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Abstract 
 

Initial studies found that individual correlational patterns from resting-state functional 

magnetic resonance imaging studies can accurately identify another scan from that same 

individual. This method is known as “connectotyping” or functional connectome “fingerprinting”. 

We leveraged a unique dataset of 12-30 years old (N=140) individuals who had two distinct 

resting state scans on the same session (Visit 1, V1), and again 12-18 months later (Visit 2, V2; 

henceforth 1.5 years) to assess the sensitivity and specificity of identification accuracy across 

different time scales (same day, 1.5 years apart) and developmental periods (youths, adults).  

We also used multiple statistical methods to identify the connections that enhance fingerprinting 

accuracy. We found that sensitivity and specificity to identify one’s own scan was high (overall 

average AUC: 0.94), and identifiability was significantly higher in the same session (average 

AUC: 0.97) in comparison to the 1.5-year comparison (average AUC:0.91). The level of 

fingerprinting accuracy in youths (average AUC:0.93) was not significantly different from adults 

(average AUC:0.96). Select connections from the Frontoparietal, Default, and Dorsal Attention 

networks enhanced the ability to identify an individual. Finally, we found that identification of 

these features generalized across datasets and use of these features improve fingerprinting 

accuracy in an independent longitudinal data set (N=208). These results provide a framework 

for understanding that features of fingerprinting accuracy are stable from adolescence through 

adulthood. Importantly, these features contribute to one’s uniqueness, suggesting that cognitive 

and default networks play a primary role in establishing one’s connectome.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/812719doi: bioRxiv preprint 

https://doi.org/10.1101/812719
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction  
 

Precision medicine uses fine-grained information about individuals – their specific 

genetic variation, metabolic and health status, age, and so on – to identify risk level for disease, 

potential treatments, and probable treatment responses. This is a significant improvement from 

utilizing deviations from population-based average indicators of pathology, to inform treatment 

and expected treatment response. Precision medicine has been increasingly implemented to 

inform clinical practice in biomedicine, such as cancer and cardiology (Antman and Loscalzo, 

2016; Ramaswami et al., 2018). Psychiatry has lagged behind these advances, in part, due to 

the limited availability of fine-grained information about the workings of the brain. However, 

recent advances in brain functional connectomics have the potential to provide the fine-grained 

level of individualized characterization needed for precision medicine in psychiatry. In the future, 

these methods have potential to inform clinical applications. A first step in this direction is to 

establish approaches that identify accurate, replicable fingerprinting in typical populations and 

importantly, through a developmental period when psychiatric illness typically emerges.  

Accumulating evidence from resting-state functional magnetic resonating imaging 

(rsfMRI) indicates that brain network architecture is highly individualized (Gordon et al., 2017; 

Gratton et al., 2018; Laumann et al., 2015a, 2015b). Specifically, several studies have shown 

that individuals’ patterns from one scan can identify another scan from that same individual at a 

high level of accuracy (Finn et al., 2015; Horien et al., 2019; Miranda-Dominguez et al., 2014). 

This method was is known as “connectotyping” (Miranda-Dominguez et al., 2014) or functional 

connectome “fingerprinting” (Finn et al., 2015). Using neuroimaging data for individual 

characterization has great challenges, however, because the inherent high level of noise in the 

measured signal limits within-subject reliability (Patriat et al., 2013). However, these emerging 

analytics abstract recurrent and unique patterns of brain functional connectivity that may allow 

us to use brain informatics for individualized characterization and inform the personalized 

medicine framework in psychiatry.  
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Here, we aimed to build on initial findings indicating individualized brain functional 

architectonics to characterize how and which brain patterns are unique to an individual and to 

what extent this pattern is stable or changes over time. First, we assessed the sensitivity of 

fingerprinting measures, i.e. the likelihood of obtaining a true positive, and the specificity of 

these measures, i.e. the probability of distinguishing true negatives (Florkowski, 2008; 

Youngstrom, 2014). We wanted to determine if fingerprinting accuracy met a sensitivity and 

sensitivity of ~90%, the minimal values typically required for a method to be considered clinically 

useful (Aamir and Hamilton, 2014; Glaros and Kline, 1988). To determine the specificity and 

sensitivity of fingerprinting, we applied a classification procedure. Scans from the same 

individual were viewed as positive pairs while all of the others were considered negative pairs. 

The area under curve (AUC)-receiver operating characteristics (ROC) curve were utilized as 

performance measurements to identify the sensitivity (true positive rate) and specificity (1-false 

positive rate) of fingerprinting at different thresholds and time scales.  

The majority of psychiatric disorders emerge during adolescence (Paus et al., 2008), a 

period of remarkable neuroplasticity and change (Larsen and Luna, 2018; Luna et al., 2015; 

Murty et al., 2016). Thus, establishing individualized brain markers is important to determine 

fingerprinting in this period and contrast it to that of adults. Moreover, insofar as we are aware, 

there has not yet been a direct comparison of scans completed on the same day versus those 

completed much later (i.e., a year), and to what extent this direct comparison changes or 

remains the same across adolescence. It is possible that the neuroplasticity observed in resting 

state scans during adolescence (e.g., Murty, Calabro et. 2019, Jalbrzikowski et al., 2017) and/or 

motion artifact known to be more predominant in youth (Power et al., 2011; Satterwhaite et al., 

2013); reduces the ability to accurately identify an individual’s scan.  Alternatively, “functional 

fingerprinting”, i.e., identification accuracy of an individual’s resting state scan could be robust to 

these changes.  This is an open question, given the conflicted findings observed in the literature 

(Horien et al., 2019; Kaufmann et al., 2017).  
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We leveraged a unique, two-time point data set that had two resting state scans from the 

same individual conducted on the same day (Visit 1, V1), and two resting state scans from the 

same individual collected on the same day 12-18 months later (Visit 2, V2; henceforth 1.5 

years). We used a principled classification approach to assess the level of sensitivity and 

specificity of fingerprinting accuracy; compared whether it is as stable for the same day as it is 

1.5 years later; and determined if sensitivity and specificity at these different time scales were 

similar in youths and adults. We also used multiple statistical methods to determine connections 

that are “predictive” of individuals’ scans, reflecting one’s uniqueness, and we explored how 

these edges performed in an independent sample.   

Participants 

For the training sample, neuroimaging data were collected on 140 participants (12-30 

years) recruited from the greater Pittsburgh metro area. Participants and their first-degree 

relatives did not have a psychiatric disorder as determined by phone screen and a clinical 

questionnaire. Any reported drug use within the last month, history of alcohol abuse, medical 

illness affecting the central nervous system function, IQ lower than 80, a first-degree relative 

with a major psychiatric disorder, or any MRI contraindications were exclusion criteria.   

To test the generalizability of the predictive edges identified in our training sample, we 

tested the extent to which the previously identified features from each method improved 

fingerprinting accuracy in an independent sample (test sample) with longitudinal data (N=208, 1-

3 visits).  Participant and MR data acquisition information for the test sample is detailed in the 

Supplementary Text and Supplementary Tables S1-S2. 

MR Data Acquisition: Training Sample 

Data were acquired using a Siemens 3 Tesla mMR Biograph with a 12-channel head 

coil. Subjects’ heads were immobilized using pillows placed inside the head coil, and subjects 
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were fitted with earbuds for auditory feedback to minimize scanner noise. For each rsfMRI run, 

we collected eight minutes of resting-state data, eyes open.  Resting state data were collected 

using an echo-planar sequence sensitive to BOLD contrast (T2*). rsfMRI parameters were 

Repetition Time/Echo Time=1500/30.0 ms; flip angle=50°; voxel size = 2.3×2.3×2.3 mm. 

Structural images were acquired using a T1 weighted magnetization-prepared rapid gradient-

echo (MPRAGE) sequence (TR/TE = 2300/2.98 ms; flip angle=9°; voxel size = 1.0×1.0×1.0 

mm). 

Participants completed a unique two-visit scan protocol. In the first visit, individuals 

participated in a MRI protocol (Visit 1, V1) that included two rsfMRI runs (Pre-Task, Post-Task), 

with an fMRI reward learning task (~40 minutes) conducted between these two runs. 

Approximately 1.5 years later, the same individuals returned and completed an identical MRI 

protocol (Visit 2, V2), which also included two rsfMRI runs (Pre-Task, Post-Task) separated by 

the same fMRI task. A visual depiction of the scan protocol, along with the respective names 

given to each run or scan, are presented in Figure 1.  

 

Figure 1.  Visualization of protocol set-up. The colors refer to comparisons that will be made throughout the manuscript 
(oranges: same day comparisons, blues: 1.5 year comparisons). 
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MR Data Acquisition: Test Sample   

Scan parameters for the test sample are detailed in Supplementary text. 

rsfMRI Processing  

Functional images were warped into MNI standard space using a series of affine and 

nonlinear transforms. Normalization based on global mode was then calculated on the functional 

images. Next, all functional images were spatially smoothed using a 5-mm full width at half 

maximum Gaussian kernel. Removal of non-stationary events in the fMRI time series was 

conducted using wavelet despiking (Patel and Bullmore, 2015). To control nuisance-related 

variability (Hallquist et al., 2013), we then conducted simultaneous multiple regression of nuisance 

variables and bandpass filtering at 0.009 Hz  < f < 0.08. Nuisance regressors included were non-

brain tissue (NBT), average white matter signal, average ventricular signal, six head realignment 

parameters obtained by rigid body head motion correction, and the derivatives of these measures. 

NBT, average white matter, and average ventricular signal nuisance regressors were extracted 

using MNI template tissue probability masks (>95% white mater, >98% cerebral spinal fluid, 

(Fonov et al., 2009). ICA-Aroma was implemented to remove motion artifacts (Pruim et al., 2015a, 

2015b). For all subjects, we calculated a quality control measure with respect to head motion, 

namely volume-to-volume frame displacement. Subjects were removed from rsfMRI analyses if 

the average frame displacement across the run was > 0.5mm. The resulting data showed no 

effects of motion by age. 

 

Functional Network Parcellation 

We applied a previously-defined, functional connectome parcellation of 333 functional 

regions of interest (ROIs) across cortical structures (Gordon et al., 2016) to each participant’s 

rsfMRI data (Figure 2A). This parcellation consists of 13 reliable rsfMRI networks, many of which 

have been identified in other studies, including the Frontoparietal, Default, and Visual networks 
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(Glasser et al., 2016; Power et al., 2011; Shen et al., 2013).  See Supplementary Table S3 for a 

list of 13 networks and details about them (for each network: number of nodes, number of within-

connectivity edges, and number of between-connectivity edges). 

 

Figure 2. (A) After resting-state fMRI data were processed, we extracted out the time series from an established parcellation and 
(B) calculated a correlation matrix for each individual and their respective scan visit. (C) For each scan at each visit, we stacked 
a vector from the upper diagonal of the correlation matrix. Each stacked vector represents a scan from one person.  The stacked 
vectors could be a separate scan from the same individual or a separate scan from a different individual.  We computed correlations 
between each vector for all possible pairs and non-pairs. (D) By varying the threshold of the correlation values to determine what 
was a true-or false-positive, we developed ROC curves for each comparison and then used DeLong’s method to compare the ROC 
curves.  (E) We then compared the ROC curves of youths vs. adults for each comparison. 

 

 For each participant, we computed Pearson’s correlation of each ROI’s time series with 

that of every other ROI, producing a 333 x 333 correlation matrix (Figure 2B). The upper diagonal 

of the correlation matrix for each individual was stacked into a vector (55278 edges), and each 

vector was normalized to a mean of zero and variance of one (Figure 2C). We performed this 

procedure for each subject’s rsfMRI run, resulting in four normalized vectors for the majority of 

participants. The correlation between any two of these normalized vectors, 𝑉𝑉 and 𝑈𝑈, was their dot 
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product: 

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(𝑉𝑉,𝑈𝑈) =  �𝑉𝑉(𝑒𝑒)𝑈𝑈(𝑒𝑒)
𝐸𝐸

𝑒𝑒=1

/𝐸𝐸, 

where 𝐸𝐸 is the total number of edges and 𝑒𝑒 is an individual edge. 
 

Identification Accuracy 

Next, we sought a classifier to identify resting state fMRI-measured connectomes that 

“match”; ideally these would be connectomes from the same subject. To do so, we first computed 

the correlation of normalized vectors, 𝑉𝑉 and 𝑈𝑈, for all possible pairs of subjects, as described 

above (Figure 2C). The classifier seeks a threshold t for these correlation values that yields a high 

rate of true positive identification, namely connectomes from the same subject, while minimizing 

the number of false positive identifications, connectomes from different subjects labeled as from 

the same subject. We varied t from interval of zero to one to create a receiver operating 

characteristic (ROC) curve. We then estimated the area under the curve to determine the 

accuracy of the classifier (Figure 2D).  The t that maximized true positive rate-false positive rate 

(TPR-FPR) was chosen for reporting. ROC curves were generated for the entire sample for 1) 

same day identification accuracy (Pre-Task vs. Post-Task) and 2) identification accuracy 1.5 

years apart (V1 vs. V2). To compare identification accuracy for same day vs. 1.5 years later, we 

compared ROC curves to each using DeLong's test for two ROC curves ((DeLong et al., 1988; 

Robin et al., 2011), Figure 2D).  

To determine whether identification accuracy was affected by age, we split the entire 

sample of 12-30 year olds by the median age (20.4 years), considering the participants “youths” 

if they were under the median age (Visit 1 N=70) or “adults” if they were over the median age 

(Visit 1 N=70). We then calculated ROC curves for youths and adults separately for 1) same day 

fingerprinting (Pre-Task vs. Post-Task) and 2) fingerprinting 1.5 years apart (V1 vs. V2). To test 

for significant differences in identification between youths and adults, we used DeLong’s test for 

two ROC curves (Figure 2E).  
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Identification of Predictive Edges 

Next, we sought to determine which edges contribute most to identification accuracy.  We 

took four comparisons for each subject (V1, pre versus post; V2, pre versus post; V1 pre versus 

V2 pre and V1 post versus V2 post) and the same comparisons among pairs (two scans from the 

same subject), resulting in 98790 comparisons (same subject pairs=532, non-pairs=98258). 

Because there was an over-representation of non-pairs (two scans, one from individual s and 

another from individual j) , we used synthetic minority over-sampling technique (Chawla et al., 

2002) and selected 532 pairs and 1596 non-pairs. This method uses Euclidean distance to select 

non-pairs closest to the pairs (Chawla et al., 2002). We then split the data into training (2/3 of the 

data: 355 pairs, 1064 non-pairs) and test sets (1/3 of the data: 177 pairs, 532 non-pairs). For each 

method, described below, we used 5-fold cross validation to identify the number of edges that 

gives the highest AUC. The terms of the dot product (i.e., from 52,278 edges) for each comparison 

were the input features.  

Finn Method: Finn et al. described a method to calculate the most predictive edges (Finn 

et al., 2015). Briefly, consider normalized vectors 𝑉𝑉𝑠𝑠
(1) and 𝑉𝑉𝑠𝑠

(2) from two scans from the same 

individual s and a normalized vector from another individual  𝑗𝑗, 𝑉𝑉𝑗𝑗
(𝑘𝑘). The product of 𝑉𝑉𝑠𝑠

(1)(𝑒𝑒)𝑉𝑉𝑠𝑠
(2)(𝑒𝑒) 

is considered the within-subject edge product. The product of 𝑉𝑉𝑠𝑠
(1)(𝑒𝑒)𝑉𝑉𝑗𝑗

(𝑘𝑘)(𝑒𝑒) is the between-

subject edge product. For each edge 𝑒𝑒, we count the number of times that the within-subject 

product is greater than every between-subject product comparison: 

𝑛𝑛𝑠𝑠(𝑒𝑒) =  � 𝐼𝐼�𝑉𝑉𝑠𝑠
(1)(𝑒𝑒)𝑉𝑉𝑠𝑠

(2)(𝑒𝑒) >  𝑉𝑉𝑠𝑠
(1)(𝑒𝑒)𝑉𝑉𝑗𝑗

(𝑘𝑘)(𝑒𝑒)�
𝑗𝑗≠𝑠𝑠,𝑘𝑘∈{1,2}

+ � 𝐼𝐼�𝑉𝑉𝑠𝑠
(1)(𝑒𝑒)𝑉𝑉𝑠𝑠

(2)(𝑒𝑒) >  𝑉𝑉𝑗𝑗
(𝑘𝑘)(𝑒𝑒)𝑉𝑉𝑠𝑠

(2)(𝑒𝑒)�
𝑗𝑗≠𝑠𝑠,𝑘𝑘∈{1,2}

  

 

where 𝐼𝐼(·) is an indicator function. The “edge power” for one edge, 𝑝𝑝𝑠𝑠(𝑒𝑒), is defined as (𝑛𝑛𝑠𝑠(𝑒𝑒) ) 

divided by the total number of all possible comparisons 𝑁𝑁.  Larger 𝑝𝑝𝑠𝑠(𝑒𝑒) means that there is higher 
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predictive power for edge 𝑒𝑒. We obtained the edge power for each edge e by calculating the sum 

of 𝑝𝑝𝑠𝑠(𝑒𝑒) over all subjects. We then ranked all edges by their edge power (from most predictive to 

least predictive), and we successively decreased the threshold of “most predictive” edges to 

develop the ROC curve. Through cross-validation in the training set, we determined that the 

optimal TPR-FPR rate was when we included the five percent “most predictive” edges. Then, in 

the test data set, we selected only these predictive edges and calculated a correlation between 

each scan and all other scans (sum of the dot product). We then used the correlation threshold 

to develop the ROC curve in the test data set.  

Support Vector-Machine Learning and Elastic Net Regression Methods: Both of these 

methods are common tools for model selection. Here, the goal was to choose a set of predictive 

edges that differentiated same-subject pairs from other pairs. For both methods, the input 

information was the terms of the dot product between two scans. We developed optimal tuning 

parameters in the training data set and obtained weights for the selected edges. Elastic net 

regression was implemented using R package glmnet (Friedman et al., 2009). The support-vector 

machine (SVM) analysis was implemented in R package (sparseSVM, Yi and Zeng, 2018), with 

an elastic net penalty).  We then applied the model developed in the training set to the test data 

set.  By weighting the individual product of the selected edges, we obtained a predicted value, 𝑌𝑌�, 

for which 𝑌𝑌 − 𝑌𝑌� ranges from -1 to 1.  We developed ROC curves by changing the threshold of 

𝑌𝑌 − 𝑌𝑌� to determine what constituted a “pair” in the test data.  

Assessing over-representation of network connectivity in predictive edges 

To identify patterns in the predictive edges for each method identified above, we 

conducted Chi-square tests to assess whether there was over-representation of 1) between (e.g. 

Frontoparietal-Default edges; the off-diagonal edges) or within-network connectivity (e.g., 

Frontoparietal-Frontoparietal edges; the block structure on the diagonal) and 2) specific within-

network connectivity networks, and/or 3) distinct between-network connections. We used the 
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standardized residuals (>3.0) to determine networks that contributed to one’s uniqueness.  

 

Performance of predictive edges in test sample 

 To test the generalizability of the predictive edges identified in our training sample, we 

tested the extent to which the previously identified features from each method improved 

fingerprinting accuracy in an independent sample with longitudinal data (test sample). 

 

Effects of Possible Confounds 

 Because “same day” scans were acquired within the same MRI session, improved same 

day fingerprinting accuracy could be due to better-quality registration from the same scan session. 

A subset of the participants (ages 18-30 years, N=76) participated in an additional scan on the 

same day, but in a different scan session (i.e, the participant came out of the MRI scanner and a 

few hours later participated in another MRI session). This subset of participants participated in a 

position emission tomography study that included an additional MRI scan with each visit. (See 

Supplementary Table S4 for details on this subset of participants.) Classification as detailed 

previously was performed, using the Pre- and Post-task scans at each visit, to predict 

identification accuracy from this additional MRI session.  

Results 

 Participant information for both visits is presented in Table 1. Participant information for 

youth and adult groups are reported in Supplementary Table S5.  

Table 1. Participant Information 
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Same Day vs. 1.5 years later 
 

Across the entire sample, identifiability on the same day was quite high (Average AUC: 

0.94). 

Identification 

accuracy 

between scans 

1.5 years apart 

was also high 

(Average AUC: 

0.91, Figure 3A).  

However, same day accuracy was significantly higher than identification of scans 1.5 years 

apart (Figure 3A, Table 2A).  

Differences in fingerprinting accuracy on the same day compared to scans 1.5 years apart 

were observed for youth (Figure 3B, Table 2B) and adult groups (Figure 3C, Table  2C). 

 

Fingerprinting accuracy of youth vs. adults 
Table 3. A) Same-day fingerprinting accuracy is similar for youth and adults. B) Fingerprinting accuracy 1.5 years apart is 
similar for youth and adults in three out of four comparisons. 

 

Table 2. A) Across the entire sample, same-day identification accuracy was significantly higher than 
identification accuracy 1.5 years apart. The D-value represents the test statistic for the respective 
comparison. This pattern remained when youth (B) and adults (C) were assessed separately. 
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Same day accuracy was not 

statistically different between youths and 

adults. The two groups exhibited similar 

levels of same-day identification accuracy 

(Table 3A).  The same pattern emerged 

when comparing youths and adults on 

fingerprinting accuracy 1.5 years apart for 

three out of four of the comparisons (Table 

3B). ROC Curves are presented in Figure 

3.  

 

All model selection methods tested 

improve identification accuracy in the test 

portion of training sample 

As seen in Figure 4A, the 

fingerprinting accuracy significantly 

improved when we used predictive edges 

selected by the Finn method, SVM, or 

Elastic Net to predict identification 

accuracy.  The three model selection 

techniques performed similarly to one 

another (Supplementary Table S6). Each 

method improved fingerprinting accuracy 

in all previous comparisons but did not 

change results reported above.  

 

Figure 3. A) Across the entire sample, identification accuracy was 
higher for same day (orange) vs. 1.5 years later (blue). This pattern 
remained when youth (B) and adults (C) were assessed separately. 
AUC= Area under the curve, Thr=threshold at which optimal true 
positive rate was obtained. Sen=sensitivity, Spec=specificity 
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Predictive edges from one sample improves accuracy in independent sample 
 

 Similar to previous results (Finn et 

al., 2015; Waller et al., 2017), we found 

lower identification accuracy in a 

longitudinal test sample with more 

“standard” MRI parameters (e.g., longer 

TR, shorter length of scan, fewer number 

of head coils, Figure 4B, pink ROC curve). 

When we applied the most predictive 

edges from previously applied model 

selection techniques, however, 

fingerprinting accuracy significantly 

improved (Figure 4B, Supplementary 

Table S7). When we omitted pairs from 

scans conducted on the same day and 

focused our analyses on identifying 

predictive edges from pairs that were 1.5 

years apart, we obtained the same pattern 

of results (Supplementary Table S8).  The 

weights for predictive edges from Elastic 

Net and SVM are provided in 

Supplementary Tables S9-10.  

Predictive edges are over-represented in Frontoparietal, Default, and Dorsal Attention Networks 
 

Figure 5A-C shows the relative contribution, normalized for number of edges in each 

network (or off/diagonal edge group) and number of edges determined to be predictive by each 

method. Across all methods, in comparison to between-connectivity edges (e.g., Frontoparietal-

Figure 4. A). When edge selection was performed via various 
methods (Finn method (green), Elastic Net (orange), and SVM 
(purple)), identification accuracy was significantly improved in 
comparison to using all edges (pink) for identification accuracy.  B. 
When we applied predictive edges previously identified in the 
training sample to an independent sample, all methods significantly 
improved identification accuracy. 
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Visual connections, Supplementary Table S11), within-connectivity edges (e.g., Frontoparietal-

Frontoparietal connections) were relatively more important in predicting identification accuracy.   

 

Figure 5. A) The ratio of predictive edges to non-predictive edges in each network connection, normalized for total number of 
edges in each connection for the three different methods. Warmer colors on the heatmap indicate that edges from a particular 
network are more important for identification accuracy. B) Within-network connections that are particularly important for 
identification accuracy in all three methods examined. In all methods, within connectivity edges in Frontoparietal (yellow), 
Default (red), and Dorsal Attention (bright green) networks are considered predictive. In the Finn method and SVM, within 
connectivity connections in the Ventral Attention network were also predictive of identification accuracy. C) Between-network 
connections that are particularly important for identification accuracy. The colors around the circle reflect the different networks 
examined. Thicker bands of color indicate a greater number of edges from that particular network were considered predictive. 
The between connectivity edges (lines going across the circle) were randomly chosen from one of the two connected networks 
(e.g., Between network connectivity between the Default and Cingulo-Opercular network is red, but between network 
connectivity between the Default and Ventral Attention network is green).   

More specifically, within-connectivity edges from the frontoparietal, default, and dorsal 

attention networks drove this finding (Figure 5B). With SVM and Elastic Net, edges from the 

Ventral Attention network were also considered important for fingerprinting accuracy. These 
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networks had standardized residuals greater than 3.0 in all comparisons (Supplementary Table 

S12). A similar pattern emerged when we examined same-day and 1.5-year comparisons 

separately (Supplementary Table S13) and youth and adults separately (Supplementary Tables 

S14-15).   

We also examined which between-network connectivity edges were relatively important 

for fingerprinting accuracy. Across all three methods, connections between the Frontoparietal-

Default, Frontoparietal- Dorsal Attention, Ventral Attention-Cingulo-opercular, and 

Frontoparietal-Ventral Attention networks were over-represented in comparison to other 

connections (Figure 5C).  See Supplementary Table S16 for standardized residuals from chi-

square test of between-network connectivity and Supplementary Table S17 for standard 

residuals from chi-square test of over-representation of all network connections. Similar patterns 

emerged when we examined same-day and 1.5-year comparisons separately (Supplementary 

Table S18) and youth and adults separately (Supplementary Table S19).   

Testing Effects of Possible Confounds. 

 
To ensure that the improved same-day accuracy was not because individuals were in the 

same scan session and benefitting from improved MRI registration, we examined a subset of 

individuals (N=76) who completed an additional MRI session on V1 and V2 after being taken out 

of the scanner and repositioned.  Supplementary Table S20 reports similar AUC, threshold levels, 

and sensitivity/specificity for identification accuracy within the same MRI session (V1 Pre-Task 

predicting accuracy of V1-Post-Task) and different MRI session on the same day (e.g., V1 Pre-

Task predicting identification of extra session V1). 

To ensure that our results were not driven by parcellation choice, we also re-ran all 

analyses after extracting ROIs from two separate parcellations (Power et al., 2011; Shen et al., 

2013) and obtained a similar pattern of results. 
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Discussion 
 
 This is the first study to show that identification accuracy of one’s resting state scan – 

how much it reflects a “functional fingerprint” – depends on the amount of time in between 

assessments. We provide supporting evidence that adolescents have similar levels of 

fingerprinting accuracy to adults (Horien et al., 2019; Miranda-Dominguez et al., 2018) and 

extend this literature to show that this pattern is consistent on a same-day visit and visits 1.5 

years apart. Using multiple methods, we also found that a small number of edges, which are 

more likely to be in the Frontoparietal, Default, and Dorsal Attention networks, are consistently 

predictive of an individual’s scan. We identified these edges in a training sample and then used 

these edges to improve identification accuracy in an independent sample.  We propose that 

particular edges in the Frontoparietal, Default, and Dorsal Attention networks contribute to an 

individual’s “uniqueness” and are stable from late childhood through adulthood. These results 

bring us a fuller understanding of the features of identification accuracy, both in terms of stability 

and relative contribution of network components.  

Stability of identification accuracy across time   

Our results indicate a high level of subject identification accuracy even after 18 months. 

although the greater time interval incurred a significant decrease in identification. This result 

provides compelling evidence that there are extant foundational properties to individualized 

resting state network organization that are persistent and specific to each individual. The 

significant degradation in identification after 18 months may reflect inherent changes on the 

level of acquisition beyond issues of registration, which we tested and found to not be a 

contributor. For example, low temporal signal-to-noise ratio is a feature of rsfMRI scans (Noble 

et al., 2017) the reduced fingerprinting accuracy may reflect greater noise between two scans 

as time increases.  Alternatively, or in addition to, the small but significant degradation in 

identification may reflect inherent plasticity in this foundational network organization, particularly 
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with regards to higher-order processing (cognitive networks and DMN) that may be more 

dynamic over the long-term and present across developmental stages.  

 These findings have important implications to understanding stability of physiological or 

psychological status. In support of this notion, individuals at risk for and with psychiatric 

disorders have “reduced stability” or lower identification accuracy in comparison to typically 

developing youth and healthy controls (Kaufmann et al., 2018, 2017). There is also preliminary 

evidence showing that individuals with similar cognitive and behavioral profiles have more 

similar functional connectomes (Biazoli et al., 2017). These initial studies suggest that 

biologically informed methods like individual level connectome fingerprinting accuracy could be 

used to identify those at risk for or with psychiatric disorders. In the future, we plan to use the 

statistical framework laid out in this manuscript to test the specificity and sensitivity of case-

control status with rsfMRI identification accuracy, identifying which edges are responsible for 

psychiatric liability. Furthermore, we plan to assess the extent to which the predictive edges that 

contribute to an individual’s uniqueness are linked to stable, trait-like features of an individual, 

such as personality. 

Networks that Underlie Prediction 

 We found evidence that identification was driven by edges particularly in the 

Frontoparietal, Dorsal attention, and Default mode networks which was present across analytic 

approaches. This is a striking result that identifies networks critical for higher-order cognitive 

processing and endogenous self-referential processing. Thus, these results provide suggestive 

evidence that how we engage foundational cognitive and endogenous processes may 

contribute to demarcating individuality. This finding also has the potential to inform our 

understanding of impaired development in psychopathology that may be particularly 

represented in these precise networks.  
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Identification accuracy is similar in youths and adults 

We did not observe differences in the fingerprinting accuracy between youth and adults, 

for both same day and 1.5-year comparisons. Indeed, others have found that identification 

accuracy is stable in both youth and adults (Horien et al., 2019).  We extend these findings by 

showing accuracy is high both for same day and longer-term (1.5 years) intervals. Furthermore, 

because identification accuracy in both youth and adults was lower across a longer period of 

time and similar edges contributed to same day and 1.5-year identification accuracy, our results 

suggest that this reduction is not due to known developmental changes. There is significant 

cognitive development through adolescence (Steinberg et al., 2005; Murty, Calabro et al., 2016; 

Larsen & Luna, 2018), in the context of evidence for stability at the group level in network 

properties (Hwang et al., 2013; Jalbrzikowski et al., 2019; Marek et al., 2015). The stability in 

identification accuracy across development further supports that implication that network 

properties contain individualized foundational properties that define uniqueness.  

In one case, we did find that youths had significantly worse identification accuracy in 

comparison to adults (Table 3B: 1.5 YR: Pre-task V1 vs. Pre-task V2) when the scans were 1.5 

year apart. However, in three out of four similar relevant comparisons, we did not observe this 

pattern. In this particular comparison (i.e., Pre-Task V1 to Pre-Task V2 ), reduced accuracy in 

these youths was driven by the lower identification accuracy in the pre-task scans: we speculate 

that youths are more variable and excitable when first getting in a scanner, perhaps because 

they have had less experience with life events akin to an MRI scan than do adults. Furthermore, 

we know that identification accuracy is reduced with increased head motion (Horien et al., 

2018), and youth have greater levels of head motion in comparison to adults (Satterthwaite et 

al., 2012).  However, in our sample, we did not see a statistical difference between head motion 

in these two groups and our results remain stable when we use more conservative framewise 

displacement thresholds (<.3). 
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An Improved Statistical Framework for Identification Accuracy 

We show that edges important for identification accuracy are similar across different 

methods used to identify them. Furthermore, predictive edges identified in one sample can be 

applied to an independent sample to improve identification accuracy. The robustness of these 

results demonstrates that only particular edges are important for fingerprinting accuracy. We 

also provide a statistical framework that can be used to assess the clinical utility of identification 

accuracy and to assess specific connections within and among brain networks. Together, our 

work shows that fingerprinting accuracy has some of the features required for use within a 

precision medicine framework. 

Viewing identification accuracy of rsfMRI scans as a classification problem is useful to 

answer questions relevant for precision medicine. To improve early identification and detection 

of those at risk for psychiatric disorders, we need to answer questions such as, do people with 

similar connectivity profiles share common psychiatric features? Or, do those who go on to 

develop a psychiatric disorder have reduced accuracy in identifiability? These questions all fall 

within the realm of a classification problem, and the framework that we use in this paper can be 

applied to relevant data to answer these questions. Indeed, multiple research groups suggest 

that individual-based identification accuracy of resting state scans can be used to improve upon 

the current, non-biological based psychiatric diagnoses (Finn et al., 2015; Miranda Domniguez 

et al 2014). Importantly, the ability to identify networks that drive predictions in psychopathology 

can inform treatment efficacy. 

We believe this statistical framework also improves upon previous methods used in this 

area. Previous methods, for instance, presume there is a “match” for each respective scan in 

the data set (i.e., each individual has at least two scans in the pool of available data) and do not 

consider false positives. Furthermore, given that research shows that identifiability of individuals 

decreases as sample size increases (Waller et al., 2017), it is important to account for sample 

size in the model. Additionally, while many studies show that the identification test metric for 
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individual identifiability is significantly greater than would be expected by chance, it is difficult to 

know how meaningful this metric is when identification accuracy is in the range of ~40-60% 

(e.g., Horien et al., 2019). Thus, in this study we viewed fingerprinting accuracy as a 

classification problem and showed that identification accuracy is within the ranges necessary for 

use in precision medicine.  Finally, we assured that our statistical procedures were both 

replicable and generalizable to an independent data set.  We 1) trained a portion of our data to 

identify predictive edges (i.e., 75% of training data), 2) assessed the performance of the training 

set in a test portion of the training data (i.e., 25% of training data), and 3) determined the 

generalizability of our results in a fully-independent sample (test data).    

Limitations 

 As with any study, there are limitations present in our design.  First, we split our sample 

by the median age and identified the two groups as “youths” and “adults” and this approach 

could obscure subtle differences in identification accuracy that occur across adolescent 

development.  We chose this approach because identification accuracy increases with smaller 

sample sizes, and our sample size would be quite small if we split our sample into more age 

groups, as we have done in previous publications. Another approach could be to view age as a 

continuous variable; however, this imposes a strong linear assumption, when we know that 

development through adolescence is curvilinear in nature as stability is reached. In the future, 

examining identification accuracy in large samples of youth (i.e., the Adolescent Brain Cognitive 

Development Study, Casey et al., 2018) in comparison to large samples of adults (e.g., Human 

Connectome Project, Van Essen et al., 2013) may prove to be the most fruitful in terms of more 

fully understanding identification accuracy across development.  

 Conclusions and Future Directions 

 In this study, we showed that identification accuracy is high in both youths and adults 

even after extended periods of time. Importantly, our results suggest that networks properties 

may have an individualized foundational characterization that may be inherent to individuation 
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with some room for flexibility in expression. Given these implications and the sensitivity and 

specificity of this approach, it supports the ability to move forward into precision medicine in 

psychiatry. We foresee that simultaneously incorporating both group similarities and individual 

differences into identification accuracy will become the sine qua non for identifying those at risk 

for psychiatric disorders.   
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