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ABSTRACT 21 

The oral cavity of each person is home for hundreds of bacterial species. While 22 

taxa for oral diseases have been well studied using culture-based as well as 23 

amplicon sequencing methods, metagenomic and genomic information remain 24 

scarce compared to the fecal microbiome. Here we provide metagenomic shotgun 25 

data for 3346 oral metagenomics samples, and together with 808 published 26 

samples, assemble 56,213 metagenome-assembled genomes (MAGs). 64% of the 27 

3,589 species-level genome bins contained no publicly available genomes, others 28 
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with only a handful. The resulting genome collection is representative of samples 29 

around the world and across physiological conditions, contained many genomes 30 

from Candidate phyla radiation (CPR) which lack monoculture, and enabled 31 

discovery of new taxa such as a family within the Acholeplasmataceae order. 32 

New biomarkers were identified for rheumatoid arthritis or colorectal cancer, 33 

which would be more convenient than fecal samples. The large number of 34 

metagenomic samples also allowed assembly of many strains from important 35 

oral taxa such as Porphyromonas and Neisseria. Predicted functions enrich in 36 

drug metabolism and small molecule synthesis. Thus, these data lay down a 37 

genomic framework for future inquiries of the human oral microbiome. 38 

 39 

The human microbiome has been implicated in a growing number of diseases. 40 

The majority of microbial cells is believed to reside in the large intestine1 and cohorts 41 

with fecal metagenomic data contain over 1000 individuals2, 3. For the oral 42 

microbiome, hundreds of metagenomic shotgun-sequenced samples have been 43 

available from the Human Microbiome Project (HMP) and for rheumatoid arthritis4-6. 44 

A number of other diseases studied by Metagenome-wide association studies (MWAS) 45 

using gut microbiome data also indicated potential contribution from the oral 46 

microbiome in disease etiology7-12. Although the MWAS on rheumatoid arthritis was 47 

based on a de novo assembled reference gene catalog for the oral microbiome6, 48 

analyses on bacterial genomes would be more desirable. And when oral samples show 49 

comparable or better sensitivity and accuracy for disease diagnosis, prognosis or 50 

patient stratification than fecal samples, oral samples would be much more convenient 51 

as they could be available at any time and taken at a fully controlled setting witnessed 52 

by trained professionals. Unlike the anaerobic environment for the gut microbiome, 53 

the oral microbiome is believed to be well covered by culturing13, and analyses by 54 

16S rRNA gene amplicon sequencing or polymerase chain reaction (PCR) are 55 

common. Recently published large-scale metagenomic assembly efforts mostly 56 
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included fecal metagenomic data14-16. It is not clear how much is really missing for 57 

the oral microbiome. The saliva, in particular, seems to have more bacterial species 58 

per individual than the fecal microbiome17. 59 

After getting contigs using assembly algorithms suitable for metagenomic 60 

data18, a central idea used by metagenomic binning algorithms is that genes or contigs 61 

that co-vary in abundance among many samples belong to the same microbial 62 

genome8, 19-21. Large cohorts are therefore prerequisites for high-quality assembly. 63 

Here we present 3346 new oral metagenomic samples, and 56,213 64 

metagenome-assembled genomes (MAGs) which represent 3,589 species-level clades, 65 

revealing new taxa as well as substantially complementing the genomic content of 66 

known species. This genome reference are highly representative of metagenomic 67 

samples not used in assembly, and could facilitating culturing, functional screens as 68 

well as disease diagnosis and modulation based on the oral microbiome. 69 

RESULTS 70 

Draft genomes assembled from oral metagenomic data 71 

In order to substantially increase the amount of oral microbiome data, we 72 

shotgun sequenced 2284 saliva and 391 tongue dorsum samples from the 4D-SZ 73 

cohort3, 12, 22, 671 saliva samples from five ethnic groups of Yunnan province, 74 

producing over 43.19 terabytes of sequence data (Supplementary Table 1). Together 75 

with 808 published samples from 5 studies6, 23-26 that have not been used for 76 

metagenomic assembly (Supplementary Table 1), a total of 4,154 oral samples with 77 

metagenomic data were obtained. The data in each sample was single assembled into 78 

contigs using SPAdes27, 28(Fig. 1a, Supplementary Table 1). Binning was then 79 

performed using MetaBAT221 for the 39,458,119 contigs longer than 1.5kb, leading to 80 

56,213 metagenome-assembled genomes (MAGs), 15,013 of which were of high 81 

quality according to recently agreed standards29 using CheckM30 (>90% completion, 82 

<5% contamination, Fig. 1a). The remaining 41,200 also reached the standards for 83 
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medium-quality MAGs (>50% completion, <10% contamination), while low-quality 84 

assemblies were not further analyzed (Supplementary Table 2). The median 85 

constructed MAGs per sample is 12, with highest from ZhangX_2015 86 

(Supplementary Figure 1a). 87 

New genomes from the new samples 88 

To evaluate the novelty of the assembled genomes, delineate their taxonomy 89 

and potential source, we comprehensively incorporated 190,309 existing isolate or 90 

metagenome-assembled genomes from NCBI Refseq, eHOMD31 (the expanded 91 

Human Oral Database), and recent publications14-16, 32 including our culture collection 92 

from fecal samples in Shenzhen33 (Fig. 1a).  93 

Species-level clusters (SGBs, for species-level genome bins) were computed 94 

for the over 0.25 million genomes following multiple steps (Fig. 1a, see Methods for 95 

details), defined as at least 95% average nucleotide identity (ANI) and at least 30% 96 

overlap of the aligned genomes. The clustering well-collapsed the genomes, with 97 

about 10-fold reduction in number, i.e. resulting in around thirty thousand species. 98 

Besides the 27,936 species that were non-oral according to reference genomes in the 99 

cluster (defined in Fig. 1b), 2,313 clusters (64% of the total oral species) only 100 

contained our MAGs (denoted uSGBs for unknown SGBs), some of which were 101 

repeatedly captured in our data, with more than 50 genomes each (Fig. 1b,c); the 102 

1,276 known oral SGBs (kSGBs) could be further divided according to the percentage 103 

of reference genomes in the cluster. Interestingly, kSGBs with over 50% unknown 104 

genomes outnumbered kSGBs with 0-50% unknown genomes for clusters containing 105 

10 or more genomes (Fig. 1b,c), underscoring the discovery power of large 106 

metagenomic cohorts . And the top three contributions of uSGBs are 4D_SZ (1441), 107 

ZhangX_2015 (445) and Yunnan (334) (Supplementary Figure 1b). Comparing the 108 

ratio of new MAGs in the samples, we retrieved a greater fraction of previously 109 

unknown genomes in dental compared to saliva or tongue samples, even though we 110 
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did not take dental samples for this large cohort (Fig. 1d). This ratio also appeared to 111 

differ between cohorts, with less than 10% unknown for samples from France or the 112 

U.S., and more newly matched uSGBs for samples from Fiji, Germany and 113 

Luxemburg (Fig. 1d). The large cohort available from this study is crucial for the 114 

retrieval of novel oral species, contributing over 2000 uSGBs, greatly expanding our 115 

knowledge of oral microbiome diversity. 116 

Close to 90% representation of oral metagenomics data by the genomes 117 

We next examined the ability of this species-level genomes set to represent 118 

metagenomic shotgun data. We assessed the percentage of reads that could align to 119 

cultured genomes only (eHOMD) and cultured complemented by metagenomically 120 

assembled genomes. The median was 66.99% mapping with the 1526 genomes from 121 

eHOMD (Fig. 2a). The 4930 representative human SGBs from a recent large-scale 122 

assembly study that included available oral metagenomic samples16 led to 79.72% 123 

mapping, and the representative oral 3589 SGBs from the current study instead led to 124 

88.06% mapping (median for all samples), especially for metagenomes from the U.S. 125 

and Germany; and a median of 85.29% mapping even for 81 saliva and subgingival 126 

metagenomes from three cohorts that were not used in the assembly process34-36 (Fig. 127 

2a, Supplementary Table 1). Across physiological states, our SGBs well represented 128 

pregnant samples from the U.S. ( reaching 92.99% mapping), RA ( reaching 90.69% 129 

mapping) and diabetes ( reaching 83.99% mapping) (Fig. 2b). Such a high degree of 130 

representation of metagenomic data across geography, ethnicity, age and 131 

physiological states suggest that the expanded genomic content of oral SGBs could 132 

serve as a starting point for quantitive taxonomic and functional analyses of the 133 

human oral microbiome. 134 

Taxonomic landscape of the oral microbial genomes 135 

We constructed a phylogenetic tree for the 3,589 oral SGBs, and similar to the 136 

gut microbiome, Firmicutes took up the largest number of branches (1248 clusters, 137 
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12307 genomes, Fig. 3c). The other 46276 genomes distributed into 15 phyla, 138 

including major human oral phyla such as Actinobacteria (490 SGBs, 6477 genomes), 139 

Bacteroidetes (368 SGBs, 23409 genomes), Proteobacteria (364 SGBs, 7570 140 

genomes), Campylobacteriota (280 SGBs, 1841 genomes), and Fusobacteriota (145 141 

SGBs, 1998 genomes) (Fig. 3, Supplementary Table 3). uSGB accounted for 181.27% 142 

increase in the reconstructed phylogenetic branch length , with over 80% of the 143 

diversity in Campylobacterota phylum contributed by the new uSGBs, follow by over 144 

70% for Patescibacteria and Fusobacteriota (Fig. 3b), which seemed overlooked by 145 

culturing studies. We estimated there is median of 210 SGBs with the relative 146 

abundance higher than 0.001 per sample(Supplementary Figure 1c). Besides uSGB 147 

are also very high abundance, explained for 68.10% of richness and 65.23% of 148 

relative abundance per sample (Supplementary Figure 1d,e). Our MAGs greatly 149 

expanded the species or strains diversity within each phylum. As many as 596 SGBs 150 

from 4006 genomes belonged to the candidate superphylum of Patescibacteria 151 

(Parcubacteria, also known as OD1), which only have 157 kSGB with 3115 reference 152 

genomes. We note a few not so well studied phyla that were interesting in analogy to 153 

the gut microbiome. Akkermansia is the only genus from Verrucomicrobiota in the 154 

human gut and intensively pursued for its role in health and diseases, and 155 

Verrucomicrobiota and Spirochaetota take up a greater fraction in Hadza hunter 156 

gatherers compared to developed countries37. Here we identified 6 genomes in 3 157 

SGBs for Verrucomicrobiota, and 900 genomes in 67 SGBs for Spirochaetota. 121 158 

reference genome was only available for 32 SGB within Spirochaetota. 198 SGBs 159 

with 1169 genomes belong to the candidate division Saccharibacteria (TM7) (Fig. 3a, 160 

Supplementary Table 3). 161 

At the genera level, Streptococcus(460 SGBs), Campylobacter(279 SGBs), 162 

Actinomyces(184 SGBs), Prevotella(159 SGBs), Atopobium(146 SGBs) were the 163 

major genera in the SGBs(Supplementary Table 3). 265 of the 2313 uSGBs had 164 

taxonomic information until order or family, but cannot be annotated to a known 165 
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genus. The top three uSGB classified families were Saccharimonadaceae (17.99%), 166 

Streptococcaceae (12.88%) and Campylobacteraceae (9.51%), whereas the most 167 

assigned genera were Streptococcus (12.88%), Campylobacter_A (7.65%) and TM7x 168 

(5.92%) (Fig. 3c).  169 

A new family with small genomes 170 

In the Acholeplasmatales order (Mollicutes class) of the Tenericutes phylum, a 171 

number of our uSGBs with high-quality MAGs formed a clade distinct from 172 

Acheloplasma and Candidatus Phytoplasma, with shallow branches within the clade 173 

(Fig. 4a). The genome size of this genome-defined family, which we temporarily 174 

denoted as Ca. Bgiplasma, is 0.69±0.05 Mbp, which is similar to Candidatus 175 

Phytoplasma (0.64±0.14 Mbp), but much smaller than Acheloplasma (1.50±0.20 176 

Mbp). Genomes of such small size were discarded in early efforts of metagenomic 177 

assembly19, but we now know Ca. Bgiplasma are complete entities according to 178 

single-copy marker genes in CheckM (Supplementary Table 2). The GC content of 179 

the three clades were also different. Ca. Bgiplasma family was more towards normal 180 

GC content (34.57±0.21%), not as low as Acheloplasma (30.99±1.75%) and 181 

Candidatus Phytoplasma (25.98±2.68%) (Supplementary Table 5). Despite the lack 182 

of deep branches, the ANI distribution of uSGB within Ca. Bgiplasma family showed 183 

two separate groups at genus-level divergence (ANI <85%) (Fig. 4b), illustrating 184 

diversity within this new family. This 11 uSGBs comprising 29 MAGs contribute 185 

more than 0.1% relative abundance in 209 samples, indicating that this family is an 186 

potentially important but so far uncharacterized clade in the oral microbiome. 187 

5.53 M genes (87.97% of total) of representatives genome of SGBs can be 188 

annotated by EggNOG mapper38, 39 with the rate of annotation 89.55% for uSGBs and 189 

81.83% for Ca. Bgiplasma family(Supplementary Table 5). We found Ca. 190 

Bgiplasma are gene content dominated by replication, recombination and repair, 191 

posttranslational modification, protein turnover, chaperones, and inorganic ion 192 
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transport and metabolism, which are reported active up-regulated in Deinococcus 193 

during gamma-irradiation40 (Supplementary Fig. 2b).  194 

Distribution of species and strains  195 

The new samples from this study differed in oral microbiome composition 196 

compared to published samples across geography/ethnicity (Fig. 5a,b). Both the 197 

4D-SZ and Yunnan samples abundantly contained many uSGBs (of the top 10 198 

abundance species in cohort) such as Neisseria spp., Porphyromonas spp. and kSGBs 199 

such as Haemophilus parainfluenzae and Veillonella denticarios, which were rare in 200 

the other cohorts (Fig. 5b). Pregnant samples from the U.S. contained Fannyhessea 201 

vaginae (the vaginal pathogen previously known as Atopobium vaginae41), 202 

Urinacoccus, etc. that were of much lower abundance in other cohorts (Fig. 5b). 203 

Samples from Fiji, although not well mapped (Fig. 2a), showed high levels of a few 204 

SGBs that were also seen in the RA study from Beijing, China, including an SGB 205 

from Saccharibacteria (TM7) (Fig. 5b). 206 

At the strain level, the new samples from the current study greatly expanded 207 

the genome collection for common taxa such as Neisseria spp., Porphyromonas spp., 208 

and Prevotella spp. (Fig. 5c,d). The numbers of publicly available reference genome 209 

for the top ten most abundant species in the genera Porphyromonas and Prevotella 210 

were less than 10, and less than 100 for the genus Neisseria. Here we obtained more 211 

than 1000 genomes for a few of the species, and increased the diversity in all the 212 

species in these genera (Fig. 5c). Most of the species with a large number of genomes 213 

showed strain-level variations (subspecies). The Prevotella nanceiensis kSGB, for 214 

example, included 3 reference genomes that were similar to a few genomes from 215 

developed countries, while our samples contributed two large clusters that were more 216 

distantly related (Fig. 5d). 217 

New disease markers according to the oral genomes 218 
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To illustrate the utility of our genome collection in metagenomic studies 219 

including MWAS, we reanalyzed dental and salivary microbiome data from RA 220 

patients and controls6. For better confidence in the markers regardless of cohort, we 221 

only analyzed SGBs containing >10 genomes. Similar to the original study, oral 222 

markers selected by a 5x 10-fold cross-validated gradient boosting algorithm 223 

include a number of Gram-negative bacteria e.g. Haemophilus spp., 224 

Aggregatibacter spp. enriched in dental samples from healthy volunteers, while 225 

only a Pseudomonas SGB and a Enterococcus SGB were selected for RA samples 226 

(Fig. 6a). Interestingly, the two new RA dental markers appeared more abundant in 227 

control saliva samples. The strongest marker from healthy saliva remained 228 

Lactococcus lactis5, and Lactobacillus paracasei, Streptococcus infantarius, were 229 

identified, reminiscent of beneficial effects of L. casei gavage in rat model of RA42, 230 

43. The assembled genomes allowed matching of different species in the Veillonella 231 

genus as RA saliva markers. Moreover, Pauljensenia spp., a genus recently renamed 232 

from Actinomyces44, was identified as highly predictive of RA. As Actinomyces are 233 

the basis for dental attachment of oral bacteria45, potential contribution of 234 

Pauljensenia spp. to periodontitis in RA patients remains to be explored; the dental 235 

microbiome was obviously deranged, consistent with epidemiology5. 236 

A set of saliva samples from colorectal cancer and controls from France are 237 

also available46. Here, we found Pauljensenia spp., to be control-enriched, along with 238 

Acinetobacter radioresistens, Lachnoanaerobaculum sp., Catonella sp., etc (Fig. 6b). 239 

Streptoccocus thermophilus, a species previously found to be enriched in fecal 240 

samples from control or adenoma compared to CRC patients47 was also identified in 241 

control saliva. The markers enriched in CRC oral samples are more unexpected. 242 

Besides Porphyromonas spp., Prevotella maculosa, we found a Lachnospiraceae 243 

SGB (potentially TMA-producing and consistent with gut results10, 48-50), 244 

Capnocytophaga leadbetteri, Cardiobacterium hominis, etc. (Fig. 6b). Thus, the 245 

substantially expanded collection of oral microbial genomes enabled discovery of new 246 
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disease markers and genomic representation of previously reported markers, 247 

facilitating the shift from fecal to oral microbiome-based diagnosis and therapeutics. 248 

Potential functions in drug metabolism and small molecule synthesis 249 

Many human target drugs are reported to be metabolited to its inactive form 250 

by gut human microbiome51, 52 or impact the gut bacteria51-53 . Gut bacteria genes that 251 

metabolite 41 human targeted drugs, 6 non-traditional antibacterial therapeutic and 252 

key enzymes experimented validated for 12 human diseases were mapped to our oral 253 

SGB genomic contents (Supplementary Tables 6). We show that many oral 254 

communities share homologous to these gut bacteria encoding enzymes, suggesting 255 

the oral microbiome may also play an importance role in medical therapy and disease 256 

development (Fig. 7a). More specificly, there are total 2696 SGBs containβ257 

-glucuronidase enzyme that can metabolite anti-cancer drug Gemcitabine (2’, 258 

2’-difluorodeoxycytidine) into its inactive form52. 456 SGBs have agmatine gene for 259 

anti T2D drug Metformin and 225 SGBs have tyrosine decarboxylase (TyrDC) for 260 

anti-parkinson drug L-dopa51. There are also 1733 oral SGBs have genes producing 261 

small molecule taurine and 5-aminovalerate which are potential drugs for autism 262 

spectrum disorder (ASD)51. Unexpected few SGBs contain CutC/CutD genes which 263 

are key enzyme for TMA, a metabolite with high cardiovascular event risk51.  264 

The inferration of secondary metabolites biosynthetics gene clusters (BGCs) was 265 

made by applying antiSMASH54 pipeline. The total 12399 BGCs (7804 unknown, 266 

4595 known) have been detected from 91.46%(1167) kSGBs and 66.75%(1544) 267 

uSGBs, and the BGCs coding for bacteriocin, arylpolyene, type III PKS (polyketide 268 

synthase) has appeared more than 500 times on the oral bacterial community(Fig. 7b, 269 

Supplementary Table 7). For each specie’s genome, the size percentage (mean: 270 

2.512%) of BGCs was calculated based on the each BGC’s location on the each 271 

genome. The vast majority of the genome has a BGC range of less than 10% 272 

compared to the total genome (Supplementary Figure 5), included Firmicutes, 273 
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Patescibacteria, Actinobacteriota, Proteobacteria, etc. Notably, there represented 67% 274 

novel BGCs (2743 known, 5557 unknown) in the kSGBs and 54% novel BGCs (1852 275 

known, 2247 unknown) in the uSGBs. At the phylum level, Elusimicrobiota, 276 

Actinobacteriota, Chloroflexota, Patescibacteria contains a higher proportion of 277 

novel clusters (Fig. 7c). These unknown BGCSs demonstrate the enormous potential 278 

of oral microbes for the synthesis of natural metabolites for drug development and 279 

disease treatment. 280 

DISCUSSION 281 

In summary, we provide the largest set of oral metagenomic shotgun data, 282 

assemble tens of thousands of draft genomes for the human oral microbiome, 283 

including 2,313 new species as well as many new strains of known species. The 284 

results illustrate that culturomics have not even exhausted the microbial complexity in 285 

the more accessible body sites, and that metagenomic data for large cohorts of 286 

non-fecal samples have great potential. A number of taxa with compact genomes were 287 

identified in this study, such as CPR and Mollicutes. Mollicutes such as Mycoplasma 288 

and Ureaplasma are well known in the female reproductive tract22. Much remains to 289 

be elucidated for the metabolic requirement of small bacteria in the oral microbiome. 290 

Oral bacteria also contributed to discovery of new CRISPR-Cas systems55. Species 291 

with thousands of metagenomic and isolated genomes would be amenable to 292 

microbial GWAS56 (microbial genome-wide association studies) to discover virulence 293 

factors, drug resistance and more commensal functions, which has so far only be 294 

possible for pathogens. 295 

Accession codes 296 

All the data are available at China National Genebank (CNGB), Shenzhen under the 297 

accession CNP0000687. https://db.cngb.org/microbiome/ 298 
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ONLINE METHODS 313 

The newly cohort and published datasets used in this study. The 2675(2284 saliva 314 

and 391 tongue) oral metagenomics samples from Chinese 4D-shenzhen 315 

corhorts(Supplementary Tables 1 sheet 4) and the 671 salivary samples from six 316 

cities and villages in Yunnan province were collected in this study(Supplementary 317 

Tables 1 sheet 5), and total 706 public oral metagenomics datasets6, 23-26 were 318 

downloaded from NCBI SRA databases with accession codes SRP029441, 319 

ERP006678, SRP133047, ERP110622 and SRP07256, encompassing five different 320 

studies (Supplementary Table 1 sheet 3) have been reported previously. 321 

 322 

Sample collection, DNA extraction, sequencing and quality control. The 2955 323 

salivary samples and 391 tongue samples from Shenzhen were self-collected by 324 

volunteers, using a kit containing a room temperature stabilizing reagent to preserve 325 

the metagenome57. DNA extraction of the stored samples within the next few months 326 

was performed using the MagPure Stool DNA KF Kit B (MD5115, Magen) from 327 

1mL of each sample. Metagenomic sequencing was done on the BGISEQ-500 328 

platform58 (100bp of paired-end reads for all samples and four libraries were 329 

constructed for each lane) and generated 101.4 billions pairs of raw reads. The 671 330 

salivary samples from Yunnan province were self-collected using commercial kits 331 

(Cat. 401103, Zeesan, China). Collected samples were temporarily stored in -80℃ 332 

freezers and then transported to CNGB, Shenzhen with dry ice via commercial 333 

logistics (SF Express Inc.). DNA was extracted in the same way as above. Sequencing 334 

was performed on the BGISEQ-500 machines and generated 26.5 billions single-end 335 

100 bp length reads. The raw read length for each end was 100bp. After using the 336 

quality control module of metapi pipeline followed by reads filtering and trimming 337 

with strict filtration standards(not less than mean quality phred score 20 and not 338 

shorter than 51bp read length) using fastp v0.19.459, host sequences contamination 339 
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removing using Bowtie2 v2.3.560 (hg38 index) and seqtk61 v1.3, we totally got 54.9 340 

billions high-quality PE reads and 7.1 billions high-quality SE reads. 341 

 342 

Metagenomic De novo assembly, binning and checkm. The high-quality PE and SE 343 

reads was individually assembled using assembly module of metapi pipeline with 344 

different max kmer cutoff by different max read length of each samples applying 345 

SPAdes v3.13.028 (PE reads with option --meta27). All configuration can see on 346 

https://github.com/ohmeta/metapi/blob/dev/metapi/config.yaml.After we 347 

got draft genomes on contig level of each samples, the reads was mapped back to each 348 

assemblies using BWA-MEM v0.7.1762 with default parameters and calculate the 349 

contig depth by jgi_summarize_bam_contig_depths21, then using MetaBAT2 350 

v2.12.121 to do metagenomic binning individually for each samples. Finally we got 351 

totally 163,718 bins. After MAGs quality assignment by CheckM v1.0.1230 lineages 352 

workflow, 15,013 high-quality (completeness > 90% and contamination < 5%, HQ) 353 

bins and 41,200 medium-quality(completeness > 50% and contamination < 10%, MQ) 354 

bins(Supplementary Table 2) have been generated based on MIMAG standard29. 355 

The 16S rRNA sequences in the MAGs were searched by Barrnap v0.963 with 356 

parameters “--reject 0.01 --evalue 1e-3” and tRNA sequences in the MAGs were 357 

searched by tRNAscan-SE 2.0.364 with the default parameters. 358 

 359 

Public database used. The public bacteria and archaea genomes database used in this 360 

study include(Supplementary Table 1 sheet 6): 361 

(a) The NCBI Refseq bacteria and archaea databases 362 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/, accessed in June 2019) contain 155854 363 

microbial genomes. 364 
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(b) The eHOMD31 database (http://www.homd.org/ftp/HOMD_prokka_genomes) 365 

contain 1526 microbial genomes come from human oral environment. 366 

(c) The IGGdb15 (https://github.com/snayfach/IGGdb) contain 23790 microbial 367 

genomes come from human gut environment. 368 

(d) The hSGBRep16 database contain 4930 representative microbial genomes 369 

(http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html) come from human body site 370 

include gut, oral, skin, genital tract. 371 

(e) The BPUMGs14 databases 372 

(ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/umgs_analyses/) contain 1952 373 

microbial genomes come from human gut. 374 

(f) The CGR33 database accession code PRJNA482748 contain 1520 microbial 375 

genomes come from human gut bacterial culture collection. 376 

(g) The HBC32 database 377 

(ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/hgg_mags.tar.gz) contain 737 378 

microbial genomes come from human gut bacterial culture collection. 379 

Clustering metagenomic genomes into species-level genome bins. The 56,213 380 

reconstructed genomes and 190,309 reference genomes were grouped into species 381 

-level genome bins(SGBs) by a two-step clustering strategy as reported previously16 382 

with a slight modification. In the first step, all-versus-all genetic distance matrix 383 

between the 246,522 genomes was carried out using Mash version 2.065 (“-k 21 -s 1e4” 384 

for sketching ). Then, hierarchical clustering with average linkage and 0.05 genetic 385 

distance cutoff on the distance matrix by fastcluster66 was resulted to 33008 clusters. 386 

Because the Mash will underestimate the distance between the incomplete genomes67 387 

and split same-species genomes into multiple SGBs, we performed clustering base on 388 

average nucleotide identity(ANI) in the second step. First, We divide the SGB into 389 

known SGB(kSGB) and unknown SGB(uSGB) according to with or without reference 390 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/820365doi: bioRxiv preprint 

https://doi.org/10.1101/820365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

genomes. Then, a representative genome was selected for each SGBs. For the kSGB, 391 

the genome which has the largest genome size was selected. For the uSGB, all MAGs 392 

were rank by completeness(in decreasing order), contamination(increasing), 393 

coverage(decreasing), strain heterogeneity(increasing), N50(decreasing). And 394 

representative genome was selected as the one minimizing the sum of the five ranks. 395 

We recalculated the more precise genetic distance using pyani v0.2.968(option ‘-m 396 

ANIb) for the pairs of representative genomes with mash distances less than 0.95 and 397 

only left ANI with genome coverage above 0.3. Following hierarchical clustering 398 

with complete linkage based on >95% ANI score, 12,911 representative genome 399 

which mash distances less than 0.95 were merged to 11,427 new clusters. Finally, we 400 

obtained 31,525 SGBs by two-step clustering strategy. In this dataset, only 3,589 401 

SGBs included eHMOD genomes and oral metagenomes MAGs were named Oral 402 

SGBs and can be further divided into 2,313 uSGBs and 1,276 kSGBs. The top three 403 

contributions of uSGBs are 4D_SZ (1441 uSGBs), ZhangX_2015 (445 uSGBs) and 404 

Yunnan (334 uSGBs).The other 27,936 SGBs are non-oral SGBs (Figure 1b). 405 

Reconstruction of the human-oral microbiome phylogenetic structure. The 406 

phylogenetic trees of 3589 representative genomes of SGBs (Figure 3C) and 76 407 

genomes of Acholeplasmataceae Order were both built using the 400 PhyloPhlAn 408 

markers with the parameters “--diversity high --fast --min_num_markers 80” by the 409 

PhyloPhlAn269. As input data for PhyloPhlAn2, proteome were predict using Prodigal 410 

v2.6.370 with default parameters. Following tools with their set of parameters were 411 

used in the configuration files: 412 

Diamond v0.9.22.12371 with parameters: “blastp --quiet --threads 1 --outfmt 6 413 

--more-sensitive --id 50 --max-hsps 35 -k 0”; 414 

Mafft v7.40772 with the “--anysymbol” option; 415 

Trimal v1.4.rev1573 with the “-gappyout” option; 416 

Iqtree v1.6.1274 with parameters: “-quiet -nt AUTO -m LG”. 417 
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The phylogenetic trees in figure 3c was generated using GraPhlAn v1.1.375 and the 418 

phylogenetic trees in figure 4a, figure s2 were generated using FigTree v1.4.4 419 

(https://github.com/rambaut/figtree/releases). 420 

 421 

SGBs taxonomic and function analyses. The taxonomic classification of 3589 422 

representative genomes of SGBs was assigned using GTBD-Tk v0.3.270, 76-79 423 

(https://github.com/Ecogenomics/GTDBTk) classify workflow with external GTDB 424 

database release 89.0(https://data.ace.uq.edu.au/public/gtdbtk/release_89/89.0/). 425 

Although some kSGBs already have taxonomy label, we still using GTDB-Tk to 426 

classify them because GTDB-Tk has its own taxonomy classification system that is 427 

different from the NCBI taxonomy database. Then above the genus level, we 428 

manually removed the classification tag with a single letter suffix (Supplementary 429 

Table 3). Those suffixes used to indicate that taxon needed to be subdivided based on 430 

the current GTDB reference tree. We used EggNOG mapper v1.0.339 to do 431 

genome-wide functional annotation through orthology assignment on 3589 432 

SGBs(Supplementary table 3) and 29 MAGs in Candidatus bgiplasma 433 

(Supplementary Figure 2b). The secondary metabolite biosynthesis gene 434 

clusters(BGCs) of 3587 oral bacterial genomes was identified respectively by using 435 

antiSMASH v5.0.054 with options --fullhmmer --cf-create-clusters --smcog-trees 436 

--cb-knownclusters --asf --pfam2go. Then we use the 437 

bgctk(https://github.com/ohmeta/bgctk) to parse and merge BGCs’s results from all 438 

json file which was generated by anstiSMASH workflow.  439 

 440 

Mapping rate compared between different oral related genomes database. The 441 

mapping rates of oral metagenomics reads align to three different oral related 442 

genomes databases(eHOMD, hSGB_Rep, oralSGB_Rep) were compared based on the 443 

statistics summary of Bowtie2’s results(Supplementary Table 4). First we randomly 444 
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selected 100 oral metagenomes samples from each of 4D_SZ and Yunnan cohorts. 445 

With all 808 public samples and 81 additional verify samples which not used to 446 

assembly (Supplementary table 1 sheet 2), the total 1089 oral metagenomes samples 447 

were mapped to these databases respectively using Bowtie2 v2.3.5 with default 448 

parameters. The barplot of mapping rate was generated using R package ggplot2 449 

3.1.180 faced with different databases and different country.  450 

 451 

Metapi for oral SGB metagenomic profiling. The quantification of species relative 452 

abundance of oral metagenomic samples was performed with the taxonomic profiling 453 

module of metapi pipeline: i) build the oral representative SGBs’ index by Bowite2; ii) 454 

align the high-quality reads of each sample to the oral genome index using Bowtie2 455 

with parameters : “--end-to-end --very-sensitive --seed 0 --time -k 2 --no-unal 456 

--no-discordant -X 1200”; iii) The normalized contigs depths were obtained by using 457 

jgi_summarize_bam_contig_depths; vi) base on the correspondence of contigs and 458 

genome, the normalized contig depth were converted to the relative abundance of 459 

each SGB for each samples. Finally we merged all representative SGBs relative 460 

abundance to generate a taxonomic profile.  461 

 462 

PCOA, heatmap and oral type for metapi profile. Principal Coordinates Analysis 463 

(Pcoa) of metapi profile was done used dudi.pco function in ade481 R package based 464 

on bray distance from vegan2.5.282 R package. The mean top 10 most abundance 465 

SGBs from every study were merged (total 27 SGBs) to visual in pheatmap83 R 466 

package.  467 

 468 

Pangenome, phylogenetic analysis of kSGB and uSGBs. From the taxonomic 469 

profiling results of 4820 oral metagenomic samples, the most prevalent eight genus 470 
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was selected based the rank of average relative abundance(decreasing), occurrence 471 

frequency(decreasing), oral genome number / SGBs size(decreasing), include 472 

Prevotella, Neisseria, Streptococcus, Veillonella, Porphyromonas, Fusobacterium, 473 

Pauljensenia, Haemophilus. Then we choose ten most prevalent species for each 474 

genus to do pangenome analysis. First each species has a representative genome 475 

correspond to each SGBs, so we use prokka v1.13.784 to do genome annotation for all 476 

genomes of each SGBs. Then the annotated genomes were used to construct 477 

pangenome database for each SGBs via panphlan_pangenome_generation.py (a script 478 

come from PanPhlAn v1.285). Finally the gene-family presence / absence profile 479 

matrix was transformed to a zero/one matrix for reference genomes and reconstructed 480 

genomes of each SGBs to do rarefaction analysis. Accumulation curves 481 

(Supplementary Figure 3) based on the number of core gene of each SGBs were 482 

bootstrapped ten times at each sampling interval. The observation of intra-SGB 483 

phylogenetic structure of Neisseria kSGB 3225, Prevotella kSGB 3467 and 484 

Porphyromonas kSGB 3273 was performed by the nonmetric multidimensional 485 

scaling analysis using the metaMDS function of R package vegan v2.5.2. 486 

 487 

Disease markers according to the oral genomes. The metagenomics wise 488 

association between 3,589 metapi species profiles (SGB) and disease for previously 489 

published CRC and RA studies was done using generalized linear model (GLM) with 490 

adjust for potential confounders such as gender, age, BMI (Table S1). BMI is only 491 

available for RA. Species relative abundances was asin-sqrt transformed as described 492 

before86. Non-oral SGBs were excluded. Corrected for multiple hypothesis tests was 493 

done using FDR. We predicted disease status using gradient boosting model (GBM) 494 

in caret87 R package, such that 80% of the samples were randomly sampled for each 495 

estimator. The depth of the tree at each estimator was not limited, but leaves were 496 

restricted to have at least 30 instances. We used 4000 estimators with a learning rate 497 

of 0.002. All the FDR <1% oral marker SGBs are included in the model as predictors. 498 
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To avoid overfitting, 5 repeat ten folds cross validation ROC was used to measure the 499 

model performance. VarImp function was used to extract the GBM importance. 500 

 501 
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Figures 718 

 719 

Figure 1. 3,589 oral SGBs assembled from 4154 (3346 new sequence) 720 

meta-analyzed oral-wide metagenomes. 721 

a, Species genome bins construction workflow. b, Overlap of oral assembled genomes 722 

and reference genomes. kSGBs contains both existing microbial genomes (including 723 

other metagenomic assemblies) and genomes reconstructed here. uSGBs are only 724 

genomes reconstructed here and without existing isolate or metagenomically 725 

assembled genomes. Non-oral SGBs contains kSGBs that are not sourced from human 726 

oral samples. c, Genome numbers distribution of uSGBs and kSGBs. d, Distribution 727 

of the fraction of uMAGs in each sample by oral sites and country.  728 
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 730 

 731 

Figure 2. The expanded genome set substantially increases the mappability of 732 

oral metagenomes. 733 

The raw reads from all the 808 public samples, 100 subsampled of 2674 China 734 

Shenzhen and 671 China Yunnan, and 81 additional verify samples which not used to 735 

build SGBs were mapped against eHOMD, representative human SGBs (hSGB_Rep) 736 

and representative oral SGBs (oralSGB_Rep). Among three databases, our 737 

representative oral SGBs have the highest raw-read mappability in all country and 738 

verify datasets.  739 
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 741 

Figure 3. Phylogeny of representative oral SGBs 742 

743 

a, Taxonomic composition of the 2,313 uSGB, Only the five most frequently 744 

observed taxa are shown in the legend, with the remaining lineages grouped as “other 745 

classified taxa”. b, Proportion of the total phylogenetic diversity provided by the 746 

uSGB. c, oral-associated microbial phylogenetic tree of representative genomes from 747 

3589 species-level genome bin (SGB).  748 
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 750 

Figure 4. A new candidatus family is found within the Acholeplasmataceae 751 

Order. 752 

a, phylogenetic tree from all MAGs in the new candidatus family(Candidatus 753 

bgiplasma) and known genomes in Acholeplasmataceae Order. Supplementary Figure 754 

2a reports the detail of phylogenetic tree in Candidatus bgiplasma. b, Average 755 

nucleotide identity(ANI) between all uSGB in the Ca. bgiplasma represent clearly two 756 

genus clades which ANI less than 0.85. Unknown SGBs without HQ MAGs are left 757 

black. 758 
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 760 

Figure 5. Geographical distribution of oral SGBs and strains. 761 

a, Principal coordinate analysis plot based on Bray-Curtis distances of oral SGB 762 

relative abundance profile highlights distinct microbial communities among different 763 

origin populations. b, The relative abundance of top 10 most abundance SGBs from 764 

each origin populations. A large set of reconstructed uSGBS are widely high 765 

abundance distribution in our cohort (Shenzhen and Yunnan) and lack of several 766 

highly abundant kSGBs in other population. Species are order by hclust with 767 

complete linkage and euclidean distance. c, Our reconstructed MAGs largely extend 768 

the size (genome numbers) of the top 10 most abundance species from common oral 769 

genus with few reference genomes. d, Multidimensional scaling on average 770 

nucleotide identity between MAG and reference genomes in species showed strain 771 

variety and that constructed MAGs dominated the sub species. Only HQ MAGs and 772 

reference genomes are showed.   773 
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 775 

Figure 6. Disease markers according to the oral genomes. 776 

a, The Manhattan plot shows metagenomic wise association of oral SGBs for RA and 777 

CRC studies. The species are ordered according to their phylogeny (bottom) and the 778 

association direction (positive or negative). Each point is one SGB and point height 779 

indicates the FDR value correction for multiple hypothesis tests from a generalized 780 

linear model (GLM) test between diseased and healthy species abundance after 781 

adjusting Age, Gender, BMI. The dotted line indicates a false discovery rate (FDR) of 782 

1%. b, SGBs association with RA and CRC. We select 40 large and most importance 783 

oral SGBs (>10 genomes) for disease prediction using Gradient Boosting Machine 784 

(GBM). The species are order according to their partial spearman correlation adjusted 785 

age, gender, BMI and GBM importance. The bar length indicated the FDR value 786 

between groups as described above. The dotted line indicates a false discovery rate 787 

(FDR) of 1%. The red square in bar is the sqrt GBM importance. uSGBs are highlight 788 

in bold label text.  789 
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 791 

Figure 7. A comprehensive mapping of the function repertoire of the human oral 792 
microbiome. 793 

a, Number of oral SGBs who share homologous to gut microbiome enzyme coding 794 

drug metabolite or healthy related function. Details see Supplementary Table 6. b, 795 

Summary of predicted BGCs in oral microbiome. Numbers of BGC of 38 different 796 

types detected in the 2711 oral bacterial genomes were grouped by kSGB and uSGB. 797 

c, Fraction of novel BGCs across phylum levels. The numbers of bar show the novel 798 

BGC count while bar length represent kSGBs/uSGBs ratio on the phylum levels. 799 
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Supplementary Figures 801 

 802 

Supplementary Figure 1. Summary of assembly quality, SGBs distribution 803 
across 7 studies. 804 

a, Numbers of medium quality and high quality MAGs in samples from 7 studies. b, 805 

3,589 uSGBs origin distribution across studies. c, The number of all SGBs (>0.001 806 

abundance) for each samples. d. uSGB richness (number of uSGB/number of all SGB) 807 

for each sample. e. Sum of all uSGB abundance for each samples. 808 
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 810 

Supplementary Figure 2. Phylogenetic tree and COG functional annotation from 811 

all MAGs in the new candidatus family. 812 

a, A phylogenetic tree from Ca. bgiplasma (Fig. 4a) are displayed detailed here. The 813 

high quality MAGs belong the same species are colored the same color and medium 814 

quality MAGs are left black. b, Ca. bgiplasma function genome annotated by 815 

EggNOG mapper. The main function category of COG are displayed as the 816 

percentage of genes annotated to that category. 817 
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 819 

Supplementary Figure 3. The pangenome genetic diversity. 820 

The gene number rarefaction curve indicated that the genetic diversity have been 821 

increased through more genomes metagenomically assembled, included 71 species 822 

genomes come from eight most prevalent genus. 823 
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 825 

Supplementary Figure 4. Heatmap of number of SGBs at family level who share 826 

homologous to gut microbiome enzyme coding drug metabolite or healthy 827 

related function. 828 

Cell is sqrt number of SGBs. Hclust with canbera distance. 829 
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830 

Supplementary Figure 5. The detection of BGCs on the human oral microbiome  831 

a, The distribution of genome percentage of biosynthetic gene cluster. From oral 832 

microbiome included 2713 genomes form 16 different phylum. The x coordinate 833 

corresponds to the proportion of BGC size, and the y coordinate corresponds to the 834 

number of genomes. The blue vertical line indicates the average proportion of BGC 835 

size: 2.512%. b, Novel BGCs proportion on phylum level of oral microbiome. The x 836 
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coordinate corresponds to the proportion of the number of the novel BGCs, the y 837 

coordinate corresponds to the 14 different phylum groupped by uSGB and kSGB. 838 
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