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Abstract 

Molecular mechanisms by which Roux-en-Y gastric bypass (RYGB) improves glycemic control 
and metabolism in type 2 diabetes (T2D) remain incompletely understood. In the SLIMM-T2D 
trial, participants with T2D were randomized to RYGB or nonsurgical management and their 
fasting plasma proteome and metabolome were analyzed for up to 3 years. To identify analytes 
that mediate improvement in outcomes, we developed a high-throughput mediation analysis 
method (Hitman), which is significantly more powerful than existing methods. Top-ranking 
analyte mediators of glycemia improvement were growth hormone receptor and prolyl-
hydroxyproline, which were more significant than any clinical mediator, including BMI. Beta-
alanine and Histidine Metabolism (both including CNDP1) were top differentially regulated 
pathways, and Valine, Leucine and Isoleucine Degradation was also a top differentially-
regulated pathway and a top mediator of improvement in insulin resistance. The identified 
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analytes may serve as novel targets for T2D therapy. More broadly, Hitman can identify analyte 
mediators of outcomes in randomized trials for which high-throughput data are available. 

Introduction 

Bariatric surgery is a potent approach to manage obesity and related comorbidities, including 
type 2 diabetes (T2D) and its complications (1-3). Roux-en-Y gastric bypass (RYGB) has 
particularly powerful effects on glucose metabolism, resulting in remission of T2D in about 90% 
of patients at 1 year and 45% at 5 years (4-10). Improved glycemic control occurs days after 
RYGB, before substantial weight loss, supporting that weight loss-independent mechanisms 
drive metabolic improvements (11-13). Moreover, recent observational studies indicate that 
bariatric surgery is associated with fewer microvascular and macrovascular complications of 
diabetes and reduced mortality (14-16). Identifying molecular mechanisms responsible for 
improved systemic metabolism could allow development of novel nonsurgical approaches for 
T2D treatment. 

Improved postoperative glycemic control is linked to enhanced meal-related insulin secretion 
and increases in incretin hormones such as GLP-1 and PYY (17-19). However, preclinical 
studies indicate incretins are not required for beneficial effects of bariatric procedures (20-24). 
Other postoperative changes include reductions in branched chain amino acids (BCAA)(25-27) 
and aromatic amino acids (28), alterations in plasma bile acids and FXR signaling (29-31) and 
in other hormones (32). RYGB alters the microbiome community composition toward that of less 
obese individuals (33), with increased abundance of many amino acid fermenters (34). Yet, 
microbiome changes cannot fully explain clinical improvement (35). Thus, the primary molecular 
factor(s) contributing to improved metabolism and diabetes remission remain uncertain.  

We assayed fasting plasma samples from the Surgery or Lifestyle with Intensive Medical 
Management in the Treatment of Type 2 Diabetes (SLIMM-T2D) clinical trial 
(clinicaltrials.gov:NCT01073020), in which 38 obese participants with T2D were randomized to 
RYGB (n = 19) or nonsurgical intensive diabetes weight management (DWM; n = 19) and 
followed longitudinally for 3 years (10, 36). Groups were similar at baseline (pre-randomization). 
Greater clinical improvement was seen in RYGB than in DWM for multiple outcomes, including 
body weight reduction (assessed by BMI), glycemia (assessed by HbA1c), triglycerides, HDL 
cholesterol, systolic blood pressure, and reductions in the number of antidiabetic, 
antihypertensive, and lipid-lowering medications (Simonson et al., 2018). All RYGB participants 
achieved 10% weight loss before 3 months, whereas 37% of DWM participants achieved 10% 
weight loss before 3 months (36). To identify candidate molecules responsible for improvement 
in glucose metabolism after RYGB as compared with DWM, we developed novel tools and 
applied them to clinical, proteomic, and metabolomic data from these samples. 
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Results 

Clinical 

Proteomic and metabolomic data at baseline, the 3 month time point, and 1 year were available 
from 35 of the 38 SLIMM-T2D participants. Metabolic characteristics of these 35 participants did 
not differ between groups at baseline (Table S1). The HbA1c and BMI of those that had 
proteomics or metabolomics per time point also did not differ from the SLIMM-T2D participants 
within their group at any time point (Figure S1). After 3 years, no DWM participants achieved 
study-defined glycemic goals (HbA1c<6.5% and fasting plasma glucose<126 mg/dL), whereas 
eight RYGB participants did, and seven of these eight participants were not receiving any anti-
diabetes medications (Simonson et al., 2018). The number of participants taking each diabetes 
medication class per arm at each time point is tabulated in Table S1. 

Proteome 

Fasting proteomics were profiled at baseline, the 3 month time point, and years 1, 2 and 3 in 
RYGB and DWM. At baseline (pre-randomization), there were no statistically significant proteins 
as assessed by false discovery rate (FDR<0.15). For later, post-randomization time points, 
reduction in BMI was greater in RYGB, so groups were compared both with and without 
adjustment for each person’s BMI change. Differences in the baseline-corrected proteome in 
RYGB vs. DWM (i.e. differences between groups in changes over time) emerged at the 3 month 
time point, with 14 significant proteins in the unadjusted analysis and 8 in the BMI-adjusted 
analysis. Proteins common to both analyses and downregulated in RYGB were: carnosine 
dipeptidase 1 (CNDP1, also known as Beta-Ala-His dipeptidase 1) and Fetuin-B (FETUB). 
Proteins in common upregulated in RYGB were: integrin-binding sialoprotein (IBSP), insulin-like 
growth factor binding protein (IGFBP2), endothelial cell-specific molecule 1 (ESM1), 
macrophage metalloelastase (MMP12), alpha-1-antichymotrypsin complex (SERPINA3), and C-
C motif chemokine 22 (CCL22). 

Differences of baseline-corrected protein abundance in RYGB vs. DWM persisted at years 1, 2, 
and 3. The log2 fold change values in RYGB vs. DWM for the 19 proteins differentially abundant 
with fold-change magnitude at least 1.5 after baseline correction at any time point without BMI 
adjustment are depicted in the heatmap in Figure 1. Statistics for all comparisons in all analytes 
are presented in Table S2. Upregulation of IGFBP2 (>50%, p<0.001 at all time points in 
SOMAscan, Figure S2A) was confirmed by ELISA, which showed significant differences in 
baseline-corrected values (p<0.05) at 12, 24, and 36 months (Figure S2B), and ELISA changes 
over time were significantly correlated to corresponding SOMAscan changes (r=0.78, p<10-7). 

Metabolome 

At baseline (pre-randomization), there were no significant differences in the fasting metabolome 
between groups. Significant differences in the baseline-corrected metabolome in RYGB vs. 
DWM emerged at the 3 month time point, with 96 metabolites changed in the unadjusted 
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analysis and 74 in the BMI-adjusted analysis; 45 of the metabolites were common to both 
analyses.  

Differences of baseline-corrected metabolite abundance in RYGB vs. DWM persisted at years 1, 
2, and 3. The log2 fold change values in RYGB vs. DWM for the 85 metabolites differentially 
abundant with fold-change magnitude at least 1.5 after baseline correction at any time point 
without BMI adjustment are depicted in the heatmap in Figure 2. The color range was defined 
to match Figure 1, with fold-change magnitudes above 3 (|log2 fold change| > 1.6) treated as 
fold-change magnitude of 3, the limit of the color bar. However, we saw much larger fold-
changes in the metabolome. For example, the BCAA-related metabolite 3−hydroxyisobutyrate 
was 88% lower (i.e. down by >9-fold) at the 3 month time point in RYGB than DWM, and it was 
also significant in the BMI-adjusted analysis. Statistics for all comparisons in all analytes are 
presented in Table S2. For the metabolites in Figure 2, we tested the correlation of their 
change from baseline at the 3 month time point to the corresponding changes in the proteins 
shown in Figure 1 to identify co-regulation. These correlations are provided in Table S2. 

Proteomic and metabolomic integrative pathway analysis  

We integrated proteomics and metabolomics for pathway analysis by creating a single, 
integrated dataset, and testing pathways composed of both proteins and metabolites from the 
Small Molecule Pathway Database (37). We identified differentially abundant pathways between 
groups without BMI adjustment at the 3 month time point. The 3 month time point showed 
robust improvements in glucose metabolism in both groups, yet preceded larger weight 
differences. There were 50 significant pathways.  

Top-ranking pathways are presented in Figure 3A. The top-ranking pathway is Phospholipid 
Biosynthesis (Figure 3B), whose top analytes were choline (Figure S2C) and choline 
phosphate (Figure S2D), both reduced in RYGB relative to DWM. The second pathway was 
Valine, Leucine, and Isoleucine Degradation, whose top analytes were the valine catabolic 
intermediate 3-hydroxyisobutyrate acid (88% lower at the 3 month time point in RYGB; Figure 
4, middle row, right), the ketoacid 3−methyl−2−oxobutyrate (ketoisovalerate; Figure 4, middle 
row, second from right), and the BCAAs valine and leucine (Figure 4, top row), all with 
sustained reductions after RYGB. Similar reductions were observed for other ketoacids and 
downstream acylcarnitines (Figure 4). Propionylcarnitine, a C3 acylcarnitine product of valine 
and isoleucine metabolism (Figure 4, lower row) with a 50% reduction in RYGB, was the top 
analyte of the related pathway Oxidation of Branched Chain Fatty Acids. 

Beta-alanine Metabolism’s and Histidine Metabolism’s (Figure 5A) top analytes were CNDP1 
and its enzymatic product histidine. Histidine was reduced after RYGB but not DWM (FDR 
0.002, Figure 5D), and its reduction was correlated with the reduction of CNDP1 (r=0.40, 
p=0.02). CNDP1 was reduced by 43% after RYGB at the 3 month time point (FDR=1.6*10-5) 
and remained lower in RYGB at 36 months (Figure 5B). A previous study had been unable to 
validate SOMAscan CNDP1 measurements (38). ELISA-determined CNDP1 levels in our 
analysis showed little correlation with SOMAscan levels per time point, but changes within 
person over time showed stronger correlation (r=0.21, p=0.055). Moreover, we confirmed 
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significant reductions in CNDP1 after RYGB, demonstrating a 68% decrease in baseline-
corrected change for RYGB vs. DWM (p=0.004 at the 3 month time point, Figure 5C). 

Retinol Metabolism’s top analyte was retinol (vitamin A), whose baseline-corrected abundance 
decreased by 33% in RYGB vs. DWM at the 3 month time point (FDR<10-4), and remained 
nominally lower at 12 months (p=0.02, FDR=0.18), but reverted to baseline values in both 
groups at 36 months (Figure S3A). Retinol binding protein 4 (RBP4) tended to be decreased in 
RYGB (10% lower at the 3 month time point, Figure S3B); these changes in RBP4 were 
significantly correlated to changes in retinol over all time points (r=0.33, p=0.001). Given the role 
of RBP4 as a mediator of insulin resistance (39), we measured RBP4 and its partner 
transthyretin (TTR) in a random subset of 12 subjects by quantitative western blot at multiple 
time points. At the 3 month time point, RBP4 and TTR were numerically lower in RYGB vs. 
DWM, but differences did not reach statistical significance with this sample size (Figure S3C, 
S3D). However, RBP4 changes by western blot correlated significantly to changes by 
SOMAscan (r=0.28, p=0.03), and changes in both RBP4 and TTR significantly correlated to 
each other (r=0.63, p<10-5) and to changes in retinol (both r>0.6, p<10-4). 

High-throughput Mediation Analysis (Hitman) 

We sought to identify analytes and clinical measures at the 3 month time point that mediated 
RYGB’s improvement in glycemia at 1 year. While there are numerous mediation methods, two 
previous comprehensive comparisons, including one for genome-wide data, concluded that the 
best balance between false positive rate and power was offered by the joint significance method 
(40, 41). This method was mathematically shown to control its false positive rate and to be more 
powerful than some of its peers (42). A drawback of the joint significance test is that it does not 
account for direction of effect of the mediator, so it could call as significant an “inconsistent” 
mediator (43). For example, RYGB (compared to DWM) decreases retinol at the 3 month time 
point and HbA1c at 1 year. However, a decrease in retinol is associated with an increase in 
HbA1c (Figure 6, left). Thus, the direction of retinol’s mediation is inconsistent with RYGB-
mediated improvement in HbA1c. 

A second limitation of the joint significance and other mediation methods is that they are 
intended for testing only one or a few mediators. Thus they do not include powerful statistical 
methods for high-throughput data, such as linear regression modeling with empirical Bayesian 
modeling of an analyte’s variance, which has been validated in multiple omics platforms, and is 
particularly powerful for small sample sizes (44). 

To address these limitations, we developed a novel mediation method for high-throughput data, 
termed High-throughput Mediation Analysis (Hitman). We demonstrate mathematically that it 
controls its false positive rate (Text S1), and it accounts for the direction of effect, so it does not 
identify inconsistent mediators as significant. For example, Hitman does not identify retinol as a 
significant mediator (p>0.9). Hitman applies empirical Bayesian linear modelling, so it has 
improved power in high-throughput settings (44). 
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Using simulations that followed the work of Barfield et al (41), we compared Hitman against the 
joint significance test and against a popular mediation test that uses the potential outcome 
framework (45) but was not included in previous simulations. We found that Hitman controls its 
false positive rate, like the other methods, and is significantly more powerful. For example, when 
the true causal mediation effects are of a size termed “small” (40), the joint significance and the 
potential outcome mediation test identify significance in <2.5% of simulations, whereas Hitman 
identifies >6%, which is significantly greater (p<10-15). When the true effect is of a size termed 
“medium” (40), the proportion of simulations identified as significant by the joint significance test 
and the potential outcome mediation test were 53.9% and 57.4%, respectively, whereas Hitman 
identified 68%, which is also significantly greater (p<10-15). These simulation results, simulation 
details, and a description of the Hitman algorithm are provided in Text S1. 

Mediation methods can be misled by confounding variables, such as those that affect both the 
mediator and the outcome (46). To avoid confounding among measured mediators, some high-
throughput mediation approaches decompose the measured analytes to identify latent, 
independent mediators (47, 48). However in biology many confounders may be unmeasured.  
For example surgery has multifaceted effects, so decomposing our measured analytes would 
not be sufficient to prevent the impact of confounders, so Hitman does not attempt to control for 
confounders. In biological datasets where all confounders and causal relationships between 
analytes cannot be controlled for, causal mediation analysis should be considered as 
exploratory (49). 

Proteomic, metabolomic, integrative pathway, and clinical mediation analysis 

We applied Hitman to identify analytes whose early change (baseline to the 3 month time point) 
mediates HbA1c improvement at one year (Table S2). The only significant analyte was growth 
hormone receptor (GHR; p=10-4, FDR=0.12). The second-ranking analyte was CNDP1 (p=10-3). 
Both decreased >30% at the 3 month time point after RYGB (Table S2) and are shown in 
Figure 6. Robust GHR mediation led us to hypothesize that reductions in plasma GHR reflected 
reduced tissue content or altered receptor shedding, and thus could be associated with tissue-
level growth hormone resistance. In the liver, GHR signaling typically increases secretion of the 
growth factor IGF1 (50, 51); however, IGF1 was not identified as a mediator by Hitman. 
Moreover, neither SOMAscan nor ELISA measures of IGF1 differed between arms at the 3 
month time point (Figure S5), despite robust correlation between SOMAscan and ELISA 
changes (r=0.35, p=0.003). Even with unchanged IGF1 levels, plasma growth hormone levels 
were >6-fold higher in baseline-corrected RYGB vs. DWM at 12 months (Figure S5), raising the 
possibility that tissue- or pathway-selective growth hormone resistance in post-RYGB 
participants could contribute to sustained improvements in glucose metabolism (52).  

The top-ranking putative metabolite mediators were prolylhydroxyproline (p<10-3, FDR=0.38) 
and isovalerylcarnitine (p<0.005; Figure 4, Figure 6, Figure S4, Table S2), which increased by 
100% and decreased by 47% at the 3 month time point, respectively. 

As a comparison to Hitman, we applied the joint significance method to test mediation of 
proteins and metabolites whose change at the 3 month time point mediates HbA1c 
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improvement at one year. We found similar top analytes, but with weaker significance, 
consistent with our simulations demonstrating that Hitman offers substantial power (Text S1). 
The top-ranking analytes identified by the joint significance method were GHR (FDR=0.26) and 
pro-hydroxy-pro (FDR=0.73). 

We next asked whether early postoperative change (baseline to the 3 month time point) in 40 
clinical markers mediated HbA1c improvement at one year. The top-ranking early postoperative 
mediators identified by Hitman were 6 min walk test distance and BMI (p<0.03, FDR=0.4; Table 
S2). Strikingly, analytes identified in the 3 month time point mediation analysis (GHR and prolyl-
hydroxyproline) were more significant (by p-value and FDR) than any clinical markers at the 3 
month time point, suggesting the top analytes’ utility as potential clinical biomarkers. 

We next sought to test mediation of our integrated pathways. There are several approaches that 
test pathway mediation (48, 49), but they are applied to the data itself, so they cannot take 
Hitman scores as input. However, the CAMERA pre-ranked procedure accepts our Hitman 
scores as input and accounts for correlation between genes (53). CAMERA tests pathway 
enrichment while accounting for correlation between genes. When we tested for metabolic 
pathways whose change at the 3 month time point mediate HbA1c improvement at 1 year, no 
pathways were significant. However, the top-ranking pathways were Beta-Alanine Metabolism 
(Figure 5) and Histidine Metabolism (p=0.006; FDR=0.23). 

Given that improvements in glycemic control after RYGB are related to changes in insulin 
sensitivity and/or insulin secretion, we applied Hitman to identify analytes whose change from 
baseline at the 3 month time point mediated insulin secretion and insulin sensitivity change from 
baseline at 1 year (Table S2), and followed this with integrative pathway mediation analysis. 

Insulin secretion, defined as the change in insulin from 0 to 30 minutes during a mixed meal 
tolerance test, was improved in RYGB vs. DWM (means of changes: RYGB=37.4, DWM=0.808; 
p=0.001). No single analytes were identified as mediators, but one pathway, Caffeine 
Metabolism, significantly mediated improved insulin secretion (FDR<10-4). Similarly, insulin 
sensitivity, defined by reduction in HOMA-IR, also improved in RYGB vs. DWM at 1 year 
(means of changes: RYGB=-2.12, DWM=-0.102; p=0.02). No individual proteins or metabolites 
were significant mediators of insulin sensitivity, but many top ranking analytes were BCAA-
related metabolites. Consequently, pathway analysis identified Valine, Leucine and Isoleucine 
Degradation as a significant pathway mediator of insulin sensitivity (FDR<10-7), together with 14 
other pathways, primarily involved in lipid and amino acid metabolism (Table S2). 

Discussion 

We report findings from a clinical trial that randomized individuals with T2D to RYGB or medical 
management and measured high-throughput data serially over 3 years. This design allowed us 
to identify analytes and pathways with differential patterns of change and potential mediators of 
improved metabolism after RYGB, providing candidates for nonsurgical approaches to T2D. 
This is shown in a graphical overview in Figure S6. As expected, RYGB exerted greater weight 
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loss and glycemic improvement, and observed protein and metabolite changes are more robust 
during periods of active weight loss, indicating partial weight dependence of metabolic effects. 
However, differential abundance of many analytes remained after BMI adjustment, indicating 
weight-independence. Moreover, the top analytes at the 3 month time point are more significant 
mediators of glycemia at 1 year than any clinical markers, including BMI, indicating that these 
analytes may have clinical significance as biomarkers of bariatric surgery or therapeutic targets. 
Our mediation analysis tool, Hitman, provides a new method to analyze studies that randomize 
a treatment and observe differences in outcomes; using measurements of analytes upstream of 
the outcome, putative mediators of the outcome can be identified.    

One feature of Hitman that improves its power is that it accounts for the direction of mediation. 
Hitman finds that retinol’s direction of mediation is inconsistent with mediation of improved 
glycemic control after RYGB. As seen in Figure 3, RYGB reduces retinol more than DWM, 
which is compatible with previous reports in bariatric surgery (54-56). However, within both 
treatment groups, greater retinol reduction was associated with increased HbA1c, indicating that 
the reduction in retinol is not a likely mediator of improved glycemia. Similarly, retinol binding 
protein 4 (RBP4) was numerically lower after RYGB, consistent with prior reports linking 
increased serum RBP4 levels with obesity and insulin resistance (57). Like retinol, RBP4 
reduction was associated with increased HbA1c within each of the treatment groups, so it was 
also penalized by Hitman (Table S2). Thus, these data highlight complex relationships between 
retinol, RBP4, and T2D phenotypes, but suggest that these changes are not likely to mediate 
improved glycemia after RYGB. 

Several significant pathways identified were driven by reductions in CNDP1, a top-ranking 
putative protein mediator of HbA1c. CNDP1 is a secreted dipeptidase that hydrolyzes carnosine 
to β-alanine and L-histidine. CNDP1 was found to decline significantly 3 months after bariatric 
surgery (58).  These relationships are consistent with a common CNDP1 genetic variant that 
enhances enzymatic activity, which is associated with loss of glycemic control in mice (59).  

The significant protein putative mediator of improved glycemic control was GHR, which was 
decreased in plasma from post-RYGB participants. Interestingly, reduction in GHR expression 
was recently demonstrated in multiple tissues of post-RYGB rodents (60). Parallel reductions in 
GHR and increased growth hormone levels post-RYGB suggest the possibility that tissue-
selective growth hormone resistance could contribute to improvements in insulin sensitivity and 
reductions in hepatic glucose production, as observed in humans treated with a growth hormone 
antagonist (52). 

The top putative metabolite mediator of HbA1c was prolylhydroxyproline. Prolylhydroxyproline is 
a marker of collagen degradation, and the increased levels in RYGB could be linked to 
increased bone turnover (61) consistently observed after bariatric surgery, including in the 
present cohort (62, 63). One possible mechanism for mediation is that prolylhydroxyproline can 
facilitate adipose-derived stromal vascular cells to differentiate into more metabolically active 
beige adipocytes (64). 
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Valine, Leucine, and Isoleucine Degradation was a significant HOMA-IR pathway mediator and 
the most significantly changed pathway at 3 months between groups. There were robust post-
RYGB decreases in BCAA and multiple downstream catabolic intermediates, including C3 and 
C5 acylcarnitines, with isovalerylcarnitine as a putative causal metabolite mediator. Our results 
are consistent with prior findings of increased BCAA in insulin resistance (65, 66) and reduced 
BCAA in response to RYGB in nonrandomized studies (25-27). Lower BCAA levels post-RYGB 
may be a consequence of weight loss-linked improvements in insulin sensitivity or altered 
microbial metabolism (34), but may also contribute directly to improved insulin sensitivity (67). 
Our data reveal a marked 88% reduction in the valine catabolic intermediate 3-
hydroxyisobutyrate at the 3 month time point post-RYGB. This is particularly interesting since 3-
hydroxyisobutyrate can exit mitochondria and serve as a signaling molecule, promoting muscle 
lipid uptake and insulin resistance (68) and impaired mitochondrial OXPHOS activity (69). 

We acknowledge that profiling semi-quantitative plasma metabolomics and proteomics, with 
emphasis on the secreted proteome, cannot fully define the pleiotropic effects of bariatric 
surgery, including both weight-dependent and weight-independent changes in complex 
interorgan communication, gut microbiome effects, or tissue-specific flux in metabolic pathways. 
Our study is innovative as we have developed and applied novel bioinformatics tools to identify 
clinical measures, analytes and pathways that mediate response to RYGB within a randomized 
clinical trial comparing RYGB vs. medical management in T2D. The analytes we have identified 
and validated can be modulated in future studies to determine whether they can be utilized for 
non-surgical control of glucose metabolism in T2D. 

Materials and Methods 

Clinical study 

Participants were randomized to RYGB, performed using standard operative protocols, or DWM, 
conducted by a multidisciplinary team in groups of 10-15 via the Why WAIT (Weight 
Achievement and Intensive Treatment) program (70). Both RYGB and DWM groups returned to 
usual care following intervention, and annual follow-ups after one year were observational. The 
protocol was approved by the Partners Healthcare Institutional Review Board, and an 
independent data monitoring committee reviewed patient safety. Difference of outcomes 
between groups was analyzed with a t-test, and significance was defined as p<0.05. 

Metabolic assessments 

Metabolic assessments were performed at baseline and repeated at the 3 month time point, 
which was defined by achieving 10% of initial body weight loss or 3 months, if 10% weight loss 
had not yet been achieved by this time point. This time point was defined to permit assessments 
at a similar level of weight loss in both groups. Assessments were also repeated in both groups 
at 12, 18, 24, and 36 months. Analysis of blood samples collected in the fasting state included 
HbA1c, plasma glucose, and lipids (Quest Diagnostics). Aliquots were stored at -80 C. 
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Proteomic profiling and validation 

Plasma proteome profiling was performed using the high-throughput DNA aptamer-based 
SOMAscan assay platform (SomaLogic, Inc.)(71). Abundance of 1129 proteins (enriched for 
extracellular proteins) was quantified as relative fluorescent units (RFU), normalized, calibrated, 
and log2-transformed. Samples were available from 38 participants at baseline and 38, 35, 25 
and 23 participants at the 3, 12, 24, and 36 month time points, respectively (Table S1).  

Selected proteomic data were validated in a subset of fasting plasma samples using specific 
ELISA, including IGFBP2 (22-BP2HU-E01, ALPCO, NH), CNDP1 (F34010, LifeSpan 
Biosciences, WA), growth hormone (DGH00, R&D Systems, MN), and total IGF-1 (DG100, R&D 
Systems, MN). For RBP4 and TTR, plasma samples were assayed using quantitative western 
blotting using a polyclonal antibody to human RBP4 (Dako) and human TTR (Dako) with 
standard curves of purified human RBP4 (72) or TTR (Sigma) protein on each blot (57). 
Changes per individual over time were tested for positive correlation to corresponding 
SOMAscan changes with a one-sided test of Pearson correlation. 

Metabolomic profiling 

Plasma metabolomics were profiled using a commercial semi-quantitative mass spectrometry-
based platform (Metabolon, Inc.)(73). Metabolites that had missing values in more than 85% of 
samples were filtered out, missing values were imputed with half of the minimum for each 
metabolite, and abundance values were log2-transformed. Samples were available from 38 
participants at baseline and 36, 35 and 22 participants at 3, 12, and 36 months; due to cost, 
metabolomics were not profiled at 24 months.  

Differential abundance of proteomics, metabolomics, and pathways 

To test differential abundance of log2 normalized analytes between groups at baseline, we 
applied moderated t-tests with our R package ezlimma, which streamlines and extends the R 
package limma (44, 74). Limma applies linear regression modeling with empirical Bayesian 
methods to improve each analyte’s variance estimation using analytes’ shared systematic 
variance. At post-baseline time points, we calculated change in analyte abundance from 
baseline for each individual, and then applied moderated t-tests to test if these changes varied 
by group. We repeated these post-baseline analyses accounting for each person’s BMI change. 
We similarly applied limma’s roast method (75) for differentially abundant pathways via our 
ezlimma package. We considered Roast’s “Mixed” statistics, which correspond to assessing the 
absolute value of an analyte’s change, so that if some of a pathway’s analytes are upregulated 
(e.g. proteins) and others are down-regulated (e.g. metabolites), these changes do not cancel 
out the pathway’s effect. Significance for this and other omics analyses was defined as 
FDR<0.15. In plots of individual analytes with standard error of the mean (SEM), ordinary (i.e. 
unmoderated) SEM are displayed. 
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Mediation analysis 

We tested mediation of each clinical variable with the causal chain: group → clinical variable 
change → clinical outcome change. We tested each clinical variable’s mediation by defining 
group as a binary variable representing RYGB or DWM per individual; clinical variable change 
as each clinical variable’s change between baseline and the 3 month time point per individual; 
and clinical outcome change as the change in clinical outcome between baseline and 12 
months per individual.  

We tested mediation of analytes with the causal chain: group → analyte change → clinical 
outcome change. We tested each analyte’s mediation by defining group as a binary variable 
representing RYGB or DWM per individual; analyte change as each analyte’s change (on the 
log2 scale) between baseline and the 3 month time point per individual; and clinical outcome 
change as the change in clinical outcome between baseline and 12 months per individual. As a 
comparison to Hitman, we similarly tested mediation of analytes using the joint significance 
method and using the mediation package (45) in the R software. Simulation results were 
compared statistically with a two-sample t-test with pooled variance in the R software. 

We tested these Hitman results against pathways containing proteins and metabolites from the 
Small Molecule Pathway Database (SMPDB)(37) with the CAMERA pre-ranked pathway 
analysis method (53) from the Limma package. 

Data and software availability 

SOMAscan and clinical data have been deposited at GEO:GSE122279. SOMAscan, 
metabolomics, and clinical data, and the R/Bioconductor (74) code to reproduce main results 
from them (including Table S2 and pathway results with links to the underlying pathway’s 
analyte statistics) are available at https://github.com/jdreyf/slimm-t2d-omics. Our streamlined 
limma R package ezlimma is available at https://github.com/jdreyf/ezlimma. The Hitman 
package is available at https://github.com/jdreyf/Hitman.  

Figure and table legends 

Figure 1. Proteome changes, see also Figure S2 and Table S2. Heatmap of 
log2(RYGB/DWM) at all time points (post-baseline log2 abundance values are baseline-
corrected) for proteins that are differentially abundant at any time point (FDR<0.15 and fold-
change magnitude > 1.5). 

Figure 2. Metabolome changes, see also Table S2. Heatmap of log2(RYGB/DWM) at all time 
points (post-baseline log2 abundance values are baseline-corrected) for metabolites that are 
differentially abundant at any time point (FDR<0.15 and fold-change magnitude > 1.5). Log2 
values outside the range -1.58 to 1.58 are shrunken toward zero to be in this range. 
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Figure 3: Top differential pathways and Phospholipid Biosynthesis network. (A) –log10(p-
values) and false discovery rates (FDRs) of top pathways. (B) Nodes are colored by between-
group z-score, whereas unmeasured nodes are colored dark gray. Connections are from 
Pathway Commons network. 

Figure 4. Branched chain amino acids (BCAA) and downstream metabolites, see also 
Table S2. Arrows indicate enzymatic pathway relationships. Data were analyzed by moderated 
t-tests; post-baseline time points were analyzed using change from baseline. Data are reported 
as mean ± SEM on the log2 scale. *p<0.05, **p<0.01, ***p<0.001, and #p<0.0001. 

Figure 5. Beta-alanine metabolism, see also Table S2. (A) Network where nodes are colored 
by between-group z-score, whereas unmeasured nodes are colored gray. Connections are from 
Pathway Commons network. (B) Log2 abundance of CNDP1 measured by SOMAscan. (C) 
CNDP1 plasma levels measured by ELISA. (D) Log2 abundance of histidine measured by 
metabolomics. Data were analyzed by moderated t-tests; post-baseline time points were 
analyzed using change from baseline. Data in B, C, and D are reported as mean ± SEM. 
*p<0.05, **p<0.01, ***p<0.001, and #p<0.0001. 

Figure 6. Mediation of HbA1c change at 1 year, see also Figure S1, S5, S6, Table S1, 
Table S2, and Text S1. X-axis represents log2 abundance change from baseline at the 3 month 
time point, and Y-axis represents HbA1c change from baseline at 1 year. Retinol is an 
inconsistent mediator, whereas GHR (growth hormone receptor) and pro-hydroxy-pro 
(prolylhydroxyproline) are consistent mediators of surgery’s effect. 

Supplemental Information Items 

Figure S1. HbA1c and BMI for SLIMM-T2D cohort and those that had omics per time point. 
(A) HbA1c and (B) BMI in both treatment arms for the SLIMM-T2D cohort (“Total”) and those 
that had proteomics or metabolomics per time point (“Omics”). Data are reported as 
mean ± SEM. Data were analyzed by t-tests. For HbA1c and BMI, no significant difference was 
found between the Total and Omics groups within RYGB or within DWM at any time point. 
However, differences between RYGB and DWM per time point were found: *p<0.05, **p<0.01, 
***p<0.001 and #p<0.0001. 

Figure S2. IGFBP2, choline, and choline phosphate levels. (A) IGFBP2 log2 abundance 
measured by SOMAscan. (B) IGFBP2 concentration measured by ELISA. (C-D) Choline and 
choline phosphate log2 abundance measured by metabolomics. Data were analyzed by 
moderated t-tests; post-baseline time points were baseline-corrected. Data are reported as 
mean ± SEM: *p<0.05, **p<0.01, ***p<0.001, and #p<0.0001. 

Figure S3. Retinol, RBP4, and TTR abundance. (A) Log2 abundance of retinol measured by 
metabolomics. (B) Log2 abundance of RBP4 measured by SOMAscan. (C) RBP4 and (D) TTR 
plasma levels measured by quantitative western blot. Data were analyzed by moderated t-tests; 
post-baseline time points were baseline-corrected. Data are reported as mean ± SEM: *p<0.05, 
**p<0.01, ***p<0.001 and #p<0.0001. 
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Figure S4. Abundance of prolylhydroxyproline over time. Log2 abundance of the mediator 
prolylhydroxyproline measured by metabolomics. Data were analyzed by moderated t-tests; 
post-baseline time points were baseline-corrected. Data are reported as mean ± SEM: *p<0.05, 
**p<0.01, ***p<0.001 and #p<0.0001. 

Figure S5. IGF-1 and GHR SOMAscan and ELISA levels. (A) Log2 abundance of IGF-1, 
measured by SOMAscan. (B) Plasma levels of total IGF-1, measured by ELISA. (C) Log2 
abundance of GHR, measured by SOMAscan. (D) Plasma levels of growth hormone, measured 
by ELISA. Data were analyzed by moderated t-tests; post-baseline time points were baseline-
corrected. Data are reported as mean ± SEM: *p<0.05, **p<0.01, ***p<0.001 and #p<0.0001. 

Figure S6. Graphical overview.  Shows study flow. Bottom show top two mediators (GHR and 
prolyl-hydroxy-proline) and a network composed of top analytes from Valine, Leucine, and 
Isoleucine Degradation and Beta-Alanine Metabolism. Nodes colored dark grey were not 
measured here. 

Table S1. Baseline demographics of participants that had both proteomics and 
metabolomics at all of baseline, 3 months, and 12 months; and number of participants 
taking each diabetes medication class per arm at each time point. The metabolic 
characteristics of the subset of participants who had omics data did not differ between groups at 
baseline. There were differences in medication use between groups. 

Table S2. Differential abundance, correlation, and mediation tables. Differential abundance 
of proteins, metabolites, and pathways; Pearson correlation coefficients of top proteins vs. top 
metabolites; mediation of HbA1c, insulin secretion (as the change in insulin from 0 to 30 
minutes during a mixed meal tolerance test), and HOMA-IR. 

Text S1. Hitman algorithm and validation. Technical description and validation. 
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Text S1. High-throughput mediation analysis (Hitman)

Model

E

M=

Y

M1
M2
:
Mp
Mp+1
:
MP

E

M

Y

α1 θ2

θ1

UE

UM

(a) (b)

UY

Figure 1: Hitman model without covariates.

Our causal model of the effect of the treatment or exposure (E) on the outcome (Y ), and the effect’s mediators
(M ) are shown in Figure 1a and 1b. We have E →M→ Y and E → Y, where arrows (→) represent potential
directed causal effects, with structural parameters next to the arrows. Our unmediated model is E λ1−→ Y ,
where the structural parameter λ1 represents the total effect (http://davidakenny.net/cm/mediate.htm).
Our causal mediation model per mediator is shown in Figure 1b. We assume that E causally affects Y, and
that this total effect is robust. We are then interested in the mediation effect (or indirect effect), represented
by α1θ2. θ1 is the direct effect per mediator. Lack of an arrow indicates no causal effect (Pearl 2010), so
the model assumes that neither M nor Y affect E (as occurs when E is randomized), and that Y does not
affect M. Hitman does not test these assumptions.

Our model in Figure 1a is based on a biological system, such as a cell, where an intervention (or exposure)
like a gene knockout can have effects across all activities in the cell. The number of potential mediators of
the exposure is P, where P is astronomically large. In an omics experiment, we measure p (with p much
smaller than P, p << P) analytes across n samples, with p >> n. The P mediators in Figure 1a have
unknown relationships among themselves and on the outcome. Ideally, we would identify these relationships
so that we can account for them, but with few samples and an astronomical number of mostly unmeasured
mediators, we do not attempt that here, and instead pursue an exploratory, one-at-a-time analysis of our
measured mediators, so that we can identify which mediators to pursue with further studies.

Our linear structural equation model (SEM) per mediator with covariate vector or matrix X is:

E = ν0 + ν1X + UE (1)
M = α0 + α1E + α2X + UM (2)
Y = θ0 + θ1E + θ2M + θ3X + UY (3)

where U terms represent omitted factors that explain sources of variation. The SEM’s coefficients represent
structural parameters estimable from the data. These terms must be mutually independent for the validity
of mediation analyses. When we randomize E, we know that UE is independent of the other U ’s. However,

1
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UM is often dependent with UE , due to another mediator (likely unmeasured) affecting both M and Y . So,
“theoretical knowledge must be invoked to identify the sources of these correlations and control for common
causes (so called ‘confounders’) of M and Y whenever they are observable” (Pearl 2014a). Such confounders
can be included in X. When X is a matrix, ν1, α2, and θ3 are vectors.

We implement Hitman for our data with the assumptions that E is randomized and, under the null, the U ’s
are independent given X and UM and UY have known distributions. For example, our analyte mediators and
outcome follow the normal distribution. Hitman also accommodates outcomes that follow any generalized
linear model, such as logistic regression for binary Y .

Hitman is based on the joint significance or causal steps test. The joint significance test requires that the
exposure causes the outcome (Judd & Kenny 1981)(MacKinnon et al. 2002), and has been shown to have
more power than the product method and to control its false positive rate, because it is an intersection-union
test (Huang et al. 2018). A drawback of the joint significance test is that it doesn’t account for direction of
effect. For example, if E increases Y (i.e. an increase in E increases Y ), then we would want mediators M
where E increases M and M increases Y, or where E decreases M and M decreases Y . However, the joint
significance test might find as significant an “inconsistent” mediator where E increases M and M decreases
Y (MacKinnon et al. 2002). We address this in Hitman.

Method

For each mediator (M), the null hypothesis is that E has no effect on M (α1 = 0); or that M has no effect
on Y (θ2 = 0); or that the direction of mediation, sgn(α1θ2), is not consistent with the direction of the total
effect, sgn(λ1), with sgn being the sign function. An example of an inconsistent mediator is E increases Y ,
but E increases M and M decreases Y . The alternative hypothesis is that E affects M and M affects Y ,
and that the direction of E → M and M → Y are consistent with that of the total effect of E on Y . This
tests if M explains at least some of the dependence between E and Y ; M need not explain all of it.

Hitman implements tests with high-throughput mediators using the R/Bioconductor linear modeling package
limma (Ritchie et al. 2015). Limma models the variance of features (e.g. proteins or metabolites) with an
empirical Bayesian method, which exploits information about shared technical variance between features for
improved power, especially when the sample size is small (Ritchie et al. 2015). Limma can also account
for a mean-variance relationship, as occurs in RNA-seq (Law et al. 2014). To model variance of feature
abundance in linear modeling, limma models feature abundance as the dependent variable.

To estimate the direction of mediation, Hitman uses sgn
(
λ̂1

)
from the linear model with covariates Y =

λ0 + λ1E + λ2X + ε. This model does not include mediators, because here we are not interested in the
indirect or mediated effects. Hitman assumes the total effect is robust, so treats the estimated direction as
correct, i.e. sgn

(
λ̂1

)
= sgn (λ1).

For each mediator M :

1. Measure effect of E and M using equation 2. Here and later, if X is absent, remove its term. If X has
multiple columns, α2 is a vector. Test α1 = 0 in limma and define the resulting p-value p1.

2. Measure association of M and Y given E (and possibly X) using equation 3. We would like to test
θ2 = 0 using limma. To model the variance of M with empirical Bayesian methods, we need to make
M the dependent variable. So we use an approach similar to partial correlation.

i. Estimate the residuals of Y = λ0 + λ1E + λ2X + e as eY .
ii. Estimate the residuals of M = α0 + α1E + α2X + e as eM .
iii. From the linear model eM=θ2eY + ε, test θ2 = 0 in limma and define the resulting p-value p2.

2
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Now define

S =
{

0, if sgn (α1θ2) 6= sgn (λ1)
1, if sgn (α1θ2) = sgn (λ1)

and

Ŝ =

0, if sgn
(
α̂1θ̂2

)
6= sgn

(
λ̂1

)
1, if sgn

(
α̂1θ̂2

)
= sgn

(
λ̂1

)
.

3. If Ŝ = 1, then the direction of total effect agrees with that of E → M → Y , and the final p-value =
0.5max(p1, p2). Otherwise, the direction of the indirect effect is inconsistent with that of the overall
effect, and the final p-value = 1 − 0.5max(p1, p2). The intuition behind the test is that Ŝ allows for
one-sided testing of θ̂2 or α̂1.

4. To account for testing multiple mediators, calculate false discovery rates (FDRs) from the mediator
p-values (Benjamini & Hochberg 1995).

Example

We illustrate Hitman through an example of an inconsistent mediator (Figure 2). This figure is reminiscent
of Simpson’s Paradox (Pearl 2014b). The exposure increases the outcome, and it increases the mediator.
Moreover, the mediator is associated with the outcome, but it decreases the outcome, resulting in inconsistent
mediation.

To define this generic example, let the realized value of the random estimate α̂1 be a, and similarly the
realized value of β̂1 be b, and of λ̂1 be g. In this example, a>0, g>0, and b<0. Then sign(g) 6= sign(ab).
However, this evidence is opposite the alternative hypothesis, where we want the direction of effect to be
consistent: sgn (λ1) = sign(α1β1). Thus, Hitman conservatively estimates this mediator’s p-value as 1,
whereas if consistency was not accounted for, the p-value would be < 0.001.

Mathematical justification

We show here that Hitman properly controls its false positive rate in theory. Below we show this in simu-
lations. Hitman, like the joint significance method, requires that the exposure causes the outcome. Hitman
also requires that this effect is robust, so the sign of the estimated total effect matches the sign of the total
effect.

Then for a single mediator, the null and alternative hypotheses as described above are:

H0 : α1 = 0 ∪ θ2 = 0 ∪ S = 0
Ha : α1 6= 0 ∩ θ2 6= 0 ∩ S = 1.

But the terms in Ha are not independent, because, e.g. S = 1→ α1 6= 0∩ θ2 6= 0, and consequently we could
also write Ha : S = 1.

To show that Hitman controls its size given the composite null, we consider the most challenging case
under H0. Without loss of generality, under the assumption that the estimated direction is correct, let
sgn

(
λ̂1

)
= sgn (λ1) = 1. Hitman treats α1 and θ2 symmetrically, so without loss of generality we select θ2

to have a defined sign, and without loss of generality consider sgn(θ2) = 1. For the case to be maximally

3
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Figure 2: Inconsistent mediator.

challenging: θ2 → ∞, so P (θ̂2 > 0) → 1 and p2 → 0. Under the null, we have S = 0, and S = 0 → α1 ≤ 0,
so we consider α1 = 0, because this is the most challenging value for Hitman.

The p-value from Hitman can be defined as a mixture for this challenging case:

0.5max(p1, p2)Ŝ + (1− Ŝ) (1− 0.5max(p1, p2)) = 0.5p1Ŝ + (1− Ŝ) (1− 0.5p1)

To demonstrate this is a valid p-value, we need to show P (p ≤ u|H0) ≤ u for each 0 ≤ u ≤ 1. We have that

P (0.5p1Ŝ + (1− Ŝ) (1− 0.5p1) ≤ u | α1 = 0, θ̂2 >> 0, λ̂1 > 0) (4)

=
∫
a

P (0.5p1Ŝ + (1− Ŝ) (1− 0.5p1) ≤ u | α̂1 = a, θ̂2 >> 0, λ̂1 > 0)f(α̂1 = a | α1 = 0)da (5)

where >> denotes much larger than; we leave S = 0 out of equations 4 and 5, because it is implied by
the other two parameters; and equation 5 follows from equation 4 by the law of total probability. We
have that f(α̂1 = a | α1 = 0) ∼ N(0, σ2). Without loss of generality, we conveniently assume σ = 1, so
f(α̂1 = a | α1 = 0) = φ(a) and (p1 | α̂1 = a) = 2Φ(−|a|), because α̂1 is tested with a two-sided test, where φ
is the standard normal density and Φ is the standard normal cumulative distribution function. So, equation
5 simplifies to

∫
a

P (Φ(−|a|)Ŝ + (1− Ŝ) (1− Φ(−|a|)) ≤ u | α̂1 = a, θ̂2 >> 0, λ̂1 > 0)φ(a)da

=
∫
a≤0

P
(
1− Φ(a) ≤ u

)
φ(a)da+

∫
a>0

P
(
Φ(−a) ≤ u

)
φ(a)da

(6)

4
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Because if a ≤ 0, then Ŝ = 0 and Φ(−|a|) = Φ(a), whereas if a > 0 then Φ(−|a|) = Φ(−a).

We further simplify the second term in equation 6:

∫
a>0

P (Φ(−a) ≤ u)φ(a)da =
∫
a>0

P
(
−a ≤ Φ−1(u)

)
φ(a)da

=
∫
a≤0

P
(
a ≤ Φ−1(u)

)
φ(−a)da

=
∫
a≤0

P
(
a ≤ Φ−1(u)

)
φ(a)da

=
∫
a≤0

Φ
(
Φ−1(u)

)
φ(a)da

=u
∫
a≤0

φ(a)da

=u/2

(7)

We also simplify the first term in equation 6:

∫
a≤0

P (1− Φ(a) ≤ u)φ(a)da =
∫
a≤0

P (−Φ(a) ≤ u− 1)φ(a)da

=
∫
a≤0

P (Φ(a) ≥ 1− u)φ(a)da

=
∫
a≤0

P
(
a ≥ Φ−1(1− u)

)
φ(a)da

=
∫
a≤0

1− Φ
(
Φ−1(1− u)

)
φ(a)da

=u
∫
a≤0

φ(a)da

=u/2

(8)

Thus, ∀u : 0 ≤ u ≤ 1, P (p ≤ u | H0) ≤ u, so Hitman controls its false positive rate.

Simulations

We validated our size and power following a simulation study (Barfield et al. 2017). This study’s parameters
were a subset of a previous simulation study (MacKinnon et al., 2002). Like (Barfield et al. 2017), we
simulated data from Y = t0 + t1E + t2M1 + t3X + eY , where M1 defines the first mediator, which was
simulated as M1 = b0 + b1E + b2X + eM1 . This was the only mediator associated with exposure and
outcome, and so was the only mediator whose p-value we examine.

Hitman relies on high-throughput data, so we simulated other mediators as Mi = b0 + b2X + eMi
for i 6= 1,

which are independent of the exposure and the outcome. (We index mediators using the subscript i, but
suppress indices that indicate sample.) These other mediators are exploited by limma to estimate the shared
technical variance, as would happen in an omics study.

X and E and the error terms eY and eMi
for all i were simulated as independent standard normal variables.

We set θ0 = θ3 = β0 =β2 =0.14. Barfield et al. (2017) set the direct effect to be “small”, θ1 = 0.14.

Hitman is only applicable when there is a robust overall effect, but these simulations include cases where
there is no overall effect. Thus these simulations are not entirely appropriate for Hitman. However, we
addressed this in part by setting the direct effect θ1 to be “large” (θ1 = 0.59) as per (MacKinnon et al.,
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2002). In this way, the simulations more closely match Hitman cases but can still be compared to previous
simulations (Barfield et al., 2017; MacKinnon et al., 2002).

Like Barfield et al. (2017), we simulated all combinations of θ2 , β1 ∈ (0, 0.14, 0.39), which correspond to
effects of “zero”, “small,” and “medium” size, respectively (MacKinnon et al., 2002). We tested in what
proportion of 10,000 simulations M1 of 100 mediators across 50 samples achieved a p-value ≤ 0.05. Our
results for these parameter values for Hitman, the joint significance test, and the mediate function from the
R package mediation are shown in Table 1.

Table 1: Comparison of methods via simulation.

β1 θ1 Hitman joint mediate
0.00 0.00 0.006 0.002 0.002
0.00 0.14 0.012 0.006 0.005
0.14 0.00 0.016 0.008 0.007
0.00 0.39 0.040 0.036 0.030
0.39 0.00 0.048 0.038 0.028
0.14 0.14 0.063 0.023 0.015
0.14 0.39 0.206 0.108 0.103
0.39 0.14 0.207 0.111 0.127
0.39 0.39 0.682 0.539 0.574

A statistical test’s size is the probability of falsely rejecting the null hypothesis, which is the probability of
a false positive or a Type 1 error. All the methods here control their size, as they maintain a false positive
rate less than 5%.

A statistical test’s power is the probability that the test correctly rejects the null hypothesis when the al-
ternative hypothesis is true, and it’s inversely related to the probability of making a Type 2 error. To test
Hitman’s power, we look at the cases where both of θ2 and β1 are positive. Here, Hitman’s power is greater
than the other methods.
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