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Abstract

DNase | hypersensitive sites (DHSs) are generic markers of regulatory DNA and harbor
disease- and phenotypic trait-associated genetic variation. We established
high-precision maps of DNase | hypersensitive sites from 733 human biosamples
encompassing 439 cell and tissue types and states, and integrated these to precisely
delineate and numerically index ~3.6 million DHSs encoded within the human genome,
providing a common coordinate system for regulatory DNA. Here we show that the
expansive scale of cell and tissue states sampled exposes an unprecedented degree of
stereotyped actuation of large sets of elements, signaling the operation of distinct
genome-scale regulatory programs. We show further that the complex actuation patterns
of individual elements can be captured comprehensively by a simple regulatory
vocabulary reflecting their dominant cellular manifestation. This vocabulary, in turn,
enables comprehensive and quantitative regulatory annotation of both protein-coding
genes and the vast array of well-defined but poorly-characterized non-coding RNA genes.
Finally, we show that the combination of high-precision DHSs and regulatory
vocabularies markedly concentrate disease- and trait-associated non-coding genetic
signals both along the genome and across cellular compartments. Taken together, our
results provide a common and extensible coordinate system and vocabulary for human
regulatory DNA, and a new global perspective on the architecture of human gene
regulation.
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Introduction

A fundamental goal of the ENCODE project is to delineate with the highest possible precision
the repertoire of regulatory DNA elements encoded within the human genome sequence. A
canonical feature of actuated cis-regulatory elements — promoters, enhancers, silencers,
chromatin insulators/enhancer blockers, and locus control regions — is focal alteration in
chromatin structure resulting in heightened DNA accessibility to nucleases and other protein
factors'. From their discovery 40 years ago?, DNase | hypersensitive sites (DHSs) have
provided reliable signposts for high-precision regulatory DNA delineation in the human and
other complex genomes®. DHSs typically mark compact (<250bp) elements densely populated
by sequence-specific regulatory factors?; these factors, in turn, produce nucleotide-resolution
‘footprints’ when exposed to DNase I° that further illuminate the underlying regulatory
architecture and logic of regulatory DNA®.

During the past decade, the advent of genome-scale mapping of DHSs’ and its application to
diverse human and mouse cell and tissue types®® has yielded many insights into the
organization, evolution', activity?, and function®'" of human regulatory DNA in both normal and
malignant states'. Cell type- and state-selectivity of DNA accessibility is a cardinal property of
regulatory DNA, with only a small fraction of all genome-encoded elements becoming actuated
in a given cellular context®'?. Most cell-selective behavior is manifested at distal, non-promoter
elements, which comprise a plurality of DHSs®. Exceptions to this are the minority of DHSs that
mark active or potentiated transcriptional start sites (TSSs), or those arising from non-promoter
occupancy sites for CTCF™. While it is possible to infer functional properties of a subset of
DHSs on the basis of surrounding histone modification patterns'-'¢, such features do not
account well for complex behaviors such as primed elements poised to receive environmental or
other stimuli'', or quiescent but developmentally important elements.

The overwhelming maijority of disease- and trait-associated variants identified by genome-wide
association studies (GWAS) lie in non-coding regions of the genome, and are strongly enriched
in DHSs™'"'8 Additionally, GWAS variants harbored within DHSs have been found to account
for the majority of trait heritability explained by genotyped SNPs'. Beyond these general
principles, which derive from simple localization of variants within DHSs, more comprehensive
insights have been generally limited by the lack of DHS annotation.

The above insights have required the combination of data quality and biological breadth,
enabling systematic recognition of cell-selective elements. As genome-scale data from diverse
biological contexts have accumulated, systematic assessment of cell type- and state-selectivity
has grown increasingly complex. It has become evident that large sets of widely distributed
elements may exhibit common but complex patterns of cell-selective actuation®. However, the
lack of a common coordinate system for DHSs has greatly hampered systematic identification
and exploitation of these features.

Here we sought to expand a broad set of high-quality DHS maps, and to unify them into a
common reference framework that both (i) incorporates precise genomic annotation that reflects
observed biological variability in the pattern of DNA accessibility seen at individual elements,
and (ii) captures complex cell-selective behaviors in a quantitative fashion. We show that the
integration of DNA accessibility maps across large numbers of cell and tissue states results in a
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remarkably coherent framework with wide utility for annotation of the human regulatory DNA
and gene landscapes; for defining how regulatory programs are encoded within the genome;
and for clarifying links between genetic signals and genome-scale regulatory programs that
enable new insights into the organization and interpretation of non-coding disease- and
trait-associated variation.

A deep index of consensus human DHSs

To create deeply sampled reference maps of human regulatory DNA marked by DHSs, we
performed DNase-seq'' on a wide range of human cell and tissue samples spanning all major
human organ systems (Fig. 1a; Methods). Reference-grade data were created by rigorous
quality screening for high signal-to-noise ratios and complex libraries (Methods), and were
aggregated with prior high-quality data from the ENCODE?® and Roadmap Epigenomics®
Projects. We conservatively selected 733 biosamples with high-quality data, representing 439
cell or tissue types and states (Fig. 1a; Supplementary Table 1; Methods). The vast majority
of these data derived from primary ex vivo cell and tissue samples (72% of samples) and from
primary cells in culture (11%), with the remainder (17%) derived from immortalized cell lines.
Collectively these data represent a >6-fold expansion of data sets and a >15-fold expansion of
the number of biological contexts (i.e., different cell types or states) relative to the prior phase of
ENCODE?.

A common coordinate system for accessible regulatory DNA

Deeply sampled reference maps of DHSs reveal rich and varied patterns of DNase |
hypersensitivity (Fig. 1b). We sought to create a precise and durable reference framework for
genomic elements that encode DHSs by (i) comprehensively and stringently (FDR 0.1%)
delineating DHSs within each biosample using an improved algorithm
(https://github.com/Altius/hotspot?); (ii) systematically integrating individual biosample maps to
define archetypal DHS-encoding elements; and (iii) assigning to each archetypal DHS element
a unique numerical identifier, thus establishing a common coordinate system for regulatory DNA
marked by DHSs (Fig. 1c).

We identified an average of 104,433 DHSs per biosample (collectively detecting 76,549,656
DHSs across all 733 biosamples). To define archetypal DHS-encoding elements, we developed
a consensus approach outlined in Fig. 1c and Extended Data Fig. 1a-b. First, we aligned the
summit coordinate (1bp) of each peak in DNase hypersensitivity signal across all biosamples to
define the centroids of all spatially distinct DHSs. To resolve the boundaries of each element,
we collated the local linear extent of DNase | hypersensitivity into a consensus range
(Methods). We then combined centroids and boundaries into a single index of 3,591,898
distinct archetypal DHS-encoding sequence elements (Supplementary Table 1) comprising, for
each, (i) a consensus DHS summit; (ii) a ‘core’ region representing empirical confidence bounds
on the centroid; and (iii) the consensus start and end coordinates of the archetypal DHS (Fig.
1d, Extended Data Fig. 1¢). Because each DHS mapped within an individual biosample
contributes to a single archetypal DHS in the consensus index, the provenance of each index
DHS can be directly traced back to the DHSs of its contributing biosample(s). Finally, we
assigned a unique identifier to each archetypal DHS within the index using a flexible and
extensible numerical schema (Fig. 1d) that (i) conveys the genomic localization of each DHS;
(ii) enables unlimited extension to newly-discovered DHSs; (iii) ensures compatibility with future
reference genome builds and portability to personal genomes; and (iv) enables direct integration
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with DNase | footprints or other experimentally annotated components of a reference DHS
(Methods). To create a robust framework for selecting more stringent genomic subsets of the
complete index, we assigned confidence scores to all DHSs that reflect both the propensity for
repeated observation in independent biosamples and the signal strength. These scores
(Extended Data Fig. 1d-e) can be used to select DHS subsets at any desired level of
stringency.

Consensus indexing enabled a far more precise and compact annotation of the accessible
regulatory DNA compartment of the human genome than previously attainable®. The ~3.6
million index DHSs have an average width of 204bp (median 196bp, interquartile range
151-240bp) and annotate 665.57 Mb or 21.55% of the human genome sequence. DHS ‘core’
regions within the index have an average width of 55bp (median 38bp) and annotate 197.74Mb
or 6.4% of the genome. DHS summits precisely define the peak in evolutionarily conserved
nucleotides within DHSs, and the corresponding trough in the density of human genetic
variation (Extended Data Fig. 2e). Most index DHSs localize distal to annotated Transcription
Start Sites (TSSs; Extended Data Fig. 2). 53% lie within introns, ~3% within non-coding exons
and UTRs, and ~2% are dually encoded within protein-coding exons (Extended Data Fig. 2c).

Cellular patterning of DNA accessibility

DHSs are extensively shared across individual biosamples and, more generally, across groups
of biosamples from different human organ systems (Fig. 1e and Extended Data Fig. 2f).
Previously we described the existence of stereotyped cross-cell-type actuation patterns shared
by tens to hundreds of widely distributed DHSs sharing the same biological function such as
enhancer activity®. We observed a high degree of complexity in the patterning of index DHS
actuation across the 733 cell types and states studied (Fig. 2a), with both biologically modular
and less structured patterns (Fig. 2b). Across this very large sample set, DHSs are infrequently
selective for a single cell type or state, with complex mixing being the rule (Fig. 1e, Extended
Data Fig. 2f).

In principle, the cross-cell-state actuation pattern of any given index DHS can be summarized
by a limited number of biological ‘components’ combined in a weighted fashion; the same
components can be used (orthogonally) to summarize the DHS repertoire of an individual
biosample. A key advantage of this approach is the possibility to capture complex behaviors
while maintaining the potential for biological interpretability, since DHS-centric information can
inform biosamples and vice versa.

A compact vocabulary captures complex DHS regulatory patterns

To decompose the matrix of 3,591,898 DHSs x 733 biosamples we applied non-negative matrix
factorization?' (NMF; Extended Data Fig. 3a-c), a technique initially employed in the field of
computer vision to learn parts-based representations of objects, and semantic features of tex
We represented each DHS by a large enough number of components (k=16) to ensure
accuracy — i.e., the degree to which the original matrix can be reconstructed from the
components — while retaining potential for interpretability via assignment of components to
established biological contexts such as known cell lineage relationships, or cell states known to
be specified by specific regulatory factors (Fig. 2c, Extended Data Fig. 3d-f, Methods).
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To connect components with established biological contexts, we identified (i) the biosamples
most strongly associated with each component, and (ii) the distribution of TF recognition
sequences within DHSs most strongly associated with that component. For all components, the
top 15 contributing cell or tissue samples were remarkably coherent, enabling provisional
assignment of a meaningful biological label to most components (Extended Data Fig. 4a).
Beyond these top associations, more general analyses further support these labelings
(Extended Data Fig. 4b-d, Methods).

We next analyzed the distribution and enrichment of TF recognition sequences within DHSs
most strongly associated with each component (Extended Data Fig. 5a; Methods), revealing
clear mappings between distinct sets of cell lineage- or state-specifying TFs and specific
components (Extended Data Fig. 5b). Notably, these mappings are orthogonal to the
biosample-to-component mappings described above. Finally, we combined
biosample-to-component mappings and TF-to-component mappings to create a robust and
biologically resonant regulatory ‘vocabulary’ that can be used to capture the actuation pattern of
any DHS across cell types and states (Fig. 2d, Box 1).

Biological annotation of DHSs using regulatory components

To date, over 99% of DHSs encoded by the human genome remain unannotated. Because the
actuation pattern of each DHS across biosamples is captured by linear combinations of NMF
components (Fig. 2c, Extended Data Fig. 3c), these combinations provide de facto annotations
of the biological spectrum of every DHS (Fig. 2e). DHSs selective for a single cell type or state
are annotated by a single majority component (Fig. 2e, columns 1,4,5,7,8,9); DHSs occurring in
multiple cellular contexts are described by a combination of components (Fig. 2e, columns
2,3,6,10); and constitutive DHSs are annotated by a rich mix of all components (Fig. 2e, column
10), including a specific component that describes tissue-invariant behavior. In this schema,
DHSs with similar cross biosample actuation patterns exhibit similar mixtures of components.
For analytical practicality and visual compactness, the annotation of each DHS can be further
summarized using its strongest single component (Fig. 2e, bottom); we use this summary
vocabulary for the analyses described below (Supplementary Table 1).

Regulatory annotation of human genes

The function of many genes is closely connected with their regulation across cells and tissues,
and hence with the activity spectra of their cognate regulatory elements. We observed that
DHSs with similar annotations were highly clustered along the genome (Methods; Extended
Data Fig. 6a-b), particularly over gene bodies (Extended Data Fig. 6¢). We thus reasoned that
regulatory components of overlying DHSs could be utilized to annotate the likely functional
compartments of their underlying genes. Quantifying the enrichment of congruently annotated
DHSs around 56,832 GENCODE genes (protein-coding and non-coding) genome-wide revealed
20,658 genes (FDR 0.05) with significant clustering of DHSs belonging to the same component
(Fig. 3a-b; Supplementary Table 2). This phenomenon was particularly striking for genes
encoding tissue-regulatory factors such as GATA1 (erythroid/myeloid component DHSs),
FOXP3 (lymphoid component), and HOXB9 (developmental component). A subset of genes
showed enrichment of more than one component suggestive of different functions in different
organ systems — for example CDX2 (embryonic/primitive and digestive components; Fig. 3c).
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Of 20,291 GENCODE protein coding genes, more than half (54.1%) could be assigned a
regulatory component based on their overlying DHSs (Fig. 3b). To determine whether these
assignments are concordant with their annotated function, we assessed (i) whether the most
confidently annotated genes reflect their known function and (ii) whether genes annotated with a
particular component are maximally expressed in cell types matching those components. The
top genes annotated by the lymphoid component are all involved in immune response and
disease (Fig. 3e, Extended Data Fig. 7a). Similar relationships were observed for other
categories of genes including those annotated by the myeloid/erythroid component
(erythropoiesis or hematopoietic stem cell genes, Fig. 3e, Extended Data Fig. 7b), a stromal
component (collagen genes and fibronectin, Fig. 3e, Extended Data Fig. 7c), and the
tissue-invariant component (housekeeping genes, Fig. 3e, Extended Data Fig. 7d). This
phenomenon was particularly striking for TF-encoding genes* such as lineage specifying master
regulators for cardiac development (cardiac component, Fig. 3f, Extended Data Fig. 8b) or
development of other organ systems (Extended Data Fig. 8).

To explore the concordance between regulatory vocabulary annotations and gene expression
across cell types and states, we interrogated a compendium of over 100,000 uniformly
processed RNA-seq data sets?®. After matching vocabulary components with tissue-relevant
expression data sets (Methods), we observed strong correspondence between the
vocabulary-based annotation of genes and the cell or tissue types in which they were maximally
expressed (Fig. 3g).

Annotation of genes with unknown functions

Despite intensive study, the function of many human genes remains obscure, particularly those
with lowly or seemingly erratic expression patterns — for example, zinc-finger (ZNF) TFs** or
long non-coding RNA genes®. Nearly half of ZNF TFs (43.7%) could be annotated with a single
regulatory component (Extended Data Fig. 9a) thus indicating their likely target biological
sphere of activity. 38.7% of long non-coding genes evinced clear mappings to regulatory
components (Extended Data Fig. 9b), as did 18% of pseudo-genes® (Extended Data Fig. 9c),
possibly reflective of remnants of regulatory states prior to ancient gene duplications. Beyond
genes, we reasoned that entire pathways could be annotated using the overlying DHS
landscapes of their constituent genes (Extended Data Fig. 10a) — for instance, the KEGG
pathway ‘Allograft rejection’ is strongly enriched for the lymphoid component (Extended Data
Fig. 10b), consistent with the principle that genes involved in similar biological processes share
similar patterns of regulatory element actuation.

Annotation of trait-associated genetic variation

We next asked whether DHS annotations could expand insights into the role(s) of genetic
variation harbored within regulatory DNA, and provide a more meaningful framework for
interpreting the pathophysiological basis of disease and trait associations. A rank-based
analysis of disease/trait versus regulatory component associations (explicitly controlling for large
scale Linkage Disequilibrium (LD) structure; Methods) revealed increasingly strong
component-specific enrichments of association signals across diverse traits (Fig. 4a, Extended
Data Fig. 11a,b). Notably, the observed enrichments could not typically be obtained by
considering only DHSs from biosamples most closely related to the relevant regulatory
component (e.g., lymphoid cell biosamples vs. lymphoid component; Fig. 4a, Extended Data
Figs. 4a, 11c).
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Quantifying the extent to which DHS annotations captured SNP-based trait heritability (hz Fig.
4b, white bars) revealed a strong increase in heritability enrichment for trait-relevant vocabulary
components relative to index DHSs (Fig. 4b, colored bars vs. grey bars, respectively).
Heritability was markedly enriched specifically within DHS ‘core’ regions, providing orthogonal
evidence supporting the delineation and importance of these subregions (Fig. 4b).

To generalize these observations, we compiled >1,300 traits with positive estimated SNP-based
heritability from the UK Biobank project?” and from curated published data®. Of these, 261
diseases and traits showed highly significant component-specific enrichment in heritability,
particularly for pathophysiologically relevant regulatory components (Fig. 4c, Extended Data
Fig. 12a, FDR 1%). Restricting DHS delineations to ‘core’ regions again yielded consistently
higher levels of enrichment compared to full DHSs (Extended Data Fig. 12b-c).To remove
potentially confounding contributions from multiple genomic annotations overlapping the same
SNP, we quantified the statistical significance of DHS component heritability contributions while
controlling for the contribution of all other annotations (Methods). For virtually all reported traits,
DHS component annotations significantly (p < 0.01) captured SNP-based trait heritability (Fig.
4d, black line).

To quantify the concentration of trait-associated genetic signal in DHSs annotated by specific
regulatory components relative to the full repertoire of DHSs in disease/trait-relevant cell types
we performed cell type-specific heritability analyses? (Methods). Component-annotated DHSs
offer a significant improvement in capturing trait heritability compared to individual datasets (p <
2.2 x 107'%; Fig. 4d, grey solid line). Strikingly, we find that at the level of individual traits, in 68
out of 261 (26%) cases DHS component annotations better capture trait heritability than
individual DNase-seq datasets (Fig. 4e).

Concentration of trait-associated variation in component-annotated gene body DHSs

The clustering of concordantly regulated DHSs within gene bodies (Fig. 3) prompted us to
speculate that such DHSs were more likely to contain relevant genetic signals. To test this, we
quantified the significance of DHS component heritability separately for concordant (17% of
DHSs) and discordant (34%) DHS annotations (Fig. 4f). Although in the minority, the former
uniquely and strongly contributed to SNP-based trait heritability relative to DHSs occurring in the
same genes but discordant with the gene’s component labeling. DHSs proximal to genes not
labelled by any DHS component provide the weakest heritability contributions, while intergenic
DHSs contribute modestly (Fig. 4f, Extended Data Fig. 12d).

Taken together, our results show that partitioning the trait heritability encoded in DHSs based on
regulatory components provides a novel and powerful approach for prioritization of genetic
signals.

Discussion

Focal chromatin accessibility triggered by sequence-specific regulatory factors is the cardinal
feature of active regulatory elements encoded in mammalian genomes, underpinning the
discovery of all currently defined classes of transcriptional control elements in the human
genome®. Here we have presented by far the most comprehensive and precise map of DHSs
(and hence of regulatory DNA thus marked), and the first universal annotation of DHSs that
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captures their complex actuation patterns across diverse cell types and states. Both the
unprecedented precision of annotation and the increased richness with which cell state-variable
behaviors could be captured and resolved to individual DHSs were enabled by jointly analyzing
high-quality data across hundreds of wide-ranging biological contexts, and thus unattainable
from smaller scale or individual data set-focused analyses.

We have leveraged the high positional stability of DHS summits across cell types and states
(median 38bp across >700 cell contexts) to define and annotate archetypal DHS-encoding
elements within the human genome, and to encompass these under a common coordinate
system and nomenclature. DHS identifiers are robust to genome builds, and transferable to
personal genomes and emerging graph-based approaches to genome analysis®>'. They also
enable straightforward incorporation of cell-selectivity properties (e.g., regulatory components)
and structural/functional features such as DNase footprints. Because DHS summits represent
local maxima in evolutionarily conserved nucleotides, TF motif density, and enrichment for both
GWAS variants generally and for variants that account for trait heritability, the index of
archetypal DHSs adds a unifying axis to diverse analyses, from regulation to genetics.

The DHS landscape can be viewed as an integrative readout of the interaction of a complex
milieu of trans-acting regulatory factors with DNA and chromatin. Shifts in this milieu under
different cell environments result in the selective appearance/disappearance of DHSs from one
cell context to another, and forms the foundation of regulatory components. We have used
these components to provide the first universal annotation of human DHSs, encompassing both
the dominant component for each element and the spectrum of contributing components. The
latter provides a regulatory ‘barcode’ that captures the complex ‘on/off’ behavior of a given
element across cell types and states. Because each regulatory component can be mapped to a
set of contributing TFs, component barcodes provide a gateway for mechanistic insights into
regulatory pathways and networks. These new DHS annotations thus greatly expand the
analytical horizon beyond cell/tissue-agnostic annotations such as chromatin states' %,

DHSs from the same regulatory component are highly clustered within gene bodies, and we
have taken advantage of this feature to create gene-centric annotations reflecting the dominant
regulatory programs of ~54% of protein-coding (10,979 genes) and ~38% of long non-coding
RNA genes (5,682 genes). For protein-coding genes, these annotations are distinct from yet
highly complementary to existing annotations based on structural and biological pathway
features or gene expression alone?****_ For non-coding RNA genes, regulatory program
annotations provide a new window on possible biological functions. Because regulatory
components can be resolved to coherent transcription factor programs, gene-centric regulatory
annotations should provide a new window into regulatory network analyses®, and should also
enable systematic incorporation of non-coding RNA genes in parallel with protein-coding genes.

Our results indicate that regulatory components can significantly clarify non-coding genetic
signals. Using DHS indexing and regulatory components, it is now possible to triangulate the
genetics-gene regulation interface on three axes: (i) a genomic position axis, which has now
been finely resolved to consensus DHS summits; (ii) a cell/tissue biological axis captured in
regulatory components; and (iii) a gene context axis reflecting the coherent co-localization of
similarly regulated DHSs over gene bodies. The concentration of trait heritability within highly
compact ~50bp DHS summits — even relative to the immediately adjacent DHS ‘arms’ —is
particularly striking given the trough in the density of overall human variation at DHS summits
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(Extended Data Fig. 2e), and likely reflects the concentration of disease/trait-associated
variants within transcription factor footprints (see accompanying manuscript by Vierstra et al.),
which are most dense within DHS summits. On the cell/tissue biological axis, regulatory
components now provide a systematic and principled approach for combining the complex
biological landscapes of individual cell types, resulting in a more powerful and comprehensive
framework for analyzing the intersection of cell/tissue selectivity and trait heritability than could
be achieved with individual biosamples or simple combinations thereof. Finally, on the gene
axis, the concentration of GWAS variants within DHSs of a gene’s dominant component
reinforces the biological coherence of these elements and provides a new pathway for
separating variants implicating a given gene from those within its body or flanking regions that
are connected with nearby or distant genes.

On a broader level, the DHS index and component framework we report represents a transition
from an exploratory era focused on discovery of novel elements, to a map-centric framework
focused on detection of an annotated element within a particular biological context. This
framework should prove particularly valuable for anchoring single cell studies, which are
presently at least 1000-fold too sparse for robust delineation of DHSs within single cells. The
index/component framework is highly information rich, and provides an inter-operable reference
for annotating functional connections between elements and genes or other elements, and for
functional categorization of elements — two intertwined challenges that represent the next
frontier in human genome annotation.
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Box 1: DHS vocabulary component labeling

Placental/trophoblast — Placenta and trophoblast biosamples. Strong enrichment for
binding sites of GCM1, selectively expressed in trophoblasts and placenta in general® and
associated with pre-eclampsia in pregnant women®’.

Primitive/lembryonic — Embryonic stem cell and related biosamples. Most enriched motif is
that for POU5F1/OCT4, reflecting its key role in embryonic development and pluripotency.
mOrgan development/renal — Largely captures fetal kidney biosamples, with strong
enrichment for development-related Homeobox protein (HOX) factors, as well as PAX2,
associated with early kidney development®.
mPulmonary development — Consists of fetal lung biosamples. Enriched for CEBPB and
FOXC2 motifs, the latter of which is implicated in lung development and maturation®®.

Lymphoid — T-cells and other immune-related cellular conditions. Its most enriched motifs
are Interferon-Regulatory Factors (IRF4, IRF1, IRF5, etcetera), in line with their critical role in
the (adaptive) immune system*.
mMyeloid/erythroid — CD34+ cells and shows strong motif enrichments for not only ETS/SPIA,
but also for GATA1 — by itself, as well together with TAL1.
mCardiac — Associated with heart-related biosamples. Strongly enriched for motifs of the
Myocyte enhancer factor—2 (MEF2) transcription factor, a core cardiac transcription factor*'.
mMusculoskeletal — Associated with muscle(-related) and bone biosamples. Enriched for
Musculin (MSC) motifs, with known key roles in regulating myogenesis.
mVascular/endothelial — Consists mostly of HMVEC cells and is enriched for motifs of ERG, a
member of the erythroblast transformation-specific (ETS) family of transcription factors, required
for platelet adhesion to the subendothelium, inducing vascular cell remodeling.
mNeural — Brain and other nervous system biosamples. General enrichment for AT-rich
homeobox motifs, as well as many highly specific NEUROD2 maotifs.
mDigestive — Associated with intestine, liver and bowel mucosa biosamples. Strong
enrichment for motifs of hepatocyte nuclear factor 4 (HNF4), critical for liver development.
mRenal/cancer — Mostly adult kidney biosamples, including renal cancer. Enriched for
HNF 1B, the HNF1A paralog involved in kidney function.
mCancer/epithelial — Associates with various cancer types, as well as general epithelia. The
top-scoring motif is for p53 (cancer-related) and p63, which has been proposed to play a dual
role*?: initiating epithelial stratification during development and maintaining proliferative potential
of basal keratinocytes in mature epidermis.
mStromal A — Captures fibroblast biosamples. Enriched for motifs of Jun dimerization protein
2 (JDP2), as well as other components of the AP-1 transcription factor (JUN, FOS). This is in
line with the roles of these factors in ultra-violet radiation response®.
mStromal B — Captures similar Biology as the Stromal A component.

Tissue invariant — Lacks strong association with specific cell and tissue types, but shows
enrichment for a diverse set of housekeeping factor motifs, such as CTCF, ETS and NRF.
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Figure Legends

Figure 1 — An Index of DNase | Hypersensitive Sites (DHSs) in the human genome

a. Sampling of DNA accessibility spanning all main organ systems. Labels indicate the number
of DNase-seq datasets generated for each system. A total of 733 datasets, of which 531 are
derived from primary cells and tissue. b. Example locus on chromosome 1, illustrating DNase |
hypersensitivity across selected hematopoietic biosamples, as indicated on the right. A variety
of cell type selective configurations are indicated. ¢. Outline of procedure to delineate a DHS
Index; 76.5M per-dataset DHSs are aggregated across datasets to jointly delineate 3.59M
consensus DHSs, with extensive annotation. d. Delineation of consensus DHSs shown for three
example loci. Positions of each per-dataset DHS are aggregated across datasets to determine
consensus DHS coordinates. Each consensus DHS is annotated with a summit position, a core
region reflecting the positional stability and a unique identifier. Unique identifiers indicate
chromosomal positioning of delineated DHSs. Shown are examples of DHSs with varying cell
type selectivity and positional stability. e. Extensive sharing of DHSs across human organ
systems, shown by the number of DHSs as a function of the number of organ systems in which
they are observed.

Figure 2 — A simple vocabulary captures complex cross-dataset patterning of DHSs

a. DNA accessibility of 3.5+ million DHSs across 733 DNase-seq datasets, documented in a
single DHS-by-dataset matrix. Indicated are various recurring accessibility patterns, including
extensive sharing across multiple cellular contexts. b. Example of a set of 1000s of DHSs
sharing similar accessibility patterns across cellular contexts, illustrating the modular behavior of
DHSs. ¢. Decomposition of DHS patterns across 733 datasets into 16 components using
Non-negative Matrix Factorization (NMF). The cellular patterning of individual DHSs is described
using a mixture of components, indicated by distinct colors. d. DHS component labels,
constituting a DHS vocabulary. e. Component mixtures for 10 exemplar DHSs, and
corresponding DNase-seq data for representative cellular contexts. Shared patterning of DHSs
across cellular contexts is reflected in mixtures of components. Shown are DHSs with various
degrees of component-specificity, including a constitutive DHS shared across all indicated
datasets and components. Single-component annotations derived from dominant component
loadings are shown at the bottom.

Figure 3 — Regulatory annotation of human genes

a. Regulatory annotation of genes through the over-representation of DHS components.
Regulatory landscapes are defined by the body of a gene, extending a maximum of 5kb
upstream and 1kb downstream, up until halfway through to another gene. b. Percentage of
genes annotated with one or more DHS components, split up by the major gene categories as
recognized by GENCODE. ¢. Regulatory landscape and annotations of the protein-coding
genes GATA1 (myeloid/erythroid), FOXP3 (lymphoid), HOXB9 (organ development / renal) and
CDX2 (shared digestive & embryonic/primitive). d. 2D t-SNE projection of regulatory annotation
patterns across genes, colored by their most strongly associated component. The number of
genes associated with each DHS component is indicated. e-f. Summarized view of the number
of genes associated with each DHS component. Call-outs show the top 5 results for
protein-coding genes (e; Myeloid/erythroid, Lymphoid, Stromal and Tissue-invariant
components) and the subset of transcription factor (TF) genes (f; Placenta, Cardiac, Digestive
or Organ development / renal components). g. Correspondence between gene regulatory
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annotation and cell type of maximal RNA expression shown using relative transcriptional activity
of genes in a panel of component-matched tissue and cell types (Methods). Values shown are
log, observed/expected ratios.

Figure 4 — Component-wise view of disease-associated genetic variation

a. Per-component quantitative association of DHSs with Genome-Wide Association Study
(GWAS) traits, shown as the enrichment ratio for each component as a function of increasingly
more stringent subsets of variants with a minimal indicated significance threshold. The
canonical genome-wide significance threshold (5 x 10®) is indicated. Enrichments for the top 15
biosamples associated with each DHS component are shown in grey. Traits shown are
reticulocyte count, pulse rate and FEV1/FVC ratio. b. Associations between GWAS variants and
DHS components identified through stratified LD-score regression (S-LDSC), for the same traits
as shown in a. Heritability enrichment levels are shown for the top 3 most enriched baseline
annotations (white), the full DHS Index (grey) and trait-relevant DHS components (colored bars).
Statistically significant enrichments are indicated (*; q < 0.01). ¢. DHS component heritability
enrichment results across 261 GWAS traits. DHS components are indicated on the x-axis and
GWAS traits with significant component associations along the y-axis. Grayscale intensity levels
indicate heritability enrichment levels, shown for associations statistically significant at FDR <
1%. A sampling of labels of enriched traits is shown for each component, as space permits.
Traits used in a and b are indicated with arrows. d. Distribution of S-LDSC coefficient Z-scores
across 261 GWAS traits, shown for all baseline annotations (grey dashed line), top 15 DHS
component-associated biosamples (grey solid line) and DHS vocabulary components (black
line). e. S-LDSC coefficient Z-scores for selected traits, shown for all individual biosamples (grey
lines), top 15 component-associated biosamples (colored ticks) and DHS vocabulary
components (colored arrows).
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