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Abstract

Structural variants (SVs) remain challenging to represent and study relative to point mutations despite
their demonstrated importance. We show that variation graphs, as implemented in the vg toolkit,
provide an e�ective means for leveraging SV catalogs for short-read SV genotyping experiments. We
benchmarked vg against state-of-the-art SV genotypers using three sequence-resolved SV catalogs
generated by recent long-read sequencing studies. In addition, we use assemblies from 12 yeast
strains to show that graphs constructed directly from aligned de novo assemblies improve genotyping
compared to graphs built from intermediate SV catalogs in the VCF format.

Introduction

A structural variant (SV) is a genomic mutation involving 50 or more base pairs. SVs can take several
forms such as deletions, insertions, inversions, translocations or other complex events. 
Due to their greater size, SVs often have a larger impact on phenotype than smaller events such as
single nucleotide variants (SNVs) and small insertions and deletions (indels)[1]. Indeed, SVs have long
been associated with developmental disorders, cancer and other complex diseases and
phenotypes[2].

Despite their importance, SVs remain much more poorly studied than their smaller mutational
counterparts. This discrepancy stems from technological limitations. Short read sequencing has
provided the basis of most modern genome sequencing studies due to its high base-level accuracy
and relatively low cost, but is poorly suited for discovering SVs. The central obstacle is in mapping
short reads to the human reference genome. It is generally di�cult or impossible to unambiguously
map a short read if the sample whose genome is being analyzed di�ers substantially from the
reference at the read’s location. The large size of SVs virtually guarantees that short reads derived
from them will not map to the linear reference genome. For example, if a read corresponds to
sequence in the middle of a large reference-relative insertion, then there is no location in the
reference that corresponds to a correct mapping. The best result a read mapper could hope to
produce would be to leave it unmapped. Moreover, SVs often lie in repeat-rich regions, which further
frustrate read mapping algorithms.
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Short reads can be more e�ectively used to genotype known SVs. This is important, as even though
e�orts to catalog SVs with other technologies have been highly successful, their cost currently
prohibits their use in large-scale studies that require hundreds or thousands of samples such as
disease association studies. Traditional SV genotypers start from reads that were mapped to a
reference genome, extracting aberrant mapping that might support the presence of the SV of interest.
Current methods such as SVTyper[3] and the genotyping module of Delly[4] (henceforth referred to
as Delly Genotyper) typically focus on split reads and paired reads mapped too close or too far from
each other. These discordant reads are tallied and remapped to the reference sequence modi�ed
with the SV of interest in order to genotype deletions, insertions, duplications, inversions and
translocations. SMRT-SV v2 Genotyper uses a di�erent approach: the reference genome is augmented
with SV-containing sequences as alternate contigs and the resulting mappings are evaluated with a
machine learning model trained for this purpose[5].

The catalog of known SVs in human is quickly expanding. Several large-scale projects have used short-
read sequencing and extensive discovery pipelines on large cohorts, compiling catalogs with tens of
thousands of SVs in humans[6,7], using split read and discordant pair based methods like Delly[4] to
�nd SVs using short read sequencing. More recent studies using long-read or linked-read sequencing
have produced large catalogs of structural variation, the majority of which was novel and sequence-
resolved[10,11,5,8,9]. These technologies are also enabling the production of high-quality de novo
genome assemblies[12,8], and large blocks of haplotype-resolved sequences[13]. Such technical
advances promise to expand the amount of known genomic variation in humans in the near future,
and further power SV genotyping studies. Representing known structural variation in the wake of
increasingly larger datasets poses a considerable challenge, however. VCF, the standard format for
representing small variants, is unwieldy when used for SVs due its unsuitability for expressing nested
or complex variants. Another strategy consists in incorporating SVs into a linear pangenome reference
via alt contigs, but it also has serious drawbacks. Alt contigs tend to increase mapping ambiguity. In
addition, it is unclear how to scale this approach as SV catalogs grow.

Pangenomic graph reference representations o�er an attractive approach for storing genetic
variation of all types[14]. These graphical data structures can seamlessly represent both SVs and
point mutations using the same semantics. Moreover, including known variants in the reference
makes read mapping, variant calling and genotyping variant-aware. This leads to bene�ts in terms of
accuracy and sensitivity[15,16,17]. The coherency of this model allows di�erent variant types to be
called and scored simultaneously in a uni�ed framework.

vg is the �rst openly available variation graph tool to scale to multi-gigabase genomes. It provides
read mapping, variant calling and visualization tools[15]. In addition, vg can build graphs both from
variant catalogs in the VCF format and from assembly alignments.

Other tools have used genome graphs or pangenomes to genotype variants. GraphTyper realigns
mapped reads to a graph built from known SNVs and short indels using a sliding-window
approach[18]. BayesTyper �rst builds a set of graphs from known variants including SVs, then
genotypes variants by comparing the distribution of k-mers in the sequencing reads with the k-mers
of haplotype candidate paths in the graph[19]. Paragraph builds a graph for each breakpoint of
known variants [20], then, for each breakpoint, it pulls out all nearby reads from the linear alignment
and re-aligns them to the graph. Genotypes are computed using the read coverage from the pair of
breakpoint graphs corresponding to each SV. These graph-based approaches showed clear
advantages over standard methods that use only the linear reference.

In this work, we present a SV genotyping framework based on the variation graph model and
implemented in the vg toolkit. We show that this method is capable of genotyping known deletions,
insertions and inversions, and that its performance is not inhibited by small errors in the speci�cation
of SV allele breakpoints. We evaluated the genotyping accuracy of our approach using simulated and

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


real Illumina reads and a pangenome built from SVs discovered in recent long-read sequencing
studies[21,22,23,5], We also compared vg’s performance with state-of-the-art SV genotypers:
SVTyper[3], Delly Genotyper[4], BayesTyper[19], Paragraph[20] and SMRT-SV v2 Genotyper[5].
Across the datasets we tested, which range in size from 26k to 97k SVs, vg is the best performing SV
genotyper on real short-read data for all SV types in the majority of cases. Finally, we demonstrate
that a pangenome graph built from the alignment of de novo assemblies of diverse Saccharomyces
cerevisiae strains improves SV genotyping performance.

Results

Structural variation in vg

We used vg to implement a straightforward SV genotyping pipeline. Reads are mapped to the graph
and used to compute the read support for each node and edge (see Supplementary Information for a
description of the graph formalism). Sites of variation within the graph are then identi�ed using the
snarl decomposition as described in [24]. These sites correspond to intervals along the reference
paths (ex. contigs or chromosomes) which are embedded in the graph. They also contain nodes and
edges deviating from the reference path, which represent variation at the site. For each site, the two
most supported paths spanning its interval (haplotypes) are determined, and their relative supports
used to produce a genotype at that site (Figure 1a). The pipeline is described in detail in Methods. We
rigorously evaluated the accuracy of our method on a variety of datasets, and present these results in
the remainder of this section.
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Figure 1:  Structural variation in vg. a) vg uses the read coverage over possible paths to genotype variants in a snarl.
The cartoon depicts the case of an heterozygous insertion and an homozygous deletion. The algorithm is described in
detail in Methods. b) Simulation experiment. Each subplot shows a comparison of genotyping accuracy for �ve
methods. Results are separated between types of variation (insertions, deletions, and inversions). The experiments were
also repeated with small random errors introduced to the VCF to simulate breakpoint uncertainty. For each experiment,
the x-axis is the simulated read depth and the y-axis shows the maximum F1 across di�erent minimum quality
thresholds. SVTyper cannot genotype insertions, hence the missing line in the top panels.

Simulated dataset

As a proof of concept, we simulated genomes and di�erent types of SVs with a size distribution
matching real SVs[22]. We compared vg against Paragraph, SVTyper, Delly Genotyper, and BayesTyper
across di�erent levels of sequencing depth. We also added some errors (1-10bp) to the location of the
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breakpoints to investigate their e�ect on genotyping accuracy (see Methods). The results are shown
in Figure 1b.

When using the correct breakpoints, most methods performed similarly, with di�erences only
becoming visible at very low sequencing depths. Only vg and Paragraph maintained their
performance in the presence of 1-10 bp errors in the breakpoint locations. The dramatic drop for
BayesTyper can be explained by its k-mer-based approach that requires precise breakpoints. Overall,
these results show that vg is capable of genotyping SVs and is robust to breakpoint inaccuracies in the
input VCF.

HGSVC dataset

72,485 structural variants from The Human Genome Structural Variation Consortium (HGSVC) were
used to benchmark the genotyping performance of vg against the four other SV genotyping methods.
This high-quality SV catalog was generated from three samples using a consensus from di�erent
sequencing, phasing, and variant calling technologies[22]. The three individual samples represent
di�erent human populations: Han Chinese (HG00514), Puerto-Rican (HG00733), and Yoruban Nigerian
(NA19240). We used these SVs to construct a graph with vg and as input for the other genotypers.
Using short sequencing reads, the SVs were genotyped and compared with the genotypes in the
original catalog (see Methods).

First we compared the methods using simulated reads for HG00514. This represents the ideal
situation where the SV catalog exactly matches the SVs supported by the reads. BayesTyper and vg
showed the best F1 score and precision-recall trade-o�s (Figures 2a and S1, Table S1), outperforming
the other methods by a clear margin. When restricting the comparisons to regions not identi�ed as
tandem repeats or segmental duplications, the genotyping predictions were signi�cantly better for all
methods. We observed similar results when evaluating the presence of an SV call instead of the exact
genotype (Figures 2a and S2).
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Figure 2:  Structural variants from the HGSVC and Genome in a Bottle datasets. HGSVC: Simulated and real reads
were used to genotype SVs and compared with the high-quality calls from Chaisson et al.[22]. Reads were simulated
from the HG00514 individual. Using real reads, the three HG00514, HG00733, and NA19240 individuals were tested.
GIAB: Real reads from the HG002 individual were used to genotype SVs and compared with the high-quality calls from
the Genome in a Bottle consortium[21,23,25]. a) Maximum F1 score for each method (color), across the whole genome
or focusing on non-repeat regions (x-axis). We evaluated the ability to predict the presence of an SV (transparent bars)
and the exact genotype (solid bars). Results are separated across panels by variant type: insertions and deletions.
SVTyper cannot genotype insertions, hence the missing bars in the top panels. b) Maximum F1 score for di�erent size
classes when evaluating on the presence of SVs across the whole genome. c) Size distribution of SVs in the HGSVC and
GIAB catalogs.

We then repeated the analysis using real Illumina reads from the three HGSVC samples to benchmark
the methods on a more realistic experiment. Here, vg clearly outperformed other approaches (Figures
2a and S3). In non-repeat regions and insertions across the whole genome, the F1 scores and
precision-recall AUC were higher for vg compared to other methods. For example, for deletions in
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non-repeat regions, the F1 score for vg was 0.824 while the second best method, Paragraph, had a F1
score of 0.717. We observed similar results when evaluating the presence of an SV call instead of the
exact genotype (Figures 2a and S4).

In general, the genotyped variants were matched 1-to-1 with variants in the truth set but some
methods showed some signs of “over-genotyping” that is not re�ected in the precision/recall/F1
scores. Methods like Paragraph, Delly Genotyper or SVTyper tended to genotype on average more
than one variant per truth-set variant (Figure S5). Like other SV catalogs, the HGSVC catalog is not fully
sequence-resolved and contains a number of near-duplicates with slightly di�erent breakpoint
de�nition. When genotyping a sample, multiple versions of a variant are genotyped multiple times by
methods that analyze each variant independently. In contrast, vg follows a uni�ed path-centric
approach that only select the best genotype in a region (see Methods).

We further evaluate the performance for di�erent SV sizes and repeat content. In addition, vg’s
performance was stable across the spectrum of SV sizes (Figure 2b-c). By annotating the repeat
content of the deleted/inserted sequence we further evaluated vg’s performance across repeat
classes. As expected, simple repeat variation was more challenging to genotype than transposable
element polymorphisms (Figure S6). Figure 3 shows an example of an exonic deletion that was
correctly genotyped by vg but not by BayesTyper, SVTyper or Delly Genotyper.
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Figure 3:  Exonic deletion in the HGSVC dataset correctly genotyped by vg. a) Visualization of the HGSVC graph as
augmented by reads aligned by vg at a locus harboring a 51 bp homozygous deletion in the UTR region of the LONRF2
gene. At the bottom, a horizontal black line represents the topologically sorted nodes of the graph. Black rectangles
represent edges found in the graph. Above this rendering of the topology, the reference path from GRCh38 is shown (in
green). Red and blue bars represent reads mapped to the graph. Thin lines in the reference path and read mappings
highlight relative gaps (either insertions or deletions) against the full graph. The vg read mappings show consistent
coverage even over the deletion. b) Reads mapped to the linear genome reference GRCh38 using bwa mem[26] in the
same region. Reads contain soft-clipped sequences and short insertions near the deletion breakpoints. Part of the
deleted region is also covered by several reads, potentially confusing traditional SV genotypers.

Other long-read datasets

Genome in a Bottle Consortium

The Genome in a Bottle (GiaB) consortium is currently producing a high-quality SV catalog for an
Ashkenazim individual (HG002)[21,23,25]. Dozens of SV callers operating on datasets from short,
long, and linked reads were used to produce this set of SVs. We evaluated the SV genotyping methods
on this sample as well using the GIAB VCF, which also contains parental calls (HG003 and HG004), all
totaling 30,224 SVs. Relative to the HGSVC dataset, vg performed similarly but Paragraph saw a large
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boost in accuracy and was the most accurate method across all metrics. (Figures 2, S7 and S8, and
Table S2). As before, the remaining methods produced lower F1 scores.

SMRT-SV v2 catalog and training data [5]

A recent study by Audano et al. generated a catalog of 97,368 SVs (referred as SVPOP below) using
long-read sequencing across 15 individuals[5]. These variants were then genotyped from short reads
across 440 individuals using the SMRT-SV v2 Genotyper, a machine learning-based tool implemented
for that study. The SMRT-SV v2 Genotyper was trained on a pseudo-diploid genome constructed from
high quality assemblies of two haploid cell lines (CHM1 and CHM13) and a single negative control
(NA19240). We �rst used vg to genotype the SVs in this two-sample training dataset using 30X
coverage reads, and compared the results with the SMRT-SV v2 Genotyper. vg was systematically
better at predicting the presence of an SV for both SV types, but SMRT-SV v2 Genotyper produced
slightly better genotypes for deletions in the whole genome(see Figures 4, S9 and S10, and Table S3).
To compare vg and SMRT-SV v2 Genotyper on a larger dataset, we then genotyped SVs from the entire
SVPOP catalog with both methods, using the read data from the three HGSVC samples described
above. Given that the SVPOP catalog contains these three samples, we once again evaluated accuracy
by using the long-read calls as a baseline. Paragraph was included as an additional point of
comparison.

Compared to SMRT-SV v2 Genotyper, vg had a better precision-recall curve and a higher F1 for both
insertions and deletions (SVPOP in Figures 4 and S11, and Table S4). Paragraph’s performance was
virtually identical to vg’s. Of note, SMRT-SV v2 Genotyper produces no-calls in regions where the read
coverage is too low, and we observed that its recall increased when �ltering these regions out the
input set. Interestingly, vg performed well even in regions where SMRT-SV v2 Genotyper produced no-
calls (Figure S12 and Table S5). Audano et al. discovered 217 sequence-resolved inversions using long
reads, which we attempted to genotype. vg correctly predicted the presence of around 14% of the
inversions present in the three samples (Table S4). Inversions are often complex, harboring additional
variation that makes their characterization and genotyping challenging.

Figure 4:  Structural variants from SMRT-SV v2 [5]. The pseudo-diploid genome built from two CHM cell lines and one
negative control sample was originally used to train SMRT-SV v2 Genotyper in Audano et al.[5]. It contains 16,180 SVs.
The SVPOP panel shows the combined results for the HG00514, HG00733, and NA19240 individuals, three of the 15
individuals used to generate the high-quality SV catalog in Audano et al. [5]. Here, we report the maximum F1 score (y-
axis) for each method (color), across the whole genome or focusing on non-repeat regions (x-axis). We evaluated the
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ability to predict the presence of an SV (transparent bars) and the exact genotype (solid bars). Genotype information is
not available in the SVPOP catalog hence genotyping performance could not be evaluated.

Graphs from alignment of de novo assemblies

We can construct variation graphs directly from whole genome alignments (WGA) of multiple de novo
assemblies[15]. This bypasses the need for generating an explicit variant catalog relative to a linear
reference, which could be a source of error due to the reference bias inherent in read mapping and
variant calling. Genome alignments from graph-based software such as Cactus [27] can contain
complex structural variation that is extremely di�cult to represent, let alone call, outside of a graph,
but which is nevertheless representative of the actual genomic variation between the aligned
assemblies. We sought to establish if graphs built in this fashion provide advantages for SV
genotyping.

To do so, we analyzed public sequencing datasets for 12 yeast strains from two related clades (S.
cerevisiae and S. paradoxus) [28]. We distinguished two di�erent strain sets, in order to assess how
the completeness of the graph a�ects the results. For the all strains set, all 12 strains were used, with
S.c. S288C as the reference strain. For the �ve strains set, S.c. S288C was used as the reference strain,
and we selected two other strains from each of the two clades (see Methods). We compared
genotyping results from a WGA-derived graph (cactus graph) with results from a VCF-derived graph
(VCF graph). The VCF graph was created from the linear reference genome of the S.c. S288C strain and
a set of SVs relative to this reference strain in VCF format identi�ed from the other assemblies in the
respective strain set by three methods: Assemblytics [29], AsmVar [30] and paftools [31]. The cactus
graph was derived from a multiple genome alignment of the strains in the respective strain set using
Cactus [27]. The VCF graph is mostly linear and highly dependent on the reference genome. In
contrast, the cactus graph is structurally complex and relatively free of reference bias.

First, we tested our hypothesis that the cactus graph has higher mappability due to its better
representation of sequence diversity among the yeast strains (see Supplementary Information).
Generally, more reads mapped to the cactus graph with high identity (Figures S13a and S14a) and
high mapping quality (Figures S13b and S14b) than to the VCF graph. On average, 88%, 79%, and 68%
of reads mapped to the all strain cactus graph with an identity of at least 50%, 90%, and 100%,
respectively, compared to only 77%, 57%, and 23% of reads on the all strain VCF graph. Similarly, 88%
of reads mapped to the all strain cactus graph with a mapping quality of at least 30 compared to only
80% of reads on the all strain VCF graph.

Next, we compared the SV genotyping performance of both graph types. We mapped short reads
from the 11 non-reference strains to both graphs and genotyped variants for each strain using the vg
toolkit’s variant calling module (see Methods). There is no gold standard available for these samples
to compare against which renders an evaluation using recall, precision and F1 score impossible.
Therefore, we used an indirect measure of SV genotyping accuracy. We evaluated each SV genotype
set based on the alignment of reads to a sample graph constructed from the genotype set (see
Methods). Conceptually, the sample graph represents the sample’s diploid genome by starting out
from the reference genome and augmenting it with the genotype results. If a given genotype set is
correct, we expect that reads from the same sample will be mapped with high identity and con�dence
to the corresponding sample graph. To speci�cally quantify mappability in SV regions we excluded
reads that produced identical mapping quality and identity on both sample graphs and an empty
sample graph containing the linear reference only (see Methods and Figure S15 for results from all
reads). Then, we analyzed the average delta in mapping identity and mapping quality of the remaining
short reads between both sample graphs (Figures 5a and b).

For most of the strains, we observed an improvement in mapping identity of the short reads on the
cactus sample graph compared to the VCF sample graph. The mean improvement in mapping identity
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across the strains (for reads di�ering in mapping identity) was 8.0% and 8.5% for the all strains set
graphs and the �ve strains set graphs, respectively. Generally, the improvement in mapping identity
was larger for strains in the S. paradoxus clade (mean of 13.7% and 13.3% for the two strain sets,
respectively) than for strains in the S. cerevisiae clade (mean of 3.3% and 4.4%). While the higher
mapping identity indicated that the cactus graph represents the reads better (Figure 5a), the higher
mapping quality con�rmed that this did not come at the cost of added ambiguity or a more complex
graph (Figure 5b). For most strains, we observed an improvement in mapping quality of the short
reads on the cactus sample graph compared to the VCF sample graph (mean improvement across the
strains of 1.0 and 5.7 for the two strain sets, respectively).

Figure 5:  SV genotyping comparison. Short reads from all 11 non-reference yeast strains were used to genotype SVs
contained in the cactus graph and the VCF graph. Subsequently, sample graphs were generated from the resulting SV
genotype sets. The short reads were aligned to the sample graphs and reads with identical mapping identity and quality
across both sample graphs and an additional empty sample graph were removed from the analysis. The quality of the
remaining divergent alignments was used to ascertain SV genotyping performance. The bars show the average delta in
mapping identity (a) and in mapping quality (b) of divergent short reads aligned to the sample graphs derived from the
cactus graph and the VCF graph. Positive values denote an improvement of the cactus graph over the VCF graph. Colors
represent the two strain sets and transparency indicates whether the respective strain was part of the �ve strains set.

Discussion

Overall, graph-based methods were more accurate than traditional SV genotypers in our benchmarks,
with vg performing best across most datasets. These results show that SV genotyping bene�ts from
variant-aware read mapping and graph based genotyping, a �nding consistent with previous
studies[15,16,17,18,19]. Paragraph, another graph-based genotyper which was released as we were
submitting this work, was very competitive with vg and showed the best overall accuracy on the GIAB
dataset. In addition to being featured prominently in Paragraph’s development and evaluation, the
GIAB dataset we used was a di�erent coverage (50X) than the other 30X datasets we used. Our
simulation results show that Paragraph is slightly more robust than vg with respect to di�erences in
coverage and perhaps this is a factor in the di�erence in performance. In the future, we would like to
better model the expected read depth in the vg genotyper as it currently does not exploit this
information. In contrast, vg is much more accurate than Paragraph on the HGSVC dataset and we
speculate that this is due to the higher number of overlapping variants. Using the snarl
decomposition, vg can genotype arbitrary combinations of SVs simultaneously, whereas Paragraph
operates one at a time.
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We took advantage of newly released datasets for our evaluation, which feature up to 3.7 times more
variants than the more widely-used GIAB benchmark. More and more large-scale projects are using
low cost short-read technologies to sequence the genomes of thousands to hundreds of thousands of
individuals (e.g. the Pancancer Analysis of Whole Genomes[32], the Genomics England initiative[33],
and the TOPMed consortium[34]). We believe pangenome graph-based approaches will improve both
how e�ciently SVs can be represented, and how accurately they can be genotyped with this type of
data.

A particular advantage of our method is that it does not require exact breakpoint resolution in the
variant library. Our simulations showed that vg’s SV genotyping algorithm is robust to errors of as
much as 10 bp in breakpoint location. However, there is an upper limit to this �exibility, and we �nd
that vg cannot accurately genotype variants with much higher uncertainty in the breakpoint location
(like those discovered through read coverage analysis). vg is also capable of �ne-tuning SV
breakpoints by augmenting the graph with di�erences observed in read alignments. Simulations
showed that this approach can usually correct small errors in SV breakpoints (Figure S16 and Table
S6).

vg uses a uni�ed framework to call and score di�erent variant types simultaneously. In this work, we
only considered graphs containing certain types of SVs, but the same methods can be extended to a
broader range of graphs. For example, we are interested in evaluating how genotyping SVs together
with SNPs and small indels using a combined graph e�ects the accuracy of studying either alone. The
same methods used for genotyping known variants in this work can also be extended to call novel
variants by �rst augmenting the graph with edits from the mapped reads. This approach, which was
used only in the breakpoint �ne-tuning portion of this work, could be further used to study small
variants around and nested within SVs. Novel SVs could be called by augmenting the graph with long-
read mappings. vg is entirely open source, and its ongoing development is supported by a growing
community of researchers and users with common interest in scalable, unbiased pangenomic
analyses and representation. We expect this collaboration to continue to foster increases in the
speed, accuracy and applicability of methods based on pangenome graphs in the years ahead.

Our results suggest that constructing a graph from de novo assembly alignment instead of a VCF
leads to better SV genotyping. High quality de novo assemblies for human are becoming more and
more common due to improvements in technologies like optimized mate-pair libraries[35] and long-
read sequencing[12]. We expect future graphs to be built from the alignment of numerous de novo
assemblies, and we are presently working on scaling our assembly-based pipeline to human-sized
genome assemblies. Another challenge is creating genome graphs that integrate assemblies with
variant-based data resources. One possible approach is to progressively align assembled contigs into
variation graphs constructed from variant libraries, but methods for doing so are still experimental.

Conclusion

In this study, the vg toolkit was compared to existing SV genotypers across several high-quality SV
catalogs. We showed that its method of mapping reads to a variation graph leads to better SV
genotyping compared to other state-of-the-art methods. This work introduces a �exible strategy to
integrate the growing number of SVs being discovered with higher resolution technologies into a
uni�ed framework for genome inference. Our work on whole genome alignment graphs shows the
bene�t of directly utilizing de novo assemblies rather than variant catalogs to integrate SVs in genome
graphs. We expect this latter approach to increase in signi�cance as the reduction in long read
sequencing costs drives the creation of numerous new de novo assemblies. We envision a future in
which the lines between variant calling, genotyping, alignment, and assembly are blurred by rapid
changes in sequencing technology. Fully graph based approaches, like the one we present here, will
be of great utility in this new phase of genome inference.
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Methods

SV Genotyping Algorithm

The input to the SV genotyping algorithm is an indexed variation graph in xg  format along with a
(single-sample) read alignment in GAM  format. If the graph was constructed from a VCF, as was the
case for the human-genome graphs discussed in this paper, this VCF can also be input to the caller.
The �rst step is to compute a compressed coverage index from the alignment using this command, 
vg pack <graph.xg> <alignment.gam> -Q 5 -o graph.pack . This index stores the number

of reads with mapping quality at least 5 mapped to each edge and each base of each node on the
graph. Computing the coverage can be done in a single scan through the reads and, in practice, tends
to be an order of magnitude faster than sorting the reads.

Variation graphs, as represented in vg, are bidirected. In a bidirected graph, every node can be
thought of having two distinct sides. See, for example, the left and right sides of each rectangle in
Figure 1a. If x is the side of a given node A, then we use the notation x’ to denote the other side of A. A
snarl is de�ned by a pair of sides, x and y, that satisfy the following criteria:

1. Removing all edges incident to x’ and y’ disconnects the graph, creating a connected component X
that contains x and y.

2. There is no side z in X such that {x,z} satis�es the above criteria. Likewise for y.

Snarls can be computed in linear time using a cactus graph decomposition [24]. They can be
computed once for a given graph using vg snarls , or on the �y with vg call .

Once the snarls have been identi�ed, the SV genotyping algorithm proceeds as follows. For every
snarl in the graph for which both end nodes lie on a reference path (such as a chromosome) and that
it is not contained in another snarl, the following steps are performed.

1. All VCF variants, v1, v2, …, vk that are contained within the snarl are looked up using information
embedded during graph construction. Let |vi| be the number of alleles in the ith VCF variant. Then
there are |v1|x|v2|…x|vk| possible haplotypes through the snarl. If this number is too high
(>500,000), then alleles with average support of less than 1 are �ltered out.

2. For each possible haplotype, a corresponding bidrected path through the snarl (from x to y) is
computed.

3. For each haplotype path, its average support (over bases and edges) is computed using the
compressed coverage index, and the two most-supported paths are selected (ties are broken
arbitrarily).

4. If the most supported path exceeds the minimum support threshold (default 1), and has more than
B (default 6) times the support of the next most supported path, the site is called homozygous for
the allele associated with the most supported path.

5. Else if the second most supported path exceeds the minimum support threshold (default 1), then
the site is deemed heterozygous with an allele from each of the top two paths.

6. Given the genotype computed above, it is trivial to map back from the chosen paths to the VCF
alleles in order to produce the �nal output.

The command to do the above is vg call <graph.xg> -k <graph.pack> -v 
variants.vcf.gz  If the graph was not constructed from a VCF, then a similar algorithm is used
except the traversals are computed heuristically searching through the graph. This is enabled by not
using the -v  option in the above command.

toil-vg
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toil-vg is a set of Python scripts for simplifying vg tasks such as graph construction, read mapping and
SV genotyping. Much of the analysis in this report was done using toil-vg, with the exact commands
available at github.com/vgteam/sv-genotyping-paper. toil-vg uses the Toil work�ow engine [36] to
seamlessly run pipelines locally, on clusters or on the cloud. Graph indexing, and mapping in
particular are computationally expensive (though work is underway to address this) and well-suited to
distribution on the cloud. The principal toil-vg commands used are described below.

toil-vg construct

toil-vg construct automates graph construction and indexing following the best practices put forth by
the vg community. Graph construction is parallelized across di�erent sequences from the reference
FASTA, and di�erent whole-genome indexes are created side by side when possible. The graph is
automatically annotated with paths corresponding to the di�erent alleles in the input VCF. The
indexes created are the following:

xg index: This is a compressed version of the graph that allows fast node, edge and path lookups
gcsa2 index: This is a substring index used only for read mapping
gbwt index: This is an index of all the haplotypes in the VCF as implied by phasing information.
When available, it is used to help ensure that haplotype information is preserved when
constructing the gcsa2 index
snarls index: The snarls represent sites of variation in the graph and are used for genotyping and
variant calling.

toil-vg map

toil-vg map splits the input reads into batches, maps each batch in parallel, then merges the result.

toil-vg call

toil-vg call splits the input graph by chromosome and calls each one individually. vg call  has been
recently updated so that this subdivision is largely unnecessary: the entire graph can be easily called
at once. Still, toil-vg can be used to farm this task out to a single cloud node if desired.

toil-vg sveval

toil-vg sveval evaluates the SV calls relative to a truth set. Matching SV calls is non-trivial because two
SV callsets often di�ers slightly around the breakpoints. Even for a genotyping experiment, the same
input SVs can have equivalent but di�erent representations. Furthermore, SV catalogs often contain
very similar SVs that could be potentially duplicates of the same true variant. To make sure that SVs
are matched properly when comparing genotyped SVs and the truth set, we use an approach that
overlaps variants and aligns allelic sequences if necessary. It was implemented in the sveval R package
(https://github.com/jmonlong/sveval). Figure S17 shows an overview of the SV evaluation approach
which is described below. Of note, the variants are �rst normalized with bcftools norm  (1.9) to
ensure consistent representation between called variants and baseline variants[37].

For deletions and inversions, we begin by computing the overlaps between the SVs in the call set and
the truth set. For each variant we then compute the proportion of its region that is covered by a
variant in the other set, considering only variants overlapping with at least 10% reciprocal overlap. If
this coverage proportion is higher than 50%, we consider the variant covered. True positives (TPs) are
covered variants from the call set (when computing the precision) or the truth set (when computing
the recall). Variants from the call set are considered false positives (FPs) if they are not covered by the
truth set. Conversely, variants from the truth set are considered false negatives (FNs) if they are not
covered by the call set.
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For insertions, we select pairs of insertions that are located no farther than 20 bp from each other. We
then align the inserted sequences using a Smith-Waterman alignment. For each insertion we compute
the proportion of its inserted sequence that aligns a matched variant in the other set. If this
proportion is at least 50% the insertions are considered covered. Covering relationships are used to
de�ne TPs, FPs, and FNs the same way as for deletions and inversions.

The results shown in this study used a minimum of 50% coverage to match variants but we also
replicated the results using 90% minimum coverage and observed similar results (see Figure S18).

The coverage statistics are computed using any variant larger than 1 bp but a minimum size is
required for a variant to be counted as TP, FP, or FN. In this work, we used the default minimum SV
size of 50 bp.

sveval accepts VCF �les with symbolic or explicit representation of the SVs. If the explicit
representation is used, multi-allelic variants are split and their sequences right-trimmed. When using
the explicit representation and when the REF and ALT sequences are longer than 10 bp, the reverse-
complement of the ALT sequence is aligned to the REF sequence to identify potential inversions. If
more than 80% of the sequence aligns, it is classi�ed as an inversion.

We assess both the ability to predict the presence of an SV and the full genotype. For the presence
evaluation, both heterozygous and homozygous alternate SVs are compared jointly using the
approach described above. To compute genotype-level metrics, the heterozygous and homozygous
SVs are compared separately. Before splitting the variants by genotype, pairs of heterozygous variants
with reciprocal overlap of at least 80% are merged into a homozygous ALT variant. To handle
fragmented variants, consecutive heterozygous variants located at less that 20 bp from each other are
�rst merged into larger heterozygous variants.

Precision-recall curves are produced by successively �ltering out variants of low-quality. By default,
the QUAL �eld in the VCF �le is used as the quality information. If QUAL is missing (or contains only
0s), the genotype quality in the GQ �eld is used.

The evaluation is performed using all variants or using only variants within high-con�dence regions. In
most analysis, the high-con�dence regions are constructed by excluding segmental duplications and
tandem repeats (using the respective tracks from the UCSC Genome Browser). For the GIAB analysis,
we used the Tier 1 high-con�dence regions provided by the GIAB consortium in version 0.6.

The inserted/deleted sequence was also annotated using RepeatMasker[38]. SVs were separated by
repeat family if the annotated repeat element covered more than 80% of the sequence. We
recomputed precision and recall in the most frequent repeat families.

The average number of genotyped variants per variant in the truth set (Figure S5) was computed by
dividing the number of TPs from the call set by the number of TPs from the truth set, i.e. the ratio of
matched variants between the two variant sets.

Other SV genotypers

BayesTyper (v1.5 beta 62888d6)

Where not speci�ed otherwise BayesTyper was run as follows. Raw reads were mapped to the
reference genome using bwa mem [26] (0.7.17). GATK haplotypecaller[39] (3.8) and Platypus[40]
(0.8.1.1) with assembly enabled were run on the mapped reads to call SNVs and short indels (<50bp)
needed by BayesTyper for correct genotyping. The VCFs with these variants were then normalized
using bcftools norm  (1.9) and combined with the SVs across samples using bayesTyperTools 
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combine  to produce the input candidate set. k-mers in the raw reads were counted using kmc[41]
(3.1.1) with a k-mer size of 55. A Bloom �lter was constructed from these k-mers using 
bayesTyperTools makeBloom . Finally, variants were clustered and genotyped using bayestyper 
cluster  and bayestyper genotype , respectively, with default parameters except --min-
genotype-posterior 0 . Non-PASS variants and non-SVs (GATK and Platypus origin) were �ltered
prior to evaluation using bcftools filter  and filterAlleleCallsetOrigin , respectively.

Delly (v0.7.9)

The delly call  command was run on the reads mapped by bwa mem [26], the reference genome
FASTA �le, and the VCF containing the SVs to genotype (converted to their explicit representations).

SVTyper (v0.7.0)

The VCF containing deletions was converted to symbolic representation and passed to svtyper  with
the reads mapped by bwa mem [26]. The output VCF was converted back to explicit representation
using bayesTyperTools convertAllele  to facilitate variant normalization before evaluation.

Paragraph (v2.3)

Paragraph was run using default parameters using the multigrmpy.py  script, taking the input VCF
and reads mapped by bwa mem [26] as inputs. We used the genotype estimates in the 
genotypes.vcf.gz  output �le. In order for Paragraph to run, we added padding sequence to

problematic variants in the input VCFs of the GIAB and SVPOP catalogs.

SMRT-SV v2 Genotyper (v2.0.0 Feb 21 2019 commit adb13f2)

SMRT-SV v2 Genotyper was run with the “30x-4” model and min-call-depth 8 cuto�. It was run only on
VCFs created by SMRT-SV, for which the required contig BAMs were available. The Illumina BAMs used
where the same as the other methods described above. The output VCF was converted back to
explicit representation to facilitate variant normalization later.

Running time and memory usage

Running times and memory usage for the di�erent tools are shown in Table S7. The Elapsed (wall
clock) time and the Maximum resident set size were extracted from the output of /usr/bin/time -
v . We show the pro�ling results when genotyping the HGSVC SV catalog in the HG00514 sample.

Simulation experiment

We simulated a synthetic genome with 1000 insertions, deletions and inversions. We separated each
variant from the next by a bu�er of at least 500 bp. The sizes of deletions and insertions followed the
distribution of SV sizes from the HGSVC catalog. We used the same size distribution as deletions for
inversions. A VCF �le was produced for three simulated samples with genotypes chosen uniformly
between homozygous reference, heterozygous, and homozygous alternate.

We created another VCF �le containing errors in the SV breakpoint locations. We shifted one or both
breakpoints of deletions and inversions by distances between 1 and 10 bp. The locations and
sequences of insertions were also modi�ed, either shifting the variants or shortening them at the
�anks, again by up to 10 bp.
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Paired-end reads were simulated using vg sim  on the graph that contained the true SVs. Di�erent
read depths were tested: 1x, 3x, 7x, 10x, 13x, 20x. The base qualities and sequencing errors were
trained to resemble real Illumina reads from NA12878 provided by the Genome in a Bottle
Consortium.

The genotypes called in each experiment (genotyping method/VCF with or without errors/sequencing
depth) were compared to the true SV genotypes to compute the precision, recall and F1 score (see
toil-vg sveval).

Breakpoint �ne-tuning using graph augmentation

vg can call variants after augmenting the graph with the read alignments to discover new variants (see
toil-vg call). We tested if this approach could �ne-tune the breakpoint location of SVs in the graph. We
started with the graph that contained approximate SVs (1-10 bp errors in breakpoint location) and 20x
simulated reads from the simulation experiment (see Simulation experiment). The variants called
after graph augmentation were compared with the true SVs. We considered �ne-tuning correct if the
breakpoints matched exactly.

HGSVC Analysis

We �rst obtained phased VCFs for the three Human Genome Structural Variation Consortium (HGSVC)
samples from Chaisson et al.[22] and combined them with bcftools merge . A variation graph was
created and indexed using the combined VCF and the HS38D1 reference with alt loci excluded. The
phasing information was used to construct a GBWT index[42], from which the two haploid sequences
from HG00514 were extracted as a graph. Illumina read pairs with 30x coverage were simulated from
these sequences using vg sim, with an error model learned from real reads from the same sample.
These simulated reads re�ect an idealized situation where the breakpoints of the SVs being
genotyped are exactly known a priori. The reads were mapped to the graph, and the mappings used
to genotype the SVs in the graph. Finally, the SV calls were compared back to the HG00514 genotypes
from the HGSVC VCF. We repeated the process with the same reads on the linear reference, using 
bwa mem [26] for mapping and Delly Genotyper, SVTyper, Paragraph and BayesTyper for SV

genotyping.

We downloaded Illumina HiSeq 2500 paired end reads from the EBI’s ENA FTP site for the three
samples, using Run Accessions ERR903030, ERR895347 and ERR894724 for HG00514, HG00733 and
NA19240, respectively. We ran the graph and linear mapping and genotyping pipelines exactly as for
the simulation, and aggregated the comparison results across the three samples. We used
BayesTyper to jointly genotype the 3 samples.

GIAB Analysis

We obtained version 0.5 of the Genome in a Bottle (GIAB) SV VCF for the Ashkenazim son (HG002) and
his parents from the NCBI FTP site. We obtained Illumina reads as described in Garrison et al.[15] and
downsampled them to 50x coverage. We used these reads as input for vg call  and the other SV
genotyping pipelines described above (though with GRCh37 instead of GRCh38). For BayesTyper, we
created the input variant set by combining the GIAB SVs with SNV and indels from the same study.
Variants with reference allele or without a determined genotype for HG002 in the GIAB call set (10,569
out of 30,224) were considered “false positives” as a proxy measure for precision. These variants
correspond to putative technical artifacts and parental calls not present in HG002. For the evaluation
in high con�dence regions, we used the Tier 1 high-con�dence regions provided by the GIAB
consortium in version 0.6.

SMRT-SV v2 Comparison (CHMPD and SVPOP)
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The SMRT-SV v2 Genotyper can only be used to genotype sequence-resolved SVs present on contigs
with known SV breakpoints, such as those created by SMRT-SV v2, and therefore could not be run on
the simulated, HGSVC, or GIAB call sets. The authors shared their training and evaluation set: a
pseudodiploid sample constructed from combining the haploid CHM1 and CHM13 samples (CHMPD),
and a negative control (NA19240). The high quality of the CHM assemblies makes this set an attractive
alternative to using simulated reads. We used this two-sample pseudodiploid VCF along with the 30X
read set to construct, map and genotype with vg, and also ran SMRT-SV v2 Genotyper with the “30x-4”
model and min-call-depth 8 cuto�, and compared the two back to the original VCF.

In an e�ort to extend this comparison from the training data to a more realistic setting, we reran the
three HGSVC samples against the SMRT-SV v2 discovery VCF (SVPOP, which contains 12 additional
samples in addition to the three from HGSVC) published by Audano et al.[5] using vg and SMRT-SV v2
Genotyper. The discovery VCF does not contain genotypes. In consequence, we were unable to
distinguish between heterozygous and homozygous genotypes, and instead considered only the
presence or absence of a non-reference allele for each variant.

SMRT-SV v2 Genotyper produces explicit no-call predictions when the read coverage is too low to
produce accurate genotypes. These no-calls are considered homozygous reference in the main
accuracy evaluation. We also explored the performance of vg and SMRT-SV v2 Genotyper in di�erent
sets of regions (Figure S12 and Table S5):

1. Non-repeat regions, i.e. excluding segmental duplications and tandem repeats (using the
respective tracks from the UCSC Genome Browser).

2. Repeat regions de�ned as segmental duplications and tandem repeats.
3. Regions where SMRT-SV v2 Genotyper could call variants.
4. Regions where SMRT-SV v2 Genotyper produced no-calls.

Yeast graph analysis

For the analysis of graphs from de novo assemblies, we utilized publicly available PacBio-derived
assemblies and Illumina short read sequencing datasets for 12 yeast strains from two related clades
(Table 1) [28]. We constructed graphs from two di�erent strain sets: For the �ve strains set, we
selected �ve strains for graph construction (S.c. SK1, S.c. YPS128, S.p. CBS432, S.p. UFRJ50816 and S.c.
S288C). We randomly selected two strains from di�erent subclades of each clade as well as the
reference strain S.c. S288C. For the all strains set in contrast, we utilized all twelve strains for graph
construction. We constructed two di�erent types of genome graphs from the PacBio-derived
assemblies of the �ve or twelve (depending on the strains set) selected strains. In this section, we
describe the steps for the construction of both graphs and the genotyping of variants. More details
and the precise commands used in our analyses can be found at github.com/vgteam/sv-genotyping-
paper.

Table 1:  12 yeast strains from two related clades were used in our analysis. Five strains were selected to be included in
the �ve strains set and all strains were included in the all strains set. Graphs were constructed from strains in the
respective strain set while all eleven non-reference strains were used for genotyping.

Strain Clade Included in �ve strains set Included in all strains set

S288C S. cerevisiae ✓ ✓

SK1 S. cerevisiae ✓ ✓

YPS128 S. cerevisiae ✓ ✓

UWOPS034614 S. cerevisiae ✓

Y12 S. cerevisiae ✓
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Strain Clade Included in �ve strains set Included in all strains set

DBVPG6765 S. cerevisiae ✓

DBVPG6044 S. cerevisiae ✓

CBS432 S. paradoxus ✓ ✓

UFRJ50816 S. paradoxus ✓ ✓

N44 S. paradoxus ✓

UWOPS919171 S. paradoxus ✓

YPS138 S. paradoxus ✓

Construction of the VCF graph

We constructed the �rst graph (called the VCF graph throughout the paper) by adding variants onto a
linear reference. This method requires one assembly to serve as a reference genome. The other
assemblies must be converted to variant calls relative to this reference. The PacBio assembly of the
S.c. S288C strain was chosen as the reference genome because this strain was used for the S.
cerevisiae genome reference assembly. To obtain variants for the other assemblies, we combined
three methods for SV detection from genome assemblies: Assemblytics [29] (commit df5361f),
AsmVar (commit 5abd91a) [30] and paftools (version 2.14-r883) [31]. We constructed a union set of
SVs detected by the three methods (using bedtools [43]), and combined variants with a reciprocal
overlap of at least 50% to avoid duplication in the union set. We merged these union sets of variants
for each of the other (non-reference) strains in the strain set, and we then applied another
deduplication step to combine variants with a reciprocal overlap of at least 90%. We then used vg 
construct  to build the VCF graph with the total set of variants and the linear reference genome.

Construction of the cactus graph

The second graph (called the cactus graph throughout the paper) was constructed from a whole
genome alignment between the assemblies. First, the repeat-masked PacBio-assemblies of the strains
in the strain set were aligned with our Cactus tool [27]. Cactus requires a phylogenetic tree of the
strains which was estimated using Mash (version 2.1) [44] and PHYLIP (version 3.695) [45].
Subsequently, we converted the HAL format output �le to a variation graph with hal2vg
(https://github.com/ComparativeGenomicsToolkit/hal2vg).

Genotyping of SVs

Prior to genotyping, we mapped the Illumina short reads of all 12 yeast strains to both graphs using 
vg map . We measured the fractions of reads mapped with speci�c properties using vg view  and

the JSON processor jq . Then, we applied toil-vg call  (commit be8b6da) to genotype variants,
obtaining a separate genotype set for each of the 11 non-reference strains on both graphs and for
each of the two strain sets (in total 11 x 2 x 2 = 44 genotype sets). From the genotype sets, we
removed variants smaller than 50 bp and variants with missing or homozygous reference genotypes.
To evaluate the �ltered genotype sets, we generated a sample graph (i.e. a graph representation of
the genotype set) for each genotype set using vg construct  and vg mod  on the reference
assembly S.c. S288C and the genotype set. Subsequently, we mapped short reads from the respective
strains to each sample graph using vg map . We mapped the short reads also to an empty sample
graph that was generated using vg construct  as a graph representation of the linear reference
genome. In an e�ort to restrict our analysis to SV regions, we removed reads that mapped equally
well (i.e. with identical mapping quality and percent identity) to all three graphs (the two sample
graphs and the empty sample graph) from the analysis. These �ltered out reads most likely stem from
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portions of the strains’ genomes that are identical to the reference strain S.c. S288C. We analyzed the
remaining alignments of reads from SV regions with vg view  and jq .
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Supplementary Material

Supplementary Tables

Table S1:  Genotyping evaluation on the HGSVC dataset. Precision, recall and F1 score for the call set with the best F1
score. The best F1 scores were achieved with no �ltering in the vast majority of cases (see Figure S1 and S3). The
numbers in parentheses corresponds to the results in non-repeat regions.

Experiment Method Type Precision Recall F1

Simulated reads vg INS 0.863 (0.918) 0.841 (0.911) 0.852 (0.914)

DEL 0.85 (0.961) 0.796 (0.959) 0.822 (0.96)

Paragraph INS 0.581 (0.831) 0.749 (0.804) 0.654 (0.818)

DEL 0.707 (0.853) 0.73 (0.811) 0.718 (0.832)

BayesTyper INS 0.915 (0.944) 0.839 (0.907) 0.876 (0.925)

DEL 0.894 (0.983) 0.804 (0.932) 0.847 (0.957)

SVTyper DEL 0.811 (0.844) 0.328 (0.74) 0.467 (0.788)

Delly Genotyper INS 0.757 (0.857) 0.094 (0.225) 0.167 (0.356)

DEL 0.681 (0.88) 0.684 (0.823) 0.682 (0.851)

Real reads vg INS 0.5 (0.714) 0.492 (0.712) 0.496 (0.713)

DEL 0.629 (0.864) 0.519 (0.787) 0.569 (0.824)

Paragraph INS 0.404 (0.638) 0.555 (0.595) 0.468 (0.616)

DEL 0.595 (0.787) 0.554 (0.659) 0.574 (0.717)

BayesTyper INS 0.599 (0.757) 0.253 (0.436) 0.356 (0.553)

DEL 0.625 (0.909) 0.324 (0.471) 0.427 (0.62)

SVTyper DEL 0.69 (0.728) 0.242 (0.59) 0.358 (0.652)

Delly Genotyper INS 0.524 (0.632) 0.068 (0.175) 0.12 (0.274)

DEL 0.556 (0.834) 0.429 (0.596) 0.484 (0.695)

Table S2:  Genotyping evaluation on the Genome in a Bottle dataset. Precision, recall and F1 score for the call set with
the best F1 score. The best F1 scores were achieved with no �ltering in the vast majority of cases (see Figure S7). The
numbers in parentheses corresponds to the results in non-repeat regions.

Method Type Precision Recall F1

vg INS 0.649 (0.776) 0.618 (0.73) 0.633 (0.752)

DEL 0.696 (0.807) 0.691 (0.795) 0.694 (0.801)

Paragraph INS 0.699 (0.827) 0.673 (0.768) 0.686 (0.796)

DEL 0.75 (0.9) 0.726 (0.815) 0.737 (0.855)

BayesTyper INS 0.777 (0.879) 0.285 (0.379) 0.417 (0.53)

DEL 0.807 (0.884) 0.514 (0.694) 0.628 (0.778)

SVTyper DEL 0.743 (0.817) 0.341 (0.496) 0.467 (0.618)

Delly Genotyper INS 0.804 (0.888) 0.178 (0.269) 0.292 (0.413)
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Method Type Precision Recall F1

DEL 0.721 (0.821) 0.644 (0.766) 0.68 (0.793)

Table S3:  Genotyping evaluation on the pseudo-diploid genome built from CHM cell lines in Audano et al.[5]. The
numbers in parentheses corresponds to the results in non-repeat regions.

Method Type Precision Recall F1

vg INS 0.783 (0.907) 0.773 (0.895) 0.778 (0.901)

DEL 0.787 (0.962) 0.635 (0.901) 0.703 (0.93)

SMRT-SV v2 Genotyper INS 0.819 (0.934) 0.582 (0.712) 0.681 (0.808)

DEL 0.848 (0.973) 0.63 (0.839) 0.723 (0.901)

Table S4:  Calling evaluation on the SVPOP dataset. Combined results for the HG00514, HG00733 and NA19240
individuals, 3 of the 15 individuals used to generate the high-quality SV catalog in Audano et al.[5].

Method Region Type TP FP FN Precision Recall F1

vg all INS 23430 18414 18181 0.564 0.563 0.564

DEL 14717 7033 15254 0.677 0.491 0.569

INV 41 16 159 0.719 0.205 0.319

non-repeat INS 8078 3303 1761 0.709 0.821 0.761

DEL 6585 1033 1040 0.862 0.864 0.863

INV 37 15 90 0.712 0.291 0.413

Paragraph all INS 24342 25618 17269 0.493 0.585 0.535

DEL 16986 13376 12985 0.571 0.567 0.569

INV 47 24 153 0.662 0.235 0.347

non-repeat INS 7843 3270 1996 0.706 0.797 0.749

DEL 6523 1000 1102 0.866 0.856 0.860

INV 39 12 88 0.765 0.307 0.438

SMRT-SV v2 Genotyper all INS 16297 26006 25314 0.397 0.392 0.394

DEL 11797 10054 18174 0.544 0.394 0.457

non-repeat INS 4475 4645 5364 0.493 0.455 0.473

DEL 4986 1322 2639 0.788 0.654 0.715

Table S5:  Calling evaluation on the SVPOP dataset in di�erent sets of regions for the HG5014 individual.

Method Region Type TP FP FN Precision Recall F1

vg all INS 7764 6109 6270 0.567 0.553 0.560

DEL 4841 2260 5066 0.684 0.489 0.570

INV 16 6 49 0.727 0.246 0.368

repeat INS 5091 5150 5766 0.507 0.469 0.487
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Method Region Type TP FP FN Precision Recall F1

DEL 2684 1922 4648 0.590 0.366 0.452

INV 1 0 9 1.000 0.100 0.182

non-repeat INS 2662 979 521 0.732 0.836 0.781

DEL 2085 322 388 0.865 0.843 0.854

INV 14 6 26 0.700 0.350 0.467

called in SMRT-SV v2 Genotyper INS 3682 4752 1836 0.444 0.667 0.534

DEL 2769 1779 1356 0.609 0.671 0.639

INV 16 6 49 0.727 0.246 0.368

not called in SMRT-SV v2 Genotyper INS 3867 291 4649 0.931 0.454 0.610

DEL 1976 102 3797 0.952 0.342 0.503

SMRT-SV v2 Genotyper all INS 5254 8562 8780 0.394 0.374 0.384

DEL 3743 3367 6164 0.535 0.378 0.443

repeat INS 3858 7119 6999 0.368 0.355 0.362

DEL 2141 2906 5191 0.438 0.292 0.350

non-repeat INS 1394 1464 1789 0.493 0.438 0.464

DEL 1550 443 923 0.778 0.627 0.694

called in SMRT-SV v2 Genotyper INS 4360 5619 1158 0.445 0.790 0.570

DEL 3272 2554 853 0.568 0.793 0.662

not called in SMRT-SV v2 Genotyper INS 111 101 8405 0.549 0.013 0.025

DEL 211 50 5562 0.792 0.036 0.070

Table S6:  Breakpoint �ne-tuning using graph augmentation from the read alignment. For deletions and inversions,
either one or both breakpoints were shifted to introduce errors in the input VCF. For insertions, the insertion location
and sequence contained errors. In all cases, the errors a�ected 1-10 bp.

SV type Error type Breakpoint Variant Proportion Mean size (bp) Mean error (bp)

DEL one end incorrect 220 0.219 422.655 6.095

�ne-tuned 784 0.781 670.518 5.430

both ends incorrect 811 0.814 826.070 6.275

�ne-tuned 185 0.186 586.676 2.232

INS location/seq incorrect 123 0.062 428.724 6.667

�ne-tuned 1877 0.938 440.043 6.439

INV one end incorrect 868 0.835 762.673 5.161

�ne-tuned 172 0.165 130.244 5.884

both ends incorrect 950 0.992 556.274 5.624

�ne-tuned 8 0.008 200.000 1.375
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Supplementary Figures

Figure S1:  Genotyping evaluation on the HGSVC dataset using simulated reads. Reads were simulated from the
HG00514 individual. The bottom panel zooms on the part highlighted by a dotted rectangle.
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Figure S2:  Calling evaluation on the HGSVC dataset using simulated reads. Reads were simulated from the
HG00514 individual. The bottom panel zooms on the part highlighted by a dotted rectangle.
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Figure S3:  Genotyping evaluation on the HGSVC dataset using real reads. Combined results across the HG00514,
HG00733 and NA19240.

Figure S4:  Calling evaluation on the HGSVC dataset using real reads. Combined results across the HG00514,
HG00733 and NA19240.
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Figure S5:  Average number of genotyped variants overlapping one variant from the truth set. To evaluate the
genotyping performance, each genotyped variant is matched to variants in the truth set. A same variant can match to
several variant in the other set because of variant fragmentation or when the truth set contains potentially duplicated
SVs. This x-axis shows the average number of genotyped variants that were matched per truth-set variant. For example,
a value higher than 1 means that variants in the truth were often matched to multiple genotyped variants (“over-
genotyping”).

Figure S6:  Evaluation across di�erent repeat pro�les. The deleted/inserted sequence was annotated with
RepeatMasker (color). The precision and recall was recomputed on each of the most frequent repeat families.
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Figure S7:  Genotyping evaluation on the Genome in a Bottle dataset. Predicted genotypes on HG002 were
compared to the high-quality SVs from this same individual.

Figure S8:  Calling evaluation on the Genome in a Bottle dataset. Calls on HG002 were compared to the high-quality
SVs from this same individual.
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Figure S9:  Genotyping evaluation on the CHM pseudo-diploid dataset. The pseudo-diploid genome was built from
CHM cell lines and used to train SMRT-SV v2 Genotyper in Audano et al.[5] The bottom panel zooms on the part
highlighted by a dotted rectangle.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


Figure S10:  Calling evaluation on the CHM pseudo-diploid dataset. The pseudo-diploid genome was built from CHM
cell lines and used to train SMRT-SV v2 Genotyper in Audano et al.[5]
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Figure S11:  Calling evaluation on the SVPOP dataset. Combined results across the HG00514, HG00733 and
NA19240.

Figure S12:  Evaluation across di�erent sets of regions in HG00514 (SVPOP dataset). Calling evaluation.
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Figure S13:  Mapping comparison on graphs of the �ve strains set. Short reads from all 12 yeast strains were
aligned to both graphs. The fraction of reads mapped to the cactus graph (y-axis) and the VCF graph (x-axis) are
compared. a) Strati�ed by percent identity threshold. b) Strati�ed by mapping quality threshold. Colors and shapes
represent the 12 strains and two clades, respectively. Transparency indicates whether the strain was included or
excluded in the graphs.

Figure S14:  Mapping comparison on graphs of the all strains set. Short reads from all 12 yeast strains were aligned
to both graphs. The fraction of reads mapped to the cactus graph (y-axis) and the VCF graph (x-axis) are compared. a)
Strati�ed by percent identity threshold. b) Strati�ed by mapping quality threshold. Colors and shapes represent the 12
strains and two clades, respectively.
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Figure S15:  SV genotyping comparison using all reads. Short reads from all 11 non-reference yeast strains were
used to genotype SVs contained in the cactus graph and the VCF graph. Subsequently, sample graphs were generated
from the resulting SV callsets. The short reads were aligned to the sample graphs and the quality of all alignments was
used to ascertain SV genotyping performance. More accurate genotypes should result in sample graphs that have
mappings with high identity and con�dence for a greater proportion of the reads. a) Average delta in mapping identity
of all short reads aligned to the sample graphs derived from cactus graph and VCF graph. b) Average delta in mapping
quality of all short reads aligned to the sample graphs derived from cactus graph and VCF graph. Positive values denote
an improvement of the cactus graph over the VCF graph. Colors represent the two strain sets and transparency
indicates whether the respective strain was part of the �ve strains set.
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Figure S16:  Breakpoint �ne-tuning using augmentation through “vg call”. For deletions and inversions, either one
or both breakpoints were shifted to introduce errors in the input VCF. For insertions, the insertion location and
sequence contained errors. a) Proportion of variant for which breakpoints could be �ne-tuned. b) Distribution of the
amount of errors that could be corrected or not. c) Distribution of the size of the variants whose breakpoints could be
�ne-tuned or not.
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Figure S17:  Overview of the SV evaluation by the sveval package. For deletions and inversions, we compute the
proportion of a variant that is covered by variants in the other set, considering only variants overlapping with at least
10% reciprocal overlap. A variant is considered true positive if this coverage proportion is higher than 50% and false-
positive or false-negative otherwise. A similar approach is used for insertions, although they are �rst clustered into pairs
located less than 20 bp from each other. Then their inserted sequences are aligned to derive the coverage statistics. The
SV evaluation approach is described in more detail in the Methods.

Figure S18:  Benchmark summary when using a more stringent matching criterion. At least 90% coverage was
necessary to consider a variant matched, instead of the 50% minimum coverage used in other �gures.
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Supplementary Information

Variation graph and structural variation

A variation graph encodes DNA sequence in its nodes. Such graphs are bidirected, in that we
distinguish between edges incident on the starts of nodes from those incident on their ends. A path in
such a graph is an ordered list of nodes where each is associated with an orientation. If a path walks
from, for example, node A in the forward orientation to node B in the reverse orientation, then an
edge must exist from the end of node A to the end of node B. Concatenating the sequences on each
node in the path, taking the reverse complement when the node is visited in reverse orientation,
produces a DNA sequence. Accordingly, variation graphs are constructed so as to encode haplotype
sequences as walks through the graph. Variation between sequences shows up as bubbles in the
graph [24].

Breakpoint �ne-tuning

In addition to genotyping, vg can use an augmentation step to modify the graph based on the read
alignment and discover novel variants. On the simulated SVs from Figure 1b, this approach was able
to correct many of the 1-10 bp breakpoint errors that were added to the input VCF. The breakpoints
were accurately �ne-tuned for 93.8% of the insertions (Figure S16a and Table S6). For deletions,
78.1% of the variants were corrected when only one breakpoint had an error. In situations where both
breakpoints of the deletions were incorrect, only 18.6% were corrected through graph augmentation,
and only when the amount of error was small (Figure S16b). The breakpoints of less than 20% of the
inversions could be corrected. Across all SV types, the size of the variant didn’t a�ect the ability to �ne-
tune the breakpoints through graph augmentation (Figure S16c).

Mappability comparison between yeast graphs

In order to elucidate whether the cactus graph represents the sequence diversity among the yeast
strains better than the VCF graph, we mapped Illumina short reads to both graphs using vg map .
Generally, more reads mapped to the cactus graph with high identity (Figures S13a and S14a) and
high mapping quality (Figures S13b and S14b) than to the VCF graph. The VCF graph exhibited higher
mappability only on the reference strain S.c. S288C with a marginal di�erence. The bene�t of using
the cactus graph is largest for strains in the S. paradoxus clade and smaller for strains in the S.
cerevisiae clade. We found that the genetic distance to the reference strain (as estimated using Mash
v2.1 [44]) correlated with the increase in con�dently mapped reads (mapping quality >= 60) between
the cactus graph and the VCF graph (Spearman’s rank correlation, p-value=3.993e-06). These results
suggest that the improvement in mappability is not driven by the higher sequence content in the
cactus graph alone (16.8 / 15.4 Mb in the cactus graph compared to 12.6 / 12.4 Mb in the VCF graph
for the all strains set and the �ve strains set, respectively). Instead, an explanation could be the
construction of the VCF graph from a comprehensive but still limited list of variants and the lack of
SNPs and small Indels in this list. Consequently, substantially fewer reads mapped to the VCF graph
with perfect identity (Figures S13a and S14a, percent identity threshold = 100%) than to the cactus
graph. The cactus graph has the advantage of implicitly incorporating variants of all types and sizes
from the de novo assemblies. As a consequence, the cactus graph captures the genetic makeup of
each strain more comprehensively and enables more reads to be mapped.

Interestingly, our measurements for the �ve strains set showed only small di�erences between the
�ve strains that were used to construct the graph and the other seven strains (Figure S13). Only the
number of alignments with perfect identity is substantially lower for the strains that were not included
in the creation of the graphs (Figure S13a).
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Running time comparison between di�erent tools for HG00514 as genotyped on the HGSVC
dataset

Table S7:  Compute resources required for analysis of sample HG00514 on the HGSVC dataset.

Tool Wall Time (m) Cores Nodes Max Memory (G)

vg

      vg construction 49 8 1 i3.8xlarge 0.4

      xg index 13 8 1 i3.8xlarge 48

      snarls index 23 1 50 i3.8xlarge 17

      gcsa2 index 792 16 1 i3.8xlarge 45

      mapping 177 32 50 r3.8xlarge 32

      genotyping (pack + call) 56 10 1 i3.4xlarge 63

BayesTyper 90 24 1 i3.8xlarge 36

bwa mem 240 32 1 i3.8xlarge 14

      Delly Genotyper 69 1 1 i3.8xlarge 69

      SVTyper 477 1 1 i3.8xlarge 0.7

      Paragraph 76 32 1 i3.8xlarge 5.9

SMRT-SV v2 Genotyper required roughly 36 hours and 30G ram on 30 cores to genotype the three
HGSVC samples on the “SVPOP” VCF. These numbers are not directly comparable to the above table
because 1) they apply to the “SVPOP” rather than “HGSVC” dataset (upon which we were unable to run
SMRT-SV v2 Genotyper) and 2) we were unable to install SMRT-SV v2 Genotyper on AWS nodes and
ran it on an older, shared server at UCSC instead.

Delly Genotyper, SVTyper and Paragraph start from a set of aligned reads, hence we also show the
running time for read alignment with bwa mem [26].

For BayesTyper, the numbers include both khmer counting with kmc and genotyping. We note that
BayesTyper integrated variant calls from GATK haplotypecaller[39] and Platypus[40], derived from
reads mapped with bwa mem[26]. The numbers shown for BayesTyper does not include this variant
discovery pipeline.

Note: toil-vg reserves 200G memory by default for vg snarls . For this graph, about an order of
magnitude less was required. It could have been run on 10 cores on 5 nodes instead.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


References

1. The impact of structural variation on human gene expression 
Colby Chiang, Alexandra J Scott, Joe R Davis, Emily K Tsang, Xin Li, Yungil Kim, Tarik Hadzic, Farhan N
Damani, Liron Ganel, GTEx Consortium, Stephen B Montgomery, Alexis Battle, Donald F Conrad, Ira M
Hall 
Nature Genetics (2017-04-03) 
DOI: 10.1038/ng.3834 · PMID: 28369037 · PMCID: PMC5406250

2. Phenotypic impact of genomic structural variation: insights from and for human disease 
Joachim Weischenfeldt, Orsolya Symmons, François Spitz, Jan O. Korbel 
Nature Reviews Genetics (2013-01-18) 
DOI: 10.1038/nrg3373 · PMID: 23329113

3. SpeedSeq: ultra-fast personal genome analysis and interpretation 
Colby Chiang, Ryan M Layer, Gregory G Faust, Michael R Lindberg, David B Rose, Erik P Garrison,
Gabor T Marth, Aaron R Quinlan, Ira M Hall 
Nature Methods (2015-08-10) 
DOI: 10.1038/nmeth.3505 · PMID: 26258291 · PMCID: PMC4589466

4. DELLY: structural variant discovery by integrated paired-end and split-read analysis 
T. Rausch, T. Zichner, A. Schlattl, A. M. Stutz, V. Benes, J. O. Korbel 
Bioinformatics (2012-09-07) 
DOI: 10.1093/bioinformatics/bts378 · PMID: 22962449 · PMCID: PMC3436805

5. Characterizing the Major Structural Variant Alleles of the Human Genome 
Peter A. Audano, Arvis Sulovari, Tina A. Graves-Lindsay, Stuart Cantsilieris, Melanie Sorensen,
AnneMarie E. Welch, Max L. Dougherty, Bradley J. Nelson, Ankeeta Shah, Susan K. Dutcher, Wesley C.
Warren, Vincent Magrini, Sean D. McGrath, Yang I. Li, Richard K. Wilson, Evan E. Eichler 
Cell (2019-01) 
DOI: 10.1016/j.cell.2018.12.019 · PMID: 30661756 · PMCID: PMC6438697

6. An integrated map of structural variation in 2,504 human genomes 
Peter H. Sudmant, Tobias Rausch, Eugene J. Gardner, Robert E. Handsaker, Alexej Abyzov, John
Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz, Miriam K. Konkel, Ankit Malhotra,
Adrian M. Stütz, Xinghua Shi, Francesco Paolo Casale, Jieming Chen, Fereydoun Hormozdiari, Gargi
Dayama, Ken Chen, Maika Malig, Mark J. P. Chaisson, Klaudia Walter, Sascha Meiers, Seva Kashin, Erik
Garrison, Adam Auton, Hugo Y. K. Lam, Xinmeng Jasmine Mu, Can Alkan, Danny Antaki, Taejeong Bae,
Eliza Cerveira, Peter Chines, Zechen Chong, Laura Clarke, Elif Dal, Li Ding, Sarah Emery, Xian Fan,
Madhusudan Gujral, Fatma Kahveci, Je�rey M. Kidd, Yu Kong, Eric-Wubbo Lameijer, Shane McCarthy,
Paul Flicek, Richard A. Gibbs, Gabor Marth, Christopher E. Mason, Androniki Menelaou, Donna M.
Muzny, Bradley J. Nelson, Amina Noor, Nicholas F. Parrish, Matthew Pendleton, Andrew Quitadamo,
Benjamin Raeder, Eric E. Schadt, Mallory Romanovitch, Andreas Schlattl, Robert Sebra, Andrey A.
Shabalin, Andreas Untergasser, Jerilyn A. Walker, Min Wang, Fuli Yu, Chengsheng Zhang, Jing Zhang,
Xiangqun Zheng-Bradley, Wanding Zhou, Thomas Zichner, Jonathan Sebat, Mark A. Batzer, Steven A.
McCarroll, The 1000 Genomes Project Consortium, Ryan E. Mills, Mark B. Gerstein, Ali Bashir, Oliver
Stegle, Scott E. Devine, Charles Lee, Evan E. Eichler, Jan O. Korbel 
Nature (2015-10) 
DOI: 10.1038/nature15394 · PMID: 26432246 · PMCID: PMC4617611

7. Whole-genome sequence variation, population structure and demographic history of the
Dutch population 
Laurent C Francioli, Androniki Menelaou, Sara L Pulit, Freerk van Dijk, Pier Francesco Palamara, Clara C

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1038/ng.3834
https://www.ncbi.nlm.nih.gov/pubmed/28369037
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406250
https://doi.org/10.1038/nrg3373
https://www.ncbi.nlm.nih.gov/pubmed/23329113
https://doi.org/10.1038/nmeth.3505
https://www.ncbi.nlm.nih.gov/pubmed/26258291
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589466
https://doi.org/10.1093/bioinformatics/bts378
https://www.ncbi.nlm.nih.gov/pubmed/22962449
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436805
https://doi.org/10.1016/j.cell.2018.12.019
https://www.ncbi.nlm.nih.gov/pubmed/30661756
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438697
https://doi.org/10.1038/nature15394
https://www.ncbi.nlm.nih.gov/pubmed/26432246
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617611
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


Elbers, Pieter BT Neerincx, Kai Ye, Victor Guryev, Wigard P Kloosterman, Patrick Deelen, Abdel
Abdellaoui, Elisabeth M van Leeuwen, Mannis van Oven, Martijn Vermaat, Mingkun Li, Jeroen FJ Laros,
Lennart C Karssen, Alexandros Kanterakis, Najaf Amin, Jouke Jan Hottenga, Eric-Wubbo Lameijer,
Mathijs Kattenberg, Martijn Dijkstra, Heorhiy Byelas, Jessica van Setten, Barbera DC van Schaik, Jan
Bot, Isaäc J Nijman, Ivo Renkens, Tobias Marschall, Alexander Schönhuth, Jayne Y Hehir-Kwa, Robert E
Handsaker, Paz Polak, Mashaal Sohail, Dana Vuzman, Fereydoun Hormozdiari, David van Enckevort,
Hailiang Mei, Vyacheslav Koval, Matthijs H Moed, K Joeri van der Velde, Fernando Rivadeneira, Karol
Estrada, Carolina Medina-Gomez, Aaron Isaacs, Steven A McCarroll, Marian Beekman, Anton JM de
Craen, H Eka D Suchiman, Albert Hofman, Ben Oostra, André G Uitterlinden, Gonneke Willemsen,
LifeLines Cohort Study, Mathieu Platteel, Jan H Veldink, Leonard H van den Berg, Steven J Pitts, Shobha
Potluri, Purnima Sundar, David R Cox, Shamil R Sunyaev, Johan T den Dunnen, Mark Stoneking, Peter
de Knij�, Manfred Kayser, Qibin Li, Yingrui Li, Yuanping Du, Ruoyan Chen, Hongzhi Cao, Ning Li, Sujie
Cao, Jun Wang, Jasper A Bovenberg, Itsik Pe’er, P Eline Slagboom, Cornelia M van Duijn, Dorret I
Boomsma, Gert-Jan B van Ommen, Paul IW de Bakker, Morris A Swertz, Cisca Wijmenga, The Genome
of the Netherlands Consortium 
Nature Genetics (2014-06-29) 
DOI: 10.1038/ng.3021 · PMID: 24974849

8. Resolving the complexity of the human genome using single-molecule sequencing 
Mark J. P. Chaisson, John Huddleston, Megan Y. Dennis, Peter H. Sudmant, Maika Malig, Fereydoun
Hormozdiari, Francesca Antonacci, Urvashi Surti, Richard Sandstrom, Matthew Boitano, Jane M.
Landolin, John A. Stamatoyannopoulos, Michael W. Hunkapiller, Jonas Korlach, Evan E. Eichler 
Nature (2014-11-10) 
DOI: 10.1038/nature13907 · PMID: 25383537 · PMCID: PMC4317254

9. Discovery and genotyping of structural variation from long-read haploid genome sequence
data 
John Huddleston, Mark J.P. Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra Hoekzema, David
Gordon, Tina A. Graves-Lindsay, Katherine M. Munson, Zev N. Kronenberg, Laura Vives, Paul Peluso,
Matthew Boitano, Chen-Shin Chin, Jonas Korlach, Richard K. Wilson, Evan E. Eichler 
Genome Research (2016-11-28) 
DOI: 10.1101/gr.214007.116 · PMID: 27895111 · PMCID: PMC5411763

10. Mapping and phasing of structural variation in patient genomes using nanopore sequencing 
Mircea Cretu Stancu, Markus J. van Roosmalen, Ivo Renkens, Marleen M. Nieboer, Sjors Middelkamp,
Joep de Ligt, Giulia Pregno, Daniela Giachino, Giorgia Mandrile, Jose Espejo Valle-Inclan, Jerome
Korzelius, Ewart de Bruijn, Edwin Cuppen, Michael E. Talkowski, Tobias Marschall, Jeroen de Ridder,
Wigard P. Kloosterman 
Nature Communications (2017-11-06) 
DOI: 10.1038/s41467-017-01343-4 · PMID: 29109544 · PMCID: PMC5673902

11. Genome-wide reconstruction of complex structural variants using read clouds 
Noah Spies, Ziming Weng, Alex Bishara, Jennifer McDaniel, David Catoe, Justin M Zook, Marc Salit,
Robert B West, Sera�m Batzoglou, Arend Sidow 
Nature Methods (2017-07-17) 
DOI: 10.1038/nmeth.4366 · PMID: 28714986 · PMCID: PMC5578891

12. Nanopore sequencing and assembly of a human genome with ultra-long reads 
Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R Tyson,
Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, Sunir Malla, Hannah Marriott, Tom Nieto, Justin
O’Grady, Hugh E Olsen, Brent S Pedersen, Arang Rhie, Hollian Richardson, Aaron R Quinlan, Terrance
P Snutch, Louise Tee, Benedict Paten, Adam M Phillippy, Jared T Simpson, Nicholas J Loman, Matthew
Loose 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1038/ng.3021
https://www.ncbi.nlm.nih.gov/pubmed/24974849
https://doi.org/10.1038/nature13907
https://www.ncbi.nlm.nih.gov/pubmed/25383537
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317254
https://doi.org/10.1101/gr.214007.116
https://www.ncbi.nlm.nih.gov/pubmed/27895111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411763
https://doi.org/10.1038/s41467-017-01343-4
https://www.ncbi.nlm.nih.gov/pubmed/29109544
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673902
https://doi.org/10.1038/nmeth.4366
https://www.ncbi.nlm.nih.gov/pubmed/28714986
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578891
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


Nature Biotechnology (2018-01-29) 
DOI: 10.1038/nbt.4060 · PMID: 29431738 · PMCID: PMC5889714

13. Phased diploid genome assembly with single-molecule real-time sequencing 
Chen-Shan Chin, Paul Peluso, Fritz J Sedlazeck, Maria Nattestad, Gregory T Concepcion, Alicia Clum,
Christopher Dunn, Ronan O’Malley, Rosa Figueroa-Balderas, Abraham Morales-Cruz, Grant R Cramer,
Massimo Delledonne, Chongyuan Luo, Joseph R Ecker, Dario Cantu, David R Rank, Michael C Schatz 
Nature Methods (2016-10-17) 
DOI: 10.1038/nmeth.4035 · PMID: 27749838 · PMCID: PMC5503144

14. Genome graphs and the evolution of genome inference 
Benedict Paten, Adam M. Novak, Jordan M. Eizenga, Erik Garrison 
Genome Research (2017-03-30) 
DOI: 10.1101/gr.214155.116 · PMID: 28360232 · PMCID: PMC5411762

15. Variation graph toolkit improves read mapping by representing genetic variation in the
reference 
Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T Dawson, William
Jones, Shilpa Garg, Charles Markello, Michael F Lin, Benedict Paten, Richard Durbin 
Nature Biotechnology (2018-08-20) 
DOI: 10.1038/nbt.4227 · PMID: 30125266 · PMCID: PMC6126949

16. Genome Graphs 
Adam M. Novak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Connelly, Alexander Dilthey, Jordan
Eizenga, M. A. Saleh Elmohamed, Sally Guthrie, André Kahles, Stephen Keenan, Jerome Kelleher, Deniz
Kural, Heng Li, Michael F. Lin, Karen Miga, Nancy Ouyang, Goran Rakocevic, Maciek Smuga-Otto,
Alexander Wait Zaranek, Richard Durbin, Gil McVean, David Haussler, Benedict Paten 
bioRxiv (2017-01-18) 
DOI: 10.1101/101378

17. Fast and accurate genomic analyses using genome graphs 
Goran Rakocevic, Vladimir Semenyuk, Wan-Ping Lee, James Spencer, John Browning, Ivan J. Johnson,
Vladan Arsenijevic, Jelena Nadj, Kaushik Ghose, Maria C. Suciu, Sun-Gou Ji, Gülfem Demir, Lizao Li,
Berke Ç. Toptaş, Alexey Dolgoborodov, Björn Pollex, Iosif Spulber, Irina Glotova, Péter Kómár, Andrew
L. Stachyra, Yilong Li, Milos Popovic, Morten Källberg, Amit Jain, Deniz Kural 
Nature Genetics (2019-01-14) 
DOI: 10.1038/s41588-018-0316-4 · PMID: 30643257

18. Graphtyper enables population-scale genotyping using pangenome graphs 
Hannes P Eggertsson, Hakon Jonsson, Snaedis Kristmundsdottir, Eirikur Hjartarson, Birte Kehr, Gisli
Masson, Florian Zink, Kristjan E Hjorleifsson, Aslaug Jonasdottir, Adalbjorg Jonasdottir, Ingileif
Jonsdottir, Daniel F Gudbjartsson, Pall Melsted, Kari Stefansson, Bjarni V Halldorsson 
Nature Genetics (2017-09-25) 
DOI: 10.1038/ng.3964 · PMID: 28945251

19. Accurate genotyping across variant classes and lengths using variant graphs. 
Jonas Andreas Sibbesen, Lasse Maretty, The Danish Pan-Genome Consortium, Anders Krogh 
Nature genetics (2018-06-18) 
DOI: 10.1038/s41588-018-0145-5 · PMID: 29915429

20. Paragraph: A graph-based structural variant genotyper for short-read sequence data 
Sai Chen, Peter Krusche, Egor Dolzhenko, Rachel M. Sherman, Roman Petrovski, Felix Schlesinger,
Melanie Kirsche, David R. Bentley, Michael C. Schatz, Fritz J. Sedlazeck, Michael A. Eberle 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1038/nbt.4060
https://www.ncbi.nlm.nih.gov/pubmed/29431738
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889714
https://doi.org/10.1038/nmeth.4035
https://www.ncbi.nlm.nih.gov/pubmed/27749838
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503144
https://doi.org/10.1101/gr.214155.116
https://www.ncbi.nlm.nih.gov/pubmed/28360232
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411762
https://doi.org/10.1038/nbt.4227
https://www.ncbi.nlm.nih.gov/pubmed/30125266
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126949
https://doi.org/10.1101/101378
https://doi.org/10.1038/s41588-018-0316-4
https://www.ncbi.nlm.nih.gov/pubmed/30643257
https://doi.org/10.1038/ng.3964
https://www.ncbi.nlm.nih.gov/pubmed/28945251
https://doi.org/10.1038/s41588-018-0145-5
https://www.ncbi.nlm.nih.gov/pubmed/29915429
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


bioRxiv (2019-09-24) 
DOI: 10.1101/635011

21. An open resource for accurately benchmarking small variant and reference calls 
Justin M. Zook, Jennifer McDaniel, Nathan D. Olson, Justin Wagner, Hemang Parikh, Haynes Heaton,
Sean A. Irvine, Len Trigg, Rebecca Truty, Cory Y. McLean, Francisco M. De La Vega, Chunlin Xiao,
Stephen Sherry, Marc Salit 
Nature Biotechnology (2019-04-01) 
DOI: 10.1038/s41587-019-0074-6 · PMID: 30936564 · PMCID: PMC6500473

22. Multi-platform discovery of haplotype-resolved structural variation in human genomes 
Mark J. P. Chaisson, Ashley D. Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky, Tobias Rausch,
Eugene J. Gardner, Oscar L. Rodriguez, Li Guo, Ryan L. Collins, Xian Fan, Jia Wen, Robert E. Handsaker,
Susan Fairley, Zev N. Kronenberg, Xiangmeng Kong, Fereydoun Hormozdiari, Dillon Lee, Aaron M.
Wenger, Alex R. Hastie, Danny Antaki, Thomas Anantharaman, Peter A. Audano, Harrison Brand,
Stuart Cantsilieris, Han Cao, Eliza Cerveira, Chong Chen, Xintong Chen, Chen-Shan Chin, Zechen
Chong, Nelson T. Chuang, Christine C. Lambert, Deanna M. Church, Laura Clarke, Andrew Farrell, Joey
Flores, Timur Galeev, David U. Gorkin, Madhusudan Gujral, Victor Guryev, William Haynes Heaton,
Jonas Korlach, Sushant Kumar, Jee Young Kwon, Ernest T. Lam, Jong Eun Lee, Joyce Lee, Wan-Ping Lee,
Sau Peng Lee, Shantao Li, Patrick Marks, Karine Viaud-Martinez, Sascha Meiers, Katherine M. Munson,
Fabio C. P. Navarro, Bradley J. Nelson, Conor Nodzak, Amina Noor, So�a Kyriazopoulou-
Panagiotopoulou, Andy W. C. Pang, Yunjiang Qiu, Gabriel Rosanio, Mallory Ryan, Adrian Stütz, Diana C.
J. Spierings, Alistair Ward, AnneMarie E. Welch, Ming Xiao, Wei Xu, Chengsheng Zhang, Qihui Zhu,
Xiangqun Zheng-Bradley, Ernesto Lowy, Sergei Yakneen, Steven McCarroll, Goo Jun, Li Ding, Chong Lek
Koh, Bing Ren, Paul Flicek, Ken Chen, Mark B. Gerstein, Pui-Yan Kwok, Peter M. Lansdorp, Gabor T.
Marth, Jonathan Sebat, Xinghua Shi, Ali Bashir, Kai Ye, Scott E. Devine, Michael E. Talkowski, Ryan E.
Mills, Tobias Marschall, Jan O. Korbel, Evan E. Eichler, Charles Lee 
Nature Communications (2019-04-16) 
DOI: 10.1038/s41467-018-08148-z · PMID: 30992455 · PMCID: PMC6467913

23. A robust benchmark for germline structural variant detection 
Justin M. Zook, Nancy F. Hansen, Nathan D. Olson, Lesley M. Chapman, James C. Mullikin, Chunlin
Xiao, Stephen Sherry, Sergey Koren, Adam M. Phillippy, Paul C. Boutros, Sayed Mohammad E.
Sahraeian, Vincent Huang, Alexandre Rouette, Noah Alexander, Christopher E. Mason, Iman
Hajirasouliha, Camir Ricketts, Joyce Lee, Rick Tearle, Ian T. Fiddes, Alvaro Martinez Barrio, Jeremiah
Wala, Andrew Carroll, Noushin Gha�ari, Oscar L. Rodriguez, Ali Bashir, Shaun Jackman, John J Farrell,
Aaron M Wenger, Can Alkan, Arda Soylev, Michael C. Schatz, Shilpa Garg, George Church, Tobias
Marschall, Ken Chen, Xian Fan, Adam C. English, Je�rey A. Rosenfeld, Weichen Zhou, Ryan E. Mills, Jay
M. Sage, Jennifer R. Davis, Michael D. Kaiser, John S. Oliver, Anthony P. Catalano, Mark JP Chaisson,
Noah Spies, Fritz J. Sedlazeck, Marc Salit, the Genome in a Bottle Consortium 
bioRxiv (2019-06-09) 
DOI: 10.1101/664623

24. Superbubbles, Ultrabubbles, and Cacti 
Benedict Paten, Jordan M. Eizenga, Yohei M. Rosen, Adam M. Novak, Erik Garrison, Glenn Hickey 
Journal of Computational Biology (2018-07) 
DOI: 10.1089/cmb.2017.0251 · PMID: 29461862 · PMCID: PMC6067107

25. Extensive sequencing of seven human genomes to characterize benchmark reference
materials 
Justin M. Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow, Ziming Weng,
Yuling Liu, Christopher E. Mason, Noah Alexander, Elizabeth Hena�, Alexa B.R. McIntyre, Dhruva
Chandramohan, Feng Chen, Erich Jaeger, Ali Moshre�, Khoa Pham, William Stedman, Ti�any Liang,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1101/635011
https://doi.org/10.1038/s41587-019-0074-6
https://www.ncbi.nlm.nih.gov/pubmed/30936564
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500473
https://doi.org/10.1038/s41467-018-08148-z
https://www.ncbi.nlm.nih.gov/pubmed/30992455
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467913
https://doi.org/10.1101/664623
https://doi.org/10.1089/cmb.2017.0251
https://www.ncbi.nlm.nih.gov/pubmed/29461862
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067107
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


Michael Saghbini, Zeljko Dzakula, Alex Hastie, Han Cao, Gintaras Deikus, Eric Schadt, Robert Sebra, Ali
Bashir, Rebecca M. Truty, Christopher C. Chang, Natali Gulbahce, Keyan Zhao, Srinka Ghosh, Fiona
Hyland, Yutao Fu, Mark Chaisson, Chunlin Xiao, Jonathan Trow, Stephen T. Sherry, Alexander W.
Zaranek, Madeleine Ball, Jason Bobe, Preston Estep, George M. Church, Patrick Marks, So�a
Kyriazopoulou-Panagiotopoulou, Grace X.Y. Zheng, Michael Schnall-Levin, Heather S. Ordonez, Patrice
A. Mudivarti, Kristina Giorda, Ying Sheng, Karoline Bjarnesdatter Rypdal, Marc Salit 
Scienti�c Data (2016-06-07) 
DOI: 10.1038/sdata.2016.25 · PMID: 27271295 · PMCID: PMC4896128

26. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM 
Heng Li 
arXiv (2013-03-16)

27. Cactus: Algorithms for genome multiple sequence alignment 
B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, D. Haussler 
Genome Research (2011-06-10) 
DOI: 10.1101/gr.123356.111 · PMID: 21665927 · PMCID: PMC3166836

28. Contrasting evolutionary genome dynamics between domesticated and wild yeasts 
Jia-Xing Yue, Jing Li, Louise Aigrain, Johan Hallin, Karl Persson, Karen Oliver, Anders Bergström, Paul
Coupland, Jonas Warringer, Marco Cosentino Lagomarsino, Gilles Fischer, Richard Durbin, Gianni Liti 
Nature Genetics (2017-04-17) 
DOI: 10.1038/ng.3847 · PMID: 28416820 · PMCID: PMC5446901

29. Assemblytics: a web analytics tool for the detection of variants from an assembly 
Maria Nattestad, Michael C. Schatz 
Bioinformatics (2016-06-17) 
DOI: 10.1093/bioinformatics/btw369 · PMID: 27318204 · PMCID: PMC6191160

30. Discovery, genotyping and characterization of structural variation and novel sequence at
single nucleotide resolution from de novo genome assemblies on a population scale 
Siyang Liu, Shujia Huang, Junhua Rao, Weijian Ye, The Genome Denmark Consortium, Anders Krogh,
Jun Wang 
GigaScience (2015-12) 
DOI: 10.1186/s13742-015-0103-4 · PMID: 26705468 · PMCID: PMC4690232

31. Minimap2: pairwise alignment for nucleotide sequences 
Heng Li 
Bioinformatics (2018-05-10) 
DOI: 10.1093/bioinformatics/bty191 · PMID: 29750242 · PMCID: PMC6137996

32. The Pancancer Analysis of Whole Genomes (PCAWG).

33. Genomics England 100,000 Genomes Project.

34. Whole Genome Sequencing in the NHLBI Trans-Omics for Precision Medicine (TOPMed).

35. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference 
Lasse Maretty, Jacob Malte Jensen, Bent Petersen, Jonas Andreas Sibbesen, Siyang Liu, Palle Villesen,
Laurits Skov, Kirstine Belling, Christian Theil Have, Jose M. G. Izarzugaza, Marie Grosjean, Jette Bork-
Jensen, Jakob Grove, Thomas D. Als, Shujia Huang, Yuqi Chang, Ruiqi Xu, Weijian Ye, Junhua Rao,
Xiaosen Guo, Jihua Sun, Hongzhi Cao, Chen Ye, Johan van Beusekom, Thomas Espeseth, Esben Flindt,
Rune M. Friborg, Anders E. Halager, Stephanie Le Hellard, Christina M. Hultman, Francesco Lescai,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1038/sdata.2016.25
https://www.ncbi.nlm.nih.gov/pubmed/27271295
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896128
https://doi.org/10.1101/gr.123356.111
https://www.ncbi.nlm.nih.gov/pubmed/21665927
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166836
https://doi.org/10.1038/ng.3847
https://www.ncbi.nlm.nih.gov/pubmed/28416820
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446901
https://doi.org/10.1093/bioinformatics/btw369
https://www.ncbi.nlm.nih.gov/pubmed/27318204
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191160
https://doi.org/10.1186/s13742-015-0103-4
https://www.ncbi.nlm.nih.gov/pubmed/26705468
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690232
https://doi.org/10.1093/bioinformatics/bty191
https://www.ncbi.nlm.nih.gov/pubmed/29750242
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137996
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


Shengting Li, Ole Lund, Peter Løngren, Thomas Mailund, Maria Luisa Matey-Hernandez, Ole Mors,
Christian N. S. Pedersen, Thomas Sicheritz-Pontén, Patrick Sullivan, Ali Syed, David Westergaard,
Rachita Yadav, Ning Li, Xun Xu, Torben Hansen, Anders Krogh, Lars Bolund, Thorkild I. A. Sørensen,
Oluf Pedersen, Ramneek Gupta, Simon Rasmussen, Søren Besenbacher, Anders D. Børglum, Jun
Wang, Hans Eiberg, Karsten Kristiansen, Søren Brunak, Mikkel Heide Schierup 
Nature (2017-07-26) 
DOI: 10.1038/nature23264 · PMID: 28746312

36. Toil enables reproducible, open source, big biomedical data analyses 
John Vivian, Arjun Arkal Rao, Frank Austin Nothaft, Christopher Ketchum, Joel Armstrong, Adam Novak,
Jacob Pfeil, Jake Narkizian, Alden D Deran, Audrey Musselman-Brown, Hannes Schmidt, Peter Amstutz,
Brian Craft, Mary Goldman, Kate Rosenbloom, Melissa Cline, Brian O’Connor, Megan Hanna, Chet
Birger, W James Kent, David A Patterson, Anthony D Joseph, Jingchun Zhu, Sasha Zaranek, Gad Getz,
David Haussler, Benedict Paten 
Nature Biotechnology (2017-04) 
DOI: 10.1038/nbt.3772 · PMID: 28398314 · PMCID: PMC5546205

37. Bcftools 1.9

38. RepeatMasker Open-4.0. 
AFA Smit, R Hubley, P Green

39. A framework for variation discovery and genotyping using next-generation DNA sequencing
data 
Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R Maguire, Christopher Hartl,
Anthony A Philippakis, Guillermo del Angel, Manuel A Rivas, Matt Hanna, Aaron McKenna, Tim J
Fennell, Andrew M Kernytsky, Andrey Y Sivachenko, Kristian Cibulskis, Stacey B Gabriel, David
Altshuler, Mark J Daly 
Nature Genetics (2011-04-10) 
DOI: 10.1038/ng.806 · PMID: 21478889 · PMCID: PMC3083463

40. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in
clinical sequencing applications 
Andy RimmerHang Phan, Iain Mathieson, Zamin Iqbal, Stephen RF Twigg, WGS500 Consortium,
Andrew OM Wilkie, Gil McVean, Gerton Lunter 
Nature Genetics (2014-07-13) 
DOI: 10.1038/ng.3036 · PMID: 25017105 · PMCID: PMC4753679

41. KMC 3: counting and manipulating k-mer statistics 
Marek Kokot, Maciej Długosz, Sebastian Deorowicz 
Bioinformatics (2017-05-04) 
DOI: 10.1093/bioinformatics/btx304 · PMID: 28472236

42. Haplotype-aware graph indexes 
Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, Richard Durbin 
Bioinformatics (2019-07-26) 
DOI: 10.1093/bioinformatics/btz575 · PMID: 31406990

43. BEDTools: a �exible suite of utilities for comparing genomic features 
Aaron R. Quinlan, Ira M. Hall 
Bioinformatics (2010-01-28) 
DOI: 10.1093/bioinformatics/btq033 · PMID: 20110278 · PMCID: PMC2832824

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1038/nature23264
https://www.ncbi.nlm.nih.gov/pubmed/28746312
https://doi.org/10.1038/nbt.3772
https://www.ncbi.nlm.nih.gov/pubmed/28398314
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546205
https://doi.org/10.1038/ng.806
https://www.ncbi.nlm.nih.gov/pubmed/21478889
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083463
https://doi.org/10.1038/ng.3036
https://www.ncbi.nlm.nih.gov/pubmed/25017105
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753679
https://doi.org/10.1093/bioinformatics/btx304
https://www.ncbi.nlm.nih.gov/pubmed/28472236
https://doi.org/10.1093/bioinformatics/btz575
https://www.ncbi.nlm.nih.gov/pubmed/31406990
https://doi.org/10.1093/bioinformatics/btq033
https://www.ncbi.nlm.nih.gov/pubmed/20110278
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832824
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/


44. Mash: fast genome and metagenome distance estimation using MinHash 
Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H. Bergman, Sergey
Koren, Adam M. Phillippy 
Genome Biology (2016-06-20) 
DOI: 10.1186/s13059-016-0997-x · PMID: 27323842 · PMCID: PMC4915045

45. PHYLIP - Phylogeny Inference Package (Version 3.2). 
Joel Felsenstein 
Cladistics (1989)

46. vgteam/sv-genotyping-paper: Revised code repository for “Genotyping structural variants in
pangenome graphs using the vg toolkit” 
Glenn Hickey, Jean Monlong, David Heller 
Zenodo (2019-10-23) 
DOI: 10.5281/zenodo.3517248

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/654566doi: bioRxiv preprint 

https://doi.org/10.1186/s13059-016-0997-x
https://www.ncbi.nlm.nih.gov/pubmed/27323842
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915045
https://doi.org/10.5281/ZENODO.3517248
https://doi.org/10.1101/654566
http://creativecommons.org/licenses/by/4.0/

