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Abstract 

Recognising speech in background noise is a strenuous daily activity, yet most humans can 

master it. A mechanistic explanation of how the human brain deals with such sensory 

uncertainty is the Bayesian Brain Hypothesis. In this view, the brain uses a dynamic 

generative model to simulate the most likely trajectory of the speech signal. Such simulation 

account can explain why there is a task-dependent modulation of sensory pathway 

structures (i.e., the sensory thalami) for recognition tasks that require tracking of fast-

varying stimulus properties (i.e., speech) in contrast to relatively constant stimulus 

properties (e.g., speaker identity) despite the same stimulus input. Here we test the specific 

hypothesis that this task-dependent modulation for speech recognition increases in parallel 

with the sensory uncertainty in the speech signal. In accordance with this hypothesis, we 

show—by using ultra-high-resolution functional magnetic resonance imaging in human 

participants—that the task-dependent modulation of the left primary sensory thalamus 

(ventral medial geniculate body, vMGB) for speech is particularly strong when recognizing 

speech in noisy listening conditions in contrast to situations where the speech signal is 

clear. Exploratory analyses showed that this finding was specific to the left vMGB; it was not 

present in the midbrain structure of the auditory pathway (left inferior colliculus, IC).  The 

results imply that speech in noise recognition is supported by modifications at the level of 

the subcortical sensory pathway providing driving input to the auditory cortex.  
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1. Introduction 

Honking horns and roaring engines, the hammering from a construction site, the mix of 

music and speech at a restaurant or pub, the chit-chat of many children in a classroom are 

just some examples of background noises which continuously accompany us. Nevertheless, 

humans have a remarkable ability to hear and understand the conversation partner, even 

under these severe listening conditions (Cherry, 1953). 

 

Understanding speech in noise is a complex task that involves both sensory and cognitive 

processes (Adank, 2012; Alavash et al., 2019; Best et al., 2007; Bregman, 1994; Brokx and 

Noteboom, 1982; Bronkhorst, 2015; Darwin and Hukin, 2000; Moore et al., 1985; Parikh 

and Loizou, 2005; Peelle, 2018; Sayles and Winter, 2008; Shinn-Cunningham and Best, 

2008; Song et al., 2010). Difficulties in understanding speech in noise can occur in age-

related hearing impairment (Schoof and Rosen, 2016), as well as in developmental 

disorders like autism spectrum disorder (Alca ntara et al., 2004), auditory processing 

disorder (Iliadou et al., 2017), or developmental dyslexia (Chandrasekaran et al., 2009; 

Ziegler et al., 2009). In contrast, early musical training is associated with better abilities in 

extracting speech from a noisy background (Parbery-Clark et al., 2009; Strait et al., 2012). 

To-date it is by-and-large unclear why the human brain is so robust to speech-in-noise 

perception. Understanding human speech-in-noise recognition on a mechanistic level would 

be important as it would advance the understanding of why some clinical populations have 

difficulties with speech-in-noise perception. Furthermore, a more mechanistic 

understanding of how the human brain recognises speech-in-noise might also trigger new 

insight on why artificial speech recognition systems still have difficulties when speech is 

presented in noise (Gupta et al., 2016; Qian et al., 2016; Scharenborg, 2007). 
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One mechanistic account of brain function that attempts to explain how the human brain 

deals with noise or uncertainty in the stimulus input is the Bayesian brain hypothesis. It 

assumes that the brain represents information probabilistically and uses an internal 

generative model and predictive coding for the most effective processing of sensory 

input (Friston, 2005; Friston and Kiebel, 2009; Kiebel et al., 2008; Knill and Pouget, 2004). 

Such type of processing has the potential to explain why the human brain is robust to 

sensory uncertainty, e.g., when recognising speech despite noise in the speech signal (Knill 

and Pouget, 2004; Srinivasan et al., 1982). Although predictive coding is often discussed in 

the context of cerebral cortex organization (Hesselmann et al., 2010; Shipp et al., 2013), it 

may also be a governing principle of the interactions between cerebral cortex and 

subcortical sensory pathway structures (Adams et al., 2013; Bastos et al., 2012; Huang and 

Rao, 2011; Mumford, 1992; Seth Anil K. and Friston Karl J., 2016; von Kriegstein et al., 

2008). In accordance with this suggestion, studies in animals found that feedback from 

cerebral cortex areas changes the processing in the sensory pathway, i.e., the sensory 

thalamus and brainstem nuclei (Krupa et al., 1999; Sillito et al., 2006, 1994; Wang et al., 

2018).  

In humans, responses in the auditory sensory thalamus (medial geniculate body, MGB) are 

higher for speech tasks (that emphasise recognition of fast-varying speech properties) in 

contrast to control tasks (that require recognition of relatively constant properties of the 

speech signal, such as the speaker identity or the sound intensity level). This response 

difference holds even if the stimulus input is the same (Díaz et al., 2012; von Kriegstein et 

al., 2008). This task-dependent modulation seems to be behaviorally relevant for speech 

recognition: performance level in auditory speech recognition was positively correlated 

with the amount of task-dependent modulation in the MGB of the left hemisphere (Mihai et 

al., 2019; von Kriegstein et al., 2008). This behaviourally relevant task-dependent 

modulation was located in the ventral part of the MGB (vMGB), which is the primary 

subsection of the MGB, but not in other MGB subsections (Mihai et al., 2019). These findings 

could fit the Bayesian brain hypothesis on cortico-subcortical interactions: cerebral cortex 

areas provide dynamic predictions about the incoming sensory input to the sensory 

thalamus to optimally encode the trajectory of the fast-varying and predictable 
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speech input (Díaz et al., 2012; von Kriegstein et al., 2008). If this is the case, the specific 

hypothesis ensues that the task-dependent modulation of the vMGB is especially involved 

when the fast dynamics of speech have to be recognised in conditions with high sensory 

uncertainty (Díaz et al., 2012; Feldman and Friston, 2010; Van de Cruys et al., 2014; Yu and 

Dayan, 2005), for example when the incoming signal is disturbed (Feldman and Friston, 

2010; Friston and Kiebel, 2009; Gordon et al., 2017; Yu and Dayan, 2005). The present 

study aimed to test this hypothesis.  

An ecologically valid way to increase uncertainty about the speech input is the presentation 

of speech in background noise (Chandrasekaran and Kraus, 2010a). We, therefore, tested, 

whether the task-dependent modulation of the left vMGB for speech is higher when the 

speech stimuli are heard in a noisy as opposed to a clear background. We used ultra-high 

field fMRI at 7 T and a design that has been shown to elicit task-dependent modulation of 

the MGB in previous studies (Díaz et al., 2012; von Kriegstein et al., 2008). We 

complemented the design by a noise factor: the speech stimuli were presented with and 

without background noise. The experiment was a 2 × 2 factorial design with the factors task 

(speech task, speaker task) and noise (noise, clear). To test our hypothesis, we performed a 

task × noise interaction analysis. We predicted that the task-dependent modulation of the 

left vMGB increases with decreasing signal-to-noise ratios (i.e., increasing uncertainty about 

the speech sounds). We focused on the left vMGB for two reasons. First, its response 

showed behavioural relevance for speech recognition in previous studies (Mihai et al., 

2019; von Kriegstein et al., 2008). Second, a study on developmental dyslexia – a condition 

that is often associated with speech-in-noise recognition difficulties (Chandrasekaran et al., 

2009; Ziegler et al., 2009) – showed reduced task-dependent modulation of the left MGB in 

comparison to controls (Díaz et al., 2012).  

In addition to testing our main hypothesis, the design also (i) served to test for replicability 

of previous findings on the involvement of the MGB in speech recognition as well as its 

relevance for speech recognition behaviour (Mihai et al., 2019; von Kriegstein et al., 2008), 

and (ii) allowed to explore the role of the inferior colliculus (IC) – the midbrain station of 

the auditory sensory pathway – in speech and speech-in-noise recognition.  
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2. Results 

Participants listened to blocks of auditory syllables (e.g., /ada/, spoken by three different 

speakers) and performed either a speech or a speaker task (Figure 1). In the speech task, 

participants reported via button press whether the current syllable was different from the 

previous one (1-back task). In the speaker task, participants reported via button press 

whether the current speaker was different from the previous one. The speakers’ voices 

were resynthesized from the recordings of one speaker’s voice to only differ in constant 

speaker individuating features (i.e., the vocal tract length and the fundamental frequency of 

the voice). This ensured that the speaker task could not be done on dynamic speaker 

individuating features (e.g., idiosyncrasies in pronunciations of phonemes). Participants 

listened to either stimuli embedded in speech-shaped noise (noise condition) or without 

background noise (clear condition). 

 

Figure 1. Design and trial structure of the experiment. In the speech task, listeners performed a 

one-back syllable task. They pressed a button whenever there was a change in syllable in 

contrast to the immediately preceding one, independent of speaker change. The speaker task 

used precisely the same stimulus material and trial structure. The task was to press a button 

when there was a change in speaker identity in contrast to the immediately preceding one, 
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independent of syllable change. An initial task instruction screen informed participants about 

which task to perform. Participants heard stimuli either with concomitant speech-shaped 

noise (noise condition) or without background noise (clear condition). Thus the experiment 

had four conditions: speech task/noise, speaker task/noise, speech task/clear, speaker 

task/clear. Stimuli in the speech and speaker tasks were precisely identical. 

 

2.1 Behavioural results 

Participants performed well above chance level in all four conditions (> 82% correct; Table 

1; Figure 2A).  

Table 1. The proportion of hits for each of the four conditions in the experiment. HDP: highest 

posterior density interval. 

 Speech task/ 

Noise 

Speaker task/ 

Noise 

Speech task/ 

Clear 

Speaker task/ 

Clear 

% Mean 

[95% HPD] 

0.82 [0.62, 0.95] 0.87 [0.74, 0.96] 0.92 [0.83, 0.98] 0.90 [0.81, 0.97] 

 

Performing the tasks with background noise was more difficult than the conditions without 

background noise for both the speech and the speaker task (Figure 2B, for details on 

statistics, see figure legend). The rate of hits in the speech task was the same as in the 

speaker task (Figure 2C). There was a detectable interaction between task and noise 

(Figure 2D/E), but simple main effects (i.e., speech task/noise - speaker task/noise (Figure 

2F) and speech task/clear - speaker task/clear (Figure 2G)) were not present. 
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Figure 2. Behavioural results. We performed a binomial logistic regression to compute the rate 

of hits and misses in each condition because behavioural data were binomially distributed. For 

this reason, results are reported in log odds and odds ratios. The results showed a detectable 

main effect of noise and interaction between noise and task. There was no main effect of task, 

and no detectable simple main effects (speech task/noise - speaker task/noise; speech 

task/clear - speaker task/clear). A. Log odds of hits and misses for each condition. The grey 

dots indicate mean responses for individual participants, the red dots and accompanying 

numbers denote the posterior mean per condition, and the dark red lines demarcate the 95% 

highest posterior density interval (HPD). The rate of hits compared to misses is plotted on a 

log scale to allow for a linear representation. B. Mean odds ratio for the clear and noise 

conditions. The odds of hits in the clear condition were on average twice as high as in the noise 
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condition (the mean odds ratio was 1.978 [1.076, 2.957]). The HPD excluded 1 and indicated a 

detectable difference between conditions: No difference would be assumed if the odds ratio 

was 1 (50/50 chance or 1:1 ratio; Chen, 2003).  C. Mean odds ratio for the speech task - 

speaker task conditions. The mean odds ratio was ~1 indicating no difference between the 

speech and speaker task conditions. D. Visualization of the interaction (task × noise) as a 

comparison of slopes with 95% HPD. E. The ratio of odds ratios of the simple main effects 

speech task/noise - speaker task/noise and speech task/clear - speaker task/clear. The mean 

and 95% HPD was 0.557 [0.306, 0.844]. The HPD excluded 1 indicating an interaction effect. F. 

Mean odds ratio for the simple main effect speech task/noise - speaker task/noise. The rate of 

hits in the speech task/noise condition was on average ~1/3 lower than the rate of hits in the 

speaker task/noise condition; however, the HPD strongly overlapped 1 indicating that there 

was no difference between conditions. G. Mean odds ratio for the simple main effect speech 

task/clear - speaker task/clear. The rate of hits in the speech task/clear condition was on 

average ~1/3 higher than the rate of hits in the speaker task/clear condition; however, the 

HPD strongly overlapped 1 indicating that there was no detectable difference between 

conditions.   

2.2 fMRI Results 

2.2.1 The task-dependent modulation of left vMGB increased for recognizing 

speech-in-noise in contrast to the clear speech condition 

We localised the left vMGB based on an independent functional localizer (see section 4. 

Materials and Methods). Following our hypothesis, there was increased BOLD response for 

the task × noise interaction [(speech task/noise - speaker task/noise) - (speech task/clear - 

speaker task/clear)] in the left vMGB (Figure 3A/B). The interaction effect had a mean large 

effect size ranging from a small effect to a very large effect (g*=2.549 [0.211, 5.066]; 

Figure 3C and 3D). The 95% HPD of the interaction effect excluded 0, indicating that this 

was a robust effect (Bunce and McElreath, 2017; McElreath, 2018). Simple main effect 

analyses showed that the direction of the interaction was as expected. The speech 

task/noise condition yielded higher left vMGB responses in contrast to the speaker 

task/noise condition, ranging from a medium to a very large effect (g* = 1.104 [0.407, 
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1.798]; Figure 3E). Conversely, the left vMGB response difference between the speech task 

and speaker task in the clear condition had a small effect size (g* = 0.243 [-0.366, 0.854]; 

Figure 3F), ranging from a negative medium effect to a positive large effect, and the HPD 

overlapped 0. 

 

 

Figure 3. fMRI results. A. The mean T1 structural image across participants in MNI space. Red 
rectangles denote the approximate location of the left MGB and encompass the zoomed-in 
views in B. Letters indicate anatomical terms of location: A, anterior; P, posterior; S, superior; 
I, inferior; L, left; R, right. Panels A and B share the same orientation across columns; i.e., from 
left to right: sagittal, coronal, and axial. B. Statistical parametric map of the interaction 
(yellow-red colour code): (speech task/noise - speaker task/noise) - (speech task/clear - 
speaker task/clear) overlaid on the mean structural T1 image. Crosshairs point to MNI 
coordinate (-11, -28, -6). The white outline shows the boundary of the vMGB mask. C. 
Parameter estimates (mean-centred) within the vMGB mask. Open circles denote parameter 
estimates of the speech task condition; filled circles denote parameter estimates of the speaker 
task condition. Dashed black line: the relationship between noise condition (noise, clear) and 
parameter estimates in the speech task. Solid black line: the relationship between noise 
condition (noise, clear) and parameter estimates in the speaker task. The shaded grey area 
shows the 95% HPD. D-F Bayesian Analysis of the parameter estimates. D. The effect size of 
the interaction: the effect size for the interaction effect was very large (2.549 [0.211, 5.066]) 
and the HPD excluded zero (indicated by the dashed vertical line). E. Simple main effect: 
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speech task/noise – speaker task/noise. The mean effect size was large (1.104 [0.407, 1.798]). 
The HPD excluded zero. F. Simple main effect: speech task/clear – speaker task/clear. The 
mean effect size was small (0.243 [-0.366, 0.854]). The HPD contained zero. 

 

The results showed that the task-dependent modulation of the left vMGB for the speech 

task was increased when participants recognised speech - speaker identity in background 

noise in contrast to speech - speaker identity without background noise. This finding cannot 

be explained by differences in stimulus input as the same stimulus material was used for 

the speech and the speaker task. The results are also unlikely due to differences in task 

difficulty between conditions, as the behavioural results showed no detectable differences 

in performance for the simple main effects.  

 

2.2.2 Test for replication of previous findings 

In addition to addressing the main hypothesis of the present paper, the data also allowed 

the testing for replication of previous findings (Díaz et al., 2012; Mihai et al., 2019; von 

Kriegstein et al., 2008), i.e., a test for a main effect of task (speech - speaker) in left and right 

MGB and a test for a correlation between speech recognition performance and main effect 

of task across participants in the left MGB. 

Main effect of task:  Consistent with previous reports (Díaz et al., 2012; von Kriegstein et al., 

2008) there was a large positive main effect for the speech - speaker task in the left vMGB 

ranging from a small to a very large effect (g* = 0.679 [0.192, 1.200]; Figure 4 A & B).  In the 

right vMGB, the main effect of task was small and the HPD overlapped 0 (g*=0.295 [-0.290, 

0.882]). 
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Figure 4. Main effect of task in the left vMGB. A. Statistical parametric map of the main effect 
of task (yellow-red colour code) overlaid on a mean T1 image: speech task – speaker task. 
Crosshairs point to MNI coordinate (-12, -27, -7). The white outline shows the boundary of the 
vMGB mask. The orientation of the images is the same as in Figure 3A/B. B. Results of the 
Bayesian analysis of the parameter estimates for the main effect of task. There was a large 
effect size for the contrast speech – speaker task of 0.679 [0.192, 1.200]. The HPD excluded 
zero. 

 

Correlation between main effect of task and speech recognition performance: There was no 

significant correlation between the task-dependent modulation (i.e., parameter estimates 

for the contrast of speech - speaker) and the correct proportion of hits in the speech task; 

the effect size was very small and non-significant (mean Pearson’s r = 0.15, p = 0.566; 

Figure S1A). A positive correlation between task-dependent modulation of the left MGB and 

speech task performance across participants has been reported in three previous 

experiments (experiments 1 and 2  of von Kriegstein et al. (2008) with n = 16 and n= 17 

participants, (Mihai et al., 2019) with n = 33 participants), but was also not significant in 

one previous study (Díaz et al., 2012, with n = 14 participants). Since the previous studies 

did not include the factor noise, we also computed correlation coefficients between the 

simple main effect of task (speech/clear - speaker/clear task) and the proportion of hits in 

the speech/clear condition. Correlation coefficients were small and non-significant (r=0.03, 

p=0.917; Figure S1B).  

To not wrongly treat variable results across studies as indicating a null-effect (Amrhein et 

al., 2019), we performed a random-effects meta-analysis (Figure 4) to test whether there is 

a meta-analytic significant correlation (speech - speaker task correlated with speech 

accuracy score across participants) across the present and previous studies. We included 

five studies in the meta-analysis: two experiments from von Kriegstein et al., (2008), results 
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from the control participants of Díaz et al. (2012), the experiment described in Mihai et al., 

(2019), and the current study. The meta-analysis yielded an overall effect size (Fisher z) of 

z=0.45 [0.23, 0.66], p<0.001 that corresponds to r=0.42. The direction of the correlation for 

all experiments was positive. The current study had a minimal correlation value that was 

not significant but was positive, thus in the same direction as the other studies. 

 

Figure 4. Meta-analysis of five experiments that investigated the correlation in the MGB 
between the contrast speech - speaker task and the proportion of hits in the speech task across 
participants. Experiment 1 of von Kriegstein et al. (2008) tested a speech - loudness task 
contrast correlated with performance in the speech task (n=16). All other experiments 
included a speech task - speaker task contrast correlated with performance in the speech task 
(i.e., experiment 2 of von Kriegstein et al. (2008) (n=17), the control participants of Díaz et al. 
(2012) (n=14), (Mihai et al., 2019) (n=33), and the current study (n=17)). The meta-analysis 
yielded an overall Fisher z = 0.45 [0.23, 0.66], p<0.001 which corresponds to an r=0.42. The 
area of the squares denoting the effect size is directly proportional to the weighting of the 
particular study when computing the meta-analytic overall score. 

 

We attribute the non-significant correlation between the task-dependent modulation and 

the correct proportion of hits in the speech task in the present study to the fact that ~11% 

of the behavioural data in the speech task had ceiling or near to ceiling responses resulting 

in reduced correlation values (Bland and Altman, 2011). Many of the behavioural values 

were huddled towards the ceiling when plotted against BOLD responses (Figure S1).  This 
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was not the case in previous studies, where there were no ceiling effects in the behavioural 

data (Díaz et al., 2012; Mihai et al., 2019; von Kriegstein et al., 2008). 

 

2.2.4 Exploratory analyses on the inferior colliculus 

In exploratory analyses, we investigated the bilateral inferior colliculus’ (IC) involvement 

during speech processing. The reason for these exploratory analyses were studies using 

auditory brainstem responses (ABR) during passive listening to speech sounds that have 

shown that the quality of speech sound representation (i.e., as measured by the frequency 

following response, FFR) explains inter-individual variability in speech-in-noise recognition 

abilities (Chandrasekaran et al., 2009; Schoof and Rosen, 2016; Selinger et al., 2016; Song et 

al., 2010). These findings indicated that there might be subcortical nuclei beyond the MGB 

that are involved in speech-in-noise perception, potentially also sources in the auditory 

brainstem, particularly the IC (Chandrasekaran and Kraus, 2010b). Four previous fMRI 

experiments, however, have shown that there is no significant task-dependent modulation 

(i.e., higher BOLD responses for a speech in contrast to a control task on the same stimuli) 

of the inferior colliculus (Díaz et al., 2012; Mihai et al., 2019; von Kriegstein et al., 2008). 

Two of them showed a significant positive correlation between the amount of BOLD 

response difference between a speech and a control task in the left IC and the speech 

recognition performance across participants (von Kriegstein et al., 2008), but the others did 

not.  Thus the role of the IC in speech recognition and speech-in-noise recognition is to date 

unclear. In the present data, there was a small effect of task in the left IC (speech - speaker, 

left g*=0.309 [-0.286, 0.902] and right g*= 0.126 [-0.393, 0.646], however, the HPD 

overlapped zero. The task × noise interaction contained no explanatory power (left: 

g*=0.049 [-0.103, 0.202], right: g*=-0.010 [-0.136, 0.111]) and introduced overfitting. We, 

therefore, excluded it from the model, and the reported results were computed from the 

model without an interaction term. 

The correlation between the task-dependent modulation (i.e., speech - speaker task 

contrast) and the speech recognition scores across participants in the left IC was not 

significant in the current study (r=0.44, p=0.074). We tested the left IC only since the 

correlations found in two previous experiments were restricted to the left IC (von 
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Kriegstein et al., 2008 experiment 1 and 2). We performed a random-effects meta-analysis 

to test whether there is, nevertheless, a consistent correlation effect in the left IC across 

studies. We included five studies in the meta-analysis: two experiments from von Kriegstein 

et al., (2008), the control participants of Díaz et al., (2012), the experiment described in 

Mihai et al., (2019), and the current study. The meta-analysis yielded an overall effect size 

(Fisher z) of z=0.36, p<0.001 that corresponds to r=0.35. The direction of the correlation for 

all experiments was positive. 

 

Figure 5. Meta-analysis of five experiments that investigated the correlation in the left IC 
between the contrast speech - speaker task and the proportion of hits in the speech task across 
participants. Experiment 1 of von Kriegstein et al. (2008) tested a speech - loudness task 
contrast correlated with performance in the speech task (n=16). All other experiments 
included a speech task - speaker task contrast correlated with performance in the speech task 
(i.e., experiment 2 of von Kriegstein et al. (2008) (n=17), (Díaz et al., 2012) (n=14), (Mihai et 
al., 2019) (n=33), and the current study (n=17)). The meta-analysis yielded an overall Fisher z 
= 0.36 [0.15, 0.58], p<0.001 which corresponds to an r=0.35. The area of the squares denoting 
the effect size is directly proportional to the weighting of the particular study when computing 
the meta-analytic overall score. 
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3. Discussion 

We showed that the task-dependent modulation of the left hemispheric primary sensory 

thalamus (vMGB) for speech is particularly strong when recognising speech in noisy 

listening conditions in contrast to conditions where the speech signal is clear. This finding 

confirmed our a priori hypothesis which was based on explaining sensory thalamus 

function within a Bayesian brain framework. Exploratory analyses showed that there was 

no influence of noise on the responses for the contrast between speech and speaker task in 

the auditory midbrain, i.e., the inferior colliculi (IC). Besides answering our main 

hypothesis, we also provided three additional key findings. First, we replicated results from 

previous experiments (Díaz et al., 2012; von Kriegstein et al., 2008) that showed task-

dependent modulation in the MGB for speech, and localised the task-dependent modulation 

in the vMGB (Mihai et al., 2019). Second, a meta-analysis of five studies showed that there 

was a positive correlation between the task-dependent modulation for speech in the left 

MGB and behavioural performance in the speech task across studies. Third, the same meta-

analysis revealed a positive correlation between the task-dependent modulation for speech 

and the behavioural performance in the speech recognition task in the left IC.  

Our main hypothesis in the present paper was based on the assumption that predictive 

coding might be a governing principle of how the human brain deals with background noise 

during speech recognition. Bayesian approaches to brain function propose that the brain 

uses internal dynamic models to predict the trajectory of the sensory input (Friston, 2005; 

Friston and Kiebel, 2009; Kiebel et al., 2008; Knill and Pouget, 2004).  Thus, slower 

dynamics of the internal dynamic model (e.g., syllable and word representations) could be 

encoded by auditory cerebral cortex areas (Davis and Johnsrude, 2007; Giraud et al., 2000; 

Hickok and Poeppel, 2007; Mattys et al., 2012; Price, 2012; Wang et al., 2008), and provide 

predictions about the faster dynamics of the input arriving at lower levels of the anatomic 

hierarchy (Kiebel et al., 2008; von Kriegstein et al., 2008). In this view, dynamic predictions 

modulate the response properties of the first-order sensory thalamus to optimise the early 

stages of speech recognition (Mihai et al., 2019). In speech processing, such a mechanism 

might be especially useful as the signal includes rapid dynamics, as predictable (e.g., due to 

co-articulation or learned statistical regularities in words) (Saffran, 2003), and often has to 
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be computed online under conditions of (sensory) uncertainty. Uncertainty refers to the 

limiting reliability of sensory information about the world (Knill and Pouget, 2004). 

Examples include the density of hair cells in the cochlea that limit frequency resolution, the 

neural noise-induced at different processing stages, or – as was the case in the current 

study – background environmental noise that surrounds the stimulus of interest. An 

internal generative model about the fast sensory dynamics (Friston, 2005; Friston and 

Kiebel, 2009; Kiebel et al., 2008; Knill and Pouget, 2004) of speech could lead to enhanced 

stimulus representation in the subcortical sensory pathway and by that provides improved 

signal quality to the auditory cortex. Such a mechanism would result in more efficient 

processing when taxing conditions, such as background noise, confront the perceptual 

system. The interaction between task and noise in the left vMGB is in congruence with such 

a mechanism. It shows that the task-dependent modulation of the left vMGB is increased in 

a situation with high sensory uncertainty in contrast to the situation with lower sensory 

uncertainty. 

Speech-in-noise recognition abilities are thought to rely (i) on additional cognitive 

resources that are recruited when recognising speech-in-noise (reviewed in Peelle, 2018) 

and (ii) on the fidelity of speech sound representation in brainstem nuclei, as measured by 

auditory brainstem response recordings (reviewed in Anderson and Kraus, 2010). For 

example, studies investigating speech-in-noise recognition at the level of the cerebral cortex 

found networks that include areas pertaining to linguistic, attentional, working memory, 

and motor planning (Bishop and Miller, 2008; Salvi et al., 2002; Scott et al., 2004; Wong et 

al., 2008). These results suggest that during speech recognition in challenging listening 

conditions additional cerebral cortex regions are recruited that likely complement the 

processing of sound in the core speech network  (reviewed in Peelle, 2018). The present 

study showed that besides the additional cerebral cortex region recruitment, a specific part 

of the sensory pathway is also modulated during speech-in-noise recognition, the left vMGB.  

Auditory brainstem response (ABR) recordings during passive listening to speech sounds 

have shown that the quality of speech sound representation (i.e., as measured by the 

frequency following response, FFR) explains inter-individual variability in speech-in-noise 

recognition abilities (Chandrasekaran et al., 2009; Schoof and Rosen, 2016; Selinger et al., 
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2016; Song et al., 2010) and can be modulated by attention to speech in situations with two 

competing speech streams (Forte et al., 2017). It is difficult to directly relate the results of 

these FFR studies on participants with varying speech-in-noise recognition abilities 

(Chandrasekaran et al., 2009; Schoof and Rosen, 2016; Selinger et al., 2016; Song et al., 

2010) to the studies on task-dependent modulation of structures in the subcortical sensory 

pathway (Díaz et al., 2012; Mihai et al., 2019; von Kriegstein et al., 2008): they involve very 

different measurement modalities and the FFR studies focus mostly on speech-in-noise 

perception in passive listening designs. One major candidate for the FFR source is the 

inferior colliculus. Particularly for speech, the FFR, as recorded by EEG, seems to be 

dominated by brainstem and auditory nerve sources (Bidelman, 2018; reviewed in 

Chandrasekaran et al., 2014). The results of the present study, however, do not provide 

evidence for a specific involvement of the inferior colliculus when recognising speech-in-

noise. Whether the inferior colliculus plays a different role in speech-in-noise processing is 

an open question. 

We speculate that the task-dependent vMGB modulation might be a result of feedback from 

cerebral cortex areas. The strength of the feedback could be enhanced when speech has to 

be recognised in background noise. The task-dependent feedback may emanate directly 

from primary auditory or association cortices, or indirectly via other structures such as the 

reticular nucleus with its inhibitory connections to the MGB (Rouiller and de Ribaupierre, 

1985). Feedback cortico-thalamic projections from layer 6 in A1 to the vMGB, but also from 

association cortices such as the motion-sensitive planum temporale (Tschentscher et al., 

2019), may modulate information ascending through the lemniscal pathway, rather than 

convey information to the vMGB (Lee, 2013; Llano and Sherman, 2008). 

Difficulties in understanding speech-in-noise accompany developmental disorders like 

autism spectrum disorder, developmental dyslexia, and auditory processing 

disorders (Alcántara et al., 2004; Bellis and Bellis, 2015; Chandrasekaran et al., 2009; 

Schelinski and Kriegstein, 2019; Schoof and Rosen, 2016; Wong et al., 2009; Ziegler et al., 

2009). In the case of developmental dyslexia, previous studies have found that 

developmental dyslexics do not have the same amount of task-dependent modulation of the 

left MGB for speech recognition as controls (Díaz et al., 2012) and also do not display the 
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same context-sensitivity of brainstem responses to speech sounds as typical 

readers (Chandrasekaran et al., 2009). In addition, diffusion-weighted imaging studies have 

found reduced structural connections between the MGB and cerebral cortex (i.e., the 

motion-sensitive planum temporale) of the left hemisphere in developmental dyslexics 

compared to controls (V5/MT; motion-sensitive planum temporale; Müller-Axt et al., 2017; 

Tschentscher et al., 2019). These deficient structures might account for the difficulties in 

understanding speech-in-noise in developmental dyslexia. Consider distinguishing speech 

sounds like “dad” and “had” in a busy marketplace. For typically developed individuals, 

vMGB responses might be modulated to optimally encode the subtle but predictable 

spectrotemporal cues that enable the explicit recognition of speech sounds. This 

modulation would enhance speech recognition. For developmental dyslexics, however, this 

vMGB modulation may be impaired and may explain their difficulty with speech perception 

in noise (Boets et al., 2007; Díaz et al., 2012; Ziegler et al., 2009).  

In conclusion, the results presented here suggest that the left vMGB is particularly involved 

in decoding speech as opposed to identifying the speaker if there is background noise. This 

enhancement may be due to top-down processes that act upon subcortical sensory 

structures, such as the auditory thalamus, to better predict dynamic incoming signals in 

conditions with high sensory uncertainty.   

4. Materials and Methods 

4.1 Participants 

The Ethics committee of the Medical Faculty, University of Leipzig, Germany, approved the 

study. We recruited 17 participants (mean age 27.7, SD 2.5 years, 10 female; 15 of these 

participated in a previous study: Mihai et al., 2019) from the database of the Max Planck 

Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. The participants were 

right-handed (as assessed by the Edinburgh Handedness Inventory (Oldfield 1971)), and 

native German speakers. Participants provided written informed consent. None of the 

participants reported a history of psychiatric or neurological disorders, hearing difficulties, 

or current use of psychoactive medications. Normal hearing abilities were confirmed with 
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pure tone audiometry (250 Hz to 8000 Hz; Madsen Micromate 304, GN Otometrics, 

Denmark) with a threshold equal to and below 25 dB). To exclude possible undiagnosed 

developmental dyslexics, we tested the participant’s reading speed and reading 

comprehension using the German LGVT: 6-12 test (Schneider et al., 2007). The cut-off for 

both reading scores was set to those levels mentioned in the test instructions as the “lower 

average and above” performance range (i.e., 26% - 100% of the calculated population 

distribution). None of the participants performed below the cut off performance (mean 

68.7%, SD 20.6%, lowest mean score: 36%). In addition, participants were tested on rapid 

automatized naming (RAN) of letters, numbers, and objects (Denckla and Rudel, 1976). The 

time required to name letters and numbers predicts reading ability and is longer in 

developmental dyslexics compared with typical readers, whereas the time to name objects 

is not a reliable predictor of reading ability in adults (Semrud-Clikeman et al., 2000). 

Participants scored well within the range of control participants for letters (mean 17.25, SD 

2.52 s), numbers (mean 16.79, SD 2.63 s), and objects (mean 29.65, SD 4.47 s), based on 

results from a previous study (Díaz et al., 2012, letters: 16.09, SD 2.60; numbers: 16.49, SD 

2.35; objects: 30.84, SD 5.85; age of participants was also comparable 23.5, SD 2.8 years ). 

Furthermore, none of the participants exhibited a clinically relevant number of traits 

associated with autism spectrum disorder as assessed by the Autism Spectrum Quotient 

[AQ; mean: 15.9, SD 4.1; cut-off: 32-50; (Baron-Cohen et al., 2001)]. We tested AQ as autism 

can be associated with difficulties in speech-in-noise perception (Alcántara et al., 2004; 

Groen et al., 2009). Participants received monetary compensation for participating in the 

study. 

 

4.2 Stimuli 

We recorded 79 different vowel-consonant-vowel (VCV) syllables with an average duration 

of 784 ms, SD 67 ms. These were spoken by one male voice (age 29 years), recorded with a 

video camera (Canon Legria HFS10, Canon, Japan) and a Røde NTG-1 microphone (Røde 

Microphones, Silverwater, NSW, Australia) connected to a pre-amplifier (TubeMP Project 

Series, Applied Research and Technology, Rochester, NY, USA) in a sound-attenuated room. 
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The sampling rate was 48 kHz at 16 bit. Auditory stimuli were cut and flanked by Hamming 

windows of 15 ms at the beginning and end, converted to mono, and root-mean-square 

equalised using Python 3.6 (Python Software Foundation, www.python.org). The 79 

auditory files were resynthesized with TANDEM-STRAIGHT (Banno et al., 2007) to create 

three different speakers: 79 auditory files with a vocal tract length (VTL) of 17 cm and 

glottal pulse rate (GPR) of 100 Hz, 79 with VTL of 16 cm and GPR of 150 Hz, and 79 with 

VTL of 14 cm and GPR of 300 Hz. This procedure resulted in 237 different auditory stimuli. 

The parameter choice (VTL and GPR) was motivated by the fact that a VTL difference of 

25% and a GPR difference of 45% suffices for listeners to hear different speaker identities 

(Gaudrain et al., 2009; Kreitewolf et al., 2014). Additionally, we conducted pilot 

experiments (12 pilot participants which did not participate in the main experiment) in 

order to fine-tune the combination of VTL and GPR that resulted in a balanced behavioural 

accuracy score between the speech and speaker tasks. The pilot experiments were 

conducted outside the scanner, and each run included continuous recordings of scanner 

gradient noise to simulate a real scanning environment. 

The 237 stimuli were embedded in background noise to create the stimuli for the condition 

with background noise. The background noise consisted of normally distributed random 

(white) noise filtered with a speech-shaped envelope. We calculated the envelope from the 

sum of all VCV stimuli presented in the experiment. We used speech-shaped noise as it has a 

stronger masking effect than stationary random non-speech noise (Carhart et al., 1975). 

Before each experimental run, the noise was computed and added to the stimuli included in 

the run with a signal-to-noise ratio (SNR) of 2 dB. The SNR choice was based on a pilot 

study that showed a performance decrease of at least 5% but no greater than 15% between 

the clear and noise condition. In the pilot study, we started at an SNR of -10 dB and 

increased this value until we converged on an SNR of 2 dB. Calculations were performed in 

Matlab 8.6 (The Mathworks Inc., Natick, MA, USA) on Ubuntu Linux 16.04 (Canonical Ltd., 

London, UK). 
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4.3 Procedure 

We conceived the experiment as a 2 × 2 factorial design with the factors task (speech, 

speaker) and background noise (clear, noise). Participants listened to blocks of auditory 

VCV syllables and were asked to perform two types of tasks: a speech task and a speaker 

task. In the speech task, participants reported via button press whether the current syllable 

was different from the previous one (1-back task). In the speaker task, participants 

reported via button press whether the current speaker was different from the previous one. 

The blocks had either syllables with background noise (noise condition) or without 

background noise (clear condition). 

Task instructions were presented for two seconds before each block and consisted of white 

written words on a black background (German words “Silbe” for syllable, and “Person” for 

person). After the instruction, the block of syllables started (Figure 1). Each block contained 

twelve stimuli. Each stimulus had a duration of approximately 784 ms, and the stimulus 

presentation was followed by 400 ms of silence. Within one block both syllables and 

speakers changed at least twice, with a theoretical maximum of nine changes. The 

theoretical maximum was derived from random sampling of seven instances from three 

possible change types: no change, speech change, speaker change, and change of speech and 

speaker. The average length of a block was 15.80 seconds, SD 0.52 seconds.  

The experiment was divided into four runs. The first three runs had a duration of 12:56 min 

and included 40 blocks: 10 for each of the four conditions (speech task/noise, speaker 

task/noise, speech task/clear, speaker task/clear). A fourth run had a duration of 6:32 min 

and included 20 blocks (5 for each of the four conditions). For two participants, only the 

first three runs were recorded due to time constraints. Participants could rest for one 

minute between runs. 

Participants were familiarised with the three speakers’ voices to ensure that they could 

perform the speaker-identity task of the main experiment. The speaker familiarisation took 

place 30 minutes before the fMRI experiment. It consisted of a presentation of the speakers 

and a test phase. In the presentation phase, the speakers were presented in six blocks, each 

containing nine pseudo-randomly chosen VCV stimuli from the 237 total. Each block 
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contained one speaker-identity only. Participants were alerted to the onset of a new 

speaker identity block by the presentation of white words on a black screen indicating 

speaker 1, speaker 2, or speaker 3. Participants listened to the voices with the instruction to 

memorise the speaker’s voice. In the following test phase participants were presented with 

four blocks of nine trials that each contained randomly chosen syllable pairs spoken by the 

three speakers. The syllable pairs could be from the same or a different speaker. We asked 

participants to indicate whether the speakers of the two syllables were the same by 

pressing keypad buttons “1” for yes and “2” for no. Participants received visual feedback for 

correct (the green flashing German word for correct: “Richtig”) and incorrect (the red 

flashing German word for incorrect: “Falsch”) answers. The speaker familiarisation 

consisted of three 2:50 min runs (each run contained one presentation and one test phase). 

If participants scored below 80% on the last run, they performed an additional run until 

they scored above 80%. All participants exceeded the 80% cut-off value. 

The experiments were programmed in the Matlab Psychophysics Toolbox [Psychtoolbox-

3, www.psychtoolbox.com (Brainard, 1997)] running on Matlab 8.6 (The Mathworks Inc., 

Natick, MA, USA) on Ubuntu Linux 16.04 (Canonical Ltd., London, UK). The sound was 

delivered through a MrConfon amplifier and headphones (manufactured 2008; MrConfon 

GmbH, Magdeburg, Germany). 

 

4.4 Data Acquisition and Processing 

MRI data were acquired using a Siemens Magnetom 7 T scanner (Siemens AG, Erlangen, 

Germany) with an 8-channel head coil. We convened on the 8-channel coil, due to its 

spaciousness which allowed the use of higher quality headphones (manufactured 2008; 

MrConfon GmbH, Magdeburg, Germany). Functional MRI data were acquired using echo-

planar imaging (EPI) sequences. We used partial brain coverage with 30 slices. The volume 

was oriented in parallel to the superior temporal gyrus such that the slices encompassed 

the MGB, the inferior colliculi (IC), and the Heschl’s gyrus. 
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The EPI sequences had the following acquisition parameters: TR = 1600 ms, TE = 19 ms, flip 

angle 65°, GRAPPA (Griswold et al., 2002) with acceleration factor 2, 33% phase 

oversampling, matrix size 88, field of view (FoV) of 132 mm x 132 mm, phase partial 

Fourier 6/8, voxel size 1.5 mm isotropic resolution, interleaved acquisition, anterior to 

posterior phase-encode direction. The first three runs consisted of 485 volumes (12:56 

min), and the fourth run consisted of 245 volumes (6:32 min). During functional MRI data 

acquisition, we also acquired physiological values (heart rate, and respiration rate) using a 

BIOPAC MP150 system (BIOPAC Systems Inc., Goleta, CA, USA).  

To address geometric distortions in EPI images we recorded gradient echo based field maps 

which had the following acquisition parameters: TR = 1500 ms, TE1 = 6.00 ms, TE2 = 7.02 

ms, flip angle 60°, 0% phase oversampling, matrix size 100, FoV 220 mm x 220 mm, phase 

partial Fourier off, voxel size 2.2 mm isotropic resolution, interleaved acquisition, anterior 

to posterior phase-encode direction. Resulting images from field map recordings were two 

magnitude images and one phase difference image. 

Structural images were recorded using an MP2RAGE (Marques et al., 2010) T1 protocol: 

700 µm isotropic resolution, TE = 2.45ms, TR = 5000 ms, TI1 = 900 ms, TI2 = 2750 ms, flip 

angle 1 = 5°, flip angle 2 = 3°, FoV 224 mm × 224 mm, GRAPPA acceleration factor 2, 

duration 10:57 min. 

 

 

4.5 Behavioural Data Analysis 

Button presses (hits, misses) were binomially distributed, and were thus modeled using a 

binomial logistic regression which predicts the probability of correct button presses based 

on four independent variables (speech task/noise, speaker task/noise, speech task/clear, 

speaker task/clear) in a Bayesian framework (McElreath, 2018). 

To pool over participants and runs we modelled the correlation between intercepts and 

slopes. For the model implementation and data analysis, we used PyMC3 3.5 (Salvatier et 

al., 2016), a probabilistic programming package for Python 3.6. We sampled with a No-U-
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Turn Sampler (Hoffman and Gelman, 2014) with four parallel chains. Per chain, we had 

5,000 samples with 5,000 as warm-up. There were the following effects of interest: main 

effects (clear - noise, speech task - speaker task), the interaction (speech task/ noise - 

speaker task/ noise) - (speech task/ clear - speaker task/ clear), simple main effects 

(speech task/ noise - speaker task/ noise, speech task/ clear - speaker task/ clear). For the 

effects of interest, we calculated means from the posterior distributions and 95% highest 

posterior density intervals (HDP). The HPD is the probability that the mean lies within the 

interval (Gelman et al., 2013; McElreath, 2018), this means that we are 95% sure the mean 

lies within the specified interval bounds. If the posterior probability distribution of odds 

ratios does not strongly overlap one (i.e., the HPD excludes one), then it is assumed that 

there is a detectable difference between conditions (Bunce and McElreath, 2017; McElreath, 

2018). 

 

The predictors included in the behavioural data model were: task (xS:1 = speech task, 0 = 

speaker task), and background noise (xN: 1 = noise, 0 = clear). We also included the two-way 

interaction of task and noise condition. Because data were collected across participants and 

runs, we included random effects for both of these in the logistic model. Furthermore, since 

~11% of the data exhibited ceiling effects (i.e., some participants scored at the highest 

possible level) which would result in underestimated means and standard deviations (Uttl, 

2005), we treated these data as right-censored and modeled them using a Potential 

class (Jordan, 1998; Lauritzen et al., 1990) as implemented in PyMC3. This method 

integrates out the censored values using the log of the complementary normal cumulative 

distribution function (Gelman et al., 2013; McElreath, 2018). In essence, we sampled twice, 

once for the observed values without the censored data points, and once for the censored 

values only.  

 

The model is described below. 
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𝐿𝑖,𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝𝑖,𝑗) 

𝑝𝑖,𝑗 = {
𝑝𝑖,𝑗

∗ , for 𝑝𝑖,𝑗
∗ < 𝑐

𝑐, for 𝑝𝑖,𝑗
∗ ≥ 𝑐

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗
∗ ) = 𝐴𝑖,𝑗 + 𝐵𝑆,𝑖,𝑗𝑥𝑆 + 𝐵𝑁,𝑖,𝑗𝑥𝑁 + 𝐵𝑆𝑁,𝑖,𝑗𝑥𝑆𝑥𝑁 , for 𝑖 = 1, . . . , 𝐼; 𝑗 = 1, . . . , 𝐽 

𝐴𝑖,𝑗 = 𝛼 + 𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛼𝑟𝑢𝑛[𝑗] 

𝐵𝑆,𝑖,𝑗 = 𝛽𝑆 + 𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛽𝑆,𝑟𝑢𝑛[𝑗] 

𝐵𝑁,𝑖,𝑗 = 𝛽𝑁 + 𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛽𝑁,𝑟𝑢𝑛[𝑗] 

𝐵𝑆𝑁,𝑖,𝑗 = 𝛽𝑆𝑁 + 𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛽𝑆𝑁,𝑟𝑢𝑛[𝑗] 

[
 
 
 

𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡]
 
 
 

∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

𝛼
𝛽𝑆

𝛽𝑁

𝛽𝑆𝑁

] , 𝑆𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

[

𝛼𝑟𝑢𝑛

𝛽𝑆,𝑟𝑢𝑛

𝛽𝑁,𝑟𝑢𝑛

𝛽𝑆𝑁,𝑟𝑢𝑛

] ∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

𝛼
𝛽𝑆

𝛽𝑁

𝛽𝑆𝑁

] , 𝑆𝑟𝑢𝑛) 

𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡 =

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

𝑅𝑠𝑢𝑏𝑗𝑒𝑐𝑡

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

 

𝑆𝑟𝑢𝑛 =

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

𝑅𝑟𝑢𝑛

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

 

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 

𝛽𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 

𝛽𝑁 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 

𝛽𝑆𝑁 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 
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(𝜎𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡, 𝜎𝑟𝑢𝑛) ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝜎𝑐𝑜𝑟𝑟,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝜎𝑐𝑜𝑟𝑟,𝑟𝑢𝑛 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝑅𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(4, 𝜎𝑐𝑜𝑟𝑟,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 

𝑅𝑟𝑢𝑛 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(4, 𝜎𝑐𝑜𝑟𝑟,𝑟𝑢𝑛) 

I represents the participants and J the runs. The model is compartmentalized into sub-

models for the intercepts and slopes. 𝐴𝑖,𝑗 is the sub-model for the intercept for 

observations 𝑖, 𝑗. Similarly, 𝐵𝑆,𝑖,𝑗 ,  𝐵𝑁,𝑖,𝑗 , and 𝐵𝑆𝑁,𝑖,𝑗 are the sub-models for the speech task – 

speaker task slope, clear-noise slope and the interaction slope, respectively; 𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡/𝑆𝑟𝑢𝑛 

are the covariance matrices for participant/run. 𝑅𝑠𝑢𝑏𝑗𝑒𝑐𝑡/𝑅𝑟𝑢𝑛 are the priors for the 

correlation matrices modelled as LKJ probability densities (Lewandowski et al., 2009). 

Weakly informative priors for the intercept ( 𝛼) and additional coefficients (e.g., 𝛽𝑆), 

random effects for participant and run (𝛽𝑆,𝑠𝑢𝑏𝑗𝑒𝑐𝑡,  𝛽𝑆,𝑟𝑢𝑛), and multivariate priors for 

participants and runs identify the model by constraining the position of 𝑝𝑖,𝑗 to reasonable 

values. Here we used normal distributions as priors. Furthermore, 𝑝𝑖,𝑗 is defined as the 

ramp function equal to the proportion of hits when these are known and below the ceiling 

(c), and set to the ceiling if they are equal to or greater than the ceiling c. 

 

4.6 Functional MRI Data Analysis 

4.6.1 Preprocessing of fMRI data 

The MP2RAGE images were first segmented using SPM’s segment function (SPM 12, version 

12.6906, Wellcome Trust Centre for Human Neuroimaging, UCL, UK, 

http://www.fil.ion.ucl.ac.uk/spm) running on Matlab 8.6 (The Mathworks Inc., Natick, MA, 

USA) in Ubuntu Linux 16.04 (Canonical Ltd., London, UK). The resulting grey and white 

matter segmentations were summed and binarised to remove voxels that contain air, scalp, 

skull and cerebrospinal fluid from structural images using the ImCalc function of SPM. 
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We used the template image created for a previous study (Mihai et al., 2019) using 

structural MP2RAGE images from the 28 participants of that study. We chose this template 

since 15 participants in the current study are included in this image, and the vMGB mask 

(described below) is in the same space as the template image. The choice of this common 

template reduces warping artefacts, which would be introduced with a different template, 

as both the vMGB mask and the functional data of the present study would need to be 

warped to a common space.  The template was created and registered to MNI space with 

ANTs (Avants et al., 2008) and the MNI152 template provided by FSL 5.0.8 (Smith et al., 

2004). All MP2RAGE images were preprocessed with Freesurfer (Fischl et al., 2004; Han 

and Fischl, 2007) using the recon-all command to obtain boundaries between grey and 

white matter, which were later used in the functional to structural registration step. 

Preprocessing and statistical analyses pipelines were coded in nipype 1.1.2 (Gorgolewski et 

al., 2011). Head motion and susceptibility distortion by movement interaction of functional 

runs were corrected using the Realign and Unwarp method (Andersson et al., 2001) in SPM 

12. This step also makes use of a voxel displacement map (VDM), which addresses the 

problem of geometric distortions in EPI caused by magnetic field inhomogeneity. The VDM 

was calculated using field map recordings, which provided the absolute value and the phase 

difference image files, using the FieldMap Toolbox (Jezzard and Balaban, 1995) of SPM 12. 

Outlier runs were detected using ArtifactDetect (composite threshold of translation and 

rotation: 1; intensity Z-threshold: 3; global threshold: 8; 

https://www.nitrc.org/projects/artifact_detect/). Coregistration matrices for realigned 

functional runs per participant were computed based on each participant’s structural image 

using Freesurfer’s BBregister function (register mean EPI image to T1). We used a whole-

brain EPI volume as an intermediate file in the coregistration step to avoid registration 

problems due to the limited FoV of the functional runs. Warping using coregistration 

matrices (after conversion to the ITK coordinate system) and resampling to 1 mm isovoxel 

was performed using ANTs. Before model creation, we smoothed the data in SPM12 using a 

1 mm kernel at full-width half-maximum. 
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4.6.2  Physiological data 

Physiological data (heart rate and respiration rate) were processed by the PhysIO Toolbox 

(Kasper et al., 2017) to obtain Fourier expansions of each, in order to enter these into the 

design matrix (see section 4.6.3 Testing our hypothesis in the left vMGB). Since heartbeats 

and respiration result in undesired cortical and subcortical artefacts, regressing these out 

increases the specificity of fMRI responses to the task of interest (Kasper et al., 2017). These 

artefacts occur in abundance around the thalamus (Kasper et al., 2017). 

 

 

4.6.3 Testing our hypothesis in the left vMGB 

Models were set up in SPM 12 using the native space data for each participant. We modelled 

five conditions of interest: speech task/noise, speaker task/noise, speech task/clear, 

speaker task/clear, and task instruction. Onset times and durations were used to create 

boxcar functions, which were convolved with the hemodynamic response function (HRF) 

provided by SPM 12. The design matrix also included the following nuisance regressors: 

three cardiac, four respiratory, and a cardiac × respiratory interaction regressor. We 

additionally entered the outlier regressors from the ArtifactDetect step. 

Parameter estimates were computed for each condition at the first level using restricted 

maximum likelihood (REML) as implemented in SPM 12. Parameter estimates for each of 

the four conditions of interest (speech task/noise, speaker task/noise, speech task/clear, 

speaker task/clear) were registered to the MNI structural template using a two-step 

registration in ANTs. First, a quick registration was performed on the whole head using 

rigid, affine and diffeomorphic transformations (using Symmetric Normalization, SyN), and 

the mutual information similarity metric. Second, the high-quality registration was confined 

to the volume that was covered by the 30 slices of the EPI images. These volumes include 

the IC, MGB, and primary and secondary auditory cortices. This step used affine and SyN 

transformations and mean squares and neighbourhood cross-correlation similarity 
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measures. We performed the registration to MNI space by linearly interpolating the 

contrast images using the composite transforms from the high-quality registration. 

We extracted parameter estimates for each of the four conditions of interest per 

participant, averaged over all voxels from the region of interest, i.e., the left vMGB. To locate 

the left vMGB, we used the mask from (Mihai et al., 2019), which included 15 of the 17 

participants of the present study. 

We analysed the extracted parameter estimates in a Bayesian framework (McElreath, 

2018). The model was implemented in PyMC3 with a No-U-Turn Sampler with four parallel 

chains. Per chain, we sampled posterior distributions which had 5000 samples with 5000 as 

warm-up. The predictors included in the model were: task (xS: 1 = speech task, 0 = speaker 

task), and background noise (xN: 1 = noise, 0 = clear). We also included the two-way 

interaction of task and noise condition. Because data were collected across participants, it 

was reasonable to include random effects. To pool over participants, we modelled the 

correlation between intercepts and slopes over participants. The interaction model is 

described below. 

 

 

𝐿𝑖 ∼ 𝑇(𝜇𝑖, 𝜈, 𝜆) 

𝜇𝑖 = 𝐴𝑖 + 𝐵𝑆,𝑖𝑥𝑆 + 𝐵𝑁,𝑖𝑥𝑁 + 𝐵𝑆𝑁,𝑖𝑥𝑆𝑥𝑁 , for 𝑖 = 1, . . . , 𝐼 

𝐴𝑖 = 𝛼 + 𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 

𝐵𝑆,𝑖 = 𝛽𝑆 + 𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 

𝐵𝑁,𝑖 = 𝛽𝑁 + 𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 

𝐵𝑆𝑁,𝑖 = 𝛽𝑆𝑁 + 𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 

[
 
 
 

𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡]
 
 
 

∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

𝛼
𝛽𝑆

𝛽𝑁

𝛽𝑆𝑁

] , 𝑆) 
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𝑆 =

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

𝑅

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

 

𝛼 ∼ 𝑇(0,1,3) 

𝛽𝑆 ∼ 𝑇(0,1,3) 

𝛽𝑁 ∼ 𝑇(0,1,3) 

𝛽𝑆𝑁 ∼ 𝑇(0,1,3) 

(𝜎𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝜎𝑐𝑜𝑟𝑟 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 

𝑅 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(4, 𝜎𝑐𝑜𝑟𝑟) 

𝜈 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/29) + 1 

𝜎 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(2) 

𝜆 = 𝜎−2 

I represents the participants. The model is compartmentalized into sub-models for the 

intercepts and slopes. 𝐴𝑖  is the sub-model for the intercept for observations 𝑖. 

Similarly, 𝐵𝑆,𝑖,  𝐵𝑁,𝑖, and 𝐵𝑆𝑁,𝑖 are the sub-models for the speech task -speaker task slope, 

clear-noise slope and the interaction slope, respectively; 𝑆 is the covariance matrix and 𝑅 is 

the prior for the correlation matrix modelled as an LKJ probability density (Lewandowski et 

al., 2009). Weakly informative priors for the intercept ( 𝛼) and additional coefficients 

(e.g., 𝛽𝑆), random effects for participant (𝛽𝑆,𝑠𝑢𝑏𝑗𝑒𝑐𝑡), and multivariate priors for participants 

identify the model by constraining the position of 𝜇𝑖 to reasonable values.  Here we used 

Student’s-T distributions as priors. 

From the model output, we calculated posterior distributions for each condition of interest 

(speech task/noise, speaker task/ noise, speech task/clear, speaker task/clear). Posterior 

distributions, in comparison to point estimates, have the advantage of quantifying 
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uncertainty about each parameter. We summarised each posterior distribution using the 

mean as a point estimate (posterior mean) together with a 95% highest posterior density 

interval (HPD). The HPD is the probability that the mean lies within the interval (Gelman et 

al., 2013; McElreath, 2018), e.g., we are 95% sure the mean lies within the specified interval 

bounds. We computed the following contrasts of interest: interaction (speech task/noise – 

speaker task/noise) – (speech task/clear – speaker task/clear); simple main effects (speech 

task/noise – speaker task/noise), (speech task/clear – speaker task/clear); main effect of 

task (speech task – speaker task).  Differences between conditions were converted to effect 

sizes [Hedges g* (Hedges and Olkin, 1985)]. Hedges g*, like Cohen’s d (Cohen, 1988), is a 

population parameter that computes the difference in means between two variables 

normalised by the pooled standard deviation with the benefit of correcting for small sample 

sizes. Based on Cohen (1988), we interpreted effect sizes on a spectrum ranging from small 

(g* ≈ 0.2), to medium (g* ≈ 0.5), to large (g* ≈ 0.8), and beyond. If the HPD did not overlap 

zero, we considered this to be a robust effect (Bunce and McElreath, 2017; McElreath, 

2018). However, we caution readers that if the HPD includes zero, it does not mean that the 

effect is missing (Amrhein et al., 2019). Instead, we quantify and interpret the magnitude 

(by the point estimate) and its uncertainty (by the HPD) provided by the data and our 

assumptions (Anderson, 2019). 

4.6.4 Test for replication of previous findings: Main effect of task in the left and 
right vMGB 

We tested for replication of previous studies that have found a task-dependent modulation 

(speech - speaker task) in the left and the right MGB (Díaz et al., 2012; von Kriegstein et al., 

2008). To do this we adopted the same procedure as described in section 4.6.3.1. For the 

right vMGB mask we used a mask described in (Mihai et al., 2019). Posterior means and 

95% HPD were used to summarise results.  

4.6.5 Test for replication of previous findings: Correlation between the main 
effect of task and speech recognition performance in the left vMGB 

To test for the correlation between the main effect of task in the BOLD response and the 

speech recognition performance across participants, we performed a Pearson’s correlation 

calculation between the estimated parameters from the Bayesian model across subjects in 
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the left vMGB for the speech - speaker contrast together with the proportion of hits in the 

speech task. Additionally, we performed the correlation between the simple main effect of 

task (speech task/clear – speaker task/clear) and the speech task/clear accuracy score. 

4.6.6 Meta-analysis of the correlation (speech - speaker task correlated with 
speech accuracy score) in the left MGB 

The lack of statistical significance for the correlation between speech - speaker task 

contrast and the proportion of hits in the speech task raised the question whether the 

correlation effect in the left MGB is different from the ones reported previously (Díaz et al., 

2012; Mihai et al., 2019; von Kriegstein et al., 2008). We performed a random-effects meta-

analysis to test whether the lack of task-dependent modulation in the present study was 

different from other studies that have reported a correlation in the MGB. We included five 

studies in the meta-analysis: two experiments from (von Kriegstein et al., 2008), the control 

participants of Díaz et al. (2012), the result of (Mihai et al., 2019), and the current study. 

Pearson correlation values were Fisher-z transformed (Fisher, 1915) to z-values and 

standard errors. These were then entered into a random-effects model that was estimated 

with restricted maximum likelihood using JASP 0.9 (jasp-stats.org). The resulting z-value 

was converted back to a correlation value for easier interpretation. 

 

4.6.7 Analyses of the left inferior colliculus  

To analyse the task × noise interaction and the main effect of task in the bilateral IC we used 

the same analysis procedures as described for the left vMGB (see section 4.6.3 Testing our 

hypothesis in the left vMGB ). As region of interest, we used the IC masks described in 

(Mihai et al., 2019). Furthermore, to analyse the correlation (speech - speaker task 

correlated with speech accuracy score) in the left IC, we followed the same analysis 

procedures as for the left vMGB (see section 4.6.5 Test for replication of previous findings: 

Correlation between the main effect of task and speech recognition performance in the left 

vMGB).  

Additionally, we computed a meta-analysis for the correlation between speech - speaker 

task contrast and the proportion of hits in the speech task in the left IC. We focused on the 
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left IC since previous studies only reported correlations in the left IC (Díaz et al., 2012; von 

Kriegstein et al., 2008). We included correlation coefficients from five studies: four previous 

studies [two experiments from von Kriegstein et al., (2008), the control participants of Díaz 

et al., (2012), one experiment from Mihai et al., (Mihai et al., 2019)] and the current study. 

Díaz et al. (2012) did not report the correlation coefficient in the IC. We took this value from 

the original study data that was part of our research group’s archive. Pearson correlation 

coefficients were Fisher-z transformed (Fisher, 1915) to z-values and standard errors. 

These were then entered into a random-effects model that was estimated with restricted 

maximum likelihood using JASP 0.9 (jasp-stats.org). The resulting z-value was converted 

back to a correlation value for a more straightforward interpretation. 
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Supplementary Material 

 

Figure S1. (A) Correlation between the contrast Speech – Speaker task and the proportion of 

hits in the speech task. (B) Correlation between the contrast speech/clear – speaker/clear task 

and the proportion of hits in the speech/clear task. Orange points denote those participants, 

that scored poorly on the reading speed and comprehension task. Most data points are close to 

the ceiling on the right of the behavioural score.  
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