
RNN Based Method for Genotype Imputation 1

A Recurrent Neural Network Based Method for

Genotype Imputation on Phased Genotype Data

Kaname Kojima1 Shu Tadaka1 Fumiki Katsuoka1

kojima@megabank.tohoku.ac.jp tadaka@megabank.tohoku.ac.jp kfumiki@med.tohoku.ac.jp

Gen Tamiya1,3 Masayuki Yamamoto1,2 Kengo Kinoshita1,4,5,6

gtamiya@megabank.tohoku.ac.jp masiyamamoto@med.tohoku.ac.jp kengo@ecei.tohoku.ac.jp

1 Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryocho, Aoba-ku,
Sendai, Miyagi 980-0873, Japan

2 School of Medicine, Tohoku University, 2-1 Seiryocho, Aoba-ku, Sendai, Miyagi 980-
0875, Japan

3 RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo
103-0027, Japan

4 Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-
aza Aoba-ku, Sendai, Miyagi 980-8579, Japan

5 Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryocho, Aoba-
ku, Sendai, Miyagi 980-8575, Japan

6 Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku Uni-
versity, 2-1 Seiryocho, Sendai, Miyagi 980-0873, Japan

Abstract

Genotype imputation estimates genotypes of unobserved variants from genotype data of other
observed variants, and such estimation is enabled using haplotype data of a large number of other
individuals. Although existing imputation methods explicitly use haplotype data, the accessibility
of haplotype data is often limited because the agreement is necessary from donors of genome
data. We propose a new imputation method that uses bidirectional recurrent neural network, and
haplotype data of a large number of individuals are encoded as its model parameters through the
training step, which can be shared publicly due to the difficulty in restoring genotype data at
the individual-level. In the performance evaluation using the phased genotype data in the 1000
Genomes Project, the imputation accuracy of the proposed method in R2 is comparative with
existing methods for variants with MAF ≥ 0.05 and is slightly worse than those of the existing
methods for variants with MAF < 0.05. In a scenario of limited availability of haplotype data
to the existing methods, the accuracy of the proposed method is higher than those of the existing
methods at least for variants with MAF ≥ 0.005. Python code of our implementation for imputation
is available at https://github.com/kanamekojima/rnnimp/.

Keywords: genotype imputation, recurrent neural network, SNP array

1 Introduction

The development of high-throughput sequencing technologies enables the construction of genotype
data with base-level resolution for more than one thousand individuals. Such large-scale, high-
resolution genotype data is often called reference panel, and one of applications of the reference panel
is genotype imputation. In SNP array, genotype data can be obtained with lower cost than sequenc-
ing, while available genotypes are limited to designed markers. The current imputation methods take
phased genotypes obtained by SNP array or other genotyping technologies as input genotype data, and
estimate haplotypes matching to the input genotype data from the recombination of haplotypes in the
reference panel based on Li and Stephens model [Li and Stephens, 2003]. Genotypes of unobserved
variants are then obtained from the estimated haplotypes.
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Although existing imputation methods such as Impute2 [Howie et al., 2009], Minimac3 [Das et al., 2016],
and Beagle5 [Browning et al., 2018] explicitly use haplotype data, the accessibility of haplotype data
is often limited because the agreement with donors of genome data is necessary for public use. For ex-
ample, there are 64,976 haplotypes in the Haplotype Reference Consortium [McCarthy et al., 2016] in
total, but the number of publicly available haplotypes is 22,454, and about two third of the remaining
haplotypes can only be used inside of the imputation server. Thus, the input genotype data must be
sent to other research institutes for imputation using publicly unavailable reference panel, although
the input genotype data often has some limitations for external use due to the informed consent policy.
One solution for this issue is to encode the information of phased genotype data to summary statistics
or model parameters from which the restoration of genotype data at the individual-level is difficult.
Recent development of deep learning techniques including recurrent neural networks provides the im-
provement of accuracy in various fields such as image classification [Krizhevsky et al., 2012], image
detection [He et al., 2017], natural language understanding [Sutskever et al., 2014], and speech and
video data recognition [Ephrat et al., 2018], and hence the use of deep learning techniques is one of
the promising strategies for devising imputation methods handling haplotype information as model
parameters.

In this study, we propose a new imputation method based on bidirectional recurrent neural net-
work (RNN) that takes haplotype of phased genotypes as input data and returns estimated alleles
for unobserved variants. In the proposed method, haplotype information is parameterized as model
parameters in the training step, and haplotype data itself is not explicitly used in the imputation.
We considered binary vectors indicating alleles in the reference panel for the feature information of
variants in input data, which are converted to the binary vectors to make input feature vectors of
bidirectional RNN using kernel principal component analysis. The aim of this conversion was to
reduce the size of feature vectors and to avoid the restoration of genotype data. For RNN cells,
we considered long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] and gated re-
current unit (GRU) [Cho et al., 2014] in the proposed method. We also propose a hybrid model
obtained by combining two bidirectional RNN models trained for different minor allele frequency
(MAF) ranges. Since it is difficult to restore genotype information at individual-level from model
parameters, the haplotype information with the permission of statistical reuse can be publicly used.
For performance evaluation, we used phased genotype data of 2,504 individuals in the 1000 Genomes
Project [1000 Genomes Project Consortium et al., 2015]. The imputation accuracy of the proposed
model in R2 is comparative with those of existing methods for variant sites of MAF ≥ 0.05. For
variant sites of MAF < 0.05, the imputation accuracy of the proposed model in R2 is slightly worse
than those of existing methods. We also considered a condition for limited availability of haplotype
data to existing methods, and showed that the accuracy of the proposed method was higher than
those of other existing methods, at least for variants with MAF ≥ 0.005.

2 Methods

Let vi and uj be the ith observed variant and jth unobserved variant, respectively. The order of
variants is sorted with their genomic positions, and hence p(vi) ≤ p(vj) and p(ui) ≤ p(uj) are satisfied
for i < j, where p(·) is a function returns the position of input variant. We divided a chromosome
to regions according to the numbers of observed and unobserved variants as shown in Fig. 1. We
limited the maximum numbers of observed and unobserved variants in each region to 100 and 1,000 in
our experiment, respectively, and regions were extended up to the limit in the division process. Each
divided region had flanking regions in the upstream and downstream directions, and only observed
variants were considered in the flanking regions. The proposed method takes haplotype of observed
variants and imputes unobserved variants for each region, and imputation results from the divided
regions are concatenated for the final imputation result. In the following subsections, we describe the
model structure of the proposed method for each region, extraction of input feature vectors for the
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Figure 1: An illustration of division of a chromosome to regions according to the numbers of observed
and unobserved variants for imputation.

Forward

RNN for v1

Backward

RNN for v1

xv1

q1

Forward

RNN for v2

Backward

RNN for v2

xv2

q2

Forward

RNN for v3

Backward

RNN for v3

xv3

q3

Forward

RNN for v4

Backward

RNN for v4

xv4

v1 u1

yu1

u2

yu2

v2 u3

yu3

u4

yu4

u5

yu5

v3 u6

yu6

v4

Figure 2: The overall model structure of the proposed method. The line in the bottom of the figure
indicates a genome sequence where observed variants are in green square and unobserved variants are
in white square. Forward and backward RNNs are built on observed variants. xvi is the input feature
vector of forward and backward RNNs for observed variant vi. qi is the vector from the concatenation
of the output of the forward RNN for observed variant vi and the output of the backward RNN for
observed variant vi+1. yui

is a binary variable indicating the allele for unobserved variant ui.
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Figure 3: The RNN structure on each observed variant for the case of four stacked RNN cells in the
forward RNN. xvi and xvi+1 are respectively input feature vectors for observed variants vi and vi+1.

s
(f)
i,j is the state of the RNN cell of the jth layer for observed variant vi and used as the input of the

state for the RNN cell of the jth layer for observed variant vi+1. The output of the RNN cell of the
top layer, oi,4, is handled as the output of RNN for each observed variant.
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model, and procedures for training the model in details.

2.1 Model structure

We assume that both observed and unobserved variants are biallelic; i.e., their alleles are represented
by one and zero. Let m be the number of observed variants in a divided region. We also let ml and
mr respectively be indices of left most and right most observed variants in the region without left
and right flanking regions. We build bidirectional RNN on observed variants for each divided region
as shown in Fig. 2. Forward RNN is built on observed variants v1, . . . , vmr , and observed variants
vmr+1, . . . , vm in the right flanking region are not included, since variants in the right flanking region
are not required for imputing unobserved variants in the forward direction. Backward RNN is built
on observed variants vml

, . . . , vm, and similarly to the forward RNN, v1, . . . , vml−1 in the left flanking
region are not included. RNN cells for each observed variant of forward and backward RNNs are
stacked in the proposed model as shown in Fig. 3, and LSTM and GRU are considered for RNN cells.

s
(f)
i,l and o

(f)
i,l in Fig. 3 are the state and output vectors of the RNN cell for the lth layer on observed

variant vi in forward RNN, respectively. s
(f)
i,l and o

(f)
i,l are obtained recursively for i ∈ {1, . . . ,mr} in

the following manner:

s
(f)
i,l = S

(f)
l (s

(f)
i−1,l,o

(f)
i,l−1)

o
(f)
i,l = O

(f)
l (s

(f)
i−1,l,o

(f)
i,l−1),

where S
(f)
l and O

(f)
l are functions that return the state and output vectors for the RNN cell of the lth

layer, respectively. Note that the initial state s
(f)
0,l is set to 0, and o

(f)
i,0 is set to input feature vector

for the ith observed variant xvi . Details of input feature vectors for observed variants are described
in the next subsection. For backward RNN, we used the corresponding notations to those used in
forward RNN, and obtained

s
(b)
i,l = S

(b)
l (s

(b)
i+1,l,o

(b)
i,l−1)

o
(b)
i,l = O

(b)
l (s

(b)
i+1,l,o

(b)
i,l−1),

where i ∈ {ml, . . . ,m}. Note that s
(b)
m+1,l = 0 and o

(b)
i,0 = xi.

Let qi be a vector given by concatenation of output vectors of forward and backward RNNs as
shown in Fig. 2:

qi =





o
(f)
i,L

o
(b)
i+1,L



 ,

where L is the number of layers in the model. Let yui
be a binary value representing the allele of

unobserved variant ui. The probability of yui
= 1 is estimated by the following softmax function:

exp
(

Ai,1qĩ + bi,1
)

∑1
j=0 exp

(

Ai,jqĩ + bi,j
) ,

where Ai,j and bi,j are parameters to be trained, and ĩ is the index that satisfies p(vĩ) ≤ p(ui) < p(vĩ+1);

i.e., ĩ is the index for the closest observed variant to ui in the upstream region. For the case of

p(ui) < p(v1), which occurs in the left most divided region, we used o
(b)
1,L as q ĩ. Similarly, we used

o
(f)
m,L as q ĩ for the case of p(ui) ≥ p(vm).
For the loss function for the training of model parameters, we considered the sum of weighted cross

entropies over the unobserved variants as follows:

n
∑

i=1

(2MAFi)
γ

(

−yui

exp
(

Ai,1qĩ + bi,1
)

∑1
j=0 exp

(

Ai,jqĩ + bi,j
) − (1− yui

)
exp

(

Ai,0qĩ + bi,0
)

∑1
j=0 exp

(

Ai,jq ĩ + bi,j
)

)

,
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where n is the number of unobserved variants, MAFi is the minor allele frequency of ui in the training
data, and γ is a hyper-parameter to adjust the weights from MAF. The loss function with γ > 0
gives higher priority to higher MAF variants, while that with γ < 0 gives higher priority to lower
MAF variants. Hereafter, we call the model trained with γ > 0 “higher MAF model” and that with
γ < 0 “lower MAF model”. In order to take advantage of the two types of models for achieving higher
accuracy in both high and low MAF variants, we propose a hybrid model obtained by the combination
of the higher and lower MAF models. For the hybrid model, we consider the combination of logits of
these two models of the i unobserved variant as ri defined as follows:

ri =

















A
(h)
i,1 q

(h)

ĩ
+ b

(h)
i,1

A
(h)
i,0 q

(h)

ĩ
+ b

(h)
i,0

A
(l)
i,1q

(l)

ĩ
+ b

(l)
i,1

A
(l)
i,0q

(l)

ĩ
+ b

(l)
i,0

















,

where superscripts (h) and (l) indicate variables and outputs of higher MAF model and lower MAF
model, respectively, We then estimated the probability of yui

= 1 by the following softmax function
for ri:

exp (Ci,1ri + di,1)
∑1

j=0 exp (Ci,jri + di,j)
,

where Ci,j and di,j are parameters. After the learning of the parameters of the higher and lower MAF
models, we trained Ci,j and di,j in the loss function by the sum of cross entropies as follows:

n
∑

i=1

(

−yui

exp (Ci,1ri + di,1)
∑1

j=0 exp (Ci,jri + di,j)
− (1− yui

)
exp (Ci,0ri + di,0)

∑1
j=0 exp (Ci,jri + di,j)

)

.

Note that the parameters of higher and lower MAF models were fixed for training Ci,j and di,j.

2.2 Input feature vectors for observed variants in a reference panel

Let B be a binary matrix representing a reference panel, where the ith row and jth column element
indicates the allele of the ith haplotype in the jth variant. We first consider the jth column vector
of B as a feature vector for an allele indicated by one at the jth variant. For observed variant v, we
denote the feature vector for the allele indicated by one as b1v. We also let b0v be the feature vector
for an allele indicated by zero, in which the ith element takes one if the allele of the ith haplotype is
indicated by zero, and zero otherwise. For example, let us consider the following allele pattern for a
variant site with alleles ‘A’ and ‘T’ in a reference panel:

[A,A, T,A, . . . , A,A, T, T ] .

If ‘A’ and ‘T’ are respectively indicated by one and zero, the corresponding binary representation is
given by

[1, 1, 0, 1, . . . , 1, 1, 0, 0] ,

and feature vectors b1v and b0v for allele ‘A’ and ‘T’ are given by [1, 1, 0, 1, . . . , 1, 1, 0, 0] and [0, 0, 1, 0, . . . , 0, 0, 1, 1],
respectively. These feature vectors can be interpreted as a binary vector indicating which haplotypes
have the input allele for the variant. However, there are two serious problems in the feature vectors;
they are the explicit representation of a reference panel, and they are too big as an RNN input, since
the number of individuals in a reference panel is usually more than 1,000.

Thus, we adopt kernel principal component analysis (PCA) [Schölkopf et al., 1998] as a dimen-
sionality reduction technique for the feature vector in order to resolve the two issues at the same
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time. Since the correlation of b0v and b1v is minus one, we applied kernel PCA only to feature vectors
for alleles indicated by one: b1v1 , . . . , b

1
vm

, to manage the problem of PCA results caused by highly
correlated variables. In order to obtain the reduced feature vector of b0v, we projected b0v to the space
from kernel PCA obtained for b1v. Given an original binary feature vector b, the ith element of its
dimensionally reduced feature vector is given by

1√
di

m
∑

j=1

u
(i)
j

(

k(b1vj , b)−
1

m

(

kT
j 1+

m
∑

k=1

k(b1vk , b)

)

+
1

m2
1TK1

)

,

where k(·, ·) is a positive definite kernel, K is Gram matrix, ki is the ith column vector of K, di is the

ith largest eigenvalue of the centered Gram matrix K̃, and u
(i)
j is the jth element of the corresponding

eigenvector of di. Details of the derivation for the above equation are in Section S1.

2.3 Training of the proposed model

We used Adam optimizer [Kingma and Ba, 2015] to train parameters of the proposed model. In order
to avoid overfitting of parameters, we considered averaged cross entropy loss and R2 value in the
validation data as early stopping criteria. Note that R2 value was obtained as the squared correlation
of true genotype count and allele dosage. In the practical trials, we found that averaged R2 value in
the validation data was suitable for lower MAF variants, while the cross entropy loss for the validation
data was suitable for the higher MAF variants. Thus, we used the cross entropy loss for the validation
data as the early stopping criterion for training higher MAF model, and R2 value in the validation
data for lower MAF model and hybrid model in the following results. In the training step, we reduced
the learning rate if the early stopping criterion was not updated in the specified number of iterations,
which we called the learning rate updating interval. Training stops if the learning rate gets less than
the minimum learning rate or the iteration count reaches the maximum iteration count. Details of
the training step are summarized as follows:

1. Set iteration count i to 1 and set the best value for the early stopping criterion ĉ to null.

2. Set learning rate lr and learning rate updating interval li to some initial values.

3. If i is larger than the maximum iteration count, finish training.

4. Update model parameters by Adam optimizer with learning rate lr for randomly selected batch
data.

5. If i is divisible by validation interval vi, compute the following procedures:

(a) Calculate the current value for the early stopping criterion c.

(b) If ĉ is null or c is better than ĉ, set ĉ to c, save the current parameters, and set the last
parameter saving step is to i.

(c) If i− is is larger than learning rate updating interval li:

i. Divide learning rate lr by two.

ii. If learning rate lr is less than the minimum learning rate lrmin, finish training.

iii. Divide learning rate updating interval li by two and round it down to an integer.

iv. If learning rate updating interval li is less than the minimum learning rate updating
interval limin, set li to limin.

v. Set the last parameter saving step is to i.

vi. Restore parameters to the previously saved parameters.

6. Increment i and go back to Step 2.
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Table 1: Averaged R2 values in the validation data for input feature vectors with size of 5, 10, and 20.

Size of Input Feature Vector 5 10 20

R2 0.8707 0.8708 0.8705

Table 2: Averaged R2 values in the validation data for several settings.

RNN cell
No. of No. of

R2

Layers Hidden Units

LSTM

2 20 0.8671

2 40 0.8701

4 20 0.8667

4 40 0.8690

GRU

2 20 0.8673

2 40 0.8702

4 20 0.8674

4 40 0.8708

Since the local search in less space is expected for the smaller learning rate in the above procedures, we
reduced the learning rate updating interval along with the learning rate. In our experiments, we set
initial learning rate to 0.0001, the minimum learning rate lrmin to 10−7, initial learning rate updating
interval to 5,000, the minimum learning rate updating interval limin to 100, validation interval vi to
10, and the maximum iteration count to 100,000.

3 Results and Discussion

We used phased genotype data of 2,504 individuals for chromosome 22 from the phase 3 data of the
1000 Genomes Project [1000 Genomes Project Consortium et al., 2015]. We randomly selected 100
individuals for test data and evaluated the imputation performance for the test data by using the
phased genotype data of the remaining 2,404 individuals as the reference panel. In the test data, we
extracted genotype data for designed markers in SNP array and impute genotypes for variants from
the extracted genotype data by using a reference panel. We first examined the imputation accuracy
of the proposed method for the following the number of layers, the number of hidden units, and RNN
cell types:

• RNN cell type: LSTM or GRU

• The number of layers: 2 or 4

• The number of hidden units: 20 or 40

The proposed method was implemented in Python 3 and TensorFlow (https://www.tensorflow.org/)
was used for the implementation of RNN. We extracted genotypes for designed markers in Infinium
Omni2.5-8 BeadChip, which we have called Omni2.5 hereafter, in the test data. The number of markers
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Figure 4: (a) Comparison of R2 values for the proposed method with several settings. (b) Comparison
of R2 values for the proposed method with hybrid model, higher MAF model, and lower MAF model
with the setting of GRU, 4 layers, and 40 hidden units. (c) Comparison of R2 values for the proposed
method, Impute2, and Minimac3. (d) Comparison of R2 values for the proposed method, Impute2,
and Minimac3 in linear MAF scale and with zoom into higher R2 value.
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designed in Omni2.5 in chromosome 22 is 31,325, and 1,078,043 variants in the reference panel that
were not in the designed markers in Omni2.5 were evaluated for the imputation accuracy. It should
be noted that we filtered out variants with MAF < 0.005 for imputation, because the rare variants
are not usually used for later analyses, although high computation cost is required for imputing all
the variant in the proposed method. As a positive definite kernel for feature extraction, we used the
following homogeneous dot-product kernel [Mairal, 2016]:

k(bi, bj) = ||bi|| ||bj|| exp
(〈

bi

||bi||
,

bj

||bj||

〉

− 1

)

,

where ||·|| indicates L2 norm of input vector and 〈·, ·〉 indicates the inner product of two input vectors.
For the loss function of the proposed method, γ was set to 0.75. We compared averaged R2 values
in validation data for cases of using input feature vectors with top 5, 10, and 20 principal component
scores as shown in Table 1. In the comparison, the proposed model with GRU, 4 layers, and 40 hidden
units was used, and the average R2 value for the case of top 10 principal component scores was higher
than those of other cases, although the size of input feature vectors was not sensitive to the imputation
accuracy. Based on the comparison, we used top 10 principal component scores for the input feature
vector in the following experiments. Table 2 shows averaged R2 value in the validation data for each
setting. Fig. 4(a) shows the comparison of R2 values for settings with minimum or maximum averaged
R2 value for LSTM and GRU. The proposed model with GRU, 4 layers, and 40 hidden units gave the
highest averaged R2 value in the validation data among the settings, and the comparison of averaged
R2 values in the validation data was consistent with the results in the test data. In order to see
the effectiveness of the hybrid model in the proposed method, we compared the R2 values of results
of hybrid model, higher MAF model, and lower MAF model. From the comparison of R2 values in
Fig. 4(b), the hybrid model was comparable with higher MAF model in higher MAF range. In lower
MAF range, the hybrid model was comparable with lower MAF model and better than the model for
higher MAF variants. Hence, the hybrid model was effective over the entire MAF range compared
with the higher and lower MAF models.

We selected Impute2 and Minimac3 as the representatives of existing imputation methods, and
compared the imputation performance of the proposed method and these methods. For the proposed
method, we used hybrid model with the setting of GRU, 4 layers, and 40 hidden units. Fig. 4(c) shows
the comparison of R2 values. The imputation accuracy of the proposed method was worse than those
of existing methods for MAF < 0.05 in R2. Fig. 4(d) shows the comparison of R2 values in linear MAF
scale and with zoom into higher R2 value. For the higher MAF, the accuracy of the proposed method
was comparable with those of existing methods. Especially for MAF ¿ 0.3, the proposed method
was slightly better than Impute2. We also compared the running time of the proposed method and
the existing methods in Table 3. All experiments were performed on Intel Xeon Silver 4116 CPU
(2.10GHz). Although the proposed method required approximately two times as much running time
as Impute2 for the imputation using trained parameters, the running time was feasible for practical
use. Since running time of the proposed method is highly dependent on TensorFlow, the reduction of
running time is expected along with the development of TensorFlow.

We considered the case that genotype data of some individuals are not publicly available, but can
be used for training the model of proposed method. In order to evaluate the imputation performance
for the case, we randomly selected 100 EAS individuals of 504 EAS individuals for the EAS test
data, and prepared two types of reference panels: a reference panel comprised of the remaining 2,404
individuals, and a reference panel with no EAS individuals comprised of 2,000 individuals. We used the
former reference panel for training the proposed model, and used the latter panel for the imputation
with the existing methods. In the evaluation, we considered Omni2.5 as the SNP array in the test
data. For the proposed method, we also used hybrid model with the setting of GRU, 4 layers, and
40 hidden units. Fig. 5 shows the comparison of R2 values for the test data in scaled MAF ranges.
At least for MAF ≥ 0.005, the imputation accuracy of the proposed model was better than those of

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted October 30, 2019. . https://doi.org/10.1101/821504doi: bioRxiv preprint 

https://doi.org/10.1101/821504
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNN Based Method for Genotype Imputation 11

Table 3: Running time of the proposed and existing methods

Method Running Time for Imputation Running Time for Training

Proposed 28,570 [s] 13,471,091 [s]

Impute2 13,998 [s] NA

Minimac3 7,374 [s] NA
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Figure 5: Comparison of R2 values for the proposed method, Impute2, and Minimac3 for EAS indi-
viduals.

existing methods in R2.

4 Conclusion

We proposed a genotype imputation method using bidirectional RNN for phased genotype data. Unlike
existing imputation methods, the proposed method parameterizes the haplotype information in the
reference panel as model parameters in the training step. Since it is difficult to restore genotype data
at the individual-level from the trained model parameters, these parameters can be used publicly even
when the accessibility of genotype data for training is not permitted publicly. In addition to the simple
bidirectional RNN model, we considered the hybrid model comprised of two types of models: one for
higher MAF variants and the other for lower MAF variants.

In the performance evaluation using the phased genotype data in the 1000 Genomes Project, we
compared settings with the type of RNN cell type, the number of layers, and the number of hidden
units in the proposed model, and concluded the model with GRU, 4 layers, and 40 hidden units gave the
higher imputation accuracy in terms of R2 than other settings. We confirmed the effectiveness of the
hybrid model from the comparison with models for higher and lower variants. Based on the comparison
with existing methods, the imputation performance of the proposed method was comparable or better
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in specific MAF range and slightly worse in the MAF ≤ 0.05. In the scenario of limited availability
of haplotype data for a part of individuals to existing methods, the accuracy of the proposed method
was higher than those of the existing methods at least for variants with MAF ≥ 0.005.
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S1 Calculation of Dimensionally Reduced Feature Vectors

Let b1v be a binary feature vector of the allele indicated by one for variant v. Its ith element takes
one if the allele of the ith haplotype in a reference panel is indicated by one and zero otherwise. We
also let b0v be a binary feature vector of the allele indicated by zero in which the ith element takes one
if the allele of the ith haplotype is indicated by zero and zero otherwise. We apply kernel principal
component analysis (PCA) [Schölkopf et al., 1998] to these feature vectors to obtain dimensionally
reduced feature vectors. Since the correlation of b0v and b1v is minus one, we apply kernel PCA only
to feature vectors for alleles indicated by one: b1v1 , . . . , b

1
vm , to manage the problem to PCA results

caused by highly correlated variables. In order to obtain the dimensionally reduced feature vector
of b0v, we project b0v to the space from kernel PCA. We first describe the calculation of kernel PCA
briefly, and then derive the projected values of b0v to the space from kernel PCA.

S1.1 Calculation of kernel PCA

Let k(·, ·) and φ(·) be a positive definite kernel and the map corresponding to k to reproducing kernel
Hilbert space (RKHS) H, respectively. From the property of RKHS, so called the kernel trick, the

inner product
〈

φ(b1vi), φ(b
1
vj
)
〉

is given by k(b1vi , b
1
vj
). The direction of the first principal component

of kernel PCA for b1v1 , . . . , b
1
vm

is calculated as follows:

f (1) = argmax
f∈H

m
∑

i=1

(〈

f, φ̃(b1vi)
〉)2

s.t. ||f || = 1,

where φ̃(b1vi) = φ(b1vi) − 1
m

∑m
j=1 φ(b

1
vj
) and ||·|| indicates the norm in RKHS H. It is sufficient to

consider the linear combination of φ̃(b1v1), . . . , φ̃(b
1
vm) for f since directions orthogonal to all the φ̃(b1vi)

do not contribute to the variance. Thus, the above formula can be rewritten as

α(1) = argmax
α

m
∑

i=1





〈

m
∑

j=1

αj φ̃(b
1
vj
), φ̃(b1vi)

〉





2

s.t.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

αj φ̃(b
1
vj
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1

= argmax
α

αT K̃2α s.t. αT K̃α = 1,

where K̃ is the centered Gram matrix in which the ith row and jth column element is given by
〈

φ̃(b1vi), φ̃(b
1
vj
)
〉

. Let di and u(i) be the ith largest eigenvalue of K̃ and its corresponding eigenvector,

respectively. α(1) is given by 1√
d1
u(1), and hence f (1) = 1√

d1

∑m
i=1 u

(1)
i φ̃

(

b1vi

)

, where u
(1)
i is the ith

element of u(1). The coefficients for the direction in the ith principal component f (i) is given by
1√
di

∑m
j=1 u

(i)
j φ̃

(

b1vj

)

from a similar derivation to f (1).

S1.2 Projection to kernel principal components

Let b be an original binary feature vector. The ith element of the dimensionally reduced feature vector
for b is obtained by its projection to the ith kernel principal component, which is also called the ith
kernel principal component score. The projected value of b to the ith kernel principal component is
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given as follows:

〈

f (i), φ(b)− φ̄
〉

=

〈

1√
di

m
∑

j=1

u
(i)
j

(

φ(b1vj )− φ̄
)

, φ(b)− φ̄

〉

=
1√
di

m
∑

j=1

u
(i)
j

(

k(b1vj , b)−
1

m

(

kT
j 1+

m
∑

k=1

k(b1vk , b)

)

+
1

m2
1TK1

)

,

where φ̄ = 1
m

∑m
i=1 φ(b

1
vi
), K is Gram matrix in which the ith row and jth column element is

〈

φ(b1vi), φ(b
1
vj
)
〉

, and ki is the ith column vector of K.

References

[Schölkopf et al., 1998] Schölkopf, B, Smola, A., and Müller, K.R. (1998) Nonlinear Component Anal-
ysis as a Kernel Eigenvalue Problem, Neural Computations, 5(10), 1299-1319.

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted October 30, 2019. . https://doi.org/10.1101/821504doi: bioRxiv preprint 

https://doi.org/10.1101/821504
http://creativecommons.org/licenses/by-nc-nd/4.0/

