps: 

First, we built a novel closed-loop paradigm, which we term a Mood Machine Interface (MMI), 

by adding a proportional-integral controller into a standard gambling task. This allowed us to shift 

individual mood parametrically to arbitrary values, and thus investigate the relation between mood 

changes and past experiences across strongly directional (positive or negative) environments.  

Second, we developed a novel computational model which operationalized the theory that mood 

can be primarily influenced by early experiences. We show that the model which gave the highest 

weight to early experiences, by considering expectation as the long-term average (LTA) of 

previous outcomes, was superior to a broad range of alternative models. This was judged on both 

training error and streaming prediction error, and across two independent samples, one of which 

was a preregistered, confirmatory analysis. These results were also robust to participants’ initial 

mood (depressed vs normothymic participants) and developmental status (adolescents vs adult 

participants).  

Third, we showed with fMRI that the influence of previous events on mood is encoded by neural 

signals in the brain region suggested to be involved in mood regulation, the anterior cingulate 

cortex (ACC)10-13. In particular, the weights of the LTA expectation parameter, which defined the 

extent of the influence early events have on mood, were related to ACC activity preceding mood 

rating.  

 

This work shows how applying computational and engineering tools can address some of the 

challenges involved in studying complex phenomena such as mood14,15, and bring new insights to 

questions relevant to psychopathology16,17. Specifically, our findings provide a novel way to 

induce large mood shifts as well as a neuro-computational account of the relationship of mood to 

the history of rewarding and negative experiences.  
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Results  

     

1. Developing the MMI paradigm   

 

The need for a new paradigm  

To study the impact of previous events on mood, we needed to develop a paradigm in which each 

participant receives parametrically quantifiable stimuli, of sufficient magnitude to be influential 

on their mood. Crucially, we also required a method unlikely to change mood due to demand 

effects (i.e., when participants become aware of the experimental goal and respond to comply with 

it). We addressed these requirements by developing a closed-loop controller that adjusted reward 

values in real-time according to individual mood response. This strategy can compensate for a low 

mood response or adaptation to stimuli over time. Recent findings suggested that Reward 

Prediction Errors (RPE) (i.e., the difference between expected and received outcome), influence 

momentary fluctuations in mood. Therefore, we set this paradigm to parametrically manipulate the 

value of RPEs to shift mood. The Mood-Machine-Interface (MMI) we built to meet these 

requirements ensures that experimental experiences continue to influence mood, and therefore it 

can uncover which of the experiences are most influential. 

  

The MMI paradigm 

The MMI generated mood transitions by adjusting RPEs in a closed-loop circuit. Figure 1 provides 

a schematic description of the paradigm: Each trial consisted of a choice about whether to gamble 

between two monetary values or to receive a certain amount instead of gambling. The task RPE 

value was considered as the difference between the outcome and the mean of the two gamble 

values (“RPE Value”). It was possible to modify the RPE value by manipulating the values of the 

gamble possibilities and therefore also the received outcome. The aim of the task was to shift mood 

towards the Mood Target value. The participant provided mood ratings every 2-3 gambling trials 

by moving a cursor along a scale between unhappy and happy mood (b. “Mood Rating”). To shift 

mood towards the target value, following each mood rating the algorithm recalculated the Mood 

Error, the difference between the last mood rating and the mood target (c. “Mood Error”). The 

Mood Error value was translated to the RPE value of the consecutive trials, using a proportional-

integral (PI) control algorithm (d. “PI Control”), a combination of proportional and integral 

accounts of the mood error (see Methods for details). Using this algorithm, the next RPE value (e. 

“Next RPE”) was estimated to compensate for the mood error RPE, such that it increased when 

mood reactivity was too low.  

To investigate both positive and negative mood transitions, we split the experiment into three 

blocks, each with a different mood target: the goal of the first block was to increase mood towards 

the target of 100% (highest) mood value; the second block decreased mood by setting the target 

to 0% (lowest) mood level; and again in the third block, the goal was to increase the mood to a 

target of 100% (highest) mood. To maintain the unpredictability of outcomes, 30% of trials were 

small RPE values, incongruent to the block valence (small negative RPEs during first and third 

increasing-mood blocks and small positive RPEs during the second decreasing-mood block). Thus, 

during the first and third blocks 70% of trials delivered the better value if participants chose to 

gamble, while during the second block, 70% of trials delivered the lowest option of the gamble.  
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Figure 1: The Mood-Machine-Interface paradigm. 
The experiment consisted of three blocks, each with 27 gambling trials. Values for the gamble decision 

(a), were presented for 3 seconds, followed by an anticipation phase of 4 seconds when the chosen option 

remained on the screen and then 1 second of outcome presentation. The control algorithm used the mood 

rating as an input (b). The mood error computed from the current mood rating was used to determine the 

next RPE value using a proportional-integral (PI) algorithm (c-e): a smaller change in mood towards the 

mood target resulted in an increase in RPE value on the following trials.  

 

 

Validation of mood ratings 

The first ratings (before participants completed any gambling trials) were strongly correlated with 

continuous measures of depressed mood (with MFQ measure in adolescent sample: CC=-0.62, 

p=2.62e-8, CI=[-0.75, -0.44]; with CESD in adult confirmatory sample: CC=-0.69, p=7.12e-13, 

CI=[-0.79, -0.56]) and in strong concordance with the gold standard psychiatric interview 

(KSADS) in distinguishing between patients with MDD and healthy volunteers (on a mood scale 

of 0 to 100, mean initial mood of healthy = 74, sdhealthy= 15, was significantly higher than the mean 

initial mood of MDD = 60, sdMDD=19, t=-3.36, df=69, p=0.0012, Cohen’s d effect size= 0.97). 

This is consistent with a previous study by Rutledge et al.18 where the baseline mood, which was 

similarly rated, correlated with the continuous depression scores BDI and PHQ. This indicates that 

our mood assessment question is valid, though we have no way of indicating the general mood 

state, though we have no way of validating the repeated mood assessment during the task.  

 

MMI induced shifts in mood 

Our closed-loop MMI paradigm generated consistent mood transitions in both positive (upwards) 

and negative (downwards) directions compared to baseline mood (Figure 2). Most individuals 

showed a similar trend in mood values (n=72 adolescents; Figure 2a). The significant group effect 

can be appreciated by the individually normalized mood change, averaged across all participants 

(Figure 2b). We found a significant effect of time, both linear and squared, on mood in a linear 

mixed-effects model (ttime=-12.8 and ttime2=11.6, p<0.001). The mean effect size (±SD) of mood 

modification within block was: 1.92 (±1.12) for increasing mood, -2.9 (±0.9) for decreasing mood 

and 3.02 (±0.92) for increasing mood again following the low mood phase. The RPE values 
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required to modify mood differed across individuals, reflecting individual differences in RPE 

responsiveness (Figure 2c). Moreover, it is apparent that these values kept enhancing over time 

(the slopes of RPE values were significantly larger than zero as tested with a t-test with p<0.05; 

the mean±SD RPE values across participants: block1=0.42±0.27; block 2=-0.53±0.36; 

block3=0.51±0.31). RPE values varied because they were individualized in real-time to 

participant’s mood response dynamics (recalculated every 2-3 trials following each mood rating; 

see Figure S1 for a summary of all task parameters). This is important in face of previous works4,19, 

which showed that positive mood increases the subjective value of rewards, and therefore reduces 

the experienced RPE. Our data provides another support for those findings, as the controller had 

to enhance RPE values over time to keep increasing/decreasing mood.   

As a result, the closed-loop MMI could generate substantial mood changes across individuals, even 

though participants varied in their mood response and initial mood state (as evident in Figure 2a). 

We also included participants diagnosed with Major Depressive Disorder (MDD) in our lab-based 

discovery sample, in order to test the MMI paradigm on a wide range of initial moods. Even though 

depressed participants (n=43 of 72) started from significantly lower mood values (p<0.001), they 

showed similar effect sizes for both positive and negative mood changes (p>0.05 in a t-test; see 

Methods for participants’ characteristics).   

Most participants (90%, 65/72) were unaware of the manipulation, as we estimated using a follow-

up questionnaire (in a scale between 0-3, the average rating for whether the task was unfair was 

0.36±0.69SD with 7/72 subjects indicating ‘agree’ or ‘strongly agree’). 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 2: Mood manipulation to a pattern of high-low-high mood, by adjusting RPE values.    

(a) Mood ratings of each participant, shown by a separate curve (values are smoothed with a moving 

average with a 5 steps window). (b) The percentage of mood change from the first mood rating, averaged 

across all participants. Mood ratings were first individually transformed to a percentage from each 

participant’s starting mood rating. Then all percentile mood curves were averaged (shaded region is 

standard error of the mean). See Figures S2-S3 for similar plots separated by healthy and depressed 

participants. (c) The RPE values generated during the task: individualized values were adjusted depending 

on each participant’s mood response. Each curve is of a single participant and presents the 70% congruent 

RPE values determined by the control algorithm (not shown are the 30% incongruent RPE values that 

were included for maintaining surprise and so participants are unaware of the manipulation, see methods 

for further details).  

a b c 
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The efficient generation of mood transitions also allowed us to uncover features of mood 

dynamics. In particular, we found that each participant’s degree of mood change in the positive 

direction was highly correlated to the degree of change in the negative direction (correlation 

coefficient between positive and negative mood changes was 0.77, with p<0.001). This valence 

symmetry in mood change was also evident by participants returning at the end close to their initial 

mood value (the Intra-subject Correlation Coefficient measure, ICC, between first and last mood 

rating, was 0.64 with p<0.001).  

 

MMI respective changes in behavior and neural activity 

We find substantial differences in behavior between blocks (Figure S4): participants were more 

likely to gamble and were faster in making their choices under the positive context blocks (the first 

and third blocks), but were less likely to gamble and responded more slowly in the negative context 

block (the second block). These changes in behavior relate to previous accounts of the interaction 

between mood and gambling as well as other cognitive functions20,21. A linear mixed effects model 

showed a significant effect of both time and time squared on response times (ttime=8.19 and ttime2=-

7.48, p<0.001) and probability to gamble (ttime=-6.76 and ttime2=6.26, p<0.001) and also a t-test 

between blocks was significant (for response times of block1 vs block2: p=2e-4, t=-5.6, and block3 

vs block2: p=2.1e-5, t=-4.5; for gamble probability of block1 vs block2: p=1.4e-7, t=5.8, and 

block3 vs block 2: p=1.39e-5, t=4.6). Moreover, RPE encoding during the task (the correlation 

between brain activity and RPEs, evaluated using a parametric modulation with RPE values), 

changed depending on block and the reward-context. As shown in Figures S5a-c and S6, RPE 

encoding changed in regions which have been previously shown22-24 to encode RPE values in a 

valence dependent manner (striatum and insula). Additionally, neural activity in the striatum 

during the period preceding mood rating was correlated with the subsequent mood rating value 

(Figure S5-d), in congruence with previous accounts of mood relations to striatal activity2,25,26.   

 

Replication of results   

We replicated the MMI induction results of significant mood and behavioral changes, in an 

independent confirmatory sample (pre-registered analysis, see Methods for link). Specifically, the 

MMI was run in 80 adults using Amazon Mechanical Turk, and showed a significant effect of time 

and time squared on mood (ttime=-11.4 and ttime2=11.29, p<0.001) and on decision behavior (RT: 

ttime=7.4 and ttime2=-8.5, p<0.001, gambling probability: ttime=-11.59 and ttime2=11.77, p<0.001). See 

Methods and Figure S7 for further information.  

 

2. Modelling the impact of previous experiences on mood  

 

The LTA mood model  

Using the MMI, we then developed a computational model to investigate the influence of previous 

experiences on mood. To test this, we pit two models against each other: The Standard Mood 

Model as developed by Rutledge et al. in 20142, which has a recency weighting of the influence of 

previous events on mood (see equations 1-3); versus the new Long-Term-Average (LTA) model, 

where previous events have a primacy weighting and expectations are formed over the average of 

all previous outcomes (equations 4-6).  

These models included two dynamic terms: the expectation term I and the RPE term (denoted R), 

which is the surprise relative to this expected value.  
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Specifically, in the standard model, the expectation at trial t is defined as 
 

(8) 𝐸𝑡 =
𝐻𝑡+𝐿𝑡

2
 

 

Where H and L are the two gamble values and the RPE term, R, is defined as 

 

(2) 𝑅𝑡 = 𝐴𝑡 − 𝐸𝑡 

 

where A is the trial outcome value, and then the model for mood is:  

 

(3) 𝑀𝑡 = 𝜖𝑡 +𝑀0 + 𝛽𝐶∑𝛾𝑘𝐶𝑡−𝑘

𝑡−1

𝑘=0

𝐼(𝐺𝑡−𝑘 = 0) + 𝛽E∑𝛾𝑘𝐸𝑡−𝑘

𝑡−1

𝑘=0

𝐼(𝐺𝑡−𝑘 = 1) + 𝛽𝑅∑𝛾𝑘𝑅𝑡−𝑘

𝑡−1

𝑘=0

𝐼(𝐺𝑡−𝑘 = 1) 

 

where 𝜖𝑡 is a random noise variate with some unknown distribution (we may assume it to be 

Normal with mean 0 and standard deviation 𝜎), 𝑀0 is the participant’s baseline mood, 𝛾 ∈ (0,1) 
is an exponential discounting factor, C is the non-gamble certain amount, G is an indicator of 

gambling chosen trials with I being the trials index, 𝛽𝐶 is the participant’s sensitivity to certain 

rewards during non-gambling trials, 𝛽𝐸 is the participant’s sensitivity to expectation and 𝛽𝑅 is the 

sensitivity to surprise during gambles. 

For the LTA model, we define the expectation as: 

(4) 𝐸𝑡 =
1

𝑡
∑𝐴𝑖

𝑡

𝑖=1

 

which is the average of all received outcomes Ai, over all trials from the first to current trial t. 

We define RPE again as 

(5) 𝑅𝑡 = 𝐴𝑡 − 𝐸𝑡 

 

and then the long-term average model for the mood is:  

 

(6) 𝑀𝑡 = 𝜖𝑡 +𝑀0 + 𝛽𝐸∑𝛾𝑘𝐸𝑡−𝑘

𝑡−1

𝑘=0

+ 𝛽𝑅  ∑ 𝛾𝑘𝑅𝑡−𝑘

𝑡−1

𝑘=0

 

where 𝛽𝐸 and 𝛽𝑅 are the participant’s sensitivity to expectation and to surprise, respectively. Note 

that here we did not distinguish between gambling and non-gambling trials, which was another 

divergence from the standard model. 

 

Our results showed that with the LTA model, the influence of earlier outcomes on mood is stronger 

than of recent outcomes (as demonstrated in figure 3a), in contrast to the strong weighting of more 

recent events in the standard model (Figure 3b). We also validated the primacy weighting of the 

LTA model with a t-test which showed that the weight of the first four events was significantly 

larger than of the last four events (with p=0.0036, t=8.34, CI=[0.08,0.18]). The stronger weight of 

earlier outcomes emerged from two separate aspects of the LTA model: First, that one’s 

expectation for the next reward was based on the average of all previously received outcomes and, 

secondly, that mood was determined not only by the current expectation but also by past 
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expectations. Additionally, the LTA model showed that the extent of induced mood changes 

depended mainly on the expectation term, as the weights of the expectation term 𝐸 were 

significantly higher than the weights of the R term (p=3.8e-4, t=3.7, CI=[0.0016, 0.0051]; see 

Figure S8 for the model parameters weights across all participants).  

  

Model comparison 

The LTA model outperformed the standard model when comparing the training error of the two 

models (Wilcoxon signed-rank test, p = 0.0204; training error for LTA: median MSE = 0.00262, 

IQR = 0.00496, training error for the standard model: median MSE = 0.00313, IQR = 0.00656). 

Moreover, the LTA model performed better in streaming predictions, where the ability of the 

model to predict within-participant subsequent mood ratings, not used in fitting the model, was 

evaluated. As depicted in Figure 3c, the LTA model was superior compared to the standard model 

specifically in accounting for transitions between moods; this was captured by comparing the error 

of streaming-prediction between the two alternative models (Wilcoxon signed-rank test, p< 

0.0001; LTA streaming prediction error: median MSE = 0.0040, IQR = 0.00747, standard model 

streaming prediction error: median MSE = 0.01153, IQR = 0.0122). The streaming prediction by 

the LTA model is also exemplified in the rightmost panel of figure 3c, showing the alignment of 

predicted and rated mood data in a single participant.  

 

Testing for other possible relations between previous experiences and mood 

We then tested this finding by implementing an additional model, which allowed us to 

parameterize and fit the optimal distribution of weights over all previous events. This model was 

flexible in respect to which previous events are most influential on mood, as a result of adding the 

following parameters to the expectation term (𝐸𝑡): a decay of the influence of previous outcomes 

𝑤𝑖, the number of trials included in the history of outcomes, tmax, and the decay constant τ ≥ 0, 

defined as follows: 

(7) 𝐸𝑡 =
1

𝑡
∑ 𝑤𝑖𝐴𝑖

𝑡𝑚𝑎𝑥

𝑖=1

 

(8) 𝑤𝑖 =
τ𝑖

∑ τ𝑗
𝑡𝑚𝑎𝑥
𝑗=1

 

 

The term for R and the mood model were defined similarly to the LTA model. This model fitted 

best with τ=0.8 and a decay of 0.01, which resulted again in early events having the strongest 

weights and weighting monotonically decreasing as events are more recent (see Methods for 

further details). 

 

We also tested the LTA model against several additional models: the LTA model with separate 

gamble and non-gamble terms, LTA model without exponentially accumulated average, a model 

with both LTA and standard model terms, a model where expectation is the average of LTA 

expectation and standard model expectation, and different combinations of the standard model 

terms and the standard model with combined gamble and non-gamble values. The LTA model 

outperformed all these alternative models with a significantly lower MSE, as shown by a p<0.05 

in the Wilcoxon signed-rank test (see Supplement for the description of all alternative models).  
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Figure 3: The Long-Term-Average model 
Model weights of previous events: (a) In the LTA model earlier outcomes had a stronger influence on 

mood. (b) In contrast, in the standard model there was a stronger influence of most recent outcomes on 

the current mood. (c) Model comparison using streaming prediction performance, on mood ratings not 

used for fitting the model. The two left panels show the trial-wise error in predicting mood for all 

participants (average across participants is depicted by a black line), and the rightmost panel shows an 

example participant mood data aligned with predicted mood values using the LTA model.  

 

 

Replication of results 

We replicated these computational findings on the independent confirmatory online sample, where 

we showed again that the LTA model outperformed the standard model in training error and 

streaming prediction of the MMI data (tested using a Wilcoxon signed-rank test with p<0.001 for 

both tests; training error for LTA: median MSE = 0.00627, IQR = 0.00891; training error for the 

standard model: median MSE = 0.00724, IQR = 0.01164; streaming prediction error for LTA: 

median MSE = 0.01015, IQR = 0.01386; streaming prediction error for the standard model: median 

MSE = 0.01609, IQR = 0.02169).  

 

3. Neural correlates of the effect of experience on mood 

 

The neural level model 

Finally, we sought evidence of a neural basis for the relationship between mood and early events, 

as defined by the expectation term of the LTA model. To this end, we searched for neural activity 

correlated with the subject level weights from the LTA model. Specifically, we ran a whole-brain, 

group-level ANOVA (3dMVM in AFNI27) with the weights of the LTA model as between-

participant covariates of neural activity (each participant’s neural activity was represented by a 

single whole-brain image of activation across all trials). We examined neural activity related to 

three different aspects of the task: activation during the pre-mood rating period (the question “How 
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happy are you at this moment?” is presented but the mood-rating option is not available yet), mood 

rating encoding (mood as a parametric regressor) during the pre-mood rating period, and stimulus 

based RPE encoding (RPE as a parametric regressor) during outcome period. Since these are three 

separate tests, we added a Bonferroni correction to the multiple comparison correction, which 

resulted in a p-value threshold of 0.005/3= 0.0017.  

 

Neural activity related to the effect of past events on mood  

We found a significant positive correlation between the weight of the expectation term (𝛽𝐸) from 

the LTA model and neural activity during the pre-mood rating period, focused in the ACC (figure 

4a). This implies that this region can regulate mood changes by mediating the influence of previous 

outcomes on mood. We found no relations of neural activity at this pre-mood rating time with 

other LTA model parameters. For task RPE encoding, we found a correlation with the mood 

intercept term (namely a positive correlation between mood intercept and RPE encoding in the 

right insula: 208 voxels, t=4.1, p=0.0017; and a few smaller clusters in the brain stem and 

paracentral lobule). We found no significant relations of neural encoding of mood values with the 

LTA model parameters. Moreover, we found no neural relations with the weights of the standard 

model; we show that the relation with the LTA expectation term is significantly stronger than with 

the standard model term, by contrasting between the neural relations with each of the models 

(Figure 4b). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a) Neural correlates of the individual LTA model expectation weights.   

The expectation term, i.e., the average of previous outcomes, 𝛽𝐸, estimated from mood ratings correlated 

at the whole brain level to individual neural activation preceding the mood rating in the ACC (corrected 

for multiple comparisons and a Bonferroni correction for the three 3dMVM models we ran: ACC cluster: 

132 voxels, t=4.28, thresholded at p≤0.0017, [-3,52,6]). (b) A contrast between the relation of brain 

activity with each of the models’ expectation term weights, 𝛽𝐸(LTA) > 𝛽𝐸(Standard Model). This 

contrast showed a significant difference between the models in the relation to brain signals (ACC cluster: 

529 voxels, t=5, [-11,49,9]; corrected for multiple comparisons and a Bonferroni correction for the three  

3dMVM models we ran with a threshold of p<0.0017). 
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Discussion  

 

We provide a neuro-computational account of how mood is influenced by the history of previous 

experiences. We addressed the question – which past experiences shape mood the most? To answer 

this question, we developed the MMI, an individualized reward-based paradigm which can 

generate substantial mood transitions, in both positive and negative directions, across healthy, 

depressed, adolescent and adult participants. The MMI can uniquely adjust in real-time the reward 

and punishment intensities to ensure these are continuously influential on mood. We used this 

paradigm to show that mood changes are dominated by early experiences which have a large and 

persistent effect on mood also when environments change. Moreover, we show that this 

relationship is mediated by neural activity in the ACC.  

 

Generating parametric mood transitions   

We developed the MMI paradigm to shift mood parametrically to allow quantification and 

modeling of mood changes. While prior mood induction approaches are qualitative28-30, the MMI 

generates a quantitative manipulation, which can adjust the reward and punishment intensities to 

influence mood. Such a closed-loop strategy is commonly used in engineering for controlling 

complex systems (whether it is room temperature or car velocity), and it can also be found 

endogenously, in controlling hormone levels, for example31-33. The importance of using this 

system-level approach is in overcoming the strong between-individual variability in mood ratings 

at baseline (as evident by a range of values between 3.1-100%, SD=18.9%, χ2=90.5, p<0.001, and 

as we can also expect across different ages34), and the differential responsiveness of participants 

to RPEs (as depicted by Figure 2c). Moreover, to be able to determine which parameters influence 

mood changes, it was also important that the MMI manipulation was not prone to demand effects, 

where participants respond to satisfy the experimental goal. Some of the best-known mood 

manipulations face this limitation, for example by asking individuals to imagine situations that 

evoke certain feelings30. We can conclude that overall participants were not aware of the MMI 

strategy, as they 1) rated the task as fair (90% rated as fair, see methods) and 2) continued making 

nonoptimal gamble choices across the task. Since the MMI algorithm compensated for low mood 

levels or low mood responsiveness, we could shift the mood of both healthy and depressed 

individuals, and therefore find general characteristics of mood changes. We did not focus in this 

work on differences between healthy and depressed mood dynamics, although future extensions 

of the MMI could address such questions as well. Moreover, we present one possible 

implementation of the paradigm, but other approaches—including open loop (i.e., using predefined 

stimuli intensities)—might be useful too. Other types of reward stimuli, for example, could be 

parametrized to modify mood and characterize relations between mood and other reward 

modalities (e.g., social rewards). Additional methods for tracking mood could be implemented in 

the future, improving the validity of subjective mood ratings. Whilst the efficiency of the MMI 

paradigm is useful for studying mood shifts in a parametric way in the laboratory, it also opens the 

way for a new type of devices with a clinical utility. It is conceivable that this approach could be 

extended to shift mood in depression, but this requires a study of the effects of the MMI on mood 

outside the trial setting35.  
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The importance of past events in forming mood changes   

We developed a computational model to test the influence of previous events on mood changes. 

Previous models suggested that mood depends primarily on recent events2-5. In those models, 

mood either followed recent RPEs or recent outcomes (the finding of a stronger effect of outcomes 

was considered as possibly due to the task having no clear expectation phase). However, as the 

LTA model suggests, early events have a strong influence on mood, and moreover, the influence 

of more recent events decreases monotonically over time. Also, when fitting a group of models 

which allowed the influence of all previous events to vary (by parametrizing the discounting of 

previous outcomes within the expectation term), we found a similarly strong relation between early 

events and mood. Specifically, the LTA model gave higher weight to early events by considering 

expectation as a long-term average of all previous outcomes. It outperformed the other tested 

models using two different performance criteria (i.e., goodness of fit as well as streaming 

prediction of mood using only a subset of previous mood ratings). These results were also 

replicated with a preregistered analysis of data collected online from a different age group (adult 

participants). This encapsulates in quantitative terms long-standing intuitions about mood, namely 

that it integrates over the history of rewarding or punishing events1. Moreover, from a clinical 

perspective, the LTA model formulates how early negative events can have a long-lasting effect 

on mood36-38. Importantly, it shows that the longer one is in any given reward (or punishment) 

context, the less influence each additional event could have on mood. Therefore, this model holds 

implications for how mood disorders may be conceptualized.  
 

Neural mediation of the influence of previous outcomes on mood 

We then linked these findings to neural activity and showed that the relationship between mood 

and previous events has a neural underpinning. Specifically, the weight of the expectation term, 

which captures the influence of early experiences on mood, was positively correlated to activation 

of the ACC (during the presentation of the mood question, prior to mood rating phase). This region 

has been often indicated as involved in mood regulation10-13,39. Moreover, previous studies showed 

that ACC activation mediated decision making relative to previous outcomes40-43. Therefore, our 

results formulize a specific role for the ACC in emotion regulation – where it is mediating between 

past early experiences and mood changes. This study also demonstrates the strength of integrating 

model-driven parameters with fMRI data44,45: The model-based analysis enabled us to move 

beyond localizing task-related signals to identifying a neural relation to the complex experience-

mood interaction (otherwise not detectable by typical behavioral measures). Nonetheless, fMRI 

imaging data faces several analytic limitations. For example, there is a limited capability to 

distinguish between neural encoding of temporally overlapping processes. Running the MMI in 

the future with imaging techniques of higher temporal resolution might enable a better distinction 

between spatial and temporal encoding of outcome versus mood, for example. Moreover, detection 

of relevant activations of small regions, such as the Amygdala, is limited in our fMRI recording 

and analysis. These results suggest a quantitative measure of the ACC mediation between past 

experiences and mood, which opens the door for neural-based characterization of individual mood 

states.  
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Our mood would likely become low after a job interview, if we did not get the answer right to an 

important question. As the LTA model suggests, getting that question wrong at the beginning of 

the interview will have a more persistent negative impact on our mood, which is harder to override. 

Similarly, this computational notion relates to why we consider it important to start off with the 

right foot, why we hope to make a good first impression, how we can decide to stop watching a 

movie after seeing just the beginning, and in this very context- why we tend to invest so much 

effort in choosing the right first sentence for a manuscript. Moreover, there is empirical evidence 

that it is feasible to use just a first instance of an interaction to draw inferences about people’s 

character46,47. In the clinical context, our model suggests that the potential to elevate individual’s 

mood might be constrained by early experiences. Moreover, it shows how over time new events 

can have a smaller influence relative to past experiences. Thus, to increase mood we would need 

to adjust the intensity of rewards based on individual history. As we show, a closed-loop approach 

can be useful in generating such individualized events that are potent enough to change mood. The 

paradigm, model, and results we present here are important for understanding mood changes and 

suggest new directions for mood interventions.    

 

 

 
 

Methods  

 

1. Participants  

 

Lab-based discovery sample: 80 adolescents (70.5% females, mean age = 15.4 (± 1.4 SD) years, 

43 participants diagnosed with Major Depressive Disorder, mean depression score MFQ=5.8 (± 6 

SD)) participated in the study for monetary compensation. In this sample, the study included 

completing the MMI task in an fMRI scanner and answering debriefing questions after completion. 

Participants were compensated for scanning and they also received a separate bonus between $5 

to $35, in proportion to the points they earned during the task. Participants were screened for 

eligibility and inclusion criteria were the capability to be scanned in the MRI scanner and not 

satisfying diagnosis criteria for disorders other than depression according to DSM5. Overall, five 

participants were excluded from analyses due to incomplete data files, and three additional 

participants were excluded due to repeatedly rating a single fixed mood value for an entire block 

of the task, reaching a final sample of n=72. Every participant received the same scripted 

instructions and provided informed consent to a protocol approved by the NIH Institutional Review 

Board. 

 

Online confirmatory sample: 80 participants recruited from Amazon Mechanical Turk (MTurk) 

system completed the MMI task (41.2% females, mean age = 37.7 ± 11.2). We analyzed the data 

in a pre-registered framework provided by OSF, to confirm our lab-based results. The MTurk 

Worker ID was used to distribute a compensation for completing the task of $8 and a separate task 

bonus between $1 to $6, according to the points gained during the task. The study population was 

ordinary, non-selected adults of 18 year of age or older. Participants were not screened for 

eligibility, all individuals living in the US and who wanting to participate were able to do so. 

Participants were restricted to doing the task just once. Three participants were excluded from 

analyses due to an error in the task script where mood ratings were inconsistently spread along the 

3 blocks.  
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Age   

      Average 15.49 

      SD 1.48 

Sex   

       Male 17 

       Female 55 

Race   

       Asian 8 

       Black/African American 9 

       Indian/Alaska Native 1 

       Multiple Race 10 

       Hawaiian/Pacific Islander 0 

       Unknown 2 

       White 42 

MFQ Score   

      Average 5.81 

      SD 5.98 

Diagnosis   

       Healthy Volunteer 29 

       MDD 43 

Table 1: Lab-based discovery sample demographics (n=72)  

 

 

 

Age  

       Average 37.76 

       SD 11.23 

Sex   

       Male 46 

       Female 34 

CESD score   

      Average 12.99 

      SD 12 

Table 2: Online confirmatory sample demographics (n=80)  
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2.The Mood-Machine-Interface (MMI) paradigm 

 

Task design:   

This task was designed to manipulate mood to target values by modifying Reward Prediction Error 

values in real-time based on participant mood ratings. The task consisted of 3 blocks, each 

comprised of 27 gambling trials and 11-12 mood ratings. Blocks were separated by a short break, 

typically less than 1 min long. In the lab-based task (done in the fMRI scanner) each block lasted 

about 8 min (24 min for the whole task), while the online task on MTurk had shorter inter-trial 

intervals and therefore took 15 min to complete (5 min for each block; all other characteristics 

remained unchanged). Before starting the task, participants were instructed how to rate their mood 

and to make gamble choices as quickly as possible. They were not told whether potential gamble 

outcomes were or were not equally likely. Moreover, participants were told that the payment they 

will receive at the end would be proportional to the number of points they gain during the task.   

 

RPE values – the input to the task from the controller:   

During the task participants received different RPEs using a simple gambling task. In each trial 

participants made a choice whether to gamble or not. An RPE value was generated per trial by first 

presenting the participant with 3 potential monetary outcomes: one is certain and two are potential 

outcomes from a gamble. Outcomes for chosen gambles are revealed after a brief delay period. 

The RPE was constructed by the difference between the received reward and the trial’s expectation 

(the mean of the two gamble values). Each trial consisted of three phases: (1) Choice: 3 seconds 

during which the participants presses left to get the certain value or right to gamble between two 

values (using a four-button response device); (2) Anticipation: only the chosen certain value or the 

two gamble options remain on the screen, for 4 seconds. (3) Outcome: A feedback of the outcome 

value is presented for 1 second, followed by an inter-trial-interval of 2-8 seconds. Participants 

completed 81 trials, divided into three blocks of 27 trials each.    

 

Mood ratings – the output measure from the task:   

Participants also rated their mood after every 2-3 gambling trials. The mood rating consisted of 

two separate phases: (1) Presentation of the mood question: “How happy are you at this moment?” 

for a random duration between 2.5-4 seconds. (2) Rating mood by moving a curser along a 

scale labeled “unhappy” on the left end and “happy” on the right end. Each rating started from the 

initial location of the center of the scale, and participants had a time window of 4 seconds to rate 

their mood. Participants were instructed to move the cursor by holding down continuously the left 

or right button. The final cursor position was taken as their mood rating. Each rating was followed 

by a 2-8 seconds jittered interval.  

 

Real-time modification of RPE values:    

We based the mood shifting algorithm on the finding that momentary mood reflects cumulative 

RPEs. If this relationship is monotonic, accumulating positive RPE values will increase mood and 

accumulating negative RPE values will lower mood. We therefore developed an algorithm which 

recalculates in real-time the RPE value for the next trial that would be predicted to achieve a 

desired mood change. This strategy of a closed-loop control is formally derived from control of 

non-linear systems in engineering. It is used to bring a system to a new state and maintain 

it (whether the state is room temperature, velocity in car cruise control, angle in flight control 

etc.). A similar circuit is found also endogenously (most hormonal systems are negative feedback 
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loop systems) and in modern medical therapeutics. The development of the exact algorithm 

parameters and gains of control included a trial and error relative to mood changes observed in a 

group of pilot participants. During this process we searched for the optimal step of RPE 

manipulation, that is minimal on the one hand but still shows a sufficient mood response on the 

other.  

 

Specifically, in each iteration of mood rating, the current mood at time t (M) was compared to the 

block mood target value (MT), being 100% in the first and third blocks and 0% during the second 

mood-decreasing block. To bring the mood value as close as possible to the target value MT, the 

algorithm aimed at minimizing the error between the rated mood and the target mood value (ME): 

 

(1)   𝑀𝐸(𝑡) =

{
 
 

 
        

𝑀𝑇 −𝑀(𝑡)

𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛
, 𝑀𝑇 = 100% 𝑜𝑓 𝑚𝑜𝑜𝑑 𝑠𝑐𝑎𝑙𝑒

 
𝑀(𝑡) − 𝑀𝑇

𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛
, 𝑀𝑇 = 0% 𝑜𝑓 𝑚𝑜𝑜𝑑 𝑠𝑐𝑎𝑙𝑒

 

 

where the resulting 𝑀𝐸 is a value ranging between [0-1], 𝑀𝑇 is the mood target value and 𝑀𝑚𝑎𝑥 −
𝑀𝑚𝑖𝑛 is the range of possible mood values which is between 0-100%.   

The 𝑀𝐸 value was then mapped to a change in the task RPE value, using a PI controller. This 

control algorithm enabled the calculation of an efficient updating required for the next trials, by 

using both a proportional and an integral error term. Importantly, the integral error term (the sum 

of previous  𝑀𝐸 values), enhances the RPE modification when mood remains in the same distance 

from the Target value (the proportional term in such a case would provide repeatedly the same 

RPE value, which can limit the efficiently of the manipulation). This term was reset at the 

beginning of each block to avoid a carryover of mood errors across the positive and negative mood 

changes.  

According to 𝑀𝐸 the next 2-3 trials RPE value (t+1) was recalculated, such that the larger this 

error, the stronger was the modification of the RPE value, as follows:  

 

 

 

 

 

 

 

where RPEbaseline is a fixed value that was pre-calibrated while developing the task to the value of 

14 points (so RPE values change in a minimal yet sufficient step size), and ISCongruent is a 

randomly selection such that 70% of trials are congruent with the control algorithm and 30% are 

incongruent -  providing an RPE value with the opposite sign to the block context (negative during 

the first and third mood-increasing blocks and positive during the second mood-decreasing block). 

These incongruent RPE values were set to be smaller in amplitude, by decreasing the integral 

cumulative error value by a factor of 3 in equation (2), and an additional reduction in the outcome 

value as shown in equation (5)). As a result, for example during the first mood increase block, on 

average the size of these incongruent RPE values was -1.5±0.8SD. Moreover, to maintain 

unpredictability also the location of the higher gamble value H(t) and the lower value L(t), was 

randomly assigned to appear at either the upper or lower gamble value squares. These two gamble 

(2) 𝑅𝑃𝐸(𝑡 + 1) =

{
 
 

 
 𝑅𝑃𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑀𝐸(t) +∑𝑀𝐸

𝑡

1

,           𝐼𝑠𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 ≤ 70%  

𝑅𝑃𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝑀𝐸(t) +
∑ 𝑀𝐸
𝑡
1

3
 ,   𝐼𝑠𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 > 70%
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values were recalculated per each of the 2-3 trials until the next mood rating, using the same new 

RPE(t+1), as follows:   

 

               (3)                 𝐿(𝑡 + 1) = 𝐻(𝑡 + 1) − 𝑅𝑃𝐸(𝑡 + 1) 
 

where H(t+1) was a value randomly reassigned from a list ranging between [-1.5,14] with a step 

size of 0.2.   

Then the certain value (CR) which appeared on the left side, was derived according to the two 

gamble values (while ensuring that the certain value cannot provide a reward larger than 2 points): 

               (4) 

𝐶𝑅(𝑡 + 1) = {

𝐿(𝑡 + 1) + 𝐻(𝑡 + 1)

2
, 𝐶𝑅(𝑡 + 1) ≤ 2

𝐿(𝑡 + 1)

2
,                                𝐶𝑅(𝑡 + 1) > 2

   

 

And last, which outcome value (A) is going to be received when a gamble is chosen in the next 

trial, was assigned relative to the block number and whether this is a congruent trial or not: 

  

               (5) 

𝐴 (𝑡 + 1) =

{
 
 
 
 

 
 
 
 
   𝐻(𝑡 + 1),                             𝑏𝑙𝑜𝑐𝑘 =  1,3;  𝐼𝑆𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 ≤ 70%

 
𝐿(𝑡 + 1),                              𝑏𝑙𝑜𝑐𝑘 =  2;  𝐼𝑆𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 ≤ 70%

   

 
 

𝐿(𝑡 + 1)

4
,                             𝑏𝑙𝑜𝑐𝑘 =  1,3;  𝐼𝑆𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 > 70%

𝐻(𝑡 + 1)

4
,                            𝑏𝑙𝑜𝑐𝑘 =  2;  𝐼𝑆𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 > 70%

   

 

Hence a feedback loop was created between the input to the system and the output measure 

(see Figure1 for illustration of the whole circuit). This cycle continued throughout the task, with 

each new mood rating used to update the reward values for the next series of 2-3 trials. This setup 

generated personalized “reward environments” in each block, as the task stimuli were calculated 

online and were not pre-determined like in conventional paradigms.    

 

Importantly, most participants were unaware of the manipulation. After doing the task participants 

rated their agreement with the statement “The task was unfair” (possible answers were 0-1-2-3, 

where 0=strongly disagree and 3=strongly agree). The average rating value across participants was 

0.36 (SD=0.69), while 6/72 participants rated the value 2 (agree), and a single participant from the 

sample rated the value of 3 (strongly agree). Other questions in the debriefing form validated that 

participants had no technical difficulties in rating their mood nor significant issues with the 

scanning experience.     
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3. The LTA model  

 

Model comparison:  

We started by comparing two alternative models, the standard mood model and the LTA model. 

The criteria for comparison between the models were:   

(1) the model fit, by testing whether the LTA model has statistically significantly lower training 

error on the 3-block data. It should be also considered that the LTA model has one fewer parameter, 

which indicates it provides a better description of mood fluctuations in our task. 

(2) Streaming prediction (MSE). We tested whether the LTA model has statistically lower 

streaming prediction error on the 3-block data. The streaming prediction error of a model is defined 

as the average error when predicting the t-th mood rating using a model fit on the first t-1 mood 

ratings.  

Both comparisons were tested using the Wilcoxon signed-rank test, with the one-sided null 

hypothesis MSE_LTA >= MSE_Standard model. We chose a one-sided null because the 

conservative null would be that the new approach is equal or worse than the existing approach. 

The Wilcoxon signed-rank test tests the null hypothesis that two related paired samples come from 

the same distribution. In particular, it tests whether the distribution of the differences x - y is 

symmetric about zero. 

 

Model fitting: 

All models were fit using Tensorflow.  We use the following notations to define the models:   

Let s = 1, … , ns index the subjects from 1 to ns, the number of subjects; 

t=1,2,…, the trial of the game (1 is the first round); 

Cs(t), the certain, non-gamble value, which was possible to choose on this trial; 

Hs(t), the maximal gambling amount for the tth trial; 

Ls(t), the minimal gambling amount for the tth trial; 

Gs(t), whether or not the subject took the gambling option, 1=Gamble, 0=Certain choice; 

As(t), the actual value the subject received at the end of the trial; 

Ms(t), subject's mood rating. 

Mood ratings are rescaled between 0 and 100. This value is missing in trials where the 

participant was not prompted to rate mood. 

The general form of the models (both LTA and Standard model) can be described by the 

following parametric model:  

(6)  𝑀𝑠̂(𝑡) = μ𝑠 +∑β𝑣,𝑠∑γ𝑠
𝑘𝑋𝑣,𝑠(𝑡 − l)

𝑡

l=0

𝑝

𝑣=1

 

where s indexes the subject, t is the trial, v is one of p time-varying variables, µs is the subject-

specific baseline mood, and v,s are subject-specific coefficients for each time-varying variable 

(note that we constrain 1,…,3 ≥ 0).  

For instance, in the standard model, the model has p=3 time-varying variables: 

X1 is the certain amount (C) in rounds where the subject did not gamble,  

 

                                           (7)   X1, s (t) = Cs(t) I(Gs(t) = 0) 
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X2 is the expected gamble (𝐸𝑡) in rounds where the subject did gamble,  

 

(8)  X2,s(t) =
Hs(t) + Ls(t)

2
I(Gs(t) = 1) 

 

X3 is the reward prediction error (RPE) in rounds where the subject did gamble (𝑅𝑡), 
 

        (9)  X3,s(t) = I(Gs(t) = 1) (As(t) − X2,s(t)) 

 

Meanwhile, in the Long-Term Average (LTA) model, there are p=2 time-varying variables: 

X1 is the average of the previous actual amounts (𝐸𝑡 in the main text), 

    (10)   X1,s(t) =
1

t
∑As(i)

t

i=1

 

X2 is the reward prediction error (RPE) with respect to the average actual amount (𝑅𝑡), 
 

(11) X3,s(t) = As(t) − X1,s(t) 
 

And we again constrain 1, 2 ≥ 0. 

In order to facilitate optimization, we further re-parameterized s by defining 

(12) γ𝑠 =
1

1 + exp(−ξ𝑠)
 

so that 𝜉𝑠 is an unbounded real number. 

 

We found that the use of group-level regularization was necessary in order to stabilize the 

estimated coefficients. This took the form of imposing a variance penalty on 𝜉 and a variance 

penalty on each coefficient v. The empirical variance is defined as 

(13) 𝑉𝑎𝑟(ξ) =
1

𝑛𝑠
∑(ξ𝑠 − ξ̅)

2

𝑛𝑠

𝑠=1

 

where 𝜉̅ is the group mean: 

(14) ξ̅ =
1

𝑛𝑠
∑ξ𝑠

𝑛𝑠

𝑠=1

 

Likewise, we define Var(Xv) for v = 1,…, p. 

The objective function is therefore 

 

(15) minimize ∑∑(𝑀𝑠̂(𝑡) − 𝑀𝑠(𝑡))
2

𝑡∈𝑇

𝑛𝑠

𝑠=1

+ λξ𝑉𝑎𝑟(ξ) + λβ∑𝑉𝑎𝑟(β𝑣)

𝑝

𝑣=1

 

 

where T is the set of trials where Ms(t) was defined. Optionally, one can also discard the first few 

trials in T to minimize window effects (we require t ≥ 11). 
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Model development process:  

For both the LTA and standard model, we chose the group regularization constants by creating 

simulated datasets with realistic parameters and selecting the regularization parameters from a grid 

that had the best performance. The grid consisted of powers of 10 from 0.001 to 10000.  For both 

models, the regularization parameters with the best performance in recovering the simulation 

ground truth were λξ = 10 and λβ = 100. The LTA model represented the best fit also among the 

family of models with a variable form of the distribution of the weights of previous events on 

mood (see Figure S9 for examples of possible distributions that were realized via this generic 

model).  

The model development used only an initial sample of 40 randomly selected participants (from the 

discovery sample of 72 adolescents). Then results were then confirmed on 60 random participants 

of this adolescent sample. Then, we held another separate replication analysis on a sample of 80 

adults doing the task online (the entire analytic plan for this replication was pre-registered). 
 

3. Neural activity analysis 

 

fRMI data acquisition: 

Participants in the adolescent discovery sample, performed the task while scanning in a General 

Electric (Waukesha, WI, USA) Signa 3-Tesla magnet. Task stimuli were displayed via back-

projection from a head-coil mounted mirror to a screen at the foot of the scanner bed. Foam 

padding was used to constrain head movement. Behavioral data were recorded using a hand-held 

FORP response box. Forty-seven oblique axial slices (3.0-mm thickness) per volume were 

obtained using a T2-weighted echo-planar sequence (echo time, 30 ms; flip angle, 75°; 64 × 64 

matrix; field of view, 240 mm; in-plane resolution, 2.5 mm × 2.5 mm; repetition time was 

2000 ms). To improve the localization of activations, a high-resolution structural image was also 

collected from each participant during the same scanning session using a T1-weighted 

standardized magnetization prepared spoiled gradient recalled echo sequence with the following 

parameters: 176 1-mm axial slices; repetition time, 8100 ms; echo time, 32 ms; flip angle, 7°; 

256 × 256 matrix; field of view, 256 mm; in-plane resolution, 0.86 mm × 0.86 mm; NEX, 1; 

bandwidth, 25 kHz.   

 

Data preprocessing:   

Analysis of fMRI data was performed using Analysis of Functional and Neural Images (AFNI) 

software version 2.56 b48. Standard pre-processing of EPI data included slice-time correction, 

motion correction, spatial smoothing with a 6-mm full width half-maximum Gaussian smoothing 

kernel, normalization into Talairach space and a 3D non-linear registration. Each participant's data 

were transformed to a percent signal change using the voxel-wise time series mean blood oxygen 

level dependent (BOLD) activity. Images were analyzed using a mixed event-related and block 

design. Time series were analyzed using multiple regression49, where the entire trial was modeled 

using a gamma-variate basis function. The model included the following task phases: Choice time: 

an up to 3 seconds interval, from the presentation of the 3 monetary values to the button press, left 

for the certain amount or right to gamble. This phase was covered by three regressors in the model, 

a separate one for each block. Anticipation time: the interval from making the choice to gamble to 

receiving the gamble outcome. Outcome time: a 1 second interval where the received outcome is 

shown; split to 3 regressors, a separate one for each block. The Mood Question time: a variable 
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interval between 2.5-4 seconds, when the mood question is presented although the option to rate 

mood is still disabled. Rating time: a 4 seconds interval when participants rate their mood.  

The model also included six nuisance variables modeling the effects of residual translational 

(motion in the x, y and z planes), rotational motion (roll, pitch and yaw) and a regressor for baseline 

plus slow drift effect, modeled with polynomials (baseline being defined as the non-modeled 

phases of the task).  

To this model we also added two parametric modulators: trial-wise RPE values (RPE was set to 

zero when the certain value is chosen instead of gambling; modulation is of the respective outcome 

times) and mood ratings (modulating respectively the times preceding the mood rating, i.e., the 

mood question phase).  

Echo-planar images (EPI) were visually inspected to confirm image quality and minimal 

movement. 

Statistical significance at the group level, was determined using 3dClustSim (the latest acceptable 

version in AFNI with an ACF model) which generated a corrected to p<0.05 voxel-wise 

significance threshold of P < 0.005 and a minimal cluster size of 100 voxels. Region-of-interest 

(ROI) approach was used to determine the individual average RPE encoding in the striatum 

(coordinates were derived from the Talairach atlas). First, the unthresholded individual whole-

brain RPE encoding maps were masked for the striatum region (bilateral putamen) and then the 

mean RPE encoding value across all voxel values included in that region was extracted.  

 

4. Statistical testing of MMI effects 

 

We applied a linear mixed effects model to estimate the significance of mood, behavior and neural 

activity changes over time. This model enabled the estimation of the across-participants 

significance of mood change while controlling for the within-participant variability in mood 

change slopes and intercepts, defined as a random effect. Specifically, the independent variable 

was the response variable of interest (mood, behavioral measure, ROI neural activation) and the 

dependent variable time (trial index) and time squared, with the two different time variables 

considered as random effects. For example, the model for estimating mood change was formalized 

as:  

                                       (6)  Mood ~ time + time2 + (time + time2 |participant) 

 

This model was applied across the three blocks of the experiment and P-values were considered 

significant at p<0.05.  
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Figure S1: A summary of MMI task parameters across blocks. (a) RPE values which participants 

received along the task: in this presentation only trials where a gamble was chosen have an RPE value, 

trials where the non-gamble value was chosen have an RPE of zero. Moreover, both congruent (70% of 

trials) RPEs and incongruent values are presented. This presentation therefore only shows RPE values 

which were experienced in practice by participants, which differs from the control-intended RPE values 

(although the trend across and within blocks is overall similar). (b) Outcome values received during the 

task, of both gamble and non-gamble trials. (c) The mean between the two gamble options (the 

expectation EV term in the standard model by Rutledge et al., 2014). (d) The certain non-gamble values 

along the task. All curves are the average across all participants with SEM as the shaded region (values 

are derived from the lab-based exploratory sample of 72 adolescents). Vertical lines depict the three task 

blocks. 

 

 

 

 

 

a b 

c d 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/815944doi: bioRxiv preprint 

https://doi.org/10.1101/815944
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

Figure S2: A summary of MMI mood ratings and task parameters across blocks, split between 

healthy and depressed participants. Depressed are participants that meet criteria for history or ongoing 

Major Depressive Disorder (according to DSM5, n=43 of the 72 lab-based adolescent participants). (a) 

Mood ratings, averaged across healthy (blue) and depressed (black). (b) RPE values as intended by the 

controller: in this presentation all trials RPE values, both congruent (70% of trials) RPEs and incongruent 

values, are presented. (c) Outcome values received during the task, resulting from both gamble and non-

gamble trials. All curves are the average across all participants with SEM as the shaded region. All curves 

are the average across all participants with SEM as the shaded region. Vertical lines depict the three task 

blocks. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Distribution of the Depression score (MFQ), across all 72 lab-based adolescent 

participants. 
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 Figure S4: The MMI paradigm shows also substantial changes in behavior across blocks. (a) 

Gambling probability, averaged across all participants. Probability is calculated by a moving average of 

the binary vector of the choice to gamble or not (denoted by a value of 1 or 0, respectively). (b) Response 

times, that is the time from presentation of the three monetary values until participant is making the 

choice of whether to gamble or not (by pressing left or right). All curves are the average across all 

participants with SEM as the shaded region. Vertical lines depict the three task blocks. 
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Figure S5: Respective changes in RPE and mood encoding during the MMI. 

A significant block effect on RPE encoding. First, RPE encoding was derived using the trial RPE values 

as the parametric linear modulator of the BOLD signals of each block, during the outcome time (RPE=0 

when the certain value is chosen rather than the gamble). Then a group level ANOVA model (3dMVM in 

AFNI) was run with the block index as the explanatory variable (ACC: F=11.16, 629 voxels, Insula: 437 

voxels, F=19.88; cluster extends also over striatum: 358 voxels, F=15.11) (b) Comparison between RPE 

encoding across blocks at the whole brain group level. Leftmost image presents the contrast between RPE 

encoding during the third block of second mood increase versus the mood decrease block; the middle 

image contrasts between the two mood increase blocks; and the rightmost image between the first mood 

increase block and the mood decrease block. (c) Comparison between RPE encoding across the blocks at 
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the individual ROI level (n=67). Average activation in the anatomical mask of the striatum (left and right 

putamen, coordinates derived from the Talairach atlas). Shaded regions present SEM. (d) Mood encoding 

at the whole brain level: Mood encoding values are derived using the mood ratings as the parametric 

linear modulator of the BOLD signals during the pre-rating interval (at this interval, which lasts between 

2.5-4 seconds, participants are presented with the mood question, but cannot rate their mood yet). Cluster 

peaks in the NAcc and covers the ACC and Caudate (337 voxels, t= 4.96).  

 

 

 

 

 

 

 

 

 

 

 
Figure S6: RPE encoding maps per block. RPE encoding is derived using the trial RPE values as the 

parametric linear modulator of the BOLD signals of each block, during the outcome time (RPE=0 when 

the certain value is chosen rather than the gamble). These images are corrected for multiple comparisons 

(see Methods). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S7: Replication of the MMI paradigm on the confirmatory adult sample, using Mechanical 

Turk online framework. (a) Mood ratings, each curve is of one participant (values are smoothed with a 

moving average of the last 5 steps). (b) The percentage of mood change (from the first mood rating), 

averaged across all participants. First, mood ratings are transformed to a percentage from individual 

starting mood rating. Then all percentile mood curves are averaged (shaded region is standard error of the 

mean). Vertical lines depict the three task blocks. 
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Figure S8: The LTA model parameters across subjects (error bars are standard deviation).  

 

 

 

 

 

 

 

 

  
   

 

 

 

 

 
 

Figure S9: Model weights of previous events: Examples for various distributions of the influence of 

previous events on mood; these are achieved by varying the expectation term via the decay and the 

maximal number of previous trials parameters. A value of LTA gamma = 0.8 and a decay of 0.01, was the 

best fit, which results in a primacy weighting of the influence of previous events on mood. 
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Contrast Region   Voxels xpeak ypeak zpeak 
Beta 

peak 
Statistic 

(df =71) 

                       Group ANOVA model for the block effect on RPE encoding             
F value 

 Right Anterior Cingulate 629 -3.8 -21.2 23.8  11.16 
 Right Insula 437 -33.8 -21.2 3.8  19.87 
 Right Thalamus 358 -3.8 26.2 -3.8  15.17 
 Left Middle Frontal Gyrus 312 41.2 -36.2 13.8  12.88 
 Left Inferior Frontal Gyrus 308 26.2 -13.8 -8.8  17.61 
 Right Precentral Gyrus 157 -33.8 -18.8 36.2  10.60 
 Right Superior Temporal Gyrus 135 -53.8 48.8 11.2  11.20 
 Right Posterior Cingulate 83 -21.2 56.2 6.2  10.23 
 Right Cingulate Gyrus 80 -21.2 -1.2 28.8  8.48 
 Right Caudate 59 -16.2 23.8 21.2  12.35 
 Right Superior Temporal Gyrus 53 -48.8 23.8 -1.2  13.41 

                     Group one sample t-test of RPE modulation activation values 
t value 

block 3> block 2 Right Superior Temporal Gyrus 

(and right and left Insula, 

Caudate, Putamen) 

4664 -51.2 -11.2 1.2 0.07 5.08 

 Right Precentral Gyrus 1016 -23.8 18.8 66.2 -0.08 -3.12 

 Left Middle Frontal Gyrus 504 46.2 -43.8 11.2 -0.13 -4.48 

 Left Postcentral Gyrus 490 56.2 16.2 13.8 -0.04 -4.68 

 Left Superior Frontal Gyrus 451 8.8 -36.2 51.2 -0.05 -2.92 

 Right Superior Temporal Gyrus 407 -58.8 48.8 16.2 0.03 5.13 

 Right Cingulate Gyrus 385 -1.2 21.2 38.8 0.04 4.41 

 Left Precuneus 349 31.2 73.8 41.2 -0.06 -6.64 

 Right Precentral Gyrus 291 -56.2 3.8 6.2 -0.05 -4.55 

 Right Middle Occipital Gyrus 285 -36.2 83.8 13.8 0.05 3.85 

 Left Posterior Cingulate 230 3.8 38.8 11.2 -0.07 -3.85 

 Right Precuneus 164 -13.8 68.8 43.8 0.02 3.47 

 Right Middle Temporal Gyrus 154 -51.2 16.2 -6.2 0.03 5.47 

 Right Middle Frontal Gyrus 140 -31.2 -53.8 21.2 0.05 4.37 

 Left Middle Frontal Gyrus 121 36.2 3.8 43.8 0.02 6.75 

 Left Cerebelllar Tonsil 115 11.2 51.2 -36.2 0.03 3.86 

 Left Middle Occipital Gyrus 115 41.2 66.2 8.8 0.02 3.05 

 Left Inferior Temporal Gyrus 94 53.8 51.2 -11.2 -0.07 -4.76 

 Left Superior Frontal Gyrus 92 31.2 -46.2 26.2 0.03 2.97 

 Left Middle Frontal Gyrus 81 51.2 -8.8 36.2 -0.04 -3.38 

 Right Subcallosal Gyrus 75 -21.2 -3.8 -13.8 -0.05 -3.90 

 Left Parahippocampal Gyrus 70 13.8 16.2 -16.2 -0.04 -3.05 

 Left Inferior Parietal Lobule 65 58.8 43.8 23.8 0.04 3.56 

 Right Inferior Occipital Gyrus 56 -43.8 73.8 -6.2 0.02 3.26 

 Right Insula 52 -26.2 31.2 21.2 -0.02 -3.64 

 Left Inferior Occipital Gyrus 50 31.2 86.2 -6.2 0.05 3.37 

 Right Superior Parietal Lobule 50 -16.2 56.2 63.8 -0.02 -3.21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/815944doi: bioRxiv preprint 

https://doi.org/10.1101/815944
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

 

Table-s1. Whole brain level results. Values depicted black are corrected for FWE to p<0.05 at the whole 

brain level, with p<0.005 and minimal cluster size of 102 voxels. Values in grey are showing clusters >50 voxels 

and below the 102 voxels threshold. Coordinates are according to the Talairach-Toutnoux Atlas. 

block 3> block 1 Right Caudate 1190 -6.2 -8.8 13.8 0.26 2.98 
 Right Cingulate Gyrus 282 -1.2 33.8 31.2 0.14 2.98 
 Right Precentral Gyrus 192 -41.2 -3.8 36.2 0.13 2.95 
 Right Angular Gyrus 136 -31.2 53.8 38.8 0.19 3.01 
 Left Precentral Gyrus 133 36.2 -1.2 36.2 0.13 3.34 
 Right Superior Frontal Gyrus 102 -36.2 -41.2 31.2 0.15 2.99 
 Right Middle Temporal Gyrus 97 -53.8 18.8 -8.8 0.08 3.51 
 Left Cerebellar Tonsil 61 3.8 58.8 -31.2 0.21 2.91 
 Left Inferior Occipital Gyrus 60 28.8 91.2 -8.8 0.20 3.55 

block 1> block 2 Left Middle Frontal Gyrus 2670 46.2 -28.8 28.8 -0.60 -3.77 
 Right Medial Frontal Gyrus 622 -1.2 1.2 56.2 0.22 4.31 
 Right Inferior Frontal Gyrus 478 -43.8 -18.8 -8.8 0.12 3.67 
 Right Precentral Gyrus 422 -46.2 13.8 31.2 -0.11 -3.34 
 Right Middle Occipital Gyrus 411 -31.2 83.8 18.8 0.29 3.14 
 Right Parahippocampal Gyrus 401 -16.2 23.8 -13.8 -0.20 -3.34 

 Right Thalamus (and right 

Caudate) 
372 -1.2 28.8 6.2 0.47 3.01 

 Left Insula (and left Putamen) 310 41.2 -6.2 3.8 0.14 4.77 
 Left Superior Parietal Lobule 258 26.2 73.8 43.8 -0.21 -4.86 
 Left Parahippocampal Gyrus 159 28.8 26.2 -13.8 -0.17 -3.58 
 Right Superior Temporal Gyrus 156 -58.8 3.8 -1.2 -0.14 -5.86 
 Right Cingulate Gyrus 141 -3.8 51.2 26.2 -0.11 -3.04 
 Left Superior Temporal Gyrus 130 58.8 46.2 21.2 0.25 3.71 
 Right Precuneus 127 -43.8 68.8 38.8 -0.32 -4.10 
 Right Precentral Gyrus 111 -51.2 3.8 41.2 0.09 3.84 
 Right Cingulate Gyrus 94 -23.8 26.2 28.8 -0.04 -3.04 

 Right Middle Frontal Gyrus 79 -26.2 -13.8 43.8 -0.23 -3.19 

 Right Cingulate Gyrus 77 -1.2 21.2 38.8 0.09 3.95 

 Right Inferior Frontal Gyrus 62 -38.8 -36.2 -1.2 -0.14 -3.08 

 Left Paracentral Lobule 57 3.8 38.8 51.2 -0.10 -3.05 

                Group one sample ttest of mood modulation activation values 
 

 

 Left Postcentral Gyrus 515 -51.2 -13.8 53.8 0.03 2.95 

 

Right Anterior Cingulate  

(covers right and left Caudate) 
352 16 31 -11 0.01 3.12 

 Left Parahippocampal Gyrus 159 -9 -49 4 0.01 3.06 

 Left Middle Occipital Gyrus 147 44 -74 6 0.008 3.39 

 Right Postcentral Gyrus 124 36 -26 46 -0.01 -4.36 
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