
 Regalado et al.  Combining sequencing methods in plant metagenomics  
 

Combining whole genome shotgun sequencing 
and rDNA amplicon analyses to improve 
detection of microbe-microbe interaction 
networks in plant leaves 
 
Julian Regalado​1​*, Derek S. Lundberg​1​*, Oliver Deusch ​1​, Sonja Kersten​2​, Talia Karasov​1​, Karin 
Poersch​1​, Gautam Shirsekar​1​, and Detlef Weigel​† 
 
1​Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen,   
Germany 
2​Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599  
Stuttgart, Germany 
*These authors contributed equally. 
† ​Corresponding author ​weigel@tue.mpg.de​ (D.W.) 
 

Abstract 
Microorganisms from all domains of life establish associations with plants. Although some harm                         

the plant, others antagonize pathogens or prime the plant immune system, acquire nutrients,                         

tune plant hormone levels, or perform additional services. Most culture-independent plant                     

microbiome research has focused on amplicon sequencing of 16S rDNA and/or the internal                         

transcribed spacer (ITS) of rDNA loci, but the decreasing cost of high-throughput sequencing                         

has made shotgun metagenome sequencing increasingly accessible. Here, we describe shotgun                     

sequencing of 275 wild ​Arabidopsis thaliana ​leaf microbiomes from southwest Germany, with                       

additional bacterial 16S rDNA and eukaryotic ITS1 amplicon data from 176 of these samples.                           

The shotgun data were dominated by bacterial sequences, with eukaryotes contributing only a                         

minority of reads. For shotgun and amplicon data, microbial membership showed weak                       

associations with both site of origin and plant genotype, both of which were highly confounded                             

in this dataset. There was large variation among microbiomes, with one extreme comprising                         

samples of low complexity and a high load of microorganisms typical of infected plants, and the                               

other extreme being samples of high complexity and a low microbial load. We use the                             
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metagenome data, which captures the ratio of bacterial to plant DNA in leaves of wild plants,                               

to scale the 16S rDNA amplicon data such that they reflect absolute bacterial abundance. We                             

show that this cost-effective hybrid strategy overcomes compositionality problems in amplicon                     

data and leads to fundamentally different conclusions about microbiome community assembly.  

Introduction 
Microorganisms affect many important plant traits. Opportunistic microbes can slow down                     

growth or kill a plant, while beneficial ones can prime the plant immune system ​[1] ​, directly                               

antagonize pathogens ​[2] ​, or indirectly inhibit pathogens by contributing to a suppressive                       

environment ​[3] ​. Microbes may adjust plant hormone levels ​[4] and participate in nutrient                         

acquisition ​[5,6] ​, among other processes ​[7] ​. Research in this area has revealed that most of the                               

organisms present on and in healthy plant leaves are typically bacteria ​[8] ​. With the exception                             

of pathogenic strains, fungi, archaea, and protists such as oomycetes generally have lower                         

abundance on leaves than bacteria, and have also received less attention because they are less                             

easily cultured and are genetically more complex. Due to the difficulty of adequately capturing                           

microbial complexity and diversity, we still lack a good understanding of the composition and                           

dynamics of leaf microbial communities, their abundances on the plant, and how they relate to                             

other aspects of the host biology such as genotype, location, or environmental conditions.  

Amplicon sequencing, in which a specific locus common to a target group of organisms                           

(usually 16S rDNA for bacteria and ITS for fungi) is amplified and sequenced, has been the tool                                 

of choice for revealing the taxonomic composition of a microbiome. Albeit usually very                         

informative, amplicon sequencing relies on oligonucleotide primers that disfavor or exclude                     

some organisms, with the consequence that some taxa are systematically ignored. Not only are                           

there then no quantitative estimates of the excluded taxa, but there is also no information on                               

the absolute abundances of included taxa. Furthermore, one gene cannot reliably predict the                         

other genes and genetic and metabolic functions in a microbe beyond some conserved features                           

[9,10] ​. Whole metagenome shotgun sequencing of DNA extracts has become an attractive tool                         

for dissecting complex microbial communities, and databases and algorithms that support such                       

efforts are being developed ​[11,12] ​. Shotgun sequencing supplies information on the total DNA                         
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content of microorganisms as opposed to a specific locus, which in principle enables us to ask                               

many new types of questions ​[8,13,14] ​. 

We used metagenome sequencing to characterize the leaf-associated (phyllosphere)                 

microbiome of 275 wild ​Arabidopsis thaliana individuals from around Tübingen in southwest                       

Germany, at four different timepoints between 2014 and 2016. Of these, we subjected 176 to                             

16S rDNA and ITS1 sequencing. We achieved low (<100 Mb) to high (>1 Gb) depths of                               

microbe-associated metagenomic sequences per sample, which we mapped to reference                   

databases. Unsurprisingly, the wild ​A. thaliana microbiota was highly variable between                     

individuals, but there were some clear patterns in the dominant microbes; in particular                         

Pseudomonas dominated in some sites and ​Sphingomonas in others. We estimated absolute                       

microbial load as the ratio of microbial reads to plant chromosomal reads in each sample, and                               

observed that the microbial load varied across samples from less than 1% to up to 77% of plant                                   

reads. After producing a load-corrected table, we often observed that intertaxa abundance                       

correlations changed in sign compared to compositional amplicon data and metagenome data, in                         

which microbial reads had been normalized by total sum scaling. Finally, we document the                           

relative abundance of eukaryotic and archaeal microbes, revealing a small but noteworthy                       

presence of fungi and oomycetes.  

Results 

Sequencing and analysis approach 

To obtain an unbiased picture of microbial diversity and microbial load in wild ​A. thaliana plants,                               

we took a metagenomic shotgun sequencing approach to analyze entire wild phyllospheres.                       

Because plant genomic DNA was expected to dominate such samples, we initially attempted to                           

develop a protocol to enrich the microbial component. To this end, we used genomic DNA                             

from sterilely-grown ​A. thaliana plants in excess as bait to remove plant DNA from prepared                             

shotgun libraries. We were unable to find conditions that allowed for consistent, substantial                         

enrichment of microbial sequences (see Supplementary Information for section on Subtractive                     

Hybridization).  
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We therefore proceeded to shotgun sequence the aerial portions of 275 non-flowering                       

A. thaliana individuals from well-characterized locations in southwest Germany ​[15] ​. This                     

compilation spanned two different growing seasons (2014/2015 and 2015/2016) with samplings                     

in winter and early spring. Our strategy captured distinct ecological conditions as well as                           

non-overlapping populations across time due to the winter-annual lifestyle of ​A. thaliana in the                           

region (see Methods). Samples were washed three times vigorously with sterile water to                         

remove loosely-adhering dust and dirt particles prior to freezing samples on the same day as                             

the harvest at -80°C. At a later date, total genomic DNA was extracted and converted into                               

barcoded Illumina short-read sequencing libraries. Plants from the five collections were                     

processed in three batches. 

To determine host DNA content, quality-filtered sequencing reads were mapped to the                       

A. thaliana Col-0 TAIR10 reference genome ​[16] with ​bwa-mem using standard parameters                       

[17] ​. Sequences that did not map to the reference genome were then translated in silico in all                                 

six reading frames and aligned against NCBI’s non redundant protein database using DIAMOND                         

[18] ​ with standard parameters, and alignments were processed with MEGAN ​[19,20] ​.  

We reasoned that the number of reads from the plant nuclear genome was highly                           

correlated with diploid cell equivalents and thus fresh weight ​[21,22] ​. We therefore scaled the                           

non-plant read counts to the number of reads that could be mapped to any of the five ​A.                                   

thaliana chromosomes. This use of plant chromosomal DNA is analogous to studies that use                           

internal ‘spike-in’ controls calibrated to sample weight or volume ​[23–25] ​; our ‘spike-in’ is                         

inherent to our samples (Supplementary Figure 1).  

About half of non-plant reads in each sample could be assigned to microbial taxa. That                             

the number of non-classifiable reads was positively correlated with the number of microbial                         

reads suggested that these unclassified reads were mostly from portions of microbial genomes                         

not present in the NCBI nr database, rather than being plant sequences not found in the ​A.                                 

thaliana reference genome (Supplementary Figure 2). To gauge how likely the unclassified reads                         

were to contain sequences missing from the ​A. thaliana reference genome, we mapped these to                             

additional ​A. thaliana genomes assembled from long-read data ​[26] including five genomes                       

4 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823492doi: bioRxiv preprint 

https://paperpile.com/c/xrppp0/HpCt
https://paperpile.com/c/xrppp0/hYmO
https://paperpile.com/c/xrppp0/WBuc
https://paperpile.com/c/xrppp0/NjW6
https://paperpile.com/c/xrppp0/alJE+3zCW
https://paperpile.com/c/xrppp0/UbcL+RuyC
https://paperpile.com/c/xrppp0/jVV6+Jm2G+Gkr4
https://paperpile.com/c/xrppp0/iTkW
https://doi.org/10.1101/823492
http://creativecommons.org/licenses/by/4.0/


 Regalado et al.  Combining sequencing methods in plant metagenomics  
 

available in house. The number of unclassified reads that mapped to additional plant genomes                           

was unrelated to the quantity of unclassified reads in the sample; even in samples with up to                                 

21% unclassified reads, the fraction of reads that mapped to the additional reference genomes                           

was less than 1% of the total classifiable plant reads (Supplementary Figure 2). In other words,                               

across all samples, only a small but consistent percentage of unclassified reads was likely to                             

come from the plant. The rest most likely reflects additional microbial sequences. These                         

sequences may belong to noncoding regions or genes from known taxa that have not been                             

assembled and incorporated into the database. Currently, we cannot easily know how many of                           

the nonclassified, but putative microbial reads reflect highly variable sequences of accessory                       

genomes from known taxa, nor how many reflect the presence of microbial taxa that have not                               

yet had their genomes sequenced. Overall, our results were reminiscent of efforts to classify                           

metagenomic reads from soil and human gut, where more than 50% of reads could not be                               

annotated against known databases ​[27–29] ​.   

To further investigate species-level identification of microorganisms and search for                   

microbial functions, we attempted metagenome assembly of all samples. We assembled short                       

reads with MEGAHIT ​[30] (meta-sensitive preset parameter), filtered out contigs shorter than                       

200 bp, and assessed standard assembly metrics such as N50, N90, mean contig length, and                             

total assembly size (Supplementary Figure 3). Additionally, we mapped reads back to their                         

corresponding assemblies to determine what fraction of each library was effectively being                       

incorporated into contigs. The N50 of contigs that were at least 200 bp long ranged from 500                                 

to 800 bp, with the maximum length of individual contigs in the different assemblies ranging                             

from 6 to 12 kb and the sum of their lengths ranging from 4 to 160 Mb. The mapping rate of                                         

short reads to their respective assemblies was only 25%. We made a further attempt at                             

assembling reads into contigs using metaSPAdes ​[31] ​. We tried assembling individual samples                       

separately as well as pooling them by sampling location to increase coverage. This yielded only                             

modest improvements (Supplementary Figure 4). This difficulty to assemble long contigs was an                         

apparent consequence of high sample diversity (Supplementary Figure 5). It paralleled the                       

limited success in assembling metagenomes of deeply sequenced soil, where despite of having                         
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over 300 Gb of data, 80% of sequences could not be assembled because of low coverage of                                 

individual taxa ​[27] ​.  

To evaluate the reproducibility of our approach and to infer potential biases, we                         

prepared independent libraries for 42 samples. We used the same DNA input for 18 samples,                             

but we also split the plant material after it had been ground in liquid nitrogen and performed                                 

independent DNA extractions for 24 samples (Supplementary Figure 6). The comparison of the                         

microbial components of the resulting sequencing libraries revealed that samples from the same                         

plant grouped together in hierarchical clustering and ordination analyses, both for libraries                       

prepared from the same DNA and libraries prepared from different DNA extractions. The                         

inter-sample distances were similar for both types of replicates.  

Overview of microbial taxa in the metagenomes 

Overall, we found large variability in the fraction of assignable microbial reads, ranging from 3%                             

to 45% of total read counts in each sample (Supplementary Figure 7). The vast majority of                               

microbial sequences was identified as bacterial (Supplementary Figure 8, Supplementary Figure                     

2), representing on average 47 families and an average Shannon Diversity of 25 families                           

(Supplementary Figure 9). Taxonomic composition varied across plants (Figure 1), seasons, and                       

locations (Supplementary Figure 10). Sphingomonadaceae and Pseudomonadaceae consistently               

ranked as the most abundant bacterial families (Fig 1 b). Despite both being very common, they                               

behaved very differently across samples: Pseudomonadaceae varied greatly in their relative                     

abundance, with a few samples having substantially higher counts relative to the rest, while the                             

fraction of Sphingomonadaceae reads was more even across all samples (Fig. 1b, Fig. 3e,                           

Supplementary Figure 11). 

We had chosen an arbitrary depth of sequencing for our effort, and we therefore                           

wanted to learn how much information would be lost by reducing the number of sequencing                             

reads per sample. We made use of the replicated individuals to this end. We downsampled                             

reads from replicated libraries and compared their taxonomic profiles. We estimated that                       

approximately 300,000 non-plant reads constitute a lower bound for robust description of                       

taxonomic profiles (Supplementary Figure 18). This agrees well with similar estimates for                       
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human gut microbiome samples ​[11] ​, and translates into 7.5 million total reads, or just under                             

1.12 Gb total sequencing reads per sample for 90% of the dataset. 

 
Figure 1. Wild ​A. thaliana ​leaf microbiomes from shotgun sequencing 
(A) ​Relative abundance of bacterial reads as a fraction of total reads in each sample. ​(B) ​ Relative 
abundance of the 10 most prevalent bacterial families, computed with plant chromosome-scaled read 
counts. Samples are grouped by processing batch in the same order as in panel (A).  
 

As a counterpoint to downsampling reads, we were curious how much could be gained                           

by having much deeper sequence coverage from a single plant. Therefore, we processed a single                             

plant that was visibly infected with white rust ( ​Albugo spp.) and downy mildew                         

( ​Hyaloperonospora arabidopsidis ​), and that we in addition left unwashed to further potentially                       

increase the fraction of microbial reads. We sequenced this plant to high depth (~20 Gb), which                               

was 5 to 20 fold more coverage than the other samples. Fewer than 40% of reads from this                                   

sample mapped to the ​A. thaliana reference genome. Similar to our other samples, about half of                               

the remaining reads could be assigned to microbial taxa, with over 90% coming from bacteria                             

(Supplementary Figure 12). In addition to many ​Albugo spp. and ​H. arabidopsidis reads, we                           

found many of the bacterial taxa already detected in the other samples, and in similar                             

proportions.  

Influence of site, season and host genetics 

A common way to compare composition of microbiomes is based on the Bray-Curtis                         

dissimilarity measure. However, a true distance metric is better suited than a dissimilarity                         
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measure for other downstream analyses such as principal component analysis ​[32] ​. For                       

distance/dissimilarity measures weighted by taxa abundance, highly abundant taxa can strongly                     

skew results while low abundance taxa contribute relatively little information.  

 

Figure 2. Impact of dominant taxa on microbial community structure  
(A) ​Principal component analysis of the fourth root transformed count matrix colored by sampling                           
location. ​(B) ​Bacterial Euclidean distance distribution across all samples in the dataset (ALL), and from                             
each sampling location (JUG - Kirchentellinsfurt, EY - Eyach, PFN - Pfrondorf). ​(C) ​t-SNE map of genetic                                 
distances (see Methods) with samples colored by location. Distinct genotypes can be identified as                           
clusters of samples; note clear correlation between genetic similarity and sampling site.  
 

To evaluate how the microbiomes of our samples relate to each other, we used, instead                             

of Bray-Curtis dissimilarity, pairwise Euclidean distances and PCA. We first transformed the                       

data by taking the fourth root of the family-level abundance table, including all bacterial, fungal,                             

and oomycete taxa. This transformation corrects for positive skewness in count distribution                       

common in ecological datasets ​[33] ​, and also decreases the influence of high abundance                         

microbes. No single metadata variable could clearly explain the distributions along the main                         

axes in PCA, although collection site seemed to do best (Figure 2a, 2c, Supplementary Figure                             

13). Clustering of samples was most clearly driven by the most abundant taxa in each sample, a                                 

feature that correlated with collection site. Separation by Pseudomonadaceae or                   
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Sphingomonadaceae was apparent when comparing PC1 to PC2, whereas separation by less                       

abundant taxa could be seen when comparing PC2 to PC3 (Supplementary Figure 14). 

Finally, we used the abundant plant reads for host genotyping, using FreeBayes ​[34] to                           

call close to 1 million SNPs from reads with high quality mapping to the TAIR10 reference                               

genome. There were several clear clusters of plant genotypes (Fig. 2c) correlated with sampling                           

site, in agreement with stands of ​A. thaliana in southwest Germany normally hosting only a                             

limited number of genotypes ​[15] ​. It is well known that host genotype can influence the                             

composition of the leaf microbiome ​[35,36] ​, but as genotype is strongly linked to site in wild                               

populations, both variables are confounded and would require additional data in order to                         

separate the effects of each.  

In an orthogonal analysis, we first classified reads broadly as bacteria, fungi, plants, or                           

unclassified, and compared overall sequence similarity between samples in each class using                       

MASH ​[37] ​, which measures similarities in k-mer abundance. MASH does not consider the                         

taxonomic classification of sequences, but because samples containing different taxa include                     

different sequences and hence different k-mers, this classification-independent analysis captured                   

many of the same patterns in the data. PCoA on MASH distances between bacterial, fungal,                             

plant, or unclassified reads also led to some degree of clustering of samples by collection site                               

(Supplementary Figure 15).  

Intermicrobial correlation networks 

Shotgun sequencing provides a minimally-biased estimation of the true abundance of microbes                       

in a microbiome sample. We examined microbial abundances across all samples and under                         

different data transformations to understand colonization patterns and potential intermicrobial                   

relationships. We first made a map of pairwise linear correlations between all bacterial families                           

that passed filtering thresholds (1,000 assigned reads per family in at least 10 samples) using                             

plant-scaled data (equal plant chromosomal reads), relative abundance data, and fourth root of                         

plant-scaled data. Only cooccurrences with a Pearson correlation coefficient greater than ±0.2                      |

and with p-value lower than 0.05 after Student’s t-test were used ​(Supplementary Figure 16) ​.|                              

On average, any taxon was positively correlated with 13 other taxa, but this was heavily                             

9 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823492doi: bioRxiv preprint 

https://paperpile.com/c/xrppp0/agg9
https://paperpile.com/c/xrppp0/HpCt
https://paperpile.com/c/xrppp0/T2ue+BlPf
https://paperpile.com/c/xrppp0/HZMZ
https://doi.org/10.1101/823492
http://creativecommons.org/licenses/by/4.0/


 Regalado et al.  Combining sequencing methods in plant metagenomics  
 

skewed toward microbes present in many samples, as correlations between taxa only seen in a                             

handful of plants were usually not significant. In addition, bacterial load varied widely across                           

samples and it was positively associated with the abundance of sequences associated with each                           

taxon (Supplementary Figure 17). This resulted in only positive correlations between taxa                       

(figure 3a). That is, a high bacterial load meant a higher abundance of nearly all taxa, although                                 

some taxa such as ​Pseudomonas contributed more to microbial load than others. When                         

applying fourth root transformation to the plant-scaled microbial counts, the same trend as in                           

untransformed data was observed for all taxa, the only difference being increased correlation                         

values and an increased number of correlated taxa pairs. 

 

Figure 3. Opposite intertaxa correlations inferred from absolute and relative abundance 
data 
(A, B) ​Correlation networks of 20 most abundant taxa at family level. Nodes represent individual taxa                               
and edges correspond to statistically significant (p < 0.05, R​2 > 0.2) Pearson correlation between taxa                               
across all samples. Colors indicate direction of correlation (red - positive, blue - negative), transparency                             
reflects correlation strength. Taxa are colored relative to mean rank in the dataset (scale on top). Labels                                 
on top of nodes indicate bacterial families as shown in Fig. 2. Pse - Pseudomonadaceae, Sph -                                 
Sphingomonadaceae, Flavo - Flavobacteriaceae, Hymn - Hymenobactereaceae, Methy -                 
Methlobacteriaceae, Coma - Comamonadaceae, Cyto- Cytophagaceae, Oxa - Oxalobacteraceae, Micro -                     
Micrococcaceae, Spb - Sphingobacteriaceae. (A) ​Network based on scaled load data. ​(B) Network                         
based on relative abundance data. ​(C) Correlation between plant scaled Sphingomonadaceae and                       
Pseudomonadaceae bacterial load. ​(D) Correlation between relative Sphingomonadaceae and                 
Pseudomonadaceae relative abundance.  
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If bacterial data in all samples are transformed to relative abundance prior to analysis - a                               

necessity for data without internal standards such as most amplicon data - taxa abundance                           

estimations become constrained because the sum of all taxa is constant, greatly confounding the                           

directionality of their correlation. When such a transformation was applied to our dataset,                         

many of the positive correlations between taxa either disappeared or became negative,                       

including the one between Pseudomonadaceae and Sphingomonadaceae (Figure 3). If we did not                         

have data on bacterial load, it would be tempting to jump on this as evidence for widespread                                 

antagonism between these families in the wild. Indeed, antagonism between ​Pseudomonas and                       

Sphingomonas is known to occur in laboratory conditions ​[38] ​. However, if widespread                       

antagonism exists between members of these families, our data did not reveal it. Spurious                           

conclusions due to compositional data are a common and well-documented problem that                       

several analysis methods, such as the centered-log-ratio transformation, attempt to overcome                     

[39–43] ​.  

Concordance between metagenome and amplicon data 

In order to contrast information from metagenome and amplicon sequencing, we focused on                         

the largest batch, batch 3, with 176 samples. We PCR amplified and sequenced the V4 region of                                 

bacterial 16S rDNA and the fungal ITS1 region for these samples. Because the V4 16S rDNA                               

sequence of ​A. thaliana​-associated cyanobacteria is indistinguishable from that of chloroplasts,                     

reads with cyanobacteria assignments were ignored and cyanobacteria reads were also                     

removed from the metagenome dataset for a fairer comparison. The agreement between                       

assignment of bacterial families based on 16S rDNA amplicons and metagenomes was very high                           

(Fig. 4A), with an overall Pearson coefficient of correlation R ​2 of 0.78 on fourth root                             

transformed data (Figure 4B). Among the top taxa, compared to metagenomics estimates, 16S                         

rDNA estimates were slightly lower for Pseudomonadaceae, and slightly higher for                     

Sphingomonadaceae, Sphingobacteriaceae, and Oxalobacteraceae (Fig. 4A,B). In a               

complementary comparison, we extracted only the 16S rDNA sequences from the                     

metagenome reads and classified them using ​phyloFlash ​[44] ​. When plotted against 16S rDNA                         

amplicons that had been subsampled to match the metagenome 16S rDNA read counts, the                           

11 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823492doi: bioRxiv preprint 

https://paperpile.com/c/xrppp0/8E5O
https://paperpile.com/c/xrppp0/6f7q+idgo+UtR3+dQQd+tmRW
https://paperpile.com/c/xrppp0/jA2e
https://doi.org/10.1101/823492
http://creativecommons.org/licenses/by/4.0/


 Regalado et al.  Combining sequencing methods in plant metagenomics  
 

overall correlation and overestimation/underestimation trends were the same as for the                     

comparison of amplicons with all metagenome reads (Fig. 4E, compare to Fig. 4B).  

The concordance between fungal families deduced either from ITS1 amplicons or                     

metagenomes was weaker than for bacterial families (Fig. 4F,G), with a Pearson coefficient of                           

correlation R​2 of 0.14. Several factors could explain this difference. First, fungi are less abundant                             

overall, meaning their quantification is based on fewer sequences and therefore noisier. In                         

agreement, the Pearson correlation coefficient R​2 of metagenome versus amplicon data for the                         

most abundant fungal family, Ceratobasidiaceae, was much higher than the average, with R ​2 =                           

0.88. Among other families, the Helotiaceae were especially poorly correlated, and were far                         

more abundant in the ITS1 data (Fig. 4F,G). While this could be due to a bias of the ITS1                                     

primers for this family at the exclusion of others, it could also be that metagenome sequences                               

from this family are more often erroneously assigned to other, sequence related families,                         

deflating counts of Helotiaceae. Another source of noise between the datasets could come                         

from the fact that fungal genomes vary more widely than bacteria in size, and the fact that                                 

rDNA copies are not well correlated with fungal genome size ​[45] ​. This can introduce biases                             

because organisms with larger genomes would appear to have higher abundances in                       

metagenomes due to more mapped reads. Because these larger genomes may not have more                           

rDNA copies, ITS1 amplicon counts are less affected by differences in genome size.                         

Additionally, because a much smaller fraction of fungal genomes – as compared to bacterial                           

genomes – codes for proteins, and because gene number in fungi varies much less than genome                               

size, many fungal sequences in the metagenome may not be represented in the protein                           

databases used for classification and quantification. 
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Figure 4. Enhancing utility of metagenome data with parallel amplicon data 
(A) ​The relative abundances (RA) of bacterial families as determined by the shotgun metagenome                           
pipeline (top) mirrored against bacterial families as determined by the 16S V4 rDNA amplicon pipeline                             
(bottom) for batch 3 plants (columns). Samples in all panels are ordered by the abundance of                               
Pseudomonadaceae (blue) in the metagenome. Taxa unique to the metagenome are shown in black,                           
those unique to amplicons are shown in dark gray. ​(B) ​The two data sets from panel A, fourth root                                     
transformed and shown as a scatterplot. The dotted line represents perfect correlation. ​(C) ​The                           
amplicon data from panel A, bottom, scaled by common taxa shared between the metagenome and                             
amplicon data. ​(D) The data in panel C, fourth root transformed and shown as a scatterplot. ​(E)                                 
Scatterplot of fourth root-transformed bacterial family abundances, comparing 16S rDNA amplicon data                       
to 16S rDNA sequences detectable in the metagenome (using phyloFlash). Same color scheme for                           
families as in panels A-D. ​(F) The relative abundances (RA) of fungal families as determined by the                                 
shotgun metagenome pipeline (top) mirrored against fungal families as determined by the ITS1 rDNA                           
amplicon pipeline (bottom) for batch 3 plants (columns). Samples are ordered as in panel A. Taxa unique                                 
to the metagenome are shown in black, those unique to amplicons are shown in dark gray. ​(G)                                 
Scatterplot of fourth root transformed data from panel F.  
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The close concordance between metagenome and 16S rDNA relative abundances                   

enables the scaling of 16S rDNA amplicon data based on bacterial load obtained from                           

metagenome data. Using amplicons, abundant plant host DNA is much more easily blocked                         

using either PNA oligomers ​[46] or blocking primers ​[47] ​, meaning that for samples with high                             

plant DNA content, amplicon sequencing can sample many more microbes at a lower cost than                             

metagenome sequencing. Entries in amplicon databases currently represent the taxonomic                   

breadth of microbes more evenly than whole genome or protein databases, and therefore may                           

provide more consistent classification ​[48] ​. In addition, we have shown above that relatively                         

shallow metagenome sequencing is sufficient to find enough classifiable reads with which to                         

estimate the bacterial load of a ​sample (Supplementary Figure 18). Low-cost shotgun library                         

preparation methods ​[49] in particular m​ake a hybrid approach, in which amplicon sequencing is                           

combined with low-depth shotgun sequencing, attractive. We used the bacterial load as                       

calculated from plant-scaled metagenome data to adjust the abundances of 16S rDNA data to                           

reflect estimated loads (Fig. 3C). As would be expected from the close correlation of 16S                             

rDNA and metagenome data, the adjusted 16S rDNA data accurately captured the slightly                         

positive correlation between Pseudomonadaceae and Sphingomonadaceae across the dataset                 

(Fig. 3D). 

Discussion 
Describing the phyllosphere-associated microbial community in the context of natural or field                       

cultivated plant populations is of fundamental importance for understanding and designing                     

microbial interventions in conservation and agriculture. For years, as in studies of other                         

microbial communities, this has been approached via isolation and culture of specific leaf                         

microbes ​[50–52] ​. With the advent of high-throughput amplicon and short read sequencing, it                         

has become easier to address the larger community of taxa that interacts with its host. Here,                               

we investigated the advantages as well as the limits of whole metagenome shotgun sequencing                           

to study the leaf microbiota.  
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A first finding was that de novo assembly produced few longer sequences, and thus did                             

not provide advantages over directly mapping short reads to reference databases for taxonomic                         

assignment. Using taxonomic assignments inferred from short reads directly, we found that the                         

relative abundance of bacterial taxa among all bacteria was highly consistent with 16S rDNA                           

amplicon measurements, with the highest correlation seen for the most abundant taxa. The                         

relative abundance of fungi in the metagenome correlated less well with the ITS1 amplicons,                           

which could be explained at least in part by their lower abundance as well as more complex                                 

genomes of fungi compared to bacteria. Nevertheless, the metagenome data clearly showed                       

that fungi are ubiquitous in ​A. thaliana leaves, even though they are usually only a minor part of                                   

the overall ​A. thaliana ​phyllosphere microbiome.  

We used shotgun sequencing to estimate microbial load across samples, which varied                       

substantially. The absolute estimates allowed us to reveal the extent to which normalizing                         

bacteria or fungi to a common value via rarefaction or by total sum scaling, as is common                                 

practice, may mislead researchers to equate an increase or decrease in relative abundances                         

with a change in absolute abundances.  

We used load corrected bacterial taxonomic profiles to explore similarities and                     

differences among the microbiomes. We did not detect a strong individual influence of either                           

environment or host genetics on the structure of leaf communities, although some combination                         

of both contributed. We found that the most abundant taxa in a sample predicted the                             

community structure of the other microbes in the sample. In our natural host populations,                           

there was not enough genetic diversity at each site to allow us to disentangle the effects of site                                   

and host genotype on microbiome composition. Whether variation between genetically                   

identical hosts reflects only stochastic effects, or variation in microenvironment, needs to be                         

determined. 

An important goal of microbial ecology is to uncover specific interactions between                       

community members, which can point to key taxa that have a major effect on community                             

composition ​[53,54] ​. Correlation networks present a valuable tool for such investigations; we                       

have demonstrated that correlations based on relative abundances can lead to very different                         
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networks than correlations based on absolute abundances. In our specific case, relative                       

abundance data had suggested that Pseudomonadaceae and Sphingomonadaceae, two of the                     

most common bacterial families typically found in a leaf microbiome, were negatively                       

correlated, when in fact they were positively correlated, as demonstrated with the absolute                         

abundance data. We observed such patterns for several other taxa pairs as well. It is striking                               

that statistically significant correlations were always positive in our dataset when using load                         

corrected data. This could simply reflect generally stable relationships between community                     

members, such that they tended to succeed or fail together as they colonized the plant. 

In conclusion, we have demonstrated the advantages of using metagenome shotgun                     

sequencing either alone or in combination with 16S rDNA and ITS1 amplicon sequencing for                           

measuring microbial communities in ​A. thaliana leaves. Modest read depth, as few as 300,000                           

reads per sample, is sufficient to enable quantitative taxonomic assignment that is comparable                         

to amplicon sequencing. In addition, it turns out once more that the small genome of ​A. thaliana                                 

is a substantial advantage, as it may currently be cost prohibitive to extend our direct                             

metagenomic approach to other species. This is yet another reason to use ​A. thaliana (or other                               

species with relatively small genomes) for microbiome studies in ecological settings. On the                         

other hand, the hybrid approach of using lower coverage metagenome data to estimate                         

microbial load and to use this information to scale amplicon data may cost effectively support                             

endophytic analysis of plants with larger genomes as well. 

Methods 

Sampling, Processing of Plants, Metagenomic Library Preparation 

Plants were sampled from previously-described sites Eyach (EY), Pfrondorf (PFN) and                     

Jugendhaus Einsiedel (JUG) around Tübingen, Germany ​[15,55] ​, in four distinct sampling batches                       

which also had different processing details, representing our evolving pipeline.  

Batch 0 – Single plant: ​A plant visibly infected with both ​Hyaloperonospora                       

arabidopsidis and ​Albugo sp. was collected in Fall 2014 from Gniebel (48° 34' 34.10" North                               

Lat., 9° 10' 55.42" East Long.) using sterile tweezers and scissors, placed in a sterile 15 mL tube,                                   
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and brought back to the lab on ice where it was frozen at -80°C until further processing. The                                   

frozen plant was ground in the presence of liquid nitrogen using a mortar and pestle that was                                 

lined with 4 layers of autoclaved aluminum foil. Approximately 250 g of the resulting powder                             

was used for DNA extraction, using a custom protocol we previously described ​[55] ​. Briefly,                           

the sample was subjected to bead-beating in the presence of 1.5% sodium dodecyl sulfate (SDS)                             

and 1 mm garnet rocks, followed by SDS cleanup with ⅓ volume 5 M potassium acetate, and                                 

then SPRI beads. The library was prepared using the TruSeq Nano kit (Illumina), with DNA                             

shearing performed with a S2 focused ultrasonicator (Covaris) as suggested in the                       

manufacturer's protocol. Rather than Illumina adapters, we used custom adapters described in                       

[56] ​. The sample was sequenced on one lane of a HiSeq 2000 instrument (Illumina), using a 100                                 

bp single-end kit.  

Batch 1 – Nine plant test of shearing methods. ​Nine plants were sampled from                           

Eyach in late December 2014. Rosettes were collected in 50 mL tubes with flame-sterilized                           

scissors and tweezers and brought back to the lab for processing. In the lab, 3 rosettes were                                 

left unwashed, 3 were washed in sterile water, and 3 were washed in Silwet L-77 solution.                               

Rosettes were then snap frozen and ground to a fine sand-like consistency with sterile                           

aluminum foil-lined mortar and pestles, as described above. For large rosettes, the ground plant                           

material was transferred among up to 3 DNA-extraction tubes which were processed in                         

parallel to better represent the sample, and pooled again prior to library preparation. The DNA                             

was extracted as described above for the Batch 0 plants. Two sets of libraries were made for                                 

the nine plants using homebuilt protocols: one sheared via Covaris and one sheared via                           

Shearase enzyme.  

Covaris based: For one set of libraries, 100 ng of DNA in 130 μL of elution buffer was                                   

sheared on a S2 focused ultrasonicator (Covaris) for 65 seconds using intensity = 4, Duty cycle                               

= 10%, and 200 cycles per burst, to yield a fragment size of approximately 350 bp. The sheared                                   

DNA was cleaned with SPRI beads in a ​0.8:1 bead to sample ratio, and eluted in 15 ​μ​L.                                   

End-repair, A-tailing, and adapter ligation were performed similar to ​[57] following “Alternative                       

Protocol 2” with double DNA size selection after the End-repair step, and using homemade                           

SPRI beads instead of AMPure XP beads. Other minor modifications were that the total volume                             
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of the end repair reaction was scaled down to ¼ volume, with DNA eluted after SPRI-cleanup                               

in 17 ​μ​L. The total volume of the A-tailing reaction was scaled down to ½ volume. Again,                                 

custom adapters described in ​[56] ​ were substituted for Illumina adapters.  

Shearase based: ​For the second set of libraries, 100 ng of DNA in 20 μL of EB buffer                                   

was mixed with 9.5 μL of 3X reaction buffer and 0.5 μL of dsDNA Shearase Plus, and incubated                                   

for 30 min at 37°C to yield a size range between 200-1000 bp, before the reaction was stopped                                   

by addition of 3 μL EDTA. The shared DNA was cleaned with SPRI beads and eluted in 17 μL                                     

EB. Size selection, A-tailing, and adapter ligation were performed exactly as with the Covaris                           

based protocol. Final cleaned libraries prepared using both Covaris and Shearase protocols                       

were quantified with PicoGreen (invitrogen) using 1 μL of DNA in 100 μL reactions, and                             

molecules were pooled in equimolar amounts. The pooled library was size selected for                         

fragments between 350 and 700 bp on a Blue Pippin instrument (Sage Science, Beverly, MA,                             

USA). All samples were sequenced on the Illumina HiSeq 3000 with the 2x150 paired end                             

protocol.  

Batch 2 – Set of 90 plants. ​Plants were collected from EY and PFN in Fall 2014 (Nov.                                   

24 and 25) and Spring 2015 (March 18 and 19). All samples were brought back to the lab in 50                                       

mL tubes, washed 3x in sterile water to remove adhering dust and soil, and then flash frozen                                 

and stored at -80 °C until they were ground in sterile foil-covered mortar and pestle. DNA was                                 

extracted as described for other plants above. Metagenomic libraries were prepared as                       

described for Covaris-sheared libraries from Batch 1; the entire set of 90 libraries was                           

quantified, combined to one pool, size selected, and sequenced with 2x150 paired ends over                           

lanes of a HiSeq3000 instrument. 

Batch 3 – Set of 176 plants. ​Plants were harvested from EY (11 Dec. 2015 and 23                                 

Mar. 2016), JUG (15 Dec. 2016 and 31 Mar. 2016) and PFN (31 Mar. 2016). Whole rosettes                                 

were removed with sterile scissors and tweezers, and washed 3x with sterile water. Two leaves                             

were removed and independently processed to culture bacteria as previously published in ​[55] ​,                         

and the remaining rosette was flash-frozen on dry ice and processed for metagenomic                         

sequencing and 16S rDNA sequencing of the V4 region. The metagenomic libraries were                         
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prepared using a modification of the Nextera protocol for smaller volumes similar to ​[58] ​, as                             

previously described ​[55] ​. As for Batch 1 and Batch 2 plants, the full set of 176 libraries was                                   

quantified and combined to one pool, size selected for 350 - 700 bp final library size, and                                 

sequenced with 2x150 paired ends over multiple lanes of a HiSeq3000 instrument. 

16S rDNA V4 library construction and sequencing for Batch 3 plants 

Amplicon sequencing of the V4 region of the 16S rDNA gene performed using a two step PCR                                 

protocol using PNAs to block chloroplast and mitochondrial sequences, slightly modified from                       

[46] ​. The first PCR step amplified the rDNA using 515F ​[59] and 806R ​[60] primers as well as                                   

short overhangs (Supplementary Table 1) and a second step primed these overhangs to added                           

Illumina adapters. The primers differed from Lundberg et al. 2013 in two key ways. First,                             

although the frameshifting nucleotides were kept, the molecular tagging nucleotides were                     

removed from the primers to make the protocol simpler and robust to more variable DNA                             

quantities. Second, the primers were modified such that the Illumina TruSeq priming sequences                         

were used on both the forward and reverse primers, as opposed to the use of a Nextera                                 

sequence on the forward primer. Unique barcoding of samples was accomplished by use of 96                             

independent indexing primers in the second PCR, combined with two combinations of                       

frameshift primers in the first PCR as explained in ​[46] ​. Half of the samples from the first PCR                                   

were amplified with 515F frameshifts 1, 3, and 5 paired with 806R frameshifts 2, 4, and 6. The                                   

other half of the samples from the first PCR paired 515F frameshits 2, 4, and 6 with 806R                                   

reverse frameshifts 1, 3, and 5. This strategy allowed up to 192 samples to be uniquely indexed. 

In the first PCR, each reaction was prepared in 60 μL, which was split into three 20 μL                                   

reactions run in parallel for 29 cycles. Three parallel reactions helps mute the influence of                             

stochastic bias that might affect any single reaction. The 60 μL mix contained 6 μL of TAQ                                 

buffer (NEB), 3 μL of 5 μM forward primers mix, 3 μL of 5 μM reverse primers mix, 0.45 μL of                                         

100 μM pPNA, 0.45 μL of 100 μM mPNA, 1.2 μL of dNTPs (10 mM), 0.48 μL of Taq polymerase                                       

(NEB), 40.4 μL of PCR-grade water, and 5 μL of template DNA. The first PCR was run for                                   

94°C for 2 minutes followed by 29 cycles of 94°C for 30 s, 78°C for 5 s, 50°C for 30 s, and                                           

72°C for 1 min, and finally 72° for 2 min. The three 20 μL reactions were pooled and 5 μL was                                         
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run on a gel to confirm amplification. The remaining 55 μL were cleaned with 55 μL of SPRI                                   

beads ​[61] at a bead:sample ratio of 1:1 to remove PCR primers the DNA was resuspended in                                 

30 μL of water. Between 1 and 5 μL of this product from the first PCR, based on gel band                                       

intensity, was used in the second PCR of 6 cycles to add illumina adapters.  

The second PCR was prepared in 25 μL, and contained 5 μL of Q5 PCR buffer (NEB),                                 

0.0625 μL of 100 μM universal forward primer, 1.25 μL of 5 μM barcoded reverse primer, 0.5                                 

μL of 10 mM dNTPs, 0.25 μL of Q5 polymerase (NEB), 12.875 μL of PCR-grade water, and 5                                   

μL of water + DNA from the first PCR. The second PCR was run for 94°C for 1 minute                                     

followed by 6 cycles of 94°C for 20 s, 60°C for 30 s, and 72°C for 30 s, and finally 72°C for 2                                             

minutes. Successful addition of adapters was confirmed by 5 μL of the final product from each                               

reaction on an agarose gel, allowing visualization of a size shift. Final amplicons averaged 430 bp                               

in length. The remaining 20 μL of product was cleaned with SPRI beads and resuspended in 40                                 

μL of EB. Libraries were quantified by PicoGreen in 100 μL reactions, pooled in equimolar                             

amounts, and sequenced using a MiSeq V2 2x500 reagent kit (Illumina) which was sufficient to                             

overlap and assemble the forward and reverse reads. The frameshifts built into the primers                           

used in the first PCR made the addition of PhiX to increase sequence diversity unnecessary                             

[46] ​.  

ITS1 library construction and sequencing for Batch 3 plants 

ITS1 rDNA amplicons were prepared similarly to 16S rDNA amplicons, using gene-specific                       

primers for the first PCR and adding indexes and adapters in the second PCR. We used a                                 

protocol modified from ​[47] ​, which uses blocking primers to prevent amplification of plant                         

sequences. Because blocking primers, unlike PNAs, result in a quantifiable PCR product, we                         

used the cycling conditions suggested in ​[47] to prevent the product of the blocking product                             

from reaching detectable levels. As with the 16S rDNA protocol, we used six frameshifting                           

forward ITS1F primers and six frameshifting reverse ITS2R primers. The first 60 μL PCR                           

reaction (also run as three parallel 20 μL reactions) included 6 μL of 10X ThermoPol Taq buffer                                 

(NEB), 0.96 μL of 5 μM forward primer (0.08 μM final), 0.96 μL of 5 μM reverse primer (0.08                                     

μM final), 0.15 μL of 100 μM forward blocking primer (0.25 μM final), 0.15 μL of 100 μM                                   
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reverse blocking primer (0.25 μM final), 1.2 μL of 10 mM dNTPs, 0.48 μL of Taq DNA                                 

polymerase (NEB), 45.1 μL of PCR-grade water, and 5 μL of DNA. The first PCR was run for                                   

94°C for 2 min. followed by 10 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 30 s, and                                             

finally 72° for 3 min. The three 20 μL reactions were pooled, cleaned with a bead:sample ratio                                 

of 1:1 to remove PCR primers, and resuspended in 30 μL of water.  

The second PCR was prepared in 25 μL, and contained 5 μL of Q5 PCR buffer (NEB),                                 

0.0625 μL of 100 μM universal forward primer, 1.25 μL of 5 μM barcoded reverse primer, 0.5                                 

μL of 10 mM dNTPs, 0.25 μL of Q5 polymerase (NEB), 4.875 μL of PCR-grade water, and 13                                   

μL of DNA from the first PCR. The second PCR was run for 94° for 1 minute followed by 25                                       

cycles of 94° for 20 s, 60° for 30 s, and 72° for 30 s, and finally 72° for 2 minutes and cool                                             

down to room temperature. Successful PCR and addition of adapters was confirmed by 5 μL of                               

the final product from each reaction on an agarose gel, with the major band produced around                               

400 bp in length. The remaining 20 μL of product was cleaned with SPRI beads and resuspended                                 

in 40 μL of elution buffer. Libraries were quantified with PicoGreen (ThermoFisher Scientific) in                           

100 μL reactions, pooled in equimolar amounts, and sequenced using a MiSeq V3 2x600 reagent                             

kit (Illumina).  

Amplicon quality processing, clustering, and classification 

Raw sequences from both 16S and ITS1 rDNA amplicons were first demultiplexed according to                           

their 9 bp barcodes added in the second PCR, not allowing any mismatches. All sequences were                               

further demultiplexed by the frameshift combinations using strict regular expressions without                     

mismatches in any part of the primer sequence 

( ​https://github.com/derekLS1/Metagenome2019​). Forward frameshifts 1, 3, and 5 were only                   

allowed pairings with reverse frameshifts 2, 4, or 6. Forward frameshifts 2, 4, and 6 were only                                 

allowed pairings with reverse frameshifts 1, 3, and 5.  

Forward and reverse reads from the 16S rDNA sequences were merged with FLASH                         

[62] using a minimum overlap set to 30 bp and (-m 30). Most ITS1 amplicons were small                                 

enough to overlap with these longer reads, but some reads were longer and overlap was not                               

21 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823492doi: bioRxiv preprint 

https://github.com/derekLS1/Metagenome2019
https://paperpile.com/c/xrppp0/Lmc1
https://doi.org/10.1101/823492
http://creativecommons.org/licenses/by/4.0/


 Regalado et al.  Combining sequencing methods in plant metagenomics  
 

possible, so only the forward read was used for downstream analyses (read 1), although the                             

frameshift in read2 was used for demultiplexing.  

All primer sequences were removed. Because of the frameshifts in the primer                       

sequences, ITS1 read 1 sequences had variable lengths after removing primers, and therefore all                           

were trimmed to a common length of 271 bases before clustering. Additional quality filtering,                           

removal of chimeric sequences, OTU preparation and OTU tables, and taxonomic assignment                       

were done with USEARCH10 ​[63] ( ​https://github.com/DerekLS1/Metagenome​). OTUs were               

prepared at 100% as ‘zero-radius OTUS’ (zOTUS, a form of Amplicon Sequence Variant) ​[64] ​.                           

The 16S rDNA taxonomy was based on the ​RDP training set v16 (13k seqs.), and ITS1                               

taxonomy was based on UNITE USEARCH/UTAX release v7.2 (UNITE Community.                   

https://doi.org/10.15156/BIO/587476​).  

Metagenome read QC and host data removal 

Sequencing libraries were subject to adapter trimming and quality control with Skewer ​[65] ​.                         

Reads were trimmed to a minimum length of 30 bp and minimum average Phred score of 20.                                 

After sequencing, samples were composed of a mixture of mostly host ​Arabidopsis thaliana                         

reads and microbial origin reads. In order to remove most of the plant reads, libraries were                               

aligned against the ​A. thaliana reference genome ​[16] using the ​bwa mem algorithm with                           

standard parameters ​[66] ​. After mapping, only read pairs for which neither of the mates                           

mapped against the plant reference genome were mapped against the metagenomic reference.                       

Data aligned to the host was later used for host plant genotyping. 

Metagenomic profiling  

Using DIAMOND ​[18] with default mapping parameters, the putative microbial reads were                       

mapped against the entire NCBI nr protein database (March 2018), which includes protein                         

sequences from all three domains of life and viruses. In order to keep analysis time and file sizes                                   

manageable, a maximum of 25 matches per sequencing read was permitted. DAA (Diamond                         

analysis archive) files were then parsed for taxonomic binning with MEGAN ​[20] ​. Reads were                           

binned to different taxa using the weighted LCA algorithm ​[19] using only hits that were within                               

10% of the highest matching score. In summary, of the maximum 25 matches any read could                               
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have, only matches whose score was within 10% of the highest score were used for taxonomic                               

placement. Final count tables for different taxonomic levels were produced based on the                         

binning strategy just described.  

The taxa counts were then normalized to adjust for sampling depth by first dividing the                             

abundances in each sample by the number of reads mapping to the plant chromosome in that                               

sample. Then, all values in all samples were multiplied by the mean number of chromosomal                             

plant counts across all samples. This can also be represented by the following formula:  

norm X i = P
︿

· P i
Xraw i  

For sample , where stands for the normalized vector of counts in the sample, is    i     normX                       P
︿

   

the mean number of chromosomal plant counts across all samples, is the raw microbial                    raw X i          

count vector in a sample, and  is the number of plant chromosomal reads in that sample. P i  

Taxonomic correlations and network computation 

After computing intermicrobial linear correlations and filtering out weakly associated taxa pairs,                       

network representation was computed with the ​networkx Python package using the ​kamada                       

kawai​ layout function with standard parameters based on the correlation values.  

Plant genotyping 

Individual host genotypes were determined using plant associated reads from each                     

metagenome. Reads aligned to the TAIR10 reference genome ​[16] were filtered to a minimum                           

mapping quality of 20, resulting in an average genome coverage from 15x to 40x. Single                             

nucleotide polymorphisms were called using FreeBayes ​[34] ​, and resulting VCF files were                       

filtered using custom scripts. SNPs with a minimum alternative count above 3, minimum read                           

depth of 6, and no more than 5% missing data across all samples were kept for downstream                                 

analysis.  

For determining genotype groups, a genetic distance matrix was computed with ngsDist                       

[67] from the alternative allele count matrix of all SNPs that passed filtering thresholds. This                             

distance matrix was used as input in ​tsne​ ​[68] ​ to visualize sample clustering. 
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Adjusting 16S rDNA amplicon data by bacterial load 

To adjust the 16S rDNA amplicon dataset to correct for bacterial load, the abundance of each                               

OTU from a sample in the total sum-scaled OTU table can be multiplied by a load scaling factor                                   

calculated from the metagenome data for that sample. The simplest load scaling factor is the                             

ratio of all bacteria to plant chromosomal reads in the metagenome sample. If read depth in the                                 

metagenome allows, a more precise scaling factor can be calculated based on bacterial families                           

detectable by both methods. Both methods yield similar results in our dataset, because the                           

majority of sequencing reads in both methods fall into bacterial families shared by both                           

methods. We scaled based on bacterial families shared by both methods.  

To correct the 16S rDNA dataset by shared taxa in the scaled metagenome dataset, the                             

16S rDNA dataset was first normalized to 100% in each sample by total sum scaling. The                               

common bacterial families that could be identified by at least a single read in both the                               

metagenomic and 16S rDNA datasets were then identified for each sample, and the sum of read                               

counts in falling in these common taxa was calculated for each sample in both the metagenome                               

and 16S rDNA datasets. The sum of common taxa for each sample in the plant-chromosome                             

scaled metagenome dataset was divided the sum of reads in these common taxa in the                             

corresponding 16S rDNA table to yield a load scaling ratio. The load scaling factor was                             

multiplied by all the 16S rDNA counts in that sample to produce load-corrected 16S rDNA                             

abundances, closely matching the values obtained from the metagenome. For each sample i, 

load corrected OTUsΣ Aci
Σ Mci × Ai =   

Where is the sum of metagenome reads in common taxa from the plant   McΣ i                        

chromosome-scaled metagenome table, is the sum of 16S rDNA reads falling in common       AcΣ i                    

taxa, and  is the full set of 16S rDNA read counts for that sample.Ai   

Comparison of 16S rDNA reads from the metagenome to 16S rDNA V4 amplicons 

Metagenome reads from each sample in the Batch 3 dataset were mapped to the RDP 16S                               

rDNA training set using phyloFlash ​[44] ​. Each metagenome sample yielded an average of 280                           
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mapped 16S rDNA reads, with many yielding fewer than 100 reads. Because for most samples                             

there were too few reads to compare directly to their 16S rDNA amplicon counterparts,                           

samples were pooled to make one aggregate metagenome dataset containing 52,589 16S rDNA                         

phyloFlash sequences. This was then compared to a corresponding 16S rDNA amplicon dataset                         

comprising 52,589 sequences subsampled from the full 16S rDNA dataset. Each sample                       

contributed a matching number of phyloFlash 16S rDNA or amplicon 16S rDNA reads to                           

either the phylFlash 16S rDNA pool or the amplicon 16S rDNA pool respectively. The family                             

level relative abundances for these pools were then plotted against each other. 
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