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Abstract 

Guided by the observation that similar words in language occur in similar contexts, 

linguistic computational models trained on statistics of word co-occurrence in texts 

were shown to be effective in modelling both human performance in psycholinguistic 

tasks and semantically imbued representations in the brain. But, it remains unclear 

whether the semantic representation extracted from the distributional behavior of 

words in the natural language resemble the knowledge that is primarily acquired 

outside language, through sensory-perceptual experience. Using Representational 

Similarity Analysis (RSA), the present study endeavours to identify a direct link 

between the neural representation of object concepts and computational modelling. 

The broad aim of this study is to examine the extent to which neural representation of 

object concepts can be modelled by two types of linguistic computational models: 

distributional word co-occurrence and lexical hierarchical. The more specific aim of 

the study is to investigate which of the two types of semantic structure, distributional 

or hierarchical, best explains the time-varying neural representation of object concepts 

in the brain. Subsequently, this study first applied time-resolved Multivariate Pattern 

Analysis (MVPA) to neural responses evoked by naturalistic images portraying a 

broad and large (n = 1854) set of object concepts and decoded the four general 

concept categories: natural, animal, food and drink, and clothing. Then, using RSA, 

the study compared the geometric structure in the time-varying neural representation 

of object concept categories with the structure in semantic representations produced 

by the two broad types of linguistic models. Contrary to previous research results, this 

study shows evidence that the structure of time-varying neural representations of 

object concepts corresponds primarily with the hierarchical structure produce by 

WordNet models. But it also notes that despite their different conceptualizations of 
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word meaning, all linguistic models showed similar correlation paths with the neural 

data. This thesis concludes that the temporal synchrony between the models coupled 

with the potential influence from non-hierarchical relations in WordNet suggest the 

rapid transition from perception to representation, compatible with language and 

conceptual thoughts, is underpinned by concept category distinctive features. 
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A Study of Representational Similarity: 

The Emergence of Object Concepts in Rapid Serial Visual Presentation Streams 

Introduction 

Object concepts are the memory representation of a class or a category of 

objects (Martin, 2007). Representation of object concepts is crucial for supporting a 

range of cognitive processes such as identifying an object, manipulating 

representation in thought and judging the similarity between objects (Basalou et al., 

2003; Barsalou, 2008; Chen & Rogers, 2014; Patterson, Nestor & Rogers, 2007). 

Representation of objects concepts can be derived from two types of data: experiential 

data such as sensory-perceptual information derived from directly interacting with 

object themselves, and the distributional data embedded in word usage patterns in 

natural language (Andrews, Vigliocco & Vinson, 2009; Olney, Dale, D’Mello, 2012; 

Pereira, Detre, Botvinick, 2001; Schutze, 1992). While the two types of data are 

qualitatively different, they both serve the purpose of assigning meanings to the 

referent objects in the physical world (Andrews, Vigliocco & Vinson, 2009; Glenberg 

& Robertson, 2000; Patterson, Nestor & Rogers, 2007). For example, as a child first 

learns that the word ‘ocean’ refers to the glimmering, blue area, the child might also 

in parallel, learn about other objects embedded within the scene such as ‘sand’, 

‘beach’, ‘seashells’, ‘ice cream’ and so on. In this learning scenario, sensory-

perceptual information and words associated with the external referent objects are 

encountered simultaneously, all of which can be integrated into a more abstract 

concept - ‘holiday.’ 

A missing link in the conceptual research has been the question of whether the 

semantic representation of concrete entities, such as object concepts, produced in 

language resembled conceptual representation acquired from sensory-perceptual 
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information outside language. Philosophy, cognitive science, neuroscience and 

linguistics have long been gripped by this question (Landauer & Dumais, 1997; Roger 

& Wolmetz, 2016; Shepard, 1987). For a long time, semantic or conceptual 

representation instantiated from these inter- and intra-linguistic data have been 

investigated mostly independently away from each other, if not mutually exclusive 

(Andrews, Vigliocco & Vinson, 2009). Nevertheless, a paucity of research that 

investigated the joint role of these two types of data showed that both sources of 

information are non-trivial for perceiving and representing knowledge about objects 

(Louwerse, 2008; Tanenhaus et al., 1995; Vigliocco, Vinson, Lewis & Garrett, 2004). 

Thus, the central question investigated by the present study is: to what extent do the 

semantic representation of object concepts derived from word meanings, and their 

distributional patterns in language correspond with the knowledge that was initially 

learned through precepts outside language. 

Conceptual research is deeply grounded in philosophy and can be traced back 

to early modern empiricism (Vigliocco, Vinson, Lewis & Garrett, 2004). It was 

initially proposed by Locke (1975, p. 49) that ‘all knowledge is ultimately based upon 

sensible qualities or sensory data derived through various sensory modalities.’ 

According to Locke (1975), the formation of concepts relies on experiential 

information derived from sensory-motor properties. Contemporary conceptual 

theories that honoured this empiricism tradition mostly focused on contributions from 

varying types of perceptual information associated with the objects, such as their 

features, attributes, knowledge domains and sensory-motor properties (Clarke, Taylor 

& Tyler, 2010; Clark et al., 2012; Farah et al., 1989; Funnell, Sheridan, 1992; Mahon 

& Caramazza, 2009; McRae, Cree, Seidenberg & McNorgan, 2005; Sim & Kiefer, 

2005; Warrington & McCarthy, 1987). Each account was supported by compelling 
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evidence in psychology and neuroscience. For example, fMRI studies consistently 

revealed a greater activity in the occipital cortex for animals than for tools, a 

dichotomy that reflects a distinction between living and nonliving things (Capitani, 

Laiacona, Mahon & Caramazza, 2003; Caramazza & Mahon, 2008; Caramazza & 

Shelton, 1998; Damasio, 1989; Ishibashi, Pobric, Saito & Lambon Ralph, 2016). 

Similarly, the natural and man-made distinction was also one of the most robust and 

consistently supported evidence observed from Event-Related Potentials (ERP) 

studies on healthy subjects (Paz-Caballero, Cuetos, Dobarro, 2005) and patients with 

Herpes Simplex Encephalitis (Noppeney et al., 2007; Stewart, Parkin, Hunkin, 1992). 

Evidence from Tranel, Logan, Frank & Damasio’s (1997) study on category-related 

dissociations patients’ data also showed that category-like distinctions are influenced 

by a variety of traits of concrete entities, such as practicality, familiarity, age of 

acquisition. In particular, for conceptual categories such as animals and tools/ 

utensils, the profile of impairments differed significantly on the factors such as 

familiarity, manipulability, characteristics motion and touch. These findings, taken 

together, suggested that the perceptual and functional features associated with the 

objects are crucial for the memory representation of objects. 

Recently, an alternative approach that emerged from the domain of Natural 

Language Processing (NLP) has recast the question of the formation of conceptual 

knowledge. It was initially proposed by Wittgenstein (1953, cited in Andrews et al., p. 

45) that ‘the human language mirrors the world; the arrangements of words in the 

language also reflect the structure of their referent objects in the physical world’. 

This intricate connection between the structures of words in the language and the 

knowledge represented outside language was recapitulated in Firth’s (1957) 

Distributional Hypothesis. According to Firth (1957, p. 2, cited in Sahlgren, 2008, p. 
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23), the meaning of a word or a concept could be derived from its ‘habitual 

collocation’ and that ‘words appear in similar linguistic context also share similar 

meanings.’ Guided by this intuition, linguistic models trained on word co-occurrences 

statistics were shown to capture important semantics derived from distributional 

patterns of words in text corpora, without necessarily correspond any specific feature 

or functional properties (Riordan & Jones, 2011). The semantics derived through the 

means of distributional data in natural language was known as ‘distributional 

semantics’ (Sahlgren, 2008, p. 8). 

Distributional semantics produced by computational linguistic algorithms 

trained on massive text datasets yielded robust results for predicting human 

performances on a range measures including the Test of English as a Foreign 

Language (TOEFL) synonym test (Landauer & Dumais, 1997), word association 

(Griffiths & Steyvers, 2007; Mikolov, Chen, Corrado & Dean, 2013), analogy (Baroni 

et al., 2010; Goldberg & Levy, 2014; Pennington, Socher & Manning, 2014), 

semantic similarity (Mikolov, Yih & Zweig, 2013; Murphy, Talukdar & Mitchell, 

2012) and semantic relatedness tasks (Bullinaria & Levy, 2007; Pereira et al., 2016). 

A seminal fMRI study by Mitchell et al. (2008) also showed that different spatial 

patterns of neural activation could be reliably predicted by distributional co-

occurrence models trained. Recently, a MEG study by Sassenhagen & Fiebach (2019) 

also demonstrated distributional co-occurrence models outperformed taxonomic 

linguistic models in modelling the patterns in neural responses induced by English 

and German concrete nouns. 

Despite these compelling evidence, some researchers remained sceptical about 

the pragmatic utility in conceptual research (Durda, Buchnan & Caron, 2009; 

Glenberg & Robertson, 2000; Roger & Wolmetz, 2016). A fundamental criticism 
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against the distributional approach has been that while semantics produced by means 

of distributional data in language may have captured the crucial elements in 

conceptual knowledge, words themselves are nevertheless, abstract symbols that are 

detached from their real-world referents and all their associated sensory richness 

(Andrews, Vigliocco & Vinson, 2019; Glenberg & Robertson, 2000). While 

psycholinguists claimed distributional approaches to the meaning acquisition are 

based entirely on the data in language, and thus, the verity of semantic representation 

produced from word co-occurrence statistics are entirely constrained by the data 

permitted within text corpora (Miller & Charles, 1991; Sahlgren, 2008). Such that if 

the data changes, the distributed semantic representation produced by computational 

models would also change (Sahlgren, 2008, p. 10). As such, the connection between 

semantic representation produced in the discourse of language and knowledge in the 

physical world remained elusive. 

 

Representational Similarity 

Robust evidence from research suggest sensory-perceptual information and 

distributional data derived from language both are non-trivial for representing 

conceptual knowledge (Barsalou, 2008; Clarke et al., 2012; Clarke Taylor & Tyler, 

2010, Pulvermüller et al., 2011; Richardson, Smeaton & Murphy, 1994). To link these 

two types of data requires an integrated quantitative approach. Representational 

Similarity Analysis (RSA) provided the means to relate the three types of data by 

comparing the dissimilarity in the patterns of neural activity evoked by a pair of 

experimental conditions, for example, a pair of concepts, to the semantic 

representation of the same pair of concepts produced by the computational model, 

resulting in a representational dissimilarity matrix (RDM) (Kriegeskorte, Mur & 
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Bandettini, 2008). Recently, studies have applied the logic of RSA to investigate the 

neural representation of visual objects (Grootswagers, Robinson & Carlson, 2019), 

the shared neural representation of magnitude (Teichmann, Grootswagers, Carlson & 

Rich, 2018), visual and phonological representation in reading recovery (Fischer-

Baum, Jang & Kajander, 2017), and neural representation of object organisation in the 

inferior temporal cortex (Carlson, Simmons, Kriegeskorte & Slev, 2013). For research 

areas such as conceptual research where the underlying neural mechanisms that drive 

a specific cognitive process are largely unspecified or unknown, RSA’s abstraction 

approach is particularly useful for characterising the information represented in the 

brain and relating it to the information produced by computational modelling 

(Kriegeskorte, Mur & Bandettini, 2008). 

Next, the study examined the four dominant theoretical accounts that were 

inspired by the empiricist tradition and each approached the representation of object 

concepts from objects’ perceptual and modality-specific properties or characteristics 

and their domain. Then, the study explored how psychologically plausible semantic 

representation could be derived from the semantic similarity of words, based on their 

explicit semantic relations and the distributional patterns of co-occurrences in natural 

language. 

 

Attribute and Feature-Based Approaches  

Attribute-based approaches were motivated by the notion that correlations 

between attributes and properties distributed across varying objects would reveal 

important latent structures in conceptual knowledge (Rosch, 1975; Rosch et al., 1976; 

Collin & Quillian, 1969). This idea was articulated in the works of Quillian (1967) 

and Collins & Quillian (1969), where they argued the perceived attributes and 
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properties associated with objects were crucial for the memory representation of 

objects. In this view, knowledge about objects can be conceptualized as a hierarchy 

where high-level concept categories are described in terms of subcategories or the 

constituent objects, and the constituent object was described in terms of its perceived 

attributes and properties (Quillian, 1967). This notion was recapitulated by Smith et 

al. (1974) in their featural model for semantic decisions. On this account, conceptual 

knowledge was described as a multidimensional space that corresponds to the objects’ 

properties or features and learning conceptual representation, according to Smith et al. 

(1974), also corresponded to learning the intrinsic structure of this multidimensional 

featural space.  

The notion of a distributed featural correlation also underpinned Rosch's 

(1976) 'typicality effect' theory. On this account, representations of objects were 

encoded as the distribution over a broad range of explicit attributes and properties 

(Rosch, 1976). The correlations between the features or properties were postulated to 

reveal important latent relations among objects. The attributed based accounts were 

supported by findings from verbal attribute listing studies that found significant 

correlations for people's similarity ratings on a wide range of objects and the type of 

properties or attributes that were deemed to be common among them (Rosch et al., 

1976). However, attribute-based approaches have also been criticised for its lack of 

theoretical coherence as it was not explicitly stated as to why specific attributes or 

properties were deemed to be more critical to the concept than others, or indeed, 

factors that might influence such weighing (Murphy & Medin, 1985; Roger & 

Woltmez, 2013). As such, it was unclear how representation produced from features 

and attributes alone could serve the ultimate goal of producing semantically imbued 

behaviours to allow humans to successfully interact with the environment. 
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Sensory Functional Hypothesis  

The notion that knowledge about objects can be dichotomised into living and 

nonliving things was motivated by the intriguing phenomena observed on patients 

with focal brain injuries who displayed disproportionate semantic impairments for 

living, and nonliving things. It was initially articulated in Warrington & Shallice's 

(1984) Sensory Functional Hypothesis that knowledge of living things relied more on 

their sensory properties, whereas knowledge of nonliving things, for example, 

manmade objects relied more on their functional properties. Hence, it was postulated 

that neuropathology that affected perceptual versus functional knowledge was 

responsible for the observed disproportionate semantic impairments (Warrington & 

Shallice, 1984). Evidence from early clinical case studies corroborated the central 

prediction in the Sensory Functional Hypothesis, where it was found patients with 

selective semantic impairments for living things, also showed relatively more 

impaired knowledge about objects' visual properties than their nonvisual properties 

(Farah, Hammond, Mehta & Ratcliff, 1989; Warrington & Shallice, 1984; Warrington 

& McCarthy, 1987). However, evidence emerged from later studies directly 

contradicted this prediction. It was found that some patients' selective semantic 

impairment for living things had equally affected their knowledge of perceptual and 

functional properties (Caramazza & Shelton, 1998), and some patients with impaired 

knowledge of nonliving things also showed deficits in identifying body parts that 

arguably, fit into either living and nonliving categories (Gainotti & Silveri, 1996; 

Sacchett & Humphreys, 1992). Moore & Price (1999) argued that these inconsistent 

findings could be due to patchy neuropathies, which were not uncommon in focal 

brain injuries and degenerative neural disorders. As such, it was evident was that the 

postulated sensory/ functional and living/ nonliving boundaries were too simplistic 
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and clear-cut to account for the full range of documented selective semantic 

impairments. 

 

Domain Specificity and Embodied Cognition  

Inspired by neuroscience and computational network theories, the Domain 

Specificity account (Caramazza & Shelton, 1998) and Embodied Cognition (Barsalou 

et al., 2003; Barsalou, 2008) both, to varying degrees, claimed that representation of 

conceptual knowledge is shaped during the course of experience and interactions with 

the environment. Moreover, the conceptual system was seen as a distributed system 

that spreads across various domain- and modality-specific neural substrates. The 

Domain Specificity account (Caramazza & Shelton, 1998; Mahon & Caramazza, 

2009) was underpinned by the idea that evolutional pressures had resulted in 

specialised, anatomically and functionally independent neural modules for 

representing and retrieving perceptually and conceptually distinct object concepts that 

were crucial for humans to efficiently interact with the environment (Caramazza & 

Shelton, 1998). On this account, objects from animals, plant life, and artifacts concept 

categories were deemed to be crucial for solving practical survival problems 

(Caramazza & Shelton, 1998).  

Akin to the Domain Specificity account, the embodied view also deemed that 

perceptual information derived from experience and interacting with objects was 

important for perceiving and representing objects. Different from the Domain 

Specificity’s modular conceptualization of knowledge and the conceptual system, the 

embodied view postulated that both were distributed across various sensory modality 

cortices responsible for processing specific sensory-motor information (Barsalou et 

al., 2003; Barsalou, 2008). Specifically, the embodied view postulated that conceptual 
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knowledge and the conceptual category were integrated during the course of the 

experience, and grounded directly in, or near various perception, action and affect 

sensory systems (Barsalou et al., 2003). It was postulated that modality-specific 

information associated with the object was activated by the conjoint neurons in the 

adjacent memory systems during the course of constructing a mental imagery of an 

object (Barsalou, 2008). As such, embodied view predicted that retrieving a concept 

from long-term memory would entail spontaneous imagery simulation of the 

perception, sensory and action characteristics associated with the given concept. 

Consistent with this prediction, Barsalou et al. (2003) found participants 

spontaneously engaged in mental imagery and produced the same complex 

distribution of features as those who were explicitly instructed to imagine the features 

associated with the concept during the verification task. 

Consistent with the embodied view, evidence from neuroscience demonstrated 

that much of the conceptual knowledge associated with perception and action was 

represented and distributed in regions in the ventral and lateral temporal cortex that 

overlapped with neural substrates responsible for perceiving and acting (Binder et al., 

2016; Barsalou, 2008; Martin, 2007; Martin & Chao, 2001; Humphreys & Price, 

2002; Pulvermüller et al., 2005; Vigliocco et al., 2004). However, evidence from 

other neuroimaging studies also corroborated the Domain Specificity account. For 

example, it was found that patients with domain-specific impairments displayed 

distinct patterns of evoked activation across various cortical regions that corresponded 

to abstract concept domains, e.g., animate/ inanimate (Martin, Wiggs, Ungerleider, 

Haxby, 1996; Martin, Chao, 2001; Martin, 2007; Mahon & Caramazza, 2009). As the 

profiles of activation across various cortical regions are largely overlapping, 

neuroimaging evidence alone was insufficient for adjudicating between these 
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competing theories and disentangle the cognitive mechanisms that support perceiving 

and knowing.  

 

Object concepts representation: from perceptual to conceptual  

The core aim of the present study was to elucidate one question: to what 

extent do semantic representation produced from the discourse of language resemble 

the knowledge acquired from experience and interacting with the objects beyond the 

bounds of texts? The literatures reviewed so far have studies the characterization of 

conceptual knowledge in terms of objects’ featural correlation, perceptual information 

and modality-specific information, which was derived from the largely non-linear 

mappings in the brain. These information were then used to identify and differentiate 

between objects, object categories and knowledge domains. In the field of linguistics 

and computational linguistics, psychologically plausible semantic representation 

could also constructed from the semantic similarity between words, based on two 

general methods of semantic similarity measures. 

 

The lexical hierarchical approach to semantic similarity  

In the field of linguistics, semantic similarity is measured through hierarchal 

taxonomic links between words and their explicit semantic relations in the lexical 

hierarchy (Miller, 1995; Pedersen, Patwardhan & Michelizzi, 2004; Resnik, 1999, 

1995; Riesenhuber & Poggio, 1999). Evidence from psycholinguistics and 

neuroimaging studies found semantic similarity scores for object and action concepts 

produced by lexical hierarchical models such as WordNet closely matched human 

performances in similarity judgments of object labels (Carlson et al., 2013), English 
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nouns (Miller and Charles, 1991; Resnik, 1999), English verbs (Yang & Powers, 

2005), and English and German nouns (Sassenhagen & Fiebach, 2019).         

The systematic lexical database in WordNet (Miller, 1990) encompasses a 

broad range of linguistic entities from the American English language. The WordNet 

database contains over 80,000 concrete nouns that are organized into nine taxonomy 

hierarchies (Miller, 1995). Similarity metrics implemented in WordNet compute 

semantic similarity based on explicit dictionary definitions and the information 

encoded in a taxonomy hierarchy (Pedersen, Patwardhan, & Michelizzi, 2004, p.124). 

Semantic similarity for a given pair of concepts is represented by the path distance 

between nodes that correspond to the concept pair, represented in a hypernym/ 

hyponym hierarchy (i.e., X is a Y) (Figure 1). A hypernym refers to a general 

categorical word and branches into subordinate hyponym words with more specific 

meanings. For example, ‘cutlery’ is a hypernym of ‘spoon.’ Inversely, a hyponym is a 

word of more specific meaning than a general or superordinate word applicable to it. 

For example, ‘foliage’ is the hyponym for ‘leaf’. The hyper/hyponym relationship 

accounts for nearly 80 per cent of all link types in the English language (Yang & 

Powers, 2005). However, WordNet also makes complimentary use of other non-

hierarchical relations in the quantification of semantic similarity between concepts. 
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Figure 1. An example of WordNet-style hierarchy. Hierarchical relations: Hyponym/ 

Hypernym (IS-A/ HAS-A).  Non-hierarchical relations: Meronym/ Holonym 

(Member-of/ Has-Member/ Substance-of / Has-Substance). Adapted from ‘Measuring 

semantic similarity in the taxonomy of WordNet,’ by D. Yang, & D. M. Power, 2005, 

In Proceedings of the Twenty-eighth Australisian conference on computer Science, 

38, p. 315.  

 

WordNet Wu-Palmer (Wu & Palmer, 1994) and WordNet PATH both are 

similarity metrics that compute semantic similarity for a pair of concepts based path 

distance between them in the hierarchy. Both metrics return the similarity score 

between the range of 0 and 1 that indicate the semantic similarity for the given 

concepts, such that a higher score indicates a higher degree of semantic similarity. 

The Wu-Palmer metric identifies the path length to the root node from the Least 

Common Subsumer (LCS) for the given concepts (Yang & Powers, 2005; Wu & 

Palmer, 1994). LCS represents the ancestor node deepest in the taxonomy that is 
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shared by the two specific concepts (Pedersen, Patwardhan, & Michelizzi, 2004). In 

situations where multiple ancestor nodes and multiple paths to the root are available, 

the longest path will be selected, as for the Wu-Palmer metric, the general class 

shared by the pair of concepts is most informative for computing semantic similarity 

(Pedersen, Patwardhan & Michelizzi, 2004). By contrast, the PATH similarity metric 

takes the shortest path between two nodes (Pedersen, Patwardhan, & Michelizzi, 

2004, p.124). As such, similarity scores produced by the Wu-Palmer and the PATH 

metrics do not always align. For example, under the PATH metric, the concept ‘car’ 

has a moderate similarity correlation of 0.125 to the concept ‘boat.’ In contrast, in the 

Wu-Palmer metric, the ‘car’ has a significantly higher similarity correlation of 0.695 

to ‘boat,’ which makes more intuitive sense because while they are different, they 

also belong to the general concept category of ‘machinery.’ 

 

Distributed approaches to semantic similarity  

Semantic similarity, according to the distributional co-occurrences approach, 

is based on the principle that similar words occur in similar contexts (Firth, 1957). 

This notion is articulated in Sahlgren's (2006, p.3) ‘distributional hypothesis' as if 

word 1 and word 2 displayed similar distributional properties, such that they 

consistently occur within the same linguistic context with word 3, this co-occurrence 

pattern could then be interpreted as word 1, and word 2 belonging to the same 

linguistic class and thus, shared similar meaning. As such, distributed semantic 

representation acquired through word co-occurrence patterns can be seen as 

qualitatively different from WordNet’s explicit hypothesis of what semantic 

knowledge is and how it is organised, as it requires no prior assumption about 

knowledge or language in order to acquire word meaning (Carlson et al., 2013; 
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Bullinaria & Levy, 2007; Sahlgren, 2006). Thus, it has been suggested that 

distributional models captures the emergent structure in word meanings from statistics 

of word co-occurrence. 

In Pereira et al.’s (2016) review of existing state-of-the-art distributional co-

occurrence models, Word2Vec (Mikolov, Chen Corrado & Dean, 2013) and Global 

Context Word-Word Occurrence Count (GloVe) (Pennington, Socher & Manning, 

2014) both outperformed other models and produced robust results on a range 

psycholinguistic tasks. While both models extract distributional semantics based on 

the word co-occurrences statistics in large text corpora, the quality of the distributed 

semantic representation is also influenced by factors such as differences in the size of 

training corpus, vector length and the size of the context window (Pennington, Socher 

& Manning, 2014). First, Word2Vec is a local context, prediction-based word-

embedding model, trained on the Google News dataset with approximately 100 

billion tokens. The two log-linear models in Word2Vec: Continuous Bag-of-Words 

(CBOW) and Skip-Gram, generates a network of semantic representation based on 

the information available in the local context window, which is typical of five or ten 

words (Mikolov, Chen Corrado & Dean, 2013). By contrast, the GloVe model is a 

global context, a word-count model that leverages the global statistics of word co-

occurrence in a document and trained on a much larger text corpus that consists a 

combination of Wikipedia, Gigaword and Common Crawl (Pennington, Socher & 

Manning, 2014). The specifics of these training sets may limit the type of semantics 

permitted in each model. Second, while the principle that similar words occur in 

similar contexts is used by both models to capture the semantic similarity between 

words, the nature of the context also varies in each model. For the local context, 

prediction based model Word2vec, this context means words are semantically similar 
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if they occur within the same sentence as only the local information in the sentence is 

utilised (Mikolov, Chen Corrado & Dean, 2013). For example, The CBOW model 

predicts the hidden middle word in a five words context window based on the 

neighbouring words (Mikolov, Chen Corrado & Dean, 2013) (Figure 2). Inversely, 

the Skip-gram model predicts neighbouring words within a ten words context window 

based on the given the word in the middle of the window (Mikolov, Yih & Zweig, 

2013). It was postulated that this ‘many-to-few’ resembles the way humans cognise 

semantic problems (Mikolov et al., 2013; Turney & Pantel, 2010). By contrast, for the 

GloVe model, the context refers to the same document as it leverages the global 

distributional patterns beyond the boundaries of sentence context and hence, some 

argue the distributed semantic representation generated using this approach captures 

the more intricate and nuanced relations between words (Baroni et al., 2014; 

Goldberg & Levy, 2014; Pereira et al., 2016) (Figure 3). In sum, these subtle 

differences training set and size of the context region limit the type of information 

from which co-occurrences statistics are derived as well as the subsequent semantic 

representation acquired by each model. 
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Figure 2. An example of Word2Vec Continuous Bag of Words (CBOW) prediction 
model for word embedding. An input layer (blue dots) receives a context and learns 
weights on the internal layer (orange dots), which in turn allow the prediction of the 
hidden target word (green dots). The Skip-Gram Model does the reverse. Adapted 
from ‘Traces of Meaning Itself: Encoding distributional word vectors in brain 
activity,’ by J. Sassenhagen and C. J. Fiebach, 2005, bioRxiv, 603837. 

 

Figure 3. An example of GloVe’s word-word occurrences matrix. The GloVe model 
extracts word co-occurrence statistics within the same document whereby it leverages 
the global distributional patterns of words. Adapted from ‘Glove: Global vectors for 
word representation,’ by J. Pennington, R. Socher and C. Manning, 2014, In 
Proceedings of the 2014 conference on empirical methods in natural language 
processing (EMNLP), p. 1532. 
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The Present Study  

The central aim of this thesis was to examine the extent to which semantic 

representation produced by linguistic computation models resemble the knowledge 

acquired from sensory-perceptual information outside language. The more specific 

question of the thesis was, which type of semantic structure produced by these 

linguistic models best explained the neural representation of object concepts. In 

keeping with the literature viewed, the study focused on two types of semantic 

structures, hierarchical structure of word meaning produced by WordNet’s explicit 

dictionary definitions, and semantic relations of words and emergent structure of 

word meaning raised from word co-occurrence statistics in text corpora. As the 

distributed semantic representation acquired by Word2Vec and GloVe is driven 

primarily by the distributional behaviour of words in text corpora, the nature and the 

quality of the semantic representation captured by these models, therefore, were 

postulated to be different. Using RSA, the present study quantitatively related the 

structure of object concepts captured by these two general methods to the structure of 

object concept representation in the brain.  

Rapid Serial Visual Presentation (RSVP) (Grootswagers et al., 2019) was 

selected to investigate the neural dynamics of object concept representation in the 

brain. With its origin traced back to the sixties, RSVP itself is not new to psychology 

for studying various cognitive processes (Potter, 1976). Past research that used RSVP 

in studying sentence reading (Potter, Wyble, Hagmann & McCourt, 2014) and picture 

recognition (Intraub, 1980; Keysers, Xiao, Foldiak & Perrett, 2001; Rousselet, Thorpe 

& Fabre-Thorpe, 2004) found even at fast presentation rates (~10 ms), people’s 

performances on the behavioural tasks remained efficient. In the current study, the 

novelty of RSVP was that it was used to study neural responses to each naturalistic 
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thematic image of object concepts in RSVP streams. In RSVP, visual stimuli are 

briefly flashed on a screen typically at around ten images per second (Marti & 

Dahaene, 2017). Within this brief moment of onset, previous studies found that 

people can effortlessly extract high-level concept-specific information such as an 

object’s category (Schenda & Maher, 2009; VanRullen & Thorpe, 2001) and sub-

category (Grootswagers et al., 2019) from images of objects. Hence, the present study 

drew on this core human capacity and adopted RSVP to investigate the neural 

dynamics of object concept representation in the brain.   

 

Two contradicting hypotheses were of the most interest in the present study.  

Hypothesis one: The structure of object concept representation in the brain was 

hypothesized to correspond to the hierarchical structure of word meaning produced by 

the two WordNet-based similarity measures (Wu-Palmer, WordNet PATH). As both 

primarily quantify conceptual similarity as the path distance between concepts in the 

taxonomy hierarchy, they predict the correlations for concept pairs that share a 

general concept category will be higher than correlations of concepts pair that belong 

to distinct concept categories.  

Hypothesis two: The structure of object concept representation in the brain was 

hypothesized to correspond to the emergent structure of word meaning captured by 

the two distributional co-occurrence models (Word2Vec and GloVe). As both 

primarily quantify conceptual similarity as the co-occurrence frequency of words, 

they predict the correlations for concepts pairs that co-occur more frequently in 

similar linguistic context will be higher than correlations for concepts that seldom 

appear together in similar linguistic context. 
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Method 

Ethics approval  

The experiment was assessed and approved by the University of Sydney’s 

Human Research Ethics Committee (HREC 2016/849). 

 

Participants  

32 participants were recruited from the University of Sydney in return for 

course credit (21 female, mean age = 20 years, SD = 2.3 years, age range = 17 - 28 

years). All participants reported normal or corrected-to-normal vision and had no 

history of psychiatric or neurological disorders. Verbal and written consent was 

obtained from each participant before the experiment. Two participants were excluded 

due to uncompleted participation. Hence, the final sample in the present study 

consisted of 30 participants (19 female, mean age = 18.7 years, SD = 2.6 years, age 

range = 17 to 28 years). Before the EEG recordings, all participants completed a basic 

demographic questionnaire that included participants’ language backgrounds (Table 1 

and 2). 

Table 1 
   

Summary of Language Profiles of Participants: Home Language 

 
    

 
Home Language n % 

 English 16 53 

 Chinese 8 27 

 Vietnamese 2 7 

 Korean 2 7 

 Norwegian 1 3 
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Hindi & Gujarat 1 3 

 N = 30 

Note. Home language refers to the language that is mostly spoken by the participants 

for everyday interactions at home.  

 

Table 2 
      

Summary of Language Profiles of Participants: Monolingual English and Bilingual 

English 

      
    

Language n % 

    English Monolingual 16 53 

    Bilingual  14 47 

    N = 30 

Note: English monolingual refers to participants whose English is both their first 
language and the language they speak at home. Bilingual refers to participants whose 
first language is not English but can speak English proficiently and in addition, speak 
another language for everyday interactions at home. 
 

Apparatus  

All stimuli were presented sequentially in random order at approximately 0.5 

degrees of visual angle. Stimuli were presented in the centre of a light grey 

background on a 1920 x 1080 pixel Asus monitor. MATLAB with the Psychtoolbox 

extension was used for stimulus presentation (Brainard, 1997; Kleiner, Brainard, & 

Pelli, 2007; Pelli, 1997). A BrainVision ActiChamp system with active Ag/AgCI 

electrodes (GmbH, Herrsching, Germany) was used for EEG recording.  
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Stimuli 

The present study used the THINGS (Hebart et al., 2019) database. The 

database is comprised of 1,854 of common concrete object concepts that were 

systematically sampled from the American English language. These object concepts 

are represented by 26,107 high-quality, naturalistic images sourced from various 

image databases such as Google, Flickr and ImageNet (Figure 4). The selection 

process for the candidate concepts and images was rigorous. Concepts and their 

categories were validated by the workers from Amazon Mechanical Turk and the 

WordNet word-sense disambiguation (Hebart et al., 2019). These images were also 

fed through the layers in deep convolutional neural network CorNet-S (Kubilius et al., 

2018) to ensure that they retain a sufficient degree of visual variability. 
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Figure 4. Examples of the object concept images sourced from the THINGS database. 
Adapted from ‘THINGS: A database of 1,854 object concepts and more than 26,000 
naturalistic object images’ by M. Hebert et al., 2019, bioRxiv. 545954.  
 

Procedure  

At the start of the trial, each participant was instructed to press a button on a 4-

way control box whenever the target superimposed on the centre of a rectangular grey 

background at approximately 0.5 degrees of visual angle changed to red. The 

intention of the task was to keep the participants vigilant throughout the trial. 

Stimulus presentation was controlled by custom-written MATLAB scripts using 

functions implemented in PsychoPhysics Toolbox (Kleiner et al., 2017; Brainard, 

1997; Pelli, 1997). Images were presented at a rate of 10Hz, with the image visible for 

50 ms, followed by a 50 ms inter-stimulus interval (ISI) (Figure 5).  

 

Figure 5. Stimulus presentations in a 10Hz sequence. Each sequence contains 309 
images, lasting approximately 31 seconds. Images were presented sequentially in a 
randomised orders. Each image was presented for 50 ms, followed by a 50 ms ISI.  
 

The experiment was divided into 13 blocks (Figure 6). Blocks 1 to 12 each 

contained six sequences of rapid serial presentations (10Hz) of 1,854 unique images. 
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Each sequence lasted approximately 31 seconds. Block 13 contained image from 

object concepts with more than twelve exemplars. As this difference in exemplar 

count would have complicated the data analysis and therefore, the data from this 

block were excluded from the final analysis. 309 images were presented in random 

order in every sequence, each lasting approximately 31 seconds. Each image was 

presented only once in the trial over the course of the experiment to control for 

contributions of low-level features in the decoding performance, resulting in 72 

unique sequences. 

 

Figure 6. Experimental structure. The experiment was divided into 13 blocks. Blocks 
1-12 each contained a unique image from each of the 1,854 object concepts. Each 
block was divided into 6 sequences resulting in 72 unique sequences. Block 13 
contained the extra images from some concepts and was not further analyzed in the 
study. 
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EEG recording 

A BrainVision ActiChamp system with active Ag/AgCI electrodes (GmbH, 

Herrsching, Germany) digitized at a 1000Hz sample rate was used to record the EEG 

data continuously. The 64 electrodes corresponded to the 10-10 international standard 

for electrode placement, and all referenced at Cz during recording (Oostenveld & 

Paraamstra, 2001). Data/Ground electrodes selected impedance measurement range 

was 10-50 kΩ. Electrolyte gel was applied before recording to keep the impedances 

below 10kΩ. Each participant wore an EEG 64-electrode Brain Products cap 

(standard 64 Channel cap actiCAP snap) (GmbH, Herrshing, Germany) throughout 

the experiment. 

 

EEG data pre-processing 

EEG data pre-processing was completed offline using EEGLAB (Delorme & 

Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014). To improve the signal-

to-noise ratio in the EEG data, a down-sampling approach was used, which collapses 

data over time. First the EEG data were filtered using a Hamming windowed FIR 

filter with 0.1Hz high-pass and 100Hz low-pass filters. Lines at noise level 50Hz were 

removed using the CleanLine function in EEGlab. The channel voltages at each time 

point were used for the remainder of the analysis. EEG data from the 72 sequences 

were epoched from -100 ms to 1000 ms relative to stimulus onset and down sampled 

to 250Hz. This downsampling approach was used to reduce the computation time for 

the later decoding analysis (Grootswagers et al., 2017). As the goal of the analysis 

was to determine whether information relevant to the stimulus was present in the 

neural signal, EEG data collected 100 ms before the stimulus onset is included as a 

sanity check (Grootswagers et al., 2017). The assumption is that the neural signal 
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recorded before an image is shown should not contain any specific information about 

the image. No further pre-processing was done in order to maintain the integrity of the 

EEG data, in accordance with the advice of Grootswagers et al. (2017). 

 

Pattern Classification  

Time-resolved Multivariate Pattern Analysis (MVPA) (Grootswagers et al., 

2017) was used to decode the objects from five concept categories: natural, animal, 

food and drink and clothing.  

 

Time Resolved Multivariate Pattern Analysis (MVPA) 

A standard MVPA decoding pipeline (Carlson et al., 2019; Grootswagers et 

al., 2017) was applied to all 64 EEG channel voltages. The aim of the decoding 

analyses was to determine whether there exists any information in the EEG signals 

recorded in response to an observed image that were indicative of the information 

content in the image. The decoding results serve as validation for the subsequent 

Representational Similarity Analysis (RSA) where the similarity of evoked neural 

responses for all possible pairwise concept comparisons were correlated with the 

similarity of the same concepts computed from two broad types of computational 

linguistic models. The decoding analysis was implemented in CoSMoMVPA 

(Oosterhof et al., 2016) and carried out in three steps. First a classification algorithm 

was trained to find any information in the EEG signal data that allowed it to make a 

relatively accurate prediction about the concept category of an image, for example, 

animal. The present study used a Linear Discriminate classifier to find the linear 

boundary that best labeled the data correctly for category membership. Linear 

classifiers are commonly used in decoding studies because they do not overfit to the 
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data (Grootswagers et a., 2017). Classifiers were trained separately on EEG data from 

each 4 ms time window (this is one time point at 250Hz). Then, a set of EEG data that 

was not included in the training data was used to test whether the classifier could 

generalize what was learned during the training. For this purpose a 12 fold cross-

validation approach was applied by splitting the EEG data into 12 blocks (Figure 7). 

In this design, the classifier was trained on 11 of these blocks and then tested on the 

left out block. This process was repeated 12 times to allow each block to serve as the 

test set. As every image in the stimulus set was unique, images used in the training 

sets were always different from the images in the test set. This helped to decrease the 

contribution of semantically uninformative low-level image features on the decoding 

performance. Finally, the average prediction accuracy of the classifier during the 12 

fold cross-validation is taken as an estimate of decoding accuracy for every time 

point. Classifier performance is compared against a null value of 50%, which is the 

accuracy that should be observed if the classifier could not learn any distinguishing 

information. Above-chance classifier performance for any time point indicates that 

information in the neural signal at that specific time point, to some extent, 

systematically different based on concept category membership. Decoding 

performance was calculated for each participant and then averaged together to 

produce a time-varying measure of decodability for the four concept categories.  
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Figure 7. 12 fold cross-validation. Over the course of 12 fold cross-validation, the 
classifier was trained on 11 of the experiment blocks and then tested on the last 
unseen chunk. The average prediction accuracy of the classifier of the 12 fold cross-
validation is taken as an estimate of decoding accuracy for every time point and for 
every subject. 
 

Statistical inferences for the decoding accuracy  

The present study used random effect, non-parametric Monte-Carlo Cluster 

Statistics (Maris & Oostenveld, 2007) to determine whether the classifier performed 

above-chance (50%). Threshold-free cluster statistic (TFCE) (Smith & Nichols, 2009) 

was used to generate a cluster-forming statistic. Based on the assumption that there 

was some degree of contiguity in signals between time points, TFCE statistic was 

used to enhance the information from neighbouring time point to facilitate detection 

of sharp peaks as well as sustained weaker effects (Teichmann et al., 2019, p. 1001). 

The Monte-Carlo method was chosen to correct the problem of multiple comparisons 
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that are often seen in EEG data analyses (Stelzer, Chen, & Turner, 2013). The Monte-

Carlo Cluster Statistics implemented in the CosmoMVPA toolbox (Oosterhof, 

Connolly & Haxby, 2006) was used to perform a sign permutation test, which 

involves swapping the signs of the decoding results obtained from all participants at 

random at every time point, and re-computing the TFCE statistic. (Stelzer, Chen, & 

Turner, 2013). First, the Monte-Carlo Cluster Statistics function computed the TFCE 

statistic of the decoding accuracy for every time point. Then, the Monte-Carlo Cluster 

Statistics function permutated the sign of decoding results, a process that was repeated 

10,000 times.  Finally, the most extreme value of each null distribution was taken to 

construct an overall null distribution across the time series (Teichmann et al., 2019, p. 

1001). The 95th percentile of this overall null distribution was used to compare the 

actual observed decoding results and the null hypothesis providing a p value (α = .05), 

which is corrected for multiple comparison.  

 

Representational Similarity Analysis (RSA) 

The core aim of the present study was to investigate whether there was an 

overlap between neuronal activity patterns evoked by meaningful images of object 

concepts and the semantic structures produced by the two types of linguistic models. 

To do this, RSA was used as it is commonly employed to test hypotheses using 

classification decoding data (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 

2008). 

Using RSA, the semantic similarity between the 1,854 object concepts, as 

defined by the linguistic models can be seen as a geometrical structure in a high 

dimensional space, which can be related to a similar representational structure built 

based on the relationships between the evoked neural responses to images depicting 
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the same concepts. To represent these relationships, representational dissimilarity 

matrices (RDM) are used (Carlson et al., 2013; Kriegeskorte and Kievit, 2013). 

RDMs are constructed from every possible pairwise combination of object concepts 

and assigned a numerical value that quantifies their ‘dissimilarity’ (Kriegeskorte and 

Kievit, 2013). These RDM values indicated the degree to which each pair of concepts 

were distinguishable. The neural EEG RDMs are built based on the dissimilarity 

between the evoked neuronal activity patterns from object images, based on the 

averaged decoding accuracies for all subjects. EEG neural RDMs were calculated for 

each subject individually for each time point and averaged to produce a single RDM 

for the time series (Figure 8). The study then built four different linguistic models 

RDMs, two distributional based (Word2Vec, GloVe) and two hierarchically based 

(WordNet Wu-Palmer, WordNet PATH) (Figure 9). Model RDMs are built based on 

the semantic dissimilarity between each concept pairs. Similar to the EEG neural 

RDM, a numerical value was assigned to each cell in the RDM to quantify the 

dissimilarity between every concept pair, as defined by the algorithms used in each 

model. Then, we tested whether these models captured the differences in the neural 

EEG RDMs by correlating model RDMs with the neural RDMs using the Spearman’s 

rank correlation, which resulted in 30 time-varying correlations for the 30 subjects. 

Finally, the study compared the correlations between the models to test whether the 

correlations with the neural RDMs were different for hierarchical lexical models 

(WordNet Wu-Palmer, WordNet PATH) and the distributional co-occurrence models 

(Word2Vec, GloVe). 
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Figure 8. A depicts stimuli seen in two separate trials. B shows the recorded EEG 
signal in response to these stimuli. The signals from both trials are then correlated at 
each time window (t1). The correlation values of each stimulus pair are then inserted 
into the dissimilarity matrix of the corresponding timing window (C). This processing 
is repeated for all stimulus pairs and at every time window to create a time series of 
dissimilarity matrices (D) EEG neural RDMs. The full neural RDM comprises all 
possible object concept comparisons for every sampled time point. Adapted from 
“Decoding digits and dice with Magnetoencephalography: evidence for a shard 
representation of magnitude,’ by Teichmann et al., 2019, Journal of Cognitive 
Neuroscience, 30, p. 999. 
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Figure 9. Four linguistic RDMs. Top left: GloVe. Top right: Word2Vec. Bottom left: 
WordNet Wu-Palmer. Bottom-right: WordNet PATH. Linguistic model RDMs are 
built based on the semantic dissimilarity between each concept pairs. Similar to the 
EEG neural RDM, a numerical value was assigned to each cell in the RDM to 
quantify the dissimilarity between every concept pair, as defined by the algorithms 
used in each model. Lighter color denotes greater dissimilarity between concept pairs. 
 

Statistical comparisons for the neural RDM and the model RDMs  

The study used the same Monte-Carlo Cluster Statistics function (Oosterhof, 

Connolly & Haxby, 2006) to test whether the correlations were significantly greater 

than a null hypothesis value of zero. This null value indicates the absence of a 

systematic linear relationship between the model RDMs and the neural RDMs. For 

comparing the linguistic models on their correlations with the neural RDMs it 

indicates no difference, at a given time point, in how well the compared models’ 
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semantic relationships reflected the patterns in the neural data. In the same way as the 

decoding significance test, the Monte-Carlo Cluster Statistics implemented in the 

CosmoMVPA toolbox (Oosterhof, Connolly & Haxby, 2006) was used to perform a 

sign permutation, corrected for multiple comparisons. The reported p value (α = .05) 

represented the percentage rank of the actual observed correlation value within the 

null distribution.  

 

Results 

In the change detection task participants accurately detected 85% of the targets 

(SD = 2.4%, false alarm rate = 2.1%). The behavioral data was not analysed further as 

the only goal of the task was to encourage participants maintain vigilance during the 

rapid visual presentation and to minimize eye movements.  

 

Decoding object concepts categories 

Trained classifiers were able to discriminate object concepts categories 

significantly above chance from the evoked responses (Figure 10, 11, 12, 13). These 

results served as a validation for the results from the subsequent RSA analysis where 

the study compares the time-varying neural representation of images of objects to the 

four linguistic models.  

All four concept categories show three distinct decoding peaks approximately 

at 112 ms, 184 ms, and 300 ms post stimulus onset (p < .05). For the natural object 

concepts, the classifier was able to predict the object category above chance between 

84 ms to 476 ms (p < .05) (Figure 10). For the animal concepts, above chance 

decoding was observed for a cluster, stretching between 100 ms to 448 ms (p < .05) 

(Figure 11).  For the food and drink concepts, decoding accuracy sustained above 
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chance from 84 ms to 486 ms (p < .05) (Figure 12). For the clothing object concepts, 

above chance decoding was again, observed for a cluster, stretching between 108 ms 

to 448 ms, displaying two identical peaks at 200 ms and at 300 ms (p < .05) (Figure 

13). Different from natural and food and drink object concepts where the decoding 

accuracy reached above chance well before 100 ms after stimulus presentation, above 

chance decoding for clothing object concepts emerged late in the time series at 

approximately 108 ms (p < .05).  

 

Figure 10. Decoding accuracy for natural object concepts. Decoding accuracy is the 

average accuracy across all subjects produced by the 12 fold cross-validation. Shades 

around the line represent the standard error across 30 participants. Vertical line 

depicts the time of stimulus onset. Colored dots below the x-axis represents the time 

points where decoding performance is significantly above chance (p < .05, corrected 

for multiple comparisons). 
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Figure 11. Decoding accuracy for animal concepts. Decoding accuracy is the average 
accuracy across all subjects produced by the 12 fold cross-validation. Shades around 
the line represent the standard error across 30 participants. Vertical line depicts the 
time of stimulus onset.  Colored dots below the x-axis represents the time points 
where decoding performance is significantly above chance (p < .05, corrected for 
multiple comparisons). 

 

Figure 12. Decoding accuracy for food and drink object concepts. Decoding accuracy 
is the average accuracy across all subjects produced by the 12 fold cross-validation. 
Shades around the line represent the standard error across 30 participants. Vertical 
line depicts the time of stimulus onset.  Colored dots below the x-axis represents the 
time points where decoding performance is significantly above chance (p < .05, 
corrected for multiple comparisons). 
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Figure 13. Decoding accuracy for natural object concepts. Decoding accuracy is the 
average accuracy across all subjects produced by the 12 fold cross-validation. Shades 
around the line represent the standard error across 30 participants. Vertical line 
depicts the time of stimulus onset.  Colored dots below the x-axis represents the time 
points where decoding performance is significantly above chance (p < .05, corrected 
for multiple comparisons). 
 

RSA Analysis  

The core aim of the study was to examine the extent to which the structure in 

semantic representation of object concepts correspond to the neural representation of 

object images from the four concept categories. The more specific question was, 

which type of semantic structure, i.e., emergent structure based on word usage 

patterns (Word2Vec, GloVe) or hierarchical structure, based on explicit dictionary 

definitions and semantic relations between words (WordNet Wu-Palmer, WordNet 

PATH), best explained the evoked neural activity patterns by the object concepts.   

Results from RSA model testing revealed that evoked neural activity patterns 

were best captured by the two lexical hierarchical models (WordNet Wu-Palmer, 

WordNet PATH) (Figure 14). Both lexical hierarchical models’ RDMs and the EEG 

neural RDMs shared a correlation that was significantly above zero between 

approximately 100 ms to 220 ms post stimulus onset (p < .05). The correlations for 
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the WordNet Wu-Palmer model and neural RDMs peaked at approximately 115 ms, 

and again at 200 ms (p < .05). Similarly, the correlations for the WordNet PATH 

model and neural RDMs peaked at approximately 115 ms, and again at 190 ms (p < 

.05). For the distributional co-occurrence model Word2Vec, its correlations with 

neural RDMs peaked at similar time points as the two lexical hierarchical models 

(115 ms, 200 ms) (p < .05), although the correlations were slightly weaker. 

Interestingly, for the GloVe model, its correlation with the neural RDMs never rose to 

the level of significance (p > 0.05). 

We examined whether the correlations for the linguistic model RDMs and the 

neural RDMs were significantly different as a function of their different measures of 

semantic similarity of object concepts. Overall, we found the two lexical hierarchical 

models shared significantly higher correlations with the neural RDMs in comparison 

to the two distributional co-occurrence models (Figure 15). This difference was 

greater in contrast tests between the GloVe model and the two hierarchical models. In 

the WordNet Wu-Palmer and GloVe contrast test, the correlations for the WordNet 

Wu-Palmer model and neural RDMs were significantly higher than the GloVe model 

between approximately 100 ms to 200 ms (p < .05). In the WordNet PATH and 

Word2Vec contrasts, the WordNet PATH model’s correlations with neural RDMs 

were again significantly higher than the GloVe model in a cluster stretched between 

approximately 105 ms to 200 ms (p < .05). This differences was lesser in contrasts 

test for the Word2Vec model and the two hierarchical models. In the WordNet Wu-

Palmer and Word2Vec contrast, the Wu-Palmer model’s correlation with the neural 

RDMs were significantly higher than Word2Vec model at 180 ms and 190 ms (p < 

.05). Similarly, the WordNet PATH model’s correlation with neural RDMs were also 

significantly higher than Word2Vec, at approximately 175 ms (p < .05). To 
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summarize, the correlations for the two hierarchical models and the neural RDMs 

were fairly comparable to the Word2Vec model, but both were reliably higher than 

the GloVe model, which did not reach significance at any point in the time window 

sampled (p > 0.05).  

 

Figure 14. Spearman’s rank correlations between the EEG neural RDMs and the four 
linguistic model RDMs over time. The vertical line indicates the time of stimulus 
onset. Each colored line depicts the correlations of a linguistic model RDM and the 
EEG neural RDMs over time. Shades around the colored lines depict standard errors. 
The colored dotted lines below the x-axis indicate that at the given time point, the 
correlations of a given model RDM and the EEG neural RDM is significantly above 
zero (p < .05, corrected for multiple comparisons). 
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Figure 15. The correlation differences for the four linguistic model RDMs and the 
over time. The vertical dotted line indicates the time of stimulus onset. The horizontal 
dashed line indicates the chance level. Each colored line represents the differences in 
correlations between a pair of model RDMs. Shades around the colored lines depict 
standard errors. The colored dotted lines below the x-axis depict significant 
correlation difference for the model pairs. The navy dotted line depicts the 
comparison of WordNet Wu-Palmer and Glove. The dark green dots depict the 
comparison of WordNet Wu-Palmer and Word2Vec. The light green dots depict the 
comparison of WordNet PATH and Word2Vec. The light blue dotted line depicts the 
comparison of WordNet PATH and GloVe. 

 

As the chosen four linguistic models are based on the English language, the 

present study suspected these linguistic models, in particular, the two distributional 

models (Word2Vec, GloVe) that are trained on large English text corpora, might 

produce different patterns of correlations between the bilingual participants (n = 14) 

and the English monolingual participants (n = 16). Hence, the study examined 

whether the linguistic models’ correlations with the neural RDMs were different as a 

function of participants’ language profile. The group data was split into two groups 

(English monolingual, bilingual) based on the language profiles provided by the 

participant in the demographic questionnaire. 
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In the monolingual group, the hierarchical models again showed significant 

correlations with the neural RDMs from approximately 170 ms to 200 ms post 

stimulus onset (p < .05) (Figure 16). Overall, the monolingual group’s correlation 

paths also mirrored the correlation paths in the combined group analysis. For the 

monolingual group, the correlations for the hierarchical models and the neural RDMs 

emerged above zero later in the time series, with the PATH model showing more 

consistent correlations with the neural RDMs than the WordNet Wu-Palmer model 

during 170 ms to 200 ms post stimulus onset (p < .05). Overall, both hierarchical 

models’ correlations with the neural RDMs were visibly more robust in comparison to 

the distributional models. For the Word2Vec model, its correlations with the neural 

RDMs were only significantly above zero at 180 ms (p < .05). For the GloVe model, 

its correlations with the neural RDMs was significant at approximately 270 ms after 

stimulus onset (p < .05).

 

Figure 16. Spearman’s rank correlations between the monolingual participants’ EEG 
neural RDMs and the four linguistic model RDMs over time. The vertical line 
indicates the time of stimulus onset. Each colored line depicts the correlations of a 
linguistic model RDM and the EEG neural RDM over time. Shades around the 
colored lines depict standard errors. The colored dotted lines below the x-axis indicate 
that at the given time point, the correlations of a given model RDM and the EEG 
neural RDMs were significantly above zero (p < .05, corrected for multiple 
comparisons). 
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In the bilingual group, the correlations for the WordNet PATH model and the 

neural RDMs were significantly above zero during 90 ms to 200 ms post stimulus 

onset (p < .05) (Figure 17). Upon visual inspection, the above chance correlation time 

window for the WordNet PATH and the neural RDMs was noticeably more consistent 

than the monolingual group, which stretched between 100 ms to 200 ms (p < .05). For 

the WordNet Wu-Palmer model, the correlations with the neural RDMs were 

significantly above zero from approximately 110 ms to 140 ms (p < .05). 

Unsurprisingly, the correlation with the neural RDMs never rose to significance for 

neither distributional models during the time window sampled (p >.05). Finally, 

Monte-Carlo significance test found that the four models’ correlations with the neural 

RDMs were not significantly different between the monolingual and the bilingual 

groups (p >.05) (Figure 18). 

 

Figure 17. Spearman’s rank correlations between the monolingual participants’ EEG 
neural RDMs and the four linguistic model RDMs over time. The vertical line 
indicates the time of stimulus onset. Each colored line depicts the correlations of a 
linguistic model RDM and the EEG neural RDM over time. Shades around the 
colored lines depict standard errors. The colored dotted lines below the x-axis indicate 
that at the given time point, the correlations of a given model RDM and the EEG 
neural RDMs were significantly above zero (p < .05, corrected for multiple 
comparisons). 
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Figure 18. The correlation differences for the four linguistic model RDMs between 
the monolingual participants and the bilingual participants. The vertical dotted line 
indicates the time of stimulus onset. The horizontal dashed line indicates the chance 
level. Each colored line represents the differences in correlations between a pair of 
model RDMs. Shades around the colored lines depict standard errors. The four 
linguistic models’ correlations with the neural RDMs were not significantly different 
between the two groups of participants (p >.05, corrected for multiple comparisons). 
  

Discussions 

Summary  

Informed by the intuition in language, computational linguistic models have 

been incorporated in research studying the relationship between linguistic semantics 

in language and semantically imbued representation in the brain. Precisely due to their 

direct and testable predictions, computational models have shown to be effective in 

modelling human judgments (Pereira, Gershman, Ritter & Botvinick, 2016; Goldberg 

& Levy, 2014; Landauer & Dumais, 1997) and neural activity involved in processing 

conceptual and semantic knowledge contents (Howard, Shankar, Jagadisan, 2011; 

Mitchell et al., 2008; Sassenhagen & Fiebach, 2019). However, the question remains 

as to what extent do semantic representation extracted from streams of noisy, 

imprecise, and often incomplete data in natural language resemble conceptual 
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representation acquired outside language. To address this question, the broader aim of 

the present study was to examine whether the structure in the time-varying neural 

representation of images representing a multitude of object concept categories 

corresponds to the structure of semantic representation produced by two general 

methods of semantic similarity measures. The more specific aim of the study was to 

test which type of semantic representation, hierarchical or distributional, best explains 

the neural representation of these object concepts.  

Incongruent with previous research results where distributional co-occurrence 

models are typically better fits to both behavioural data (Turney & Pantel, 2010; 

Vigliocco, Vinson, Lewis & Garrett, 2014) and neural data (Carlson et al., 2013; 

Sassenhagen & Fiebach, 2019) than lexical hierarchical WordNet models, the present 

study found semantic representation produced by WordNet-based similarity measures, 

based on dictionary word definitions and semantic relationships between words, were 

the most compatible with time-varying neural representation of images of object 

concepts. By comparison, the correlations for the two distributional co-occurrence 

models (Word2Vec, GloVe) and the neural representation were relatively weaker, 

although they followed a similar correlation path as the two hierarchical models.  

As the decoding results serve as a validation for the results in the subsequent 

RSA analysis, the following section first discusses the time course of object concept 

processing and the possible contributions from low-level visual properties to the 

object concept category decoding results. Next, the results are discussed in relation to 

past works and the role of stimulus characteristics on the decoding analysis. Then, the 

representational similarity between the neural representation of object concepts and 

the semantic representation produced by WordNet’s lexical hierarchical models is 

discussed, alongside the potential contribution from WordNet’s non-hierarchical 
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relations in capturing information beyond the simple synonym (hyper/hyponym) 

relations between concepts, such that perceptual and functional properties may also be 

encoded in the WordNet’s hierarchy. The disparity between the currents results and 

those from past studies and the potential influence from different methodological 

approaches on the divergent results are also both discussed. Finally, the limitations of 

using a stimuli set with a strong categorical structure such as the THINGS database 

are discussed, as are the challenges in using machine learning and neural decodability 

analyses in areas that currently that drives the decoding classification, such as 

conceptual research and language. 

 

The temporal profile of object concept category processing 

 In this study, the goal of the decoding analysis was to differentiate 

between the neural activity evoked by object images from the four concept categories. 

The current results show the classifier successfully decoded neural responses evoked 

by images within the natural, animal, food and drink, and clothing categories. Overall, 

the concept category decoding was above chance between 84 ms and 400 ms, and at 

400 ms, there were already four new images presented. This time window is marked 

by three distinct decoding peaks at approximately 112 ms, 184 ms, and 300 ms. The 

decoding results suggest that information that was present in evoked neural activity is 

unique to the image presented at a specific time point, such that the classifier was able 

to linearly differentiate between neural activity evoked by concept categories depicted 

by the stimuli. The more sustained decoding time window was observed for natural 

object concepts (84 ms to 474 ms) and food and drink object concepts (84 ms to 486 

ms) than animal object concepts (100 ms to 448 ms) and clothing object concepts 

(108 ms to 448 ms).  
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 Varying peak decoding performances also highlighted the temporal profile 

specific to each concept category. Peak decoding performance first emerged in food 

and drink concepts at approximately 100 ms, this was followed by animal concepts at 

188 ms, natural concepts at 190 ms, and finally, clothing object concepts, with the 

onset of two comparable peaks at 200 ms and 300 ms. The temporal profiles in the 

current decoding results suggest thematic images of four concept categories are 

processed in a cascade, starting with concepts deemed by some researchers as more 

crucial for solving survival problems (Caramazza & Shelton, 1998; Mahon & 

Caramazza, 2009), followed by the concomitant activation of natural and animal 

concepts that are associated more with their perceptual features (Capitani, Laiacona, 

Mahon & Caramazza, 2003; Martin, Wiggs, Ungerleider, Haxby, 1996; Warrington, 

1987; Warington & Shallice,1984), and finally, man-made object concepts that are 

associated more with their functional features (Tranel et al., 1997; Warrington, 1987; 

Warrington & Shallice,1984).  

 

Possible contribution from low-level visual properties in decoding accuracy 

 Low-level visual properties such as color, luminance and contours can be 

problematic for decoding studies using naturalistic photographs (Cichy, Pantazis & 

Oliva, 2014). In the past, low-level visual properties have been suspected to enhance 

the decoding performance in early time series (<100 ms) (Grootswagers et al., 2019). 

In the RSVP study by Grootswagers et al. (2019), the decoding performance at the 

exemplar-level emerged slightly earlier (80 ms) in comparison to the category-level 

(100 ms). Hence, in the present study, it is possible that the decoding performance 

obtained before 100 ms could be accounted for by decodable low-level visual 

properties of the stimuli. After 100 ms, however, it becomes unlikely that the 
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decoding accuracy is solely driven by low-level visual properties. This logic is 

supported by the results from Liu et al.’s (2009) intracranial recording study where 

category-specific information for objects is distinguished in the brain from as early as 

100 ms after stimulus presentation, and this effect remains robust even after 

extrapolating across various versions of the same image (rotated and scaled). 

Likewise, Carlson et al. (2011) also found position invariant object information can 

be extracted from the visual system from as early as 105 ms for objects, and 135 ms 

for object categories. Importantly, in the final stage of compiling the image database 

(THINGS - Herbart et al., 2019) all images are validated in CorNet-S (Kubilius et al., 

2018), a deep convolutional neural network that controls for spatially localized low-

level features (Herbart et al., 2019). This final step increases the degree of visual 

variability for the exemplars and reduces the likelihood of contributions from low-

level visual properties in the classification accuracy, at least from 100 ms onwards. 

Finally, the backgrounds in the images are preserved to retain an ecologically valid 

representation of the referent concepts, some images featuring animals, such as whale, 

cow, also were featured in similar backgrounds, for example, ocean, grass. The 

background similarity may increase the familiarity associated with certain types of 

animal concepts. Although, images that potentially may be affected by this issue form 

a relatively low section of the stimulus set (Table 3). 

Table 3 
  

Summary of Images and Concepts in General Object Concept Categories 

 
    

Low-Level Object Concept Category Concepts Images 

Natural 610 7320 

Animal 177 2214 
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Food and Drink 314 3768 

Clothing 132 1584 

 

Note. General concept categories in THINGS database are generated from human 
ratings (Amazon Mechanical Turk) and WordNet word-sense disambiguation.  
 

In relation to previous decoding literature 

While the distinct temporal profile of emerging category information in the 

current results suggest that these decoding profiles reflect the processing of object 

category information, there are two subtle variances between the current results and 

the existing decoding literature that deserve covering in more detail. Firstly, the 

concept category decoding peaks in the current study might be seen to emerge slightly 

earlier in comparison to other decoding studies (Carlson et al., 2011; Carlson, Tovar, 

Alink, & Kriegeskorte, 2013; Liu, Agam, Madsen & Kreiman, 2009). For example, in 

Grootswagers et al., (2019), the peak decoding performance in the 5Hz condition for 

abstract categories, such as animacy, occurred at 150 ms, 200 ms and 400 ms, with 

peak decoding for object category occurred at 200 ms. By comparison, the three 

distinct decoding peaks in the current results, under the 10Hz condition, emerged 

slightly earlier (112 ms, 184 ms, and 300 ms). These differences, however, are likely 

accounted for by factors such as different visual presentation rates and the 

characteristics of the stimuli for which there is no consensus in the field 

(Grootswagers et al., 2019; Carlson et al., 2011; Carlson et al., 2013; Carlson, Tovar, 

Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva 2014) as these properties are 

chosen based on the research questions been asked. Also, the stimuli set used in the 

present study (26,107 images) is much larger than the stimuli set (200 images) used in 

Grootswagers et al. (2019), which increases the power in the current analysis. 
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Secondly, the time spans of above-chance decoding in the current results are 

also somewhat shorter than previous research where the object category decoding 

performance sustained until 500 ms post-stimulus onset (Carlson et al. 2011; 

Grootswagers et al. 2019). However, this also varies with the stimulus set. The 

stimulus set used by Carlson et al. (2011) for example included human faces, which 

drive high-level visual cortex activity strongly (Cichy, Pantazis, & Oliva, 2014) while 

other sets contain cropped images of objects (Grootswagers et al. 2019) which 

enhance low-level visual properties such as lines and silhouettes and drive a stronger 

V1 response that can take longer to decay (Cichy, Pantazis, & Oliva, 2014). 

 

The time-varying neural representation of object concepts correspond to 

WordNet models 

Overall, the category decoding results observed here align with prior research, 

with only small time differences in peak decoding and length of sustained decoding, 

both of which can vary with presentation rate and stimulus set. Therefore it is unlikely 

that the differences observed in the RSA comparing neural and linguistic model 

representational similarity are accounted for by any systematic differences in the 

neural data or the stimulus set of the present study.  

The core aim of the RSA analysis was to compare the structure in the neural 

representation object categories to the structure in semantic representation produced 

by linguistic models. The current results suggest that the structure of these neural 

representations correspond primarily to the semantic representation produced by 

lexical hierarchical models WordNet Wu-Palmer and WordNet PATH. Both models 

show above zero correlations with the neural RDMs between 100 ms to 220 ms post-

stimulus onset and display similar correlation peaks, with the WordNet Wu-Palmer 
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model’s peaks at approximately 115 ms and 200 ms, and the WordNet PATH model’s 

peaks at approximately 115 ms and 190 ms. By contrast, the correlation for the 

Word2Vec model was relatively weaker. Surprisingly, the correlation for the GloVe 

model never rose to the level of significance. Between model contrast tests confirm 

this distinction, revealing that overall, the correlations for the lexical hierarchical 

models were more robust than the distributional co-occurrence models. As 

approximately half of the participants are non-native English speakers, it was initially 

suspected that a different pattern of correlations would be found in bilingual speaker 

participants, especially as Word2Vec and GloVe both are trained on large English text 

corpora. However, the individual group analyses indicate that the patterns of 

correlations are not significantly different between the two groups. 

 

From perceptual to conceptual: modality-specific features encoded in WordNet’s 

taxonomy hierarchy  

There is a high likelihood that the semantic representation captured by the two 

WordNet models also captured featural and functional properties specific to each 

object concept category. While the two similarity measures primarily quantify 

conceptual similarity or conceptual distance as the path distance between concepts in 

the taxonomy hierarchy, this quantification also makes complimentary use of other 

non –hierarchical relations and short dictionary definitions (gloss) (Miller, 1995). 

Non-hierarchical relations such as has-part, is-made-of, is-an-attribute-of, mean 

conceptual relatedness can also be expressed in ways beyond meaning similarity, such 

as ‘a wheel is a part of a car’, ‘a knife is used to cut bread’, ‘night is the opposite of 

day’, ‘snow is made up of water’ (Pedersen et al., 2004, p. 1024). As such, semantic 

representation captured using non-hierarchical relations can also be partially 
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construed as modality-specific featural representation. For example, the meaning for 

the concept ‘car’ partly entails its perceptual information, and in WordNet, the 

concept ‘car’ is encoded in the has-part relation as ‘car-has-rear window’ 

(Richardson, 1994) (Figure 19). In line with this argument, the correspondence 

between the structures in semantic representation produced by WordNet and neural 

representation could be ascribed to the correspondence between the featural 

representation of these concrete entities been opaquely encoded in WordNet non-

hierarchical relations and the modality-specific neural representation of thematic 

images of these entities.  

 

 

 

 

 

Figure 19. WordNet extract for the concept ‘car.’ Adapted from ‘Using WordNet as a 
knowledge base for measuring semantic similarity between words,’ by R. Richardson, 
A.F. Smeaton, J, Murphy, 1994, Dublin City University. 
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This argument leads back to the classic feature-based accounts of semantic 

representation and semantic memory (Rosch et al., 1976; Smith, Shoben & Rips, 

1974). Notably, in work by Smith et al. (1974), the representation of a concept is 

construed as a binary list of characteristic features in a multidimensional feature space 

where the features correlate to their external referent object. Similarly, in modern 

feature-based theories, feature distinctiveness is also deemed to be instrumental for 

constructing semantic representation and deriving word meanings (Cree, McRae & 

McNorgan, 1999). According to Cree, McRae & McNorgan (1999), the presence of a 

distinctive feature distinctiveness allows two concepts to be differentiated on the basis 

of perceptual dissimilarity and hence, feature distinctiveness is crucial for 

constructing and representing conceptual knowledge. Strong support for these 

accounts comes from Cree and McRae’s (2003) study on category-specific 

impairment patients’ data. In their study, feature distinctiveness and visual complexity 

are among the chief factors that predicted the major selective semantic impairments 

trends found in patients (Cree, McRae, 2003, p.163). Feature-based models, such as 

the attractor network trained on semantic-features of objects, have been shown to 

predict human similarity judgments for words with high accuracy, as evidenced by the 

results from semantic priming tasks (Cree & McRae, McNorgan, 1999).  

Analogous to this account is Vigliocco, Vinson, Lewis, & Garrett’s (2004) 

Future and Unitary Semantic Space semantic (FUSS) similarity measures. Trained in 

the low-dimensional structure of the elementary features of 456 common object and 

action words, the FUSS similarity measures outperformed distributional word co-

occurrences model Latent Semantic Analysis in human performances in word 

similarity judgments and semantic categorization (Vigliocco, Vinson, Lewis, & 

Garrett 2004; Vinson, Vigliocco, Cappa, & Siri, 2003). In light of these findings, 
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Vigliocco, Vinson, Lewis, & Garrett (2004) argued that modality-specific featural 

representation is partly encoded in word meanings for concrete entities. 

Congruent with their proposal, cross-linguistic studies show that Spanish, 

English and Chinese native speakers produced similar patterns of similarity 

judgments for concrete objects (e.g., vase, bottles) despite the cross-linguistic 

variability for these concepts, and the mismatches commonly found between 

linguistic categories and perceptually continuous domains such as color (Malt et al., 

1999; Vigliocco, Vinson, Lewis, & Garrett, 2004). Consistent with the notion that 

word meaning for concrete entities is partially grounded in modality-specific featural 

representation that is largely unconstrained by the variabilities in languages, the 

present study shows that the correspondence between the semantic representation of 

concrete object concepts as conceptualized by WordNet’s hierarchical and non-

hierarchical relations, and the neural representation of thematic images of the same 

concepts remains robust even after extrapolating across different language profiles. 

 

Weak correspondence between distributed semantic representation and neural 

representation of concrete object concepts 

The results in the RSA show the structure in the time-varying neural 

representation of object concept corresponds to the structure in the distributed 

semantic structure produced by Word2Vec. Intriguingly, despite GloVe’s robust 

performance in modelling human performances in psycholinguistic tasks (Pereira et 

al, 2018; Pennington, Socher & Manning, 2014) and in neural activity patterns 

associated with cognitive contents (Carlson et al., 2013; Sassenhagen & Fiebach, 

2019), its’ correlations with the neural RDMs never rose above the chance level. 

While common to both models is the principle that similar words appear in similar 
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contexts, the nature of semantic representation produced by these models might be 

subjected to differences in the types of training text corpora, vector length and the size 

of the context window. As GloVe leverages the global statistics of word co-

occurrence in the document and also considers the relations between multiple word 

pairs, it has been suggested that GloVe captures the more intricate, nuanced relations 

between concepts than local context prediction-based models, such as Word2Vec 

(Pennington, Socher & Manning, 2014). 

Notably, the current results contradict previous fMRI study by Carlson, 

Simmons, Kriegeskorte & Slevc (2013) on the organization of object representation in 

the inferior temporal cortex and Sassenhage & Fiebach’s (2019) ERP study on 

induced neural activity from English and German concrete nouns. In Carlson et al. 

(2013), it was found that the emergent semantic structure captured by distributional 

co-occurrence models, Latent Semantic Analysis (LSA) (Landauer & Dumais,1997) 

and Correlated Occurrences Analogue to Lexical Semantics (COAL) (Rohde, 

Gonnerman & Plaut, 2005), corresponded to the geometric structure in object 

representation in inferior temporal cortex more so than WordNet-based similarity 

measures PATH, and the gloss vector measure LESK. Similarly, Sassenhagen & 

Fiebach (2019) also found brain activity induced by English and German nouns 

encoded distributed semantic representation of word meanings produced by GloVe 

and Word2Vec more so than hierarchical lexical models WordNet and GermanNet, 

which demonstrated significant but weaker correlations with the neural activity in 

comparison to GloVe and Word2Vec.  

   Reconciling the disparities between the current results and these two streams 

of results is complicated by several factors. First, the characteristics of the stimuli set 

used in these two studies varied. For example, in Carlson et al. (2013), a stimulus set 
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of 92 cropped colour images depicting 67 object concepts (natural and artificial 

objects, human faces and bodies, and animals) was used and, as discussed previously, 

cropped images and human faces tend to drive activity in V1 and upper visual 

systems strongly to the extent that might affect the analysis outcome whereas the 

stimulus set used in Sassenhagen & Fiebach (2019) consisted of word labels of 960 

English and 150 German nouns, which introduces orthographical and lexical 

complexities into the stimuli set. Second, the neuroimaging data used by these studies 

were either entirely or partially adopted from previous studies. For example, the fMRI 

recordings used in Carlson et al. (2013) were adopted from a previous study by 

Kriegeskorte et al. (2008), recorded for a relatively small sample (n = 4) while they 

performed a colour-discrimination task. Likewise, the Event-Related Potential (ERP) 

data for the English sample used in Sassenhagen & Fiebach (2019) was adopted from 

a previous study by Dufau, Grainger, Midgley & Holcomb (2015) on word reading, 

recorded from 75 participants while they performed a lexical decision go/no go task. 

The main issue with adopted data, according to Herbart et al. (2019), is that the data is 

always influenced by previous studies’ stimulus selection criteria that serve to test a 

specific set of hypotheses. Finally, the quality and the nature of the neural 

representation obtained also differs according to the modalities of brain-activity 

measurement used. In Carlson et al. (2013), fMRI was used to measure brain activity 

in IT and the primary visual cortex, whereas Sassenhagen & Fiebach (2019) used 

EEG to capture whole-brain activity responses. These fundamentally different 

neuroimaging techniques and the brain regions being sampled mean that the neural 

representation captured could reasonably be said to differ from those used here, such 

that the spatial/ temporal trade-off in fMRI data means that one single fMRI image is 

likely to double the time as the entire time down-sampled in the current decoding and 
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RSA analyses (Beres, 2017; Biasiucci, Franceschiello & Murray, 2019). Together, the 

issues of stimulus characteristics, pre-adopted data, and relating activity patterns 

captured by different modalities of brain-activity measurement (fRMI and EEG) each 

poses a challenge for reconciling the disparities in results from different studies. 

These challenges, however, are not unique to the present study but other research 

areas that utilize different brain-activity measurements (fMRI, M/EEG) and 

computational modelling and as well.  

 

Limitations in the study: the categorical structure of the stimuli set and the 

assumption driven nature of machine learning  

The present study has two key limitations. Namely, the strong categorical 

structure in the stimuli set and the inherent challenges for applying machine learning 

in research areas that currently, lack a fundamental understanding of the underlying 

neural mechanisms that drive the decoding classification. First, a top-down validation 

was carried out using on all concepts using WordNet word sense disambiguation to 

remove highly similar object concepts and synonyms from the THINGS database 

(Herbart et al., 2019). Hence, while these object concepts demonstrate a high level of 

conceptual distinctiveness, the word disambiguation process itself may inadvertently 

introduce a strong categorical structure in the stimuli set that contribute to the 

WordNet’s hierarchical models' performance in the RSA analysis. 

The second limitation comes from the challenge common to machine learning 

approaches in cognitive neuroscience. According to Carlson et al. (2018), precisely 

due to the simple patterns produced by machine learning, it is easy to over-interpret 

the data and see phenomena that are not there. Furthermore, Carlson et al. (2018) also 

point out that decodable information may not be the same as the underlying cognitive 
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mechanism used for constructing a representation. Hence, for research areas where 

the neural source that drives the decoding performance has yet to be identified, such 

as memory and language, one needs to be prudent about differentiating information 

that is merely decodable and the information the brain uses to represent the 

information content in question.   

 

Conclusion  

The core aim in the present study was to investigate the extent to which the 

structure in the time-varying neural representation of concrete object concepts 

resembles the structure in semantic representation produced by linguistic models that 

is primarily acquired from streams of imprecise and noisy data in natural language. 

The current results show the structure in these neural representations primarily 

correspond to the structure in the semantic representation produced by WordNet 

models, based on the concepts’ explicit dictionary definitions and their hierarchical 

and non-hierarchical relations in WordNet taxonomy. By comparison, the 

correspondence with the neural data is relatively weaker for the distributed semantic 

representation produced by distributional models trained on word co-occurrences 

statistics in text corpora. The current results do not necessarily mean that distributed 

semantics do not play a part in representing conceptual knowledge, as the results in 

RSA analysis show, all linguistic models display similar correlation paths with the 

neural data within the time window where robust decoding performances for object 

concept categories were observed. This temporal synchrony between the linguistic 

models coupled with the potential influence from non-hierarchical relations in 

WordNet suggests the rapid transition from perception to representation compatible 
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with language and conceptual thoughts, is underpinned by concept category 

distinctive features. 
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