
 1 

META-ANALYTIC ACTIVATION MAPS CAN HELP IDENTIFY AFFECTIVE PROCESSES CAPTURED BY 
CONTRAST-BASED TASK fMRI: THE CASE OF THREAT-RELATED FACIAL EXPRESSIONS 
 

Running head: Distributed Neural Activity to Threat-Related Faces 

 

M. Justin Kim1*, Annchen R. Knodt2, & Ahmad R. Hariri2 

 

1: Department of Psychology, University of Hawaii at Manoa, Honolulu, HI 96822, USA 

2: Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, 

Durham, NC 27708, USA 

 

*Correspondence: 

Justin Kim, PhD 
Department of Psychology  
University of Hawaii at Manoa 
Honolulu, HI 96822, USA 
Phone: (808) 956-3644 
Email: kimjust@hawaii.edu 
ORCID: 0000-0002-5886-8545 
 
 

Keywords: meta-analysis map, fMRI, facial expressions, fear, anger, threat 

Word count: Abstract (200 words), Introduction (694 words), Discussion (1261 words) 

6 Figures, 1 Table 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/820969doi: bioRxiv preprint 

https://doi.org/10.1101/820969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Meta-analysis of functional magnetic resonance imaging (fMRI) data is an effective 

method for capturing the distributed patterns of brain activity supporting discrete cognitive and 

affective processes.  One opportunity presented by the resulting meta-analysis maps (MAMs) is 

as a reference for better understanding the nature of individual contrast maps (ICMs) derived 

from specific task fMRI data.  Here, we compared MAMs from 148 neuroimaging studies 

representing the broad emotion categories of fear, anger, disgust, happiness, and sadness with 

ICMs from fearful > neutral and angry > neutral facial expressions from an independent dataset 

of task fMRI (n = 1263).  Analyses revealed that both fear and anger ICMs exhibited the greatest 

pattern similarity to fear MAMs.  As the number of voxels included for the computation of 

pattern similarity became more selective, the specificity of MAM-ICM correspondence 

decreased.  Notably, amygdala activity long considered critical for processing threat-related 

facial expressions was neither sufficient nor necessary for detecting MAM-ICM pattern 

similarity effects.  Our analyses suggest that both fearful and angry facial expressions are best 

captured by distributed patterns of brain activity associated with fear.  More generally, our 

analyses demonstrate how MAMs can be leveraged to better understand affective processes 

captured by ICMs in task fMRI data. 
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Introduction 

Understanding how emotions map onto human brain function is a long-standing aim of 

affective neuroscience.  To achieve this goal, affective neuroscientists have heavily employed 

functional magnetic resonance imaging (fMRI) to examine whether different properties of 

emotion based on existing theories – such as valence/arousal dimension (Russell, 1980) or basic 

emotion categories (Ekman, 1992) – may be reflected in patterns of brain activity.  Early fMRI 

studies that aimed to elucidate the neural representations of categorical emotions focused on the 

amygdala because of its demonstrated importance in aversive learning as exemplified through 

the acquisition of a conditioned fear response (LeDoux, 1993; Maren, 2001).  However, fMRI 

studies yielded mixed results wherein amygdala activity was not only elicited by threat-related 

emotions (e.g., fear, anger) but also other categories of emotion (e.g., happiness, sadness) (Davis 

& Whalen, 2001). 

In fact, it has been suggested that amygdala activity alone does not provide a sufficient 

level of specificity in distinguishing emotion categories (Fitzgerald et al., 2006).  More 

generally, fMRI studies examining discrete emotion categories have not revealed 

correspondingly discrete brain regions (Lindquist et al., 2012).  In contrast, recent research 

employing multivoxel pattern analysis (MVPA) offers evidence that discrete emotion categories 

may be best represented by distributed patterns of activity across the brain (Kassam et al., 2013; 

Kragel & Labar, 2015; Kragel et al., 2019; Peelen et al., 2010; Saarimäki et al., 2016; but see 

Barrett & Satpute, 2019). 

A rapidly expanding portfolio of fMRI studies has allowed for a series of computational 

methods designed to generate voxel-wise meta-analysis maps (MAMs) of brain activity 

associated with specific cognitive and affective processes (Eickoff et al., 2009; Kober & Wager, 
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2010; Yarkoni et al., 2011).  MAMs typically share the same coordinate or stereotaxic space 

(e.g., MNI or Talairach) as individual contrast maps (ICMs), which represent subject-level brain 

activity associated with a study-specific contrast of interest.  As such, MAMs could provide a 

reference map for a given mental process or behavior.  For example, ICMs of a typical emotion 

category, such as fear, should show patterns of brain activity more similar to MAMs of the 

corresponding category (i.e., fear) than other categories (e.g., disgust or sadness).  In other 

words, if affective information for fear is indeed represented in brain activity for fear ICMs, they 

should correspond to the associated MAMs for fear.  This not only presents a testable prediction 

but also an opportunity to refine ICMs (through pattern similarity analysis with MAMs) in a 

fashion that maximizes their ability to capture brain activity supporting a specific mental process. 

 In this study, we aimed to test a simple idea: would an ICM of a given emotion category 

show greater similarity to the MAM of the same category over others?  There are at least three 

conditions that serves as a prerequisite for such an examination: 1) MAMs from voxel-wise 

meta-analyses of fMRI data, 2) category-specific ICMs from a study with a sufficiently large 

sample size, and 3) independence between the MAMs and ICMs – that is, the ICMs selected for 

testing should not have been used in the generation of the MAMs.  Here, we take advantage of 

datasets that satisfy these conditions.  First, Wager and colleagues (2015) have conducted a 

computational meta-analysis of 148 functional neuroimaging studies to generate MAMs for five 

emotion categories: fear, anger, disgust, happiness, and sadness.  Second, the Duke 

Neurogenetics Study (DNS) offers a large independent dataset (n = 1263) of ICMs for fear, 

anger, surprise, and neutral emotions from a widely-utilized face-matching task.  Importantly, 

none of the ICMs from the DNS were included in the generation of MAMs. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/820969doi: bioRxiv preprint 

https://doi.org/10.1101/820969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

  Based on the existing literature, we hypothesized that ICMs for fear and anger would 

show the greatest pattern similarity to MAMs for fear and anger, respectively.  Moreover, we 

sought to examine the possibility that affective information pertaining to emotion categories is 

distributed across the whole brain by systematically varying the number of voxels submitted for 

pattern similarity analysis.  Finally, given the prominence of the amygdala in the affective 

neuroscience literature (Adolphs et al., 1995; Costafreda et al., 2008; Kim et al., 2011; Phelps & 

LeDoux, 2005), we tested whether amygdala activity specifically was either sufficient or 

necessary to produce the MAM-ICM pattern similarity observed in whole brain analyses. 

 

Methods 

Participants 

1263 participants (717 women, 19.7 ± 1.3 years of age) successfully completed the Duke 

Neurogenetics Study (DNS) between January 2010 and November 2016 including an fMRI task 

eliciting threat-related brain activity.  All participants provided written informed consent 

according to the Duke University Medical Center Institutional Review Board.  To be eligible for 

the DNS, participants were required to be free of the following conditions: 1) medical diagnoses 

of cancer, stroke, head injury with loss of consciousness, untreated migraine headaches, diabetes 

requiring insulin treatment, chronic kidney, or liver disease; 2) use of psychotropic, 

glucocorticoid, or hypolipidemic medication; and 3) conditions affecting cerebral blood flow and 

metabolism (e.g., hypertension).  As DNS followed a standardized procedure, we note that the 

following description of the methods is also described elsewhere (e.g., Kim et al., 2018). 

 

Face Matching Task 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/820969doi: bioRxiv preprint 

https://doi.org/10.1101/820969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

The face matching task used in the DNS consisted of four task blocks interleaved with 

five control blocks.  A total of four emotion categories were used for each task block: fear (F), 

anger (A), surprise (S), and neutral (N), taken from a standardized facial expression set (Ekman 

& Friesen, 1976).  Participants viewed the task blocks in one of four randomly assigned orders as 

determined by a Latin Square (i.e., FNAS, NFSA, ASFN, SANF).  During task blocks, 

participants viewed a trio of faces and matched one of two faces identical to a target face.  Each 

trial in the task blocks lasted for 4 s with a variable interstimulus interval of 2-6 s (mean = 4 s), 

for a total block length of 48 s.  The control blocks consisted of six geometric shape trios, which 

were presented for 4 s with a fixed interstimulus interval of 2 s for a total block length of 36 s.  

Each block was preceded by a brief instruction (“Match faces” or “Match shapes”) lasting 2 s.  

Total task time was 390 s. 

 

fMRI Data Acquisition 

Each participant was scanned using one of the two identical research-dedicated GE 

MR750 3T scanner equipped with high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s 

slew rate, and an eight-channel head coil for parallel imaging at high bandwidth up to 1MHz at 

the Duke-UNC Brain Imaging and Analysis Center.  A semi-automated high-order shimming 

program was used to ensure global field homogeneity.  A series of 34 interleaved axial functional 

slices aligned with the anterior commissure-posterior commissure plane were acquired for full-

brain coverage using an inverse-spiral pulse sequence to reduce susceptibility artifacts 

(TR/TE/flip angle=2000 ms/30 ms/60; FOV=240mm; 3.75×3.75×4mm voxels; interslice 

skip=0).  Four initial radiofrequency excitations were performed (and discarded) to achieve 

steady-state equilibrium.  To allow for spatial registration of each participant's data to a standard 
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coordinate system, high-resolution three-dimensional T1-weighted structural images were 

obtained in 162 axial slices using a 3D Ax FSPGR BRAVO sequence (TR/TE/flip angle = 8.148 

ms / 3.22 ms / 12°; voxel size=0.9375x0.9375x1mm; FOV=240mm; interslice skip=0; total scan 

time = 4 min and 13 s).  In addition, high-resolution structural images were acquired in 34 axial 

slices coplanar with the functional scans and used for spatial registration for participants without 

Ax FSPGR BRAVO images (TR/TE/flip angle=7.7 s/3.0 ms/12; voxel size=0.9×0.9×4mm; 

FOV=240mm, interslice skip=0). 

 

fMRI Data Preprocessing 

Anatomical images for each subject were skull-stripped, intensity-normalized, and 

nonlinearly warped to a study-specific average template in the standard stereotactic space of the 

Montreal Neurological Institute (MNI) template using ANTs (Klein et al., 2009).  BOLD time 

series for each subject were processed in AFNI (Cox, 1996).  Images for each subject were 

despiked, slice time-corrected, realigned to the first volume in the time series to correct for head 

motion, coregistered to the anatomical image using FSL’s Boundary Based Registration (Greve 

& Fischl, 2009), spatially normalized into MNI space using the non-linear warp from the 

anatomical image, resampled to 2 mm isotropic voxels, and smoothed to minimize noise and 

residual difference in gyral anatomy with a Gaussian filter, set at 6-mm full-width at half-

maximum.  All transformations were concatenated so that a single interpolation was performed.  

Voxel-wise signal intensities were scaled to yield a time series mean of 100 for each voxel.  

Volumes exceeding 0.5 mm framewise displacement (FD) or 2.5 standardized temporal 

derivative of RMS variance over voxels (DVARS)(Nichols, 2017; Power et al., 2014) were 

censored. 
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Individual Contrast Maps 

The AFNI program 3dREMLfit (http://afni.nimh.nih.gov/) was used to fit a general linear 

model for first-level fMRI data analyses.  To obtain emotion-specific parameter estimates, we 

explicitly modeled each respective task block (convolved with the canonical hemodynamic 

response function) along with the adjacent half of the preceding and following control blocks, 

and a first order polynomial regressor to account for low frequency noise.  This allowed for the 

estimation of the individual task block parameters while minimizing the influence of adjacent 

task blocks as well as low frequency noise across the entire run.  The resulting parameter 

estimates for the fear and anger task blocks and the neutral task blocks were then subtracted to 

obtain the fearful > neutral and angry > neutral faces ICMs (henceforth referred to as ICM-F and 

ICM-A, respectively), and these ICMs were used to compute pattern similarity with the MAMs. 

The contrast surprise > neutral was omitted from the present study, because a corresponding 

surprise MAM does not exist.  ICMs were then used in second-level random effects models in 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm) accounting for scan-to-scan and participant-to-

participant variability to determine mean emotion-specific activity using one-sample t-tests.  A 

statistical threshold of p < 0.05, family-wise error (FWE)-corrected across the whole brain was 

applied to the fearful > neutral and angry > neutral contrasts, respectively. 

 

fMRI Quality Assurance Criteria 

Quality control criteria for inclusion of a participant's imaging data were: > 5 volumes for 

each condition of interest retained after censoring for framewise displacement (FD) and DVARS 

and sufficient temporal SNR within the bilateral amygdala, defined as no greater than 3 standard 
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deviations below the mean of this value across participants.  The amygdala was defined using a 

high-resolution template generated from the 168 Human Connectome Project datasets (Tyszka & 

Pauli, 2016).  Additionally, data were only included in further analyses if the participant 

demonstrated sufficient engagement with the task, defined as achieving at least 75% accuracy 

during the task blocks. 

 

Meta-Analysis Maps 

The MAMs utilized in the present study are based on a meta-analysis of 148 fMRI 

studies of emotional categories (Wager et al., 2015).  The MAMs were generously made 

available by these study authors on their website (https://canlabweb.colorado.edu/fmri-

resources.html).  In brief, the original meta-analysis consisted of five distinct emotion categories 

(fear, anger, disgust, sadness, happiness), and MAMs for each category were generated in 

standard MNI space using a hierarchical Bayesian model that summarizes the expected 

frequency of activation for a given emotion category.  The values that each voxel of the MAMs 

assumes is reflective of this information, such that taking the integral over any area of the brain 

represents the expected number of activation centers for all studies of a given emotion category 

(Wager et al., 2015).  The overall findings indicated that brain activity patterns that are 

diagnostic of distinct categories of emotion are characterized as widespread (i.e., distributed not 

only across multiple brain regions, but also many neural systems that span cognitive, perceptual, 

and motor functions).  For the purposes of the present study, higher intensity voxel values of the 

MAMs indicate a greater likelihood with which the MAMs correspond to a given emotion 

category.  Importantly, none of the 148 studies that were included in this meta-analysis 

overlapped with the DNS, ensuring independence across MAMs and ICMs (the MAMs included 
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studies published from 1993 to 2011; the first study using the ICMs from the emotional face 

matching task in the DNS was published in 2012). 

 

MAM-ICM Pattern Similarity Computation 

For quantifying MAM-ICM pattern similarity, we adopted a modified version of an 

approach described by Shahane and colleagues (2019).  First, prior to each analysis, ICMs were 

masked with the target MAMs, to match the number of non-zero voxels.  Then, for each MAM-

ICM pair, all non-zero voxels were vectorized and demeaned in order to compute their 

correlation coefficients, which were subsequently converted to z scores using Fisher’s r-to-z 

transformation (Figure 1).  Computation of correlation coefficients across vectorized voxels was 

achieved with 3ddot implemented within AFNI (Cox, 1996).  Higher z scores indicated greater 

pattern similarity between a given MAM-ICM pair.  Since there were 5 MAMs, a total of 5 z 

scores were computed for each of two ICMs for each participant.  As we were primarily 

interested in how well a given ICM (e.g., ICM-F) aligned with its corresponding MAM (e.g., 

MAM-F) above and beyond other MAMs, the z scores were compared across the MAMs.  Two 

models were generated to test this: 1) a one-way repeated measures analysis of variance 

(ANOVA) where z scores for a given ICM and MAMs for each of the five emotion categories 

were compared, and 2) a paired t-test where z scores for a given ICM and MAMs for fear and 

anger, specifically, were compared.  The latter model was used to specifically focus on the two 

emotion categories that were available as both ICMs and MAMs.  Analyses were done separately 

for ICM-F and ICM-A.  In this way, we could confirm the a priori prediction that ICM-F would 

correspond better to the MAM-F, above and beyond the MAMs of other emotion categories; 
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then, the same procedure was applied to test whether ICM-A would show increased pattern 

similarity to the MAM-A compared to other MAMs.   

 

 

Figure 1.  Summary of data analysis procedures used for assessing MAM-ICM pattern similarity.  
ICMs for fearful > neutral and angry > neutral derived from 1263 performing an emotional face 
matching task were compared with five MAMs corresponding to different categories of emotion 
from Wager et al. (2015).  For each MAM-ICM pair, all non-zero voxels were vectorized in 
order to compute their correlation coefficient, which was subsequently converted to z scores 
using Fisher’s r-to-z transformation.   
 

To test whether the number of voxels included in the analyses impacted the results, 

MAM-ICM pattern similarity measures were computed repeatedly using MAMs at different 

thresholds.  The threshold was systematically varied, ranging from unthresholded to 0.1 

(intensity values), with each step increasing the threshold by twofold (unthresholded – 0.001 – 

0.005 – 0.01 – 0.05 – 0.1).  It is notable that there was a general tendency for cortical areas to 

become reduced as a function of increased MAM threshold, while the amygdala was among the 
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last regions to remain, regardless of emotion category (Figure 2).  Effect sizes from the analyses 

that compared a given ICM across different MAMs (partial h2 for ANOVA, Cohen’s d for t-test) 

were used to describe the effect of applying different thresholds on the pattern similarity metrics. 

Finally, to test the contribution of amygdala activity specifically on the pattern similarity 

results from the main analyses, two sets of subsequent analyses were performed on the data.  

First, each MAM-ICM pair was masked with an anatomical ROI of the amygdala, divided into 

basolateral and centromedial subregions (Tyszka & Pauli, 2016), which then underwent the same 

procedure described above using only the amygdala voxels (here, only unthresholded MAM 

voxels was used).  In a separate set of analyses, each MAM-ICM pair was masked with a 

reversed mask of the amygdala ROI, such that all amygdala voxels were removed from further 

analysis.  Then, the same procedure as the main analyses was repeated for the amygdala-

excluded MAM-ICM pairs.  The latter analysis tested the prediction that if the amygdala voxels 

contain important information about distinct emotion categories, then it would yield decreased 

pattern similarity metrics for corresponding MAM-ICM pairs. 
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Figure 2.  Five emotion-specific MAMs at systematically varied thresholds.  Voxels that 
survived the increasingly stringent thresholds (i.e., the higher values noted on the left-hand side) 
are depicted by hot colors. 
 

Results 

ICMs: Fearful > Neutral and Angry > Neutral 

Across the entire brain, both ICMs yielded significant activity in the amygdala, 

supramarginal gyrus/angular gyrus extending to the superior temporal sulcus (STS), and inferior 

frontal gyrus (IFG).  The fearful > neutral ICMs also revealed significantly increased activity in 

the occipital pole and the inferior temporal gyrus (ITG). Significantly activated amygdala voxel 

clusters were isolated within the amygdala proper and not a part of a larger cluster that extends to 

other brain regions (Figure 3, Table 1). 
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Figure 3.  Group-level whole brain responses from 1263 participants performing an emotional 
face matching task (p < 0.05, FWE-corrected for the whole brain; k ≥ 30 are visualized).  (A) 
Brain regions that showed significantly increased activity to fearful > neutral included the 
amygdala, supramarginal gyrus/angular gyrus/superior temporal sulcus (STS), inferior frontal 
gyrus (IFG), inferior temporal gyrus (ITG), and the occipital pole.  (B) Similar brain regions 
showed significantly increased activity to anger > neutral.   
 

Whole Brain MAM-ICM Pattern Similarity for Fear 

Overall, there was significant pattern similarity between ICM-F and MAM-F (M = 

0.0065, SD = 0.03, [min, max] = [-0.11, 0.11] ; one-sample t-test: t(1262) = 7.57, p < 0.000001, d = 

0.21).  This effect remained significant when the MAMs were thresholded at varying levels (all 

ps < 0.002), except for one instance (ICM-F and MAM-F pair thesholded at 0.1; p = 0.16). 

 Repeated measures ANOVA showed significant differences of MAM-ICM pattern 

similarity for ICM-F across the five MAMs (F(4,5048) = 17.27, p < 0.000001; partial h2 = 0.014).  

Post hoc analysis revealed that pattern similarity for MAM-F was significantly greater than the 

other four MAMs (all ps < 0.002). This finding remained when the threshold was increased to 
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0.01 (i.e., less voxels were selected); however, this effect was no longer observable when the 

threshold was further increased.  Paired t-tests showed similar findings as the ANOVA, such that 

pattern similarity between ICM-F and MAM-F was significantly greater than MAM-A (t(1262) = 

3.3, p = 0.001; d = 0.09).  Again, this effect was observable until the threshold was increased to 

0.01.  When the threshold was set to the highest level (0.1), an unexpected opposite effect was 

found such that pattern similarity between ICM-F and MAM-F was significantly less than for 

ICM-F and MAM-A (t(1262) = -2.65, p = 0.008; d = 0.1). 

 Effect sizes of the ANOVA and t-test results gradually decreased as a function of 

increased threshold levels.  As ICM-F showed the highest level of pattern similarity to MAM-F 

over other MAMs, diminishing effect sizes suggest a relative decrease in the specificity of ICM-

F to MAM-F.  These findings are summarized in Figure 4 (white bars and circles). 

 

Whole Brain MAM-ICM Pattern Similarity for Anger 

Again, there was significant pattern similarity between ICM-A and MAM-A (M = 

0.0036, SD = 0.02, [min, max] = [-0.06, 0.06]; one-sample t-test: t(1262) = 6.71, p < 0.000001, d = 

0.19).  This effect persisted regardless of differences in the thresholds applied to the MAMs. 

Repeated measures ANOVA showed significant differences of MAM-ICM pattern 

similarity for ICM-A across the five MAMs (F(4,5048) = 11.46, p < 0.000001; partial h2 = 0.009).  

Post hoc analysis revealed, however, that ICM-A showed greatest pattern similarity to MAM-F 

compared to the other four MAMs, including anger (all ps < 0.03).  This finding remained when 

the threshold was increased to 0.05 (i.e., less voxels were selected); however, this effect was no 

longer observable when the threshold was increased to 0.1.  Paired t-tests showed similar 

findings as the ANOVA, such that pattern similarity between ICM-A and MAM-A was 
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significantly less than for ICM-A and MAM-F (t(1262) = -2.2, p = 0.028, d = 0.06).  Again, this 

effect was observable up until the threshold was increased to 0.05.  When the threshold was set 

to the highest level (0.1), this effect was no longer present. 

 Effect sizes of the ANOVA results gradually decreased as a function of increased 

threshold levels.  Effect sizes of the t-tests showed a less clear but consistent pattern where the 

highest threshold (0.1) yielded the smallest effect size.  However, as ICM-A showed the highest 

pattern similarity to MAM-F and not MAM-A, diminishing effect sizes indicate a relative 

decrease in the specificity of ICM-A to MAM-F.  These findings are summarized in Figure 4 

(gray bars and circles). 

 

 

Figure 4.  Whole brain MAM-ICM pattern similarity for fear and anger.  (A) Pattern similarity 
measures of ICM-F (white) and ICM-A (gray) to each of the five MAMs, summarized by 
varying threshold levels.  Overall, both fear ICMs showed greater pattern similarity with the fear 
MAM, but this effect disappeared when the threshold was sufficiently high (e.g., 0.1).  (B) 
Plotting the effect sizes from repeated measures ANOVA showed a gradually declining trend as 
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a function of increased threshold levels.  (C) A similar trend was found when the effect sizes 
from paired t-tests were plotted.  
 

Amygdala MAM-ICM Pattern Similarity for Fear and Anger 

Repeated measures ANOVA showed significant differences in pattern similarity in 

amygdala activity between ICM-F and all five MAMs (F(4,5048) = 2.86, p = 0.022; partial h2 = 

0.002).  However, post hoc analysis showed that this effect was driven by an unexpected pattern 

similarity between ICM-F and the MAM for happiness.  This finding remained the same when 

the analysis was restricted to basolateral or centromedial subregions of the amygdala.  Paired t-

tests showed similar findings as the ANOVA, such that the pattern similarity between ICM-F 

and MAM-F was no different from those for MAM-A.  Again, this effect remained the same for 

basolateral or centromedial subregions of the amygdala.   

 Similarly, amygdala activity from ICM-A significantly differed from all five MAMs 

(F(4,5048) = 4.07, p = 0.003; partial h2 = 0.003), but the happiness MAM showed the greatest 

degree of pattern similarity to ICM-A.  This effect remained when only the basolateral or 

centromedial amygdala voxels were considered in the analysis.  Once again, pairwise 

comparison between MAM-F and MAM-A yielded no significant differences in overall or 

subregional amygdala activity. 

The very small effect sizes of the ANOVA and t-test results of the amygdala analyses 

showed that they were comparable to the whole brain analyses using the highest threshold levels, 

and not useful in parsing the distinct emotion categories.  These findings are summarized in 

Figure 5. 
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Figure 5.  MAM-ICM pattern similarity for amygdala activity.  (A) Anatomical definitions of 
the amygdala, basolateral amygdala, and centromedial amygdala used to select the voxels for 
ICM analysis (Tyszka & Pauli, 2016).  (B) Pattern similarity measures for ICM-F (white) and 
ICM-A (gray) and each of the five MAMs, summarized by the ROIs used to define the amygdala 
and its subregions.  Overall, neither ICM-F nor ICM-A exhibited pattern similarity with either 
MAM-F or MAM-A.  (C) Plotting the effect sizes from repeated measures ANOVA showed a 
very small overall effect, regardless of activation locus (i.e., whole amygdala or subregion).  The 
line graphs on the left represent the findings from the whole brain pattern similarity analysis (i.e., 
same as Figure 4B).  (D) Similar findings were observed with the very small effect size for the 
pairwise t-tests. 
 

Non-Amygdala MAM-ICM Pattern Similarity for Fear and Anger 

Nearly identical results as the whole brain MAM-ICM pattern similarity analysis were observed 

when the main analyses were repeated after excluding amygdala voxels (Figure 6). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/820969doi: bioRxiv preprint 

https://doi.org/10.1101/820969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

 

Figure 6.  Non-amygdala MAM-ICM pattern similarity.  (A) Pattern similarity measures for 
ICM-F (white) and ICM-A (gray) and each of the five MAMs, summarized by varying threshold 
levels.  Overall, both ICM-F and ICM-A showed nearly identical results as the whole brain 
MAM-ICM pattern similarity analysis that included the amygdala.  (B) Plotting the effect sizes 
from repeated measures ANOVA showed a gradually declining trend as a function of increased 
threshold levels.  The line graphs on the left depict the results using whole brain voxels (i.e., 
amygdala included), and the line graphs on the right show the results using all non-amygdala 
voxels.  (C) A similar trend was found when the effect sizes from paired t-tests were plotted.  
 

Discussion 

Here, we compared MAMs generated for five distinct categories of emotion with fear and 

anger ICMs from a large study sample.  Contrary to our hypothesis, we found that both ICMs 

exhibited the greatest pattern similarity to fear MAMs relative to all other MAMs including 

anger.  The degree of pattern similarity decreased as the number of voxels included in the 

computation of the MAMs became more selective (i.e., decreased) suggesting that more 

distributed patterns of brain activity are better reflective of a specific emotion category.  
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Furthermore, amygdala activity associated with either ICM was neither sufficient nor necessary 

for determining the overall pattern similarity between the ICMs and MAMs. 

As predicted, MAM-ICM pattern similarity for fear and anger was significantly greater 

than zero but generally weak.  This may reflect the heterogeneity inherent to the MAMs in 

comparison with the ICMs.  The MAMs were generated from multiple studies that have used 

heterogenous stimuli (faces, pictures, words, films, sounds, etc.), whereas the ICMs were strictly 

based on facial expressions.  Thus, the significant yet weak overall correlation between a given 

MAM-ICM pair is not surprising, as it may be partly attributable to this qualitative difference 

across the maps; another plausible reason is the inclusion of likely non-informative, noisy voxels 

present in the initial analysis with unthresholded MAM-ICM pairs.  Regardless, ICM-F did 

exhibit the greatest pattern similarity with MAM-F as expected.  This implies that ICM-F does 

capture a putative “fear” signature embedded within distributed brain activity, and provides 

support for the research strategy employed in the present study. 

However, ICM-A did not exhibit the greatest pattern similarity with MAM-A.  In fact, 

ICM-A exhibited the greatest pattern similarity to MAM-F.  This suggests that the distributed 

brain activity associated with ICM-A is more similar to a “fear” signature than an “anger” 

signature.  While this would appear to be paradoxical, a plausible explanation can be offered.  

The key here is the use of angry facial expressions with directed eye-gaze in our emotional face 

matching task.  Angry faces with eye-gaze oriented toward the perceiver by default signal an 

impending aggression on part of the expressor (Adams et al., 2003; N’Diaye et al., 2009).  From 

the perspective of the perceiver, the primary signal being communicated via anger faces is an 

increase in the probability of impending threat, not unlike fear faces (Whalen et al., 2001).  It 

follows then that the perceiver’s typical response to such angry faces would better align with a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/820969doi: bioRxiv preprint 

https://doi.org/10.1101/820969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

threat-related response that is reminiscent of fear more so than anger.  Since the MAM-A was 

generated from individual studies employing not just facial expressions but also other anger-

inducing stimuli, it can be understood as representing a neural signature for anger per se, not the 

response to someone else’s anger directed at the perceiver.  Thus, the present results showing 

that ICM-A is more similar to a “fear” than an “anger” signature could be consistent with brain 

activity in response to interpersonal threat (i.e., angry faces with gaze directed toward the 

perceiver). 

These MAM-ICM pattern similarity results were dependent on the number of voxels that 

were included in the analysis.  By systematically manipulating the number of selected voxels, we 

found that, in general, more voxels yielded better outcomes.  However, since the inclusion of all 

voxels in the brain would necessarily contain those without any informational value (reflected as 

weak overall MAM-ICM correlations in the unthresholded analysis), additional considerations 

were warranted.  An initial survey of the effect sizes as well as the size of the pattern similarity 

metrics suggested that a light threshold (0.001-0.005) provides the optimal solution, which still 

covers a wide range of cortical and subcortical brain regions.  The distributed nature of these 

most informative voxels is consistent with the predictions of the original meta-analysis study 

(Wager et al., 2015) and generally in line with the constructionist view of emotion (Barrett & 

Russell, 2015; Lindquist et al., 2012), as well as findings from MVPA research on distinct 

emotion categories (Kassam et al., 2013; Kragel & Labar, 2015; Peelen et al., 2010; Saarimäki et 

al., 2016).  Our data offer another piece of evidence that information about emotion categories 

are distributed, not localized in brain activity. 

This interpretation of the present findings is furthered by the amygdala ROI analyses.  If 

we suppose that all of the important information regarding emotion categories was being 
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represented within the amygdala, then restricting the analysis only to the amygdala voxels should 

have yielded the same MAM-ICM pattern similarity outcomes from the whole brain analyses.  

Our data did not support this supposition, further reinforcing the main result that the inclusion of 

more voxels across the brain was generally beneficial in matching ICMs with MAMs.  Relatedly, 

it is noteworthy that both MAM-F and MAM-A are characterized by similar patterns of 

amygdala activity (Wager et al., 2015).  This suggests the possibility that this shared feature of 

the MAM-F and MAM-A may drive the pattern similarity with the corresponding ICMs, as both 

ICM-F and ICM-A are also characterized by increased amygdala activity.  Our data rejected this 

possibility, as excluding the amygdala voxels from the analyses did not change the overall 

results.  In fact, the findings remained remarkably similar to the whole brain MAM-ICM pattern 

similarity findings, with minimal changes in z scores and effect sizes.  This illustrates that the 

amygdala voxels did not contribute to distinguishing discrete emotion categories in a significant 

way, and thus the informational value of the amygdala, at least by itself, was negligible.   

The present study is not without limitations.  The experimental task from which the ICMs 

were derived exclusively used facial expressions as the emotional stimuli.  While facial 

expressions are widely used in the literature to examine brain responses to emotion (Costafreda 

et al., 2008), affective information is represented in the brain in both modality-specific and 

modality-general manner (Chikazoe et al., 2014; Kim et al., 2017; Shinkareva et al., 2014); thus, 

testing the generalizability of the present findings using ICMs derived from other modalities is 

warranted.  It is worth again noting that the MAMs used in the present study were generated 

using individual studies that utilized heterogenous stimuli to represent or elicit emotions (e.g., 

faces, pictures, films, words).  Thus, the resulting MAMs may be capturing modality-general 

signatures of emotions in the brain.  Also, we were only able to focus on the two threat-related 
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emotions (fear, anger), as our emotional face matching task did not include the three other 

emotion categories for which there are MAMs.  As such, it remains to be seen whether ICMs of 

other emotions (disgust, happiness, sadness) would show similar mappings onto corresponding 

MAMs.  Finally, findings from meta-analyses (i.e., MAMs) are inherently bound by the quality 

of the individual data (Wager et al., 2015).  As technical advances in fMRI data acquisition and 

processing have been made in recent years, it would be worthwhile revisiting the current 

research topic when updated MAMs that include post-2011 studies become available. 

These limitations notwithstanding, our current findings highlight that widely distributed 

patterns of brain activity from ICMs of threat-related emotions, across multiple brain regions and 

systems, may be best suited for capturing emotion categories identified by MAMs.  In contrast, 

the amygdala was neither sufficient nor necessary for observing such MAM-ICM pattern 

similarity effects across discrete emotion categories.  More generally, the present study offers a 

strategy that could further boost the utility of MAMs, whose importance has become increasingly 

recognized in neuroimaging research.  As evidenced by the better correspondence of ICM-A to a 

putative signal of fear rather than anger, MAMs may be able to further shed light on the 

underlying mental processes captured by ICMs, which can contribute to better interpretations of 

findings using contrast-based task fMRI.    
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Tables 
Table 1.  Brain regions showing significant activation for the contrasts of fearful > neutral and 

angry > neutral (p < 0.05, FWE-corrected for the whole brain). 

Brain Region Side   t x y z # of voxels 

Fearful > Neutral       

Supramarginal Gyrus/STS R 8.1 47 -41 11 1034 

Supramarginal Gyrus/Angular Gyrus L 7.6 -57 -53 -7 537 

Occipital Pole L 6.9 -27 -95 7 186 

Occipital Pole R 6.1 31 -93 -3 119 

Amygdala R 6.6 25 -3 -19 106 

Amygdala L 5.4 -25 -3 -19 32 

ITG L 6 -43 -51 -17 66 

IFG R 5.5 55 27 -1 49 

       

Angry > Neutral       

Supramarginal Gyrus/STS R 8.8 49 -37 5 710 

Supramarginal Gyrus/Angular Gyrus L 6.2 -55 -49 13 173 

IFG R 5.9 53 27 -1 87 

IFG L 6.3 -51 29 -1 79 

Amygdala R 6.6 25 -5 -17 65 

Amygdala L 5.6 -27 -3 -21 30 
Note: STS (superior temporal sulcus), ITG (inferior temporal gyrus), IFG (inferior frontal gyrus) 
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