
 

Crowdsourcing   neuroscience:   inter-brain   coupling   during   face-to-face  

interactions   outside   the   laboratory  

 

Suzanne   Dikker   * ,†,1,2 ,   Georgios   Michalareas    †,3 ,   Matthias   Oostrik,   Amalia   Serafimaki    4 ,   Hasibe  

Melda   Kahraman    2 ,   Marijn   E.   Struiksma    1 ,   David   Poeppel    2,3  

 

1    Department   of   Language   and   Communication,   Utrecht   University,   3512   JK   Utrecht,   The   Netherlands.  
2    Department   of   Psychology,   New   York   University,   New   York,   NY   10003,   USA.  

3    Max   Planck   Institute   for   Empirical   Aesthetics,   60322   Frankfurt   am   Main,   Germany.  
4    The   American   College   of   Greece,   Gravias   Street   GR-153   42   Aghia   Paraskevi   Athens,   Greece  

 

*Correspondence   to   sdikker@gmail.com  

†These   authors   contributed   equally   to   this   work.   
 
Author   contributions    SD   and   MO   designed   the   research;   AS   and   MS   led   data   collection;   GM,   SD,  

and   HK   performed   data   analysis;   SD,   GM,   HK   and   DP   wrote   the   paper.   

 

Keywords   

Hyperscanning,   real-world   neuroscience,   inter-brain   coupling,   brain-to-brain   synchronization,  

oscillations  

 
Acknowledgements     This   research   was   supported   by   the   Netherlands   Organization   for   Scientific   Research  

Award   275-89-018.   The   Mutual   Wave   Machine   was   made   possible   with   support   by   Creative   Industries   Fund   NL,  

TodaysArt,   Marina   Abramovic   Institute,   de   Hersenstichting,   Lowlands   Science,   Utrecht   University,   and   NEON.  

Design,   tech   &   production:    Peter   Burr ,    Danielle   Boelling,   Diederik   Schoorl,   Jean   Jacques   Warmerdam,   Matthew  

Patterson   Curry,   Pandelis   Diamantides;    Data   collection   and   management :    Annita   Apostolaki,   Dana   Bevilacqua,  

Shaista   Dhanesar,   Imke   Kruitwagen,   Eletta   Daemen ,   Orsa   Rebouskou,   Stella   Papazisi,   Aspa   Papazisi,    Karlijn  

Blommers,   Sascha   Couvee,   Ella   Bosch,   Jorik   Geutjes,   Chris   van   Run.   

 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/822320doi: bioRxiv preprint 

https://doi.org/10.1101/822320
http://creativecommons.org/licenses/by-nc/4.0/


Dikker*,   Michalareas*,   Oostrik,   Serafimaki,   Kahraman,   Struiksma,   Poeppel.    Crowdsourcing   Neuroscience  

ABSTRACT  

When   we   feel   connected   or   engaged   during   social   behavior,   are   our   brains   in   fact   “in   sync”   in   a  

formal,   quantifiable   sense?   Most   studies   addressing   this   question   use   highly   controlled   tasks  

with   homogenous   subject   pools.   In   an   effort   to   take   a   more   naturalistic   approach,   we  

collaborated   with   art   institutions   to   crowd-source   neuroscience   data:   Over   the   course   of   5  

years,   we   collected   electroencephalogram   (EEG)   data   from   thousands   of   museum   and   festival  

visitors   who   volunteered   to   engage   in   a   10-minute   face-to-face   interaction.   Pairs   of   participants  

with   various   levels   of   familiarity   sat   inside   the   Mutual   Wave   Machine—an   artistic  

Brain-Computer   Interface   (BCI)   installation   that   translates   real-time   correlations   of   each   pair’s  

EEG   activity   into   light   patterns.   Because   such   inter-participant   EEG   correlations   are   prone   to  

noise   contamination,   in   subsequent   offline   analyses   we   computed   inter-brain   synchrony   using  

Imaginary   Coherence   and   Projected   Power   Correlations,   two   synchrony   metrics   that   are  

largely   immune   to   instantaneous,   noise-driven   correlations.   When   applying   these   methods   to  

two   subsets   of   recorded   data   with   the   most   consistent   protocols,   we   found   that   pairs’   trait  

empathy,   social   closeness,   engagement,   and   social   behavior   (joint   action   and   eye   contact)  

consistently   predicted   the   extent   to   which   their   brain   activity   became   synchronized,   most  

prominently   in   low   alpha   power   (~7-10   Hz)   and   beta   oscillations   (~20-22   Hz).   These   findings  

support   an   account   where   shared   engagement   and   joint   action   drive   coupled   neural   activity  

and   behavior   during   dynamic,   naturalistic   social   interactions.   To   our   knowledge,   this   work  

constitutes   a   first   demonstration   that   an   interdisciplinary,   real-world,   crowd-sourcing  

neuroscience   approach   may   provide   a   promising   method   to   collect   large,   rich   datasets  

pertaining   to   real-life   face-to-face   interactions.   Additionally,   this   work   is   a   demonstration   of   how  

the   general   public   can   participate   and   engage   in   the   scientific   process   outside   of   the  

laboratory.   Institutions   such   as   museums,   galleries,   or   any   other   organization   where   the   public  

actively   engages   out   of   self-motivation,   can   help   facilitate   this   type   of   “citizen   science”  

research,   and   support   the   collection   of   large   datasets   under   scientifically   controlled  

experimental   conditions.   To   further   enhance   the   public   interest   for   this   type   of   out-of-the-lab  

experimental   approach,   the   data   and   results   of   this   study   are   disseminated   through   a   website  

tailored   to   the   general   public   ( wp.nyu.edu/mutualwavemachine )  
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INTRODUCTION  

Laboratory   research   is   widely   assumed   to   provide   foundational   insights   into   how   our   brains  

process   information   on   an   everyday   basis.   However,   this   model   has   not   been   systematically  

tested:   we   rarely,   if   ever,   conduct   our   research   in   real-world,   everyday   contexts    (Matusz,  

Dikker,   Huth,   &   Perrodin,   2019;   Shamay-Tsoory   &   Mendelsohn,   2019) .   At   the   same   time,   an  

increasing   number   of   studies   emphasize   the   importance   of   face-to-face   social   interaction   to  

our   physical   and   mental   wellbeing   (e.g.,    Kross   et   al.,   2013) .   For   example,   eye   contact   has   long  

been   recognized   as   a   vital   aspect   of   healthy   cognition   and   cognitive   development   (e.g.,  

Tomasello   &   Others,   1995) ,   by   highlighting   cues   that   allow   people   to   coordinate   social   behavior  

(Sebanz,   Bekkering,   &   Knoblich,   2006) .   To   arrive   at   a   more   comprehensive   understanding   of  

the   brain   basis   of   social   interaction,   then,   measuring   communication   ‘live’   is   vital:   realistic  

human   interactions   are   more   complex   and   more   richly   coupled   across   participants/brains   than  

can   be   captured   in   canonical   laboratory   experiments.   

Here,   we   aimed   to    identify   neural   correlates   of   real-world   face-to-face   social   interactions   in   a  

large   population   of   participants   recruited   outside   of   the   traditional   research   subject   pool  

(typically   university   undergraduate   students ) .   The     homogeneity   of   scientific   study   participants  

is   increasingly   considered   problematic   with   respect   to   the   generalizability   of   research   findings  

(Falk   et   al.,   2013;   Henrich,   Heine,   &   Norenzayan,   2010;   LeWinn,   Sheridan,   Keyes,   Hamilton,   &  

McLaughlin,   2017) .   One   option   is   to   make   more   of   an   effort   to   bring   participants   from   the  

general   public   to   the   laboratory;   another   possible   solution   is   to   bring   the   laboratory   to   the  

public.   In   this   work,   we   provide   a   methodological   proof   of   concept   for   the   second   model:   we  

show   that   it   is   feasible   to   c onduct   large-scale   neuroscience   research   ‘in   the   wild’   while  

maintaining   rigor   in   terms   of   both   analysis   and   interpretation.   
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We   capitalized   on   recent   real-world   social   neuroscience   research    (Dikker   et   al.,   2017;  

Bevilacqua   et   al.,   2019;   Bhattacharya,   2017;   Dikker,   Montgomery,   &   Tunca,   2019;   Matusz,  

Dikker,   Huth,   &   Perrodin,   2019;   Parada   &   Rossi,   2017) ,   mobile   electroencephalography   (EEG)  

technology    (Debener,   Minow,   Emkes,   Gandras,   &   de   Vos,   2012;   Gwin,   Gramann,   &   Makeig,  

2010) ,   brain-computer-interfaces    (Brunner   et   al.,   2015;   Minguillon,   Lopez-Gordo,   &   Pelayo,  

2017) ,   and   the   so-called   “interactive   turn”   in   social   neuroscience    (De   Jaegher,   Di   Paolo,   &  

Gallagher,   2010) .   In   recent   years,   there   has   been   a   surge   of   studies   that   compare   brain   activity  

between    participants   instead   of   using   a   stimulus-brain   approach   (e.g.,    Dumas,   Nadel,  

Soussignan,   Martinerie,   &   Garnero,   2010;   Hasson,   Nir,   Levy,   Fuhrmann,   &   Malach,   2004 ;   for  

reviews   see   e.g.,    Babiloni   &   Astolfi,   2014;   Hasson,   Ghazanfar,   Galantucci,   Garrod,   &   Keysers,  

2012;   Liu   et   al.,   2018;   Sänger,   Lindenberger,   &   Müller,   2011) .   Concretely,   we   used   a  

‘crowdsourcing   neuroscience’   approach   in   which,   over   the   course   of   five   years,   museum   and  

festival   visitors   were   invited   to   participate   in   research   as   part   of   their   audience   experience.    We  

identified   a   set   of   characteristics   that   were   deemed   socially   relevant   (social   closeness,   social  

behavior,   mental   states,   and   personality   traits)   and   asked   whether   these   attributes   affected  

inter-brain   synchrony between   two   people   during   naturalistic   face-to-face   interaction. Crucially,  

we   not   only   sought   to   identify   such   factors,   but   also   whether   they   can   be   dissociated   at   the  

neural   level,   specifically   with   respect   to   different   characteristics   of   brain    oscillations.   Our  

experimental   question   was   made   tangible   and   enticing   to   the   audience   as   follows:   “When   are  

your   brainwaves   literally   “on   the   same   wavelength”?”    
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Figure   1.   Different   possible   sources   of   inter-brain   synchrony  

(A)    External   non-social   stimuli   (top)   and    (E)    social   behavior   (bottom)   provide   exogenous   sources   of  

shared   stimulus   entrainment   and   interpersonal   social   coordination,   respectively,   leading   to   similar   brain  

responses,   i.e.,   inter-brain   synchrony.    (B)    Both   individuals’   social   closeness   and   personality   traits   (e.g.,  

affective   empathy)   are   expected   to   affect   their   social   engagement   during   the   interaction,   and   thus   the  

extent   to   which   their   brain   responses   become   synchronized.    (C)    participants’   mental   states   (e.g.,   focus)  

are   similarly   expected   to   affect   participants’   engagement   with   each   other,   intrinsically   (endogenously)  

motivate   participants   to   make   an   effort   to   connect   to   each   other.    (D)    Such   engagement   can   be  

“boosted”   via   extrinsic   motivation,   which   should   subsequently   lead   to   increased   inter-brain   synchrony.   

 

Recent   research   has   identified   a   number   of   predictors   of   inter-brain   synchrony   (e.g.,    Astolfi   et  

al.,   2010;   Bevilacqua   et   al.,   2018;   Dikker,   Silbert,   Hasson,   &   Zevin,   2014;   Dikker   et   al.,   2017;  

Hasson   et   al.,   2004;   Konvalinka   et   al.,   2014;   Nummenmaa   et   al.,   2012;   Parkinson,   Kleinbaum,  

&   Wheatley,   2018;   Pérez,   Dumas,   Karadag,   &   Duñabeitia,   2018;   Stephens,   Silbert,   &   Hasson,  

2010) .   Figure   1   illustrates   the   factors   under   investigation   here.   
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First,   brain   activity   becomes   synchronized   between   people   when   they   listen   to   or   watch   the  

same   stimulus   (Figure   1a).    Stimulus-induced   synchrony,   however,   need   not   have   social  

sources.    In   the   analysis   described   below,   w e   removed   any   instantaneous   co-variations   in   pairs’  

brain   recordings   before   further   analysis,   with   the   rationale   that   this   would   allow   us   to   evaluate  

whether   social   and   interpersonal   factors   can   explain   inter-brain   synchrony   above   and   beyond  

stimulus-elicited   entrainment:   “Social”   factors   (Figure   1b-e)   arguably involve   high-level  

inferences   and   should   correlate   with   induced   brain   activity   in   higher   brain   areas,   remote   from  

the   stimulus-evoked   responses   of   sensory   cortex,   which   are   more   time-locked   to   the   stimulus  

and   thus   also   between   participants.   This   rationale   is   supported   by   recent   work   in   fMRI   showing  

that   meaningful   inter-brain   correlations   operate   at   different   timescales   in   high   vs.   low-level  

brain   areas,   which   raises   the   possibility   to   use   different   synchrony   metrics   as   tools   to  

distinguish   the   inter-subject   convergence   of   low   vs.   high-level   representations,   where  

socially-relevant   representations   are   arguably   a   subcategory   of   the   latter.  

Socially-induced   behavioral   synchrony   (Figure   1e)   is   prevalent   throughout   our   everyday  

interactions:   consider   pedestrians   navigating   sidewalk   traffic,   conversations,   a   tango   dance,   a  

musical   duet.   Face-to-face   interactions   require   tight   spatio-temporal   coordination   between   their  

participants   at   cognitive    (Pickering   &   Garrod,   2013) ,   perceptual    (Kang   &   Wheatley,   2017) ,   and  

motoric   levels    (Richardson,   Dale,   &   Tomlinson,   2009) .   Such   interpersonal   rhythmic  

coordination   occurs   spontaneously    (Richardson,   Marsh,   Isenhower,   Goodman,   &   Schmidt,  

2007)    and   is   subject   to   individual   differences:   people   with   a   prosocial   orientation   tend   to  

synchronize   more    (Lumsden,   Miles,   Richardson,   Smith,   &   Macrae,   2012) ,   and   children   with  

Autism   Spectrum   Disorder   do   not   engage   in   spontaneous   rhythmic   movement   synchronization  

with   others    (Marsh   et   al.,   2013) .   Perhaps   most   importantly,   synchronized   joint   action   is  
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predictive   of   how   the   interaction   is   experienced.   For   example,   therapists   and   patients   who  

exhibit   more   synchronized   motion   during   a   therapy   session,   report   higher   therapeutic  

satisfaction    (Koole   &   Tschacher,   2016;   Ramseyer   &   Tschacher,   2011) .   Synchronous   biological  

rhythms   have   also   been   linked   to   social   behavior   in   a   meaningful   way,   ranging   from   heart   rate  

and   respiration    (Müller   &   Lindenberger,   2011;   Noy,   Levit-Binun,   &   Golland,   2015;   Thorson,  

West,   &   Mendes,   2018;   Waters,   West,   Karnilowicz,   &   Mendes,   2017) ,   to   brain   responses:   For  

example,   synchronous   resting   state   fMRI   activity   between   children   and   their   caregivers   is  

predictive   of   their   relationship    (Lee,   Miernicki,   &   Telzer,   2017) ,   and   friends   show   more   similar  

neural   responses   to   video   clips    (Parkinson   et   al.,   2018) .   

We   expected   both   participants’   social   personality   traits   (e.g.,   affective   empathy)   and   pairs’  

social   closeness   to   affect   their   mutual   social   engagement,   and   thus   the   extent   to   which   their  

brain   responses   become   synchronized.   Past   research   has   already   demonstrated   that  

interpersonal   factors   affect   inter-brain   synchrony.   For   example,   collaborative   attitudes   lead   to  

higher   inter-brain   synchrony   than   competitive   behavior    (Cui,   Bryant,   &   Reiss,   2012)    as   do  

social   closeness   and   empathic   personality   (e.g.,    Bevilacqua   et   al.,   2019;   Dikker   et   al.,   2017;  

Goldstein,   Weissman-Fogel,   Dumas,   &   Shamay-Tsoory,   2018;   Kinreich,   Djalovski,   Kraus,  

Louzoun,   &   Feldman,   2017) .   

Mental   states   such   as   engagement/focus   level   (Figure   1c)   have   also   been   shown   to   affect  

inter-brain   synchrony    (Bevilacqua   et   al.,   2019;   Dalton   et   al.,   2005;   Dikker   et   al.,   2017;   Dumas,  

Chavez,   Nadel,   &   Martinerie,   2012;   Goldstein   et   al.,   2018;   Kylliäinen   et   al.,   2012;   Petroni   et   al.,  

2017;   Scott-Van   Zeeland,   Dapretto,   Ghahremani,   Poldrack,   &   Bookheimer,   2010) .   Such  

engagement   can   arguably   be   “boosted”   via   extrinsic   motivation   (Figure   1d),   which   should  

subsequently   lead   to   increased   inter-brain   synchrony.   
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We   manipulated   extrinsic   motivation   using   the   Mutual   Wave   Machine    (Dikker,   Montgomery   &  

Tunca,   2019) ,   a   dome-like   BCI/neurofeedback   environment   that   immerses   participants   in   a  

real-time   audio-visual   (AV)   reflection   of   the   extent   to   which   their   EEG   signals   are  

instantaneously   correlated   in   one   or   more   frequency   bands   (Figure   2).   We   hypothesized   that  

this   would   motivate   participants   to   remain   socially   engaged   with   each   other   for   the   duration   of  

the   interaction   (Figure   1d).    To   test   this,   we   asked   whether   explicitly   informing   participants   that  

the   audio-visual   (A/V)   environment   reflected   their   ongoing   correlated   EEG   signal   resulted   in   a  

“self-fulfilling   prophecy”   of   sorts:   If   you   think   you   are   receiving   real-time   audio-visual   feedback  

about   how   in   sync   you   are   with   your   partner,   will   that   actually   positively   affect   your   ongoing  

inter-brain   synchrony?   

As   detailed   in   the   Methods,   it   is   important   to   note   that   ‘brain   synchrony’   as   reflected   in   the  

Mutual   Wave   Machine   is   likely   very   prone   to   noise   contamination,   rendering   it   difficult   to   draw  

meaningful   conclusions   about   participants’   veridical   brain   synchrony   based   on   their   real-time  

A/V   environment.   Participants   were   explicitly   informed   of   this   limitation   and   were   told   that   a  

subsequent   offline   scientific   analysis   would   be   applied   to   their   data.    A   second   limitation   is   that  

the   real-time   brain   synchrony   involved   the   computation   of   instantaneous   correlations   between  

narrow-band   versions   of   short   portions   of   the   EEG   recorded   signals.   As   a   result,   high  

correlation   values   due   to   chance   are   more   likely   than   when   broadband   signal   correlations   are  

used   (see   Methods   for   a   more   detailed   description).   

To   circumvent   these   issues,   we   used   two   different   metrics   to   compute   non-instantaneous  

inter-brain   synchrony:    projected   power   correlations    and    imaginary   coherence .   While   imaginary  

coherence   provides   a   quantitative   characterization   of   whether   oscillations   within   specific  

frequency   ranges   show   consistent   phase   relationships   between   pairs   of   participants;   projected  
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power   correlations   quantify   the   extent   to   which   power   in   a   specific   frequency   co-fluctuates  

between   pairs.   Second,   as   explained   in   detail   in   the   Methods,   projected   power   correlations   and  

imaginary   coherence   are   especially   suited   for   noisy   recording   environments,   such   as  

museums    (Cruz-Garza   et   al.,   2017) ,   because   the   common   signal   between   individual  

recordings   (or:   instantaneous   co-fluctuations)   is   removed   before   computing   brain   synchrony.   In  

other   words,   any   electrical   noise   or   sensory   cortex   activity   driven   by   strong   audio-visual   input  

can   only   minimally   affect   the   estimated   brain   synchrony.   This   is   especially   important   in   the  

current   setup   because   participants   were   surrounded   by   electronic   equipment   and   strong  

audio-visual   stimulation   originating   from   the   art   exhibition.   We   additionally   circumvented  

spurious   effects   of   environmental   noise   on   brain   synchrony   by   adopting   a   strict   brain-behavior  

correlational   analysis   approach.   

To   summarize,   in   this   study,   pairs   of   participants   interacted   semi-naturally   while   seated  

facing   each   other,   allowing   us   to   investigate   how   the   extent   to   which   brain   activity   becomes  

synchronized   between   dyads   during   face-to-face   social   interaction   relates   to   participants’   (a)  

relationship   (relationship   duration   and   social   closeness;    Aron,   Aron,   &   Smollan,   1992) ,   (b)  

affective   personality   traits   (Personal   Distress   and   Perspective   Taking;    Davis   &   Others,   1980) ,  

(c)   mental   states   (positive   affect,   negative   affect,   and   focus;    (Watson   &   Clark,   1994) ,   and   (d)  

motivation   (real-team   audio-visual   brain   synchrony   feedback;    Dikker,   Montgomery,   &   Tunca,  

2019) ,   To   address   these   questions,   we   used   an   interactive   art/science   experience   that   allowed  

us   to   collect   neural   activity   using   portable   electroencephalography   (EEG)   from   large   numbers  

of   museum   and   festival   visitors   at   a   wide   range   of   recording   sites   (see   Table   S1   for   a   list   of  

recording   sites   and   the   number   of   participants   for   each   site).   This   interactive   art/science   BCI  
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setup   allowed   us   explore   the   limits   and   opportunities   afforded   by   conducting   human   social  

neuroscience   research   outside   of   the   traditional   laboratory   context.    

 

METHODS  

Pairs   of   participants   sat   inside   the   Mutual   Wave   Machine   (Figure   2b)   while   we   recorded   their  

brain   activity   using   14-channel   portable   EMOTIV   EPOC   wireless   EEG   headsets   (see   Figure   2a  

for   specifications,   and   e.g.,    Debener   et   al.,   2012;   Dikker   et   al.,   2017 ,   for   a   validation).  

‘Brainwave   synchrony’   (in   this   case,   instantaneous   band-limited   correlations,   described   below)  

was   translated   into   light   patterns   that   were   projected   onto   the   surface   of   the   installation   (Figure  

2b-d,   see    wp.nyu.edu/mutualwavemachine    for   footage   of   the   installation/setup)   using  

custom-software   developed   in   the   C++   based   OpenFrameworks   library   (openframeworks.cc).   

The   exact   data   processing   pipeline   that   was   used   to   compute   the   inter-EEG   correlations  

that   fed   into   the   visualizations   varied   between   the   locations   listed   in   Table   S1.   For   the   BENAKI  

and   LOWLANDS   datasets   described   here,   the   following   protocol   was   used.   A   moving-window  

of   6   seconds   of   data   (6   *   128   samples)   was   selected   for   real-time   analysis   approximately   30  

times   per   second   (the   exact   window-step   size   varied   slightly   as   a   function   of   the   buffer   size   of  

incoming   samples,   which   typically   ranged   between   4-8   samples   per   buffer).   EEG   data   streams  

from   the   two   participants’   headsets   were   synchronized   using   a   5-second   window,   based   on   the  

time   that   samples   were   received   by   the   analysis   computer,   and   then   filtered   into   typical  

frequency   bands   using   FFTW   ( www.fftw.org ;   delta:   1-4   Hz;   theta:   4-7   Hz;   alpha:   7-12   Hz;   beta:  

12   -30   Hz).   Within   each   frequency   range,   a   sub-window   was   used   to   calculate   Pearson  

correlation   coefficients   for   each   pair   of   sensors   between   headsets   (n   x   n   sensors;   delta:   3   *  

128   window,   0.7   *   128   offset;   theta:   2   *   128,   0.6   *   128   offset;   alpha:   1.1   *   128   window,   0.5   *   128  
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offset;   beta:   0.6   *   128   window,   0.4   *   128   offset).   Both   the   average   across   all   r-values   for   all  

sensor   pairs   and   the   highest   r-value   among   all   sensor   pairs   contributed   to   the   correlation   value  

for   each   frequency   band   (50/50).   The   four   scores   were   then   fed   into   a   visualization   algorithm   in  

which   four   separate   moiré   patterns   were   created,   growing   in   a   circular   motion   from   the   center  

of   each   sphere   as   a   function   of   the   synchrony   value   in   each   frequency   band,   ranging   between  

0-1:   a   score   of   1   was   screen   filling   (Figure   2d-ii)   and   no   visuals   were   projected   if   the   value   was  

0   (Figure   2d-iii).  

Although   this   setup   makes   “brain   synchrony”   intuitive   to   the   general   public,   it   is   highly  

unlikely   that   these   instantaneous   band-limited   correlations   map   onto   inter-brain   synchrony  

between   the   participants   in   a   meaningful   way.   The   main   reason   is   that   in   a   noisy   environment,  

such   as   a   museum,   instantaneous   band-limited   correlations   between   the   2   EEG   devices   are  

likely   to   be   dominated   by   shared   noise   rather   than   shared   social   events.   Additionally,   when  

correlating   2   short   narrow-band   signals,   correlation   values   can   be   artificially   inflated   because  

of   pure   chance.   

As   described   in   the   Procedure,   participants   were   made   aware   of   the   caveats   and   limitations  

of   the   visualization   and   were   discouraged   to   draw   any   meaningful   conclusions   based   on   their  

experience.   Instead,   they   were   told   that   for   analysis,   their   brain   synchrony   would   be  

recomputed   later,   offline,   after   removing   motion   artifacts   and   bad   channels.   They   were   told   that  

once   the   analysis   is   done,   findings   would   be   made   available   on   a   public   website.  
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Figure   2.   The   Mutual   Wave   Machine  

(A)    Hardware   specifications   of   the   EMOTIV   EPOC   EEG   headset,   an   image   of   the   EMOTIV   EPOC   headset   (side  

view),   and   a   top-view   of   the   electrode   locations   (note   that   electrode   placement   may   vary   considerably   between  

participants,   see   e.g.,   Dikker   et   al.,   2017);     (B)    A   pair   of   participants   inside   the   Mutual   Wave   Machine  

experiencing   real-time   inter-brain   synchrony   A/V   feedback.    (C/D)    Inter-brain   correlations   between   two  

participants   wearing   wireless   EEG   headsets   were   computed   in   real   time.   Higher   inter-brain   correlation   values  

correspond   to   more   light   projected   on   each   of   the   surfaces,   with   the   focus   point   behind   each   participant’s   head.  

(See   text   for   details).   
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Participants   &   locations  

EEG   and   questionnaire   data   were   collected   from   a   total   of   4,800   people   across   14   different  

sites   (see   Table   S1).   For   the   purposes   of   this   paper,   data   were   analyzed   only   from   two   sites.  

The   Benaki   Art   Museum   (BENAKI;   Athens,   Greece),   where   the   Mutual   Wave   Machine   was   set  

up   as   part   of   the   Marina   Abramovic   Institute   exhibition   AS   ONE  

(mai.art/as-one-content/2016/2/29/presenting-as-one),   provided   our   most   comprehensive   and  

consistent   dataset   (1,568   participants)   and   provided   the   best   recording   conditions:   the   Mutual  

Wave   Machine   was   exhibited   for   2   months   in   the   same   location,   the   data   were   collected   by   a  

well-trained   and   dedicated   group   of   facilitators   (see   Acknowledgments),   and   there   was   minimal  

environmental   distraction   (at   some   of   the   other   sites,   the   installation   was   placed   in   a   crowded  

environments   with   a   lot   of   environmental   noise   and   distractions   for   both   participants   and  

experimenters).   The   second   recording   site   included   here   is   Lowlands   Science   (LOWLANDS),  

where   230   participants   took   part   in   the   Mutual   Wave   Machine.   

 

Experimental   procedure  

Participants   signed   up   for   timeslots   in   advance,   either   individually   or   in   pairs.   EEG   headsets  

were   applied   while   participants   completed   a   consent   form   (following   Utrecht   University   Institute  

of   Linguistics   study   protocol)   and   pre-experiment   questionnaire   (see   below   for   details).   After  

setup,   participants   were   led   to   the   Mutual   Wave   Machine,   where   they   received   further  

instructions.   

In   the   BENAKI   dataset,   a   subset   of   participants   (n   =   534)   was   explicitly   told   that   the   light  

patterns   reflected   brain-to-brain   synchrony   (explicit   synchrony   A/V),   while   another   group   (n   =  

498)   was   not   (non-explicit   synchrony   A/V).     In   the   LOWLANDS   dataset,   all   pairs   were   told   the  
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purpose   of   the   work   was   to   investigate   the   relationship   between   inter-brain   synchrony   and  

“feeling   in   sync”,   but   half   of   the   participants   were   assigned   to   a   sham   A/V   condition.   For   the  

latter   group,   the   visualizations   were   randomly   generated   instead   of   reflecting   the   true  

correlated   EEG   signal.   An   additional   difference   in   the   LOWLANDS   dataset   was   that,   after   the  

experience,   participants   were   asked   to   list   which   "strategies"   they   used   to   try   to   connect   to  

each   other   and   increase   brain   synchrony.  

Participants   were   encouraged   to   be   mindful   of   their   movements   and   were   told   that   too   much  

movement   would   create   motion   artifacts   that   could   distort   the   signal   and   make   it   impossible   to  

detect   actual   brainwaves   in   the   EEG   signal.   To   illustrate   this,   participants   were   shown   the  

effects   of   jaw   clenching,   laughing,   and   blinking   in   their   own   raw   EEG   trace   during   setup.   

After   the   experience,   participants   were   led   back   to   the   setup   station   to   fill   out   an   additional  

set   of   questions.   They   were   told   that   their   data   would   be   scientifically   analyzed   offline   and   that  

results   would   be   made   available   on   a   publicly   accessible   web   page  

( wp.nyu.edu/mutualwavemachine ).   The   experiment   took   approximately   20   minutes   including  

setup   and   debriefing.   

 

Materials   

To   investigate   which   factors   drive   brainwave   synchrony   during   spontaneous   face-to-face  

interaction,   participants   were   asked   to   fill   out   a   series   of   questions   designed   to   address   their  

(a)   relationship   to   each   other,   (b)   affective   personality   traits,   and   (c)   affective   mental   states.  

(a)    Relationship   metrics    were   administered   before   the   experience   only,   and   included   four  

variables.   (i)   As   an   index   of    Relationship   Duration   (a   trait   measure),    participants   were   given  

6   choices   to   indicate   how   long   they   knew   each   other   (varying   from   1   =   Strangers   to   6   =   10+  
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years).   (ii)    Social   Closeness   (a   state   measure)    between     pairs   was   measured   using   the  

Inclusion   of   the   Other   in   the   Self   Scale    (Aron   et   al.,   1992) ,   in   which   participants   are   presented  

with   6   Venn   diagrams   where   circles   ‘Self’   and   ‘Other’   overlap   to   varying   degrees,   and   are  

asked   which   best   applies   to   his/her   relationship   to   the   other.   

(b)   To   quantify   socially   relevant    affective   personality   traits ,   participants   completed   a  

revised   version   of   the   Interpersonal   Reactivity   Index   during   setup   (IRI;    Davis,   1980) ,   including  

the   subscales    Perspective   Taking    (e.g.,   “When   I'm   upset   at   someone,   I   usually   try   to   "put  

myself   in   his   shoes"   for   a   while.”),   and    Personal   Distress    (e.g.,   “When   I   see   someone   who  

badly   needs   help   in   an   emergency,   I   go   to   pieces”).   The   questionnaire   consisted   of   14-items  

answered   on   a   five-point   Likert   scale   ranging   from   “Does   not   describe   me   well”   to   “Describes  

me   very   well”.   

(c)   Mental   state   metrics   were   measured   both   before   and   after   the   experience   (Pre   and   Post)  

using   a   shortened   version   of   the   Positive   and   Negative   Affect   Schedule   (PANAS-X;    Watson   &  

Clark,   1994) .   The   questionnaire   consisted   of   20   items,   with   10   items   measuring   Positive   Affect,  

of   which   three   items   measured    Focus    (e.g.,   attentive,   alert).   The   items   were   rated   on   a  

five-point   Likert   Scale,   ranging   from   1   =    Very   Slightly   or   Not   at   all    to   5   =    Extremely.   
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Analyses  

 

Preprocessing   pipeline  

The   initial   pool   of   data   consisted   of   EEG   recordings   of   1,568   participants   in   the   BENAKI  

dataset,   and   230   participants   in   the   LOWLANDS   dataset   (see   above   and   Table   S1).  

First,   raw   datasets   with   problems   due   to   headset   or   recording   software   malfunction   were  

identified   and   discarded.   For   the   BENAKI   dataset,   28   pairs   were   rejected   because   for   one   or  

both   participants,   less   than   5   minutes   of   raw   data   were   available,   likely   due   to   false   starts   or  

other   recording   issues   (out   of   10   minutes   total;   mean   duration   of   all   pairs   =   551.6   s).   An  

additional   117   pairs   were   rejected   because   of   intermittent   data   loss   (93   pairs),   data   repetition  

(34   pairs),   or   drift   between   the   two   headsets   (3   pairs),   factors   that   would   render   inter-brain  

synchrony   analyses   unreliable.   

Next,   we   identified   physiological   artifacts   or   channel   specific   hardware   artifacts.   The   EEG  

headset   provides   binary   variables,   sampled   at   the   same   rate   as   the   data,   which   mark   blinks   or  

vertical/horizontal   eye   movements.   All   the   instances   for   which   these   three   flag   variables   were  

true   were   marked   as   artifacts,   as   well   as   50   msec   before   and   250   msec   after   such   instances.  

Subsequently,   four   different   types   of   artifacts   were   identified   using   the   Fieldtrip   toolbox  

(Oostenveld,   Fries,   Maris,   &   Schoffelen,   2011) .    Signal   Jumps     are   sudden   (step-like)   increases  

or   decreases   in   the   recorded   electric   field,   usually   attributed   to   the   amplifier   electronics.  

EOG-like   Artifacts    (electrooculography)   were   identified   based   on   their   typical   band–limited  

characteristics   (no   EOG   was   recorded   during   the   experiment).   For   the   purpose   of   removing  

EOG-like   artifacts,   the   EEG   channels   were   band-passed   by   a   Butterworth   filter   in   the  

frequency   range   [1-15   Hz],   then   envelope   time-series   were   derived   through   the   Hilbert  
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transform,   and   times   when   this   envelope   exceeded   4   standard   deviations   from   its   mean   were  

marked   as   potential   EOG   artifacts.    Clipping   Artifacts    are   periods   when   data   in   one   or   more  

channels   remain   constant   at   a   given   value   and   is   usually   caused   by   short-term   problems   in   the  

electronics.    Head   Movements     were   identified   through   a   2-axis   gyroscope   built   into   the   EEG  

headset,   providing   information   about   the   orientation   of   the   head   at   each   data   sample.  

Significant   head   movements   are   manifested   as   large   changes   on   the   accelerometer   data.  

Instances   with   such   changes,   above   5   standard   deviations   from   the   mean   change,   were  

identified   as   head   movement   artifacts.   Data   instances   with   any   of   the   above   artifacts  

characteristics   were   marked   as   “bad”   segments.  

The   EEG   headset   provides,   at   the   same   sampling   frequency   as   the   data,   a   quality   flag   for  

each   of   the   data   channels.   This   data   quality   flag   is   a   measure   of   contact   quality   of   a   given  

electrode   on   the   scalp   during   a   recording,   ranging   from   0   to   4.   Any   channel   with   an   average  

quality   lower   than   1   was   identified   as   a   noisy,   “bad”   channel   and   discarded   from   further  

analysis   (still   preserving   some   useful   information).  

After   the   bad   channels   were   discarded   from   a   dataset,   the   raw   data   were   segmented   into  

pseudo-trials   of   1   second   duration   each,   and   all   the   pseudo-trials   that   coincided   with   “bad”  

segments,   as   described   above,   were   completely   removed   from   the   data.   This   pseudo-trial  

representation   was   used   so   that   in   subsequent   time-frequency   and band-limited   connectivity  

analysis   data   segments   surrounded   by   discarded   artifacts   would   have   a   duration   of   an   integer  

number   of   seconds.  

Once   bad   channels   and   bad   segments   were   removed,   one   last   automated   preprocessing  

procedure   was   applied   to   further   reduce   the   potential   data   contamination   by   artifacts.   Given  

the   nature   of   the   electric   signals   emanating   from   the   brain   and   measured   on   the   scalp,   the  
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variance   of   the   recorded   data   should   be   similar   across   the   different   channels.   Channels   with  

consistently   higher   variance   compared   to   the   other   channels   across   the   whole   recording   are  

most   likely   to   contain   higher   noise,   likely   due   to   electrical   noise   and   not   due   to   environmental  

noise   (the   latter   would   affect   all   channels   similarly).   In   order   to   investigate   such   cases,   each  

dataset   was   divided   into   10   equally   sized   segments   and   the   variance   of   each   channel   was  

computed   for   each   segment.   If,   across   most   of   the   10   segments,   a   channel   was   found   to  

consistently   have   a   variance   higher   than   2   standard   deviations   from   the   average   variance   over  

all   channels,   it   was   flagged   as   a   “bad”   channel.   We   also   examined   if   specific   trials   showed  

much   higher   variance   than   the   average   variance   across   all   trials.   As   the   paradigm   employed  

here   did   not   include   any   specific   stimulus   presentation,   the   variance   was   expected   to   not   have  

big   fluctuations   across   time   but   stay   within   relative   stable   boundaries.   Periods   of   higher  

variance   are   indicative   of   muscle   or   movement   artifacts.   So   as   a   first   step,   all   trials   with   a  

variance   of   larger   than   3   standard   deviations   above   the   average   variance   across   the   recording  

in   a   channel   were   marked   as   artifacts.   In   addition   to   this   channel-specific   “bad”   segment  

identification,   a   final   similar   analysis   was   performed,   but   this   time   the   variance   for   each   trial  

was   averaged   across   channels.   This   reflected   trials   that   have   high   variance   consistently  

across   all   channels,   probably   due   to   higher   environmental   noise.   Again,   pseudo-trials   with   a  

variance   larger   than   3   standard   deviations   from   the   mean   variance   across   the   recording   were  

marked   as   “bad”   segments.  

These   “bad-channel”   and   “bad-segment”   procedures   were   applied   to   the   recordings   of   each  

of   the   participants   in   a   given   pair.   This   resulted   in   a   cleaned   dataset   for   each   participant,  

comprising   a   set   of   1-sec   long   pseudo-trials   with   gaps   in   the   places   where   potential   artifacts  

were   identified.   Only   trials   for   which   data   were   available   for   both   participants   (aligned   trials)  
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were   kept   for   further   synchrony   analysis.   331   pairs   had   missing   or   incomplete   questionnaire  

data   (due   to   internet   connectivity   issues   at   the   museum;   the   questionnaires   were   administered  

using   an   internet-based   platform),   leaving   307   pairs   for   further   analysis.   

The   same   preprocessing   procedure   was   applied   to   the   LOWLANDS   dataset   and   resulted   in  

a   total   of   53   pairs   (out   of   115)   to   be   included   for   further   analysis.  

 

Time-frequency   analysis  

The   raw   continuous   data   was   first   demeaned   and   high-pass   filtered   at   0.5   Hz   in   order   to  

remove   slow   fluctuations.   Then   all   the   “bad”   channels   and   “bad”   segments,   defined   through   the  

methodology   described   above,   were   removed.   Time-frequency   analysis   was   performed   using   a  

Hanning-taper   transformation   based   on   multiplication   in   the   frequency   domain   (Maris   &  

Oostenveld,   2007).   The   investigated   frequencies   were   between   1   and   40   Hz,   in   steps   of   1   Hz.  

The   time-frequency   analysis   was   performed   for   all   time   points   of   the   data.   For   each   time   point  

and   given   frequency,   the   spectral   complex   coefficient   was   computed   from   a   data   window  

centered   at   that   timepoint.   The   length   of   the   window   was   selected   to   be   5   periods   of   the  

frequency   in   question   unless   this   exceeded   500   msec,   in   which   case   the   window   length   was  

set   to   this   maximum   value.   The   different   window   lengths   with   regard   to   frequency   created   a  

frequency   resolution   different   from   the   desired   1   Hz.   In   order   to   achieve   this   resolution,  

zero-padding   was   employed.   This   analysis   resulted   in   a   series   of   complex   coefficients   for   each  

channel   and   frequency,   with   gaps   where   artifacts   had   been   removed   and   when   not   enough  

data   samples   where   available   to   fill   the   time-frequency   window.   These   results   were   stored   and  

used   in   the   following   connectivity   analysis.  
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Inter-brain   functional   connectivity   analysis  

Inter-brain   synchrony   can   be   measured   in   various   ways.   Here,   it   was   quantified   using   two  

metrics:   imaginary   coherence   and   projected   power   correlations.   This   choice   was   motivated   not  

only   because   of   the   proposed   mechanisms   they   are   argued   to   capture,   but   also   because   of   the  

recording   conditions.   Specifically,   synchrony   can   be   manifested   in   the   fluctuations   of   the  

recorded   electrical   signals   themselves   or   in   the   fluctuations   of   the   power   envelopes   of   these  

signals.   Coherence   is   the   most   typical   functional   connectivity   metric   employed   to   study   the  

former   type   of   synchrony,   and   power   correlations   are   most   often   used   for   the   latter.   However,  

both   metrics,   especially   when   applied   to   EEG   and   MEG   measurements,   are   highly  

contaminated   by   environmental   noise,   which   is   manifested   as   common   signals   with   0   phase  

difference   across   sensors   and   headsets.   In   the   current   study,   such   noise-induced   zero-lag  

signals   are   even   more   pronounced,   since   the   museum   environment   has   higher   noise   than   a  

typical   EEG   lab   (e.g.,   via   light   installations   on   the   ceiling   as   well   as   audio   and   video   electronic  

equipment   in   the   vicinity   of   the   measurements).   

To   avoid   such   instantaneously   synchronized   EEG   signals   within   pairs,   which   have   no  

relevant   neurocognitive   interpretation,    Imaginary   Coherence    (IC;   synchrony   in   EEG   signal  

fluctuations;    (Nolte   et   al.,   2004)    and    Projected   Power   Correlations    (PPC;   synchrony   in   the  

signal   envelopes   after   the   projection   of   one   signal   on   the   other   has   been   removed;    Hipp,  

Hawellek,   Corbetta,   Siegel,   &   Engel,   2012)    were   employed   instead   (schematic   in   Figure   2e).   

Assume   there   are   two   EEG   channel   recordings     ,   whose   time-frequency   spectral t)( (t)y  

coefficients   series   are      and   .   Imaginary   coherence   takes   two   series   of   complex (t, )X f (t, )Y f  

spectral   coefficients   and   computes   the   cross   spectral   density   between   them   (eq.   1.3) Syy (f )    

and   the   auto   spectral   density   (power)   of   each   of   them,      ,   (eq.   1.1   and   1.2).   From Sxx (f ) S  yy (f )  
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these,   it   computes   the   Coherency     (eq.1.4),   a   complex   number   whose   phase   describes Cxy (f )  

the   average   phase   difference   between   the   two   series   and   whose   magnitude   describes   how  

consistent   this   phase   difference   is.   This   complex   number   is   decomposed   in   a   real   and   an  

imaginary   part.   The   real   part   represents   how   much   of   the   magnitude   is   driven   by   instantaneous  

interactions   and   the   imaginary   part   represents   how   much   by   lagged   interactions.   Imaginary  

Coherence     is   the   absolute   value   of   the   imaginary   part,   thus   represents   only   lagged CI (f )  

interactions    (Nolte   et   al.,   2004) .   Imaginary   coherence   in   the   frequency   range   investigated   here  

(1   to   40   Hz)   captures   phase   differences   between   signal   fluctuations   in   the   range   of   tens   of  

milliseconds.  

 

The   Projected   Power   Correlation   ,   as   it   is   called   in   this   paper   for   convenience,   takes PC(f )P  

two   series   of   complex   spectral   coefficients   and   computes   the   correlation   between   their  

magnitudes   (envelopes)   after   first   removing   the   projection   of   one   series   on   the   other,   so   that   all  

instantaneous   signal   fluctuations   are   removed   before   the   envelope   is   extracted    (Hipp   et   al.,  

2012) .   So   first   the   projection   of   on     is   removed,   leaving   only   the   signal Y (t, )f   X (t, )f  

orthogonal   to   it   (eq.   1.6;    Hipp   et   al.,   2012) .   Then   the   correlation   between   Y ┴X (t, )f Y |  |   ┴X (t, )f
 |  
|   

and     is   computed   across   time.   The   same   is   done   also   between     and X| (t, )f | X |  |   ┴Y (t, )f
 |  
|    

  (eq.   1.7).   Note   that     and   are   unit   vectors   representing   the   phases   of   the Y| (t, )f | ê┴Y  ê┴X  
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complex   numbers   and   do   not   influence   the   magnitudes.   Here   is   must   be   clarified   that   although  

instantaneous   fluctuations   of   the   signals   are   removed,   the   fluctuations   of   the   envelopes   of   the  

remaining   signals   can   still   have   zero   phase   difference,   but   this   will   not   be   due   to   a   common  

signal   present   in   both   signals.   Projected   Power   Correlation   in   the   frequency   range   investigated  

here   captures   envelope   fluctuations   in   the   range   of   hundreds   of   milliseconds.   So   this   analysis  

captures   much   slower   processes   than   Imaginary   Coherence.  

 

The   computation   of   the   above   metrics   was   performed   as   follows.   A   moving   window   of   2-sec  

duration   was   employed   to   move   along   the   series   of   complex   spectral   coefficients   that   were  

computed   in   the   time-frequency   analysis   (Figure   3a).   The   time   step   this   window   moved   at  

every   iteration   was   10   data   samples   (10*   1/128Hz   =   70.81   msec;   Figure   3b).   At   each   iteration,  

all   the   spectral   coefficients   that   fell   within   the   window   were   selected   from   each   matched  

electrode   of   the   two   headsets   used   in   a   given   pair.   These   two   time-series   of   spectral  

coefficients   were   then   used   in   the   computations   of   the   connectivity   metrics,   and   each  

connectivity   metric   was   averaged   across   channels   (Figure   3c).   This   was   repeated   for   each  

step   iteration   of   the   moving   window,   so   that   at   the   end   of   all   iterations   a   series   of   connectivity  

metric   values   across   time   were   computed.   Then   the   average   connectivity   across   time   was  

computed.   This   process   resulted   in   a   single   value   for   each   connectivity   metric   per   frequency  

per   pair   (Figure   3d).  

22  
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/822320doi: bioRxiv preprint 

https://doi.org/10.1101/822320
http://creativecommons.org/licenses/by-nc/4.0/


Dikker*,   Michalareas*,   Oostrik,   Serafimaki,   Kahraman,   Struiksma,   Poeppel.    Crowdsourcing   Neuroscience  

The   same   process   was   also   performed   in   the   early   and   late   halves   of   the   data   in   order   to  

investigate   if   engagement   of   the   participants   in   the   experiment   increased   or   decreased  

inter-brain   connectivity   and   if   such   gradients   correlated   with   behavior.  

   

Correlation   of   inter-brain   connectivity   with   behavioral   data   

 Once   the   two   connectivity   metrics   were   computed   for   each   pair   and   frequency,   the   next   step  

was   their   correlation   with   behavioral   metrics   derived   from   the   questionnaires   (see   Materials).  

This   was   quantified   by   computing   Pearson   correlation   coefficients   between   a   given  

connectivity   metric   and   a   given   behavioral   variable   for   a   given   frequency   across   all   pairs,  

accompanied   by   the   p-value   of   the   Pearson’s   coefficient.   This   was   repeated   for   all   40  

frequencies   for   which   the   connectivity   metric   was   computed.   Correction   for   multiple  

comparisons   was   implemented   as   follows.   With   the   typical   significance   p-value   threshold   of  

0.05   and   40   frequencies,   traditional   correction   approaches   such   as   Bonferroni   and   False  

Discovery   rate   are   very   conservative,   highly   insensitive,   and   fail   to   incorporate   the   fact   that  

significant   effects   tend   to   occur   in   clusters   along   the   frequency   axis.   Cluster-based  

nonparametric   statistical   tests   based   on   random   permutations 68    solve   the   multiple   comparison  

problem   while   preserving   sensitivity.   These   non-parametric   tests   were   used   as   follows.   The  

Pearson   correlation   coefficient   was   initially   computed   between   connectivity   metric     at (f )M  

frequency     and   behavioral   variable   .   This   was   repeated   across   all   frequencies.   Then f B  

correlation   significance   thresholds     and     were   selected   at   the   5%   and   95% Thupper Thlower  

percentiles   of   the   correlation   distribution   for   all   frequencies,   respectively.   Then   the   random  

permutation   procedure   took   place.   The   order   of   the   behavioral   variable   values   was   randomly  

shuffled   and   the   correlation   with   the   connectivity   metric   was   repeated.   All   correlation   values  
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exceeding   thresholds     and     were   marked   as   significant   and   it   was   investigated   if Thupper Thlower  

they   formed   clusters   in   adjacent   frequencies.   For   each   of   these   randomly   significant   clusters,   a  

cluster   statistic   was   computed.   Different   options   were   available   for   this   average   cluster  

statistic,   such   as   the   maximum   correlation   value,   the   average   correlation   value,   or   the   size   of  

the   cluster.   The   extend   of   the   cluster   was   chosen   here   because   typical   intrinsic   oscillatory  

phenomena   in   the   brain   span   a   range   of   frequencies   rather   than   single   frequencies,   and   this  

should   be   a   prominent   feature   in   this   correlational   analysis   too.   So   the   randomly   significant  

cluster   with   the   maximum   size   was   found   and   its   size   was   stored.   This   random   permutation  

procedure   was   repeated   500   times.   At   the   end   of   this   procedure,   a   distribution   of   the   500  

largest   random   cluster   sizes   was   formed   against   which   all   the   clusters   from   the   actual   data  

correlation,   performed   at   the   very   beginning,   were   compared.   If   an   actual   data   cluster   had   a  

size   larger   than   the   95%   threshold   of   the   random   distribution,   it   was   marked   as   significant  

(Figure   3f).   This   procedure   was   applied   to   each   connectivity   metric   and   each   behavioral  

variable.  
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Figure  3.  Inter-Brain  functional  connectivity      

measures.   

(A)    A   2-second   moving   window   was   used   along  

each   of   the   time-series   (   and     correspond   to (t)  x  y (t)  

the   2   different   participants   of   a   pair)   of   EEG  

recordings   in   order   to   compute   the   time-series   of  

spectral   coefficients   (one   spectral (t , ), (t , )  X i f Y i f  

coefficient   per   time-window   ,   per   frequency     and i  f  

participant).    (B)    These   spectral   coefficients   for   the   2  

different   participants   can   be   visualized   as   pairs   of  

vectors      at   each   time   instance     (and (t , ), (t , )  X i f Y i f i  

frequency   ).   These   vector   pairs   are   then   used   to  f  

compute   the   complex   coherency   ,   which (f )  Cxy  

reflects   how   consistent   is   the   phase   difference  

(angle)   between   the   2   participants,   i.e   across   all  

spectral   coefficient   pairs     (across   time). ,  X Y  

Imaginary   coherence   constitutes   only   the   imaginary  

part   of   coherency,   reflecting   only   non-instantaneous  

phase   relations   (other   than   0).    (C)    Projected   Power  

Correlation:   the   vector   of   a   spectral   coefficient   from  

one   participant   can   be   decomposed   into   2   orthogonal   projections.   One   projection   parallel   to   the   vector (t , )   X i f  

of   spectral   coefficient   of   the   other   participant,   and   one   projections   perpendicular   to   it,   . (t , )   Y i f , )   X (t∥Y i f , )  X (t⊥Y i f  

The   parallel   projection   represents   the   part   of   the   signal   that   is   common   between   the   2   participants;   as   this   reflects  

instantaneous   co-fluctuations,   it   is   removed   before   computing   power   correlations   between   the   2   participants.    (D)  

Projected   Power   Correlation:   The   perpendicular   projection   is   the   part   of   that   is   used   to   compute , )   X (t⊥Y i f (t , )   X i f  

power   correlations   with   .    (E)    Conceptual   depiction   of   the   features   that   are   captured   by   imaginary (t , )  Y i f  

coherence   and   projected   power   correlation,   computed   between   the   EEG   signals   of   2   different   brains   X   and   Y.  

Imaginary   coherence   describes   how   consistent   the   phase   difference   is   between   the   2   EEG   signals   (EEG   signals  

are   depicted   with   blue).   Projected   power   correlation   describes   how   correlated   the   fluctuations   are   of   the  

Envelopes   of   the   2   EEG   signals   (signal   envelopes   are   depicted   by   red).    (F)    Imaginary   Coherence   and   Projected  

power   correlations   between   participants   were   computed   at   each   frequency   from   1   –   40   Hz   and   were   subsequently  

correlated   with   one   of   the    behavioral   variables   of   interest   (   here   termed    Z   );   a   cluster   analysis   was   used   to  

determine   significant   clusters   of   at   least   2   consecutive   frequencies   (dark   red/blue).   See   text   for   detailed  

description.  
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RESULTS  

The   results   below   quantify   correlations   between   behavioral   variables   and   inter-brain   synchrony  

in   the   BENAKI   dataset,   unless   indicated   otherwise.   All   reported   p-values   survived   correction  

for   multiple   comparisons   using   a   False   Discovery   Rate   approach   (FDR;    Benjamini   &  

Hochberg,   1995).  

Socially   relevant   trait   measures,   including   pairs’   relationship    (Aron   et   al.,   1992)    and  

affective   personality   traits    (Davis,   1980) ,   were   correlated   with   brain   synchrony   averaged  

across   the   entire   10-minute   experience.   For   pairs’   focus   and   motivation,   we   instead   examined  

changes   in   inter-brain   synchrony:   the   difference   between   the   average   inter-brain   synchrony  

during   the   second   half   of   the   experience   and   the   first   half   of   the   experience   was   correlated   with  

these   state   measures.   Inter-brain   synchrony   was   quantified   in   two   different   ways.   First,  

Projected   Power   Correlations   capture   band-limited   power   fluctuations   at   different   oscillatory  

frequencies.   These   power   fluctuations   represent   relatively   slow   processes   (on   the   order   of  

seconds)   and   represent   the   overall   strength   of   neural   activation.   With   " overall   strength   of  

neural   activation"   at   a   particular   frequency,   we   mean   greater   number   of   neurons   firing  

synchronously   at   a   particular   frequency.   The   larger   the   number   of   neurons   firing   synchronously  

at   that   frequency,   the   larger   the   magnitude   of   the   measured   electric   field   at   this   frequency   and  

the   higher   the   power.   Note,   however,   that   projected   power   correlation   quantifies   the   level   of  

co-fluctuation   of   this   magnitude   across   time   between   two   signals   and   not   of   the   phase   of   firing.  

In   addition   to   power   fluctuation   synchrony,   we   also   examined   the   consistency   of   phase  

alignment   between   oscillations   in   the   brains   of   the   two   participants   in   each   pair   (Imaginary  

Coherence).   This   metric   represents   much   faster   processes,   on   the   order   of   tens   of  

milliseconds,   and   is   independent   of   the   strength   of   neural   activity.   Mindful   of   the   data   quality  
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disadvantage   when   conducting   neuroscience   research   in   a   non-laboratory   context,   we   took  

advantage   of   the   large   size   of   our   dataset   to   adopt   strict   inclusion   criteria.   First,   we   decided   to  

focus   our   analysis   on   only   one   recording   site   (1,568   people)   for   consistency   purposes,   which  

was   further   reduced   to   a   group   of   614   datasets   that   met   a   high   data   quality   threshold.  

Furthermore,   as   discussed   in   the   Introduction   and   described   in   the   Methods,   our   synchrony  

metrics   were   chosen   so   that   the   effect   of   instantaneous   brain   signal   co-fluctuations   is  

minimized,   circumventing   contamination   by   environmental   electrical   noise   present   in   the  

museum   environment.   

 

Intrinsic   motivation:   relationship   and   personality   traits   predict   inter-brain   synchrony  

We   first   explored   whether   properties   of   pairs’   relationship   predicted   the   average   inter-brain  

synchrony   across   the   10-minute   experience   (cf.   Figure   1b).   Cluster   statistics   revealed  

significant   effects   of   both   relationship   duration   (a   trait   measure)   and   social   closeness   (a   state  

measure;    Aron   et   al.,   1992) .   People   who   knew   each   other   longer   showed   stronger   inter-brain  

synchrony   in   the   lower   frequency   ranges   (Figure   4a,   projected   power   correlations   at   8   Hz;  

r(302)   =   .1776;   p   =   .0019).   Pairs   who   on   average   felt   closer   to   each   other   also   showed   more  

inter-brain   synchrony   with   each   other   during   the   experience,   in   the   beta-frequency   range  

(Figure   4b;   imaginary   coherence   at   21-22   Hz;   r(307)   =   .1552,   p   =   .005).   Note   that   there   was   no  

difference   in   synchrony   between   strangers   and   pairs   who   already   knew   each   other,   in   contrast  

to   previous   findings    (Kinreich   et   al.,   2017) .   

Figure   4c   shows   the   correlation   plots   for   affective   personality   traits    (Davis,   1980)    and  

inter-brain   synchrony.   Perspective   Taking   did   not   affect   the   average   inter-brain   synchrony  

across   the   experience   (dashed   line),   but   Personal   Distress   did   (solid   line):   At   ~15-16   Hz,   there  
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was   a   negative   correlation   between   pairs’   average   Personal   Distress   and   their   projected   power  

correlations   ( r (300)   =   -0.1757,    p    =   .0023),   indicating   that   less   emotionally   self-oriented   pairs  

(as   measured   through   less   Personal   Distress),   showed   more   synchrony   overall.   

 

 

 

 

Figure   4.   Inter-brain   synchrony   is   correlated   with   pairs’   relationship   and   with   their   affective  

personalities  

Inter-brain   synchrony   was   significantly   correlated   with    (A)    relationship   duration   (projected   power   correlations   at  

7-8   Hz;   r(302)   =   0.1776;   p   =   0.0019)   and    (B)    social   closeness   (imaginary   coherence   at   21-22   Hz;   r(307)   =   0.1552,   p  

=   0.005).    (C)    A   significant   negative   correlation   was   found   between   Personal   Distress   and   inter-brain   synchrony  

(projected   power   correlations   at   14-15   Hz;   r(300)   =   0.1757;   p   =   0.0023) .    No   significant   correlation   between  

Perspective   Taking   and   inter-brain   synchrony   was   found.   Values   are   max-min   normalized   for   presentation  

purposes   and   correlation   plots   show   the   average   for   each   significant   cluster.  

 

Pairs’   changes   in   focus   predict   inter-brain   synchrony   

Next,   we   asked   whether   changes   in   pairs’   mental   state,   in   particular   focus   level    (Watson   &  

Clark,   1994)    was   associated   with   changes   in   inter-brain   synchrony   (cf.   Figure   1c).   When  

comparing   participants’   self-reported   focus   before   and   after   the   experience,   we   saw   that   182  
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pairs   showed   a   decrease   in   self-reported   focus   over   time,   while   84   pairs   reported   an   increase  

in   focus   (all   participant   pairs   Focus   Pre   vs.   Focus   Post:   t(1,   452)   =   6.8747,   p   <   .0001;   Focus  

Pre:   M   =   3.3392,   SD   =   0.6272;   Focus   Post:   M   =   3.1428,   SD   =   0.7224).   For   the   group   of   pairs  

whose   focus   decreased,   a   smaller   decrease   was   associated   with   a   higher   increase   in  

projected   power   correlations   at   6-7   Hz   for   the   second   compared   to   the   first   half   of   the  

experience   (r(182)   =   0.189,   p   =   0.0106).   For   the   group   who   reported   to   be   more   focused   after  

than   before   the   experience,   a   higher   increase   in   focus   was   associated   with   a   higher   increase  

in   imaginary   coherence   (r(84)   =   0.2975,   p   =   0.006).   In   other   words:   maintaining   focus   led   to   an  

increase   in   inter-brain   synchrony   over   time.   

 

Changes   in   low   frequency   synchrony   are   paired   with   changes   in   high   frequency  

synchrony   

Interestingly,   both   pairs’   self-reported   focus   and   the   nature   of   their   relationship   were   correlated  

with   projected   power   correlations   at   7-8   Hz   and   imaginary   coherence   at   20-21   Hz   respectively.  

We   thus   explored   the   relationship   between   the   two   inter-brain   synchrony   measures   at   these  

two   frequency   ranges   and   found   them   to   be   coupled:   changes   in   lower   frequency   projected  

power   correlations   at   7-8   Hz   were   positively   correlated   with   changes   in   imaginary   coherence   at  

20-21   Hz   (Figure   5B:   (r(73)   =   .2776,   p   =   .0174).   
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Figure   5.   Inter-brain   synchrony   is   correlated   with   pairs’   focus   level,   and   low   frequency   inter-brain  

synchrony   predicts   high   frequency   inter-brain   synchrony   

(A-left)    Pairs   with   a   smaller   decrease   in   focus   and    (A-right)    pairs   with   a   relatively   higher   increase   in   focus  

exhibited   a   relatively   higher   increase   in   inter-brain   synchrony   in   the   second   than   the   first   half   of   the   experience,  

in   projected   power   correlations   at   6-7   Hz   (r(182)   =   0.1889,   p   =   0.0106)   and   imaginary   coherence   at   20-21   Hz  

(r(84)   =   0.2975,   p   =   0.006)   respectively.    (B)    Changes   in   7-8   Hz   projected   power   correlations   were   positively  

associated   with   changes   in   imaginary   coherence   when   comparing   inter-brain   synchrony   during   the   first   half   and  

the   second   half   of   the   experience   (r(73)   =   0.2776,   p   =   0.0174).   Pairs   with   negative   projected   power   correlations  

are   excluded.   Values   are   max-min   normalized   for   presentation   purposes   and   correlation   plots   show   the   average  

for   each   significant   cluster.  

 

 

Extrinsic   motivation:   inter-brain   synchrony   is   enhanced   by   explicit   “synchrony”   A/V  

So   far,   we   have   shown   that   affective   traits   as   well   as   mental   states   predict   (changes   in)   brain  

synchrony   during   face-to-face   interaction.   We   next   asked   whether   pairs   that   were   more  

motivated   to   connect   also   synchronized   more   (cf.   Figure   1d).   As   described   in   the   Methods,  

pairs   from   the   BENAKI   dataset   were   divided   into   two   groups:   one   group   was   explicitly   told   that  
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the   visuals   were   derived   from   their   correlated   EEG   signal   (explicit   synchrony   A/V),   while   the  

other   group   did   not   (non-explicit   synchrony   A/V).   We   hypothesized   that   the   feedback  

instructions   would   function   as   a   motivational   factor   to   remain   focused   on   the   other.    Indeed,  

pairs   in   the   explicit   feedback   group   showed   an   increase   in   inter-brain   synchrony   for   the   second  

vs.   the   first   half   of   the   experience   (Figure   6;   Half   1   vs.   Half   2   projected   power   correlations   at  

18-21   Hz:   t(1,   138)   =   2.7049,   p   =   0.0077,   M   =   0.037,   SD   =   0.1619).   One   plausible   explanation  

for   this   discrepancy   is   that   the   “explicit   feedback”   group   was   more   motivated   to   maintain  

focused,   or   engaged   with   the   other   person   throughout   the   10-minute   experience:   the   visual  

environment   functioned   as   a   constant   reminder   of   the   task,   namely   to   connect   to   the   person  

directly   opposite.  

 

 

Figure   6.   Extrinsic   motivation   to   connect   leads   to   an   increase   in   inter-brain   synchrony  

Pairs   who   received   no   explicit   explanation   of   the   relationship   between   the   A/V   environment   and   inter-brain  

correlations   showed   no   significant   changes   in   inter-brain   synchrony   over   time;   Pairs   in   the   explicit   feedback  

group   exhibited   higher   inter-brain   synchrony   for   the   second   vs.   the   first   half   of   the   experience   (projected   power  

correlations   at   18-21   Hz:   t(1,   138)   =   2.7049,   p   =   0.0077,   M   =   .037,   SD   =   .1619).   Values   are   max-min   normalized   for  

presentation   purposes.   Error   bars   reflect   standard   errors   of   the   mean.   
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Indirect   support   for   such   a   shared   engagement   account   of   inter-brain   synchrony   comes   from  

the   following   set   of   observations   in   our   data.   First,   while   the   “no   explicit   feedback”   group  

exhibited   a   decrease   in   focus   (t(1,   209)   =   3.1647,   p   =   0.0018,   SD   =   .1499)   for   the   post   vs.   pre  

questionnaire,   the   “explicit   feedback”   group   showed   no   significant   changes   in   focus.   A   second,  

related,   observation   is   that   self-reported   focus   did   not   predict   changes   in   inter-brain   synchrony  

when   restricting   the   analyses   reported   in   Figure   5a   to   the   “explicit   feedback”   group   alone.  

Importantly,   the   relationship   between   inter-brain   synchrony   and   pairs’   relationship   or  

personality   traits   was   unaffected   by   the   instructions   pairs’   received   about   the   task   and   A/V  

environment   (See   supplemental   Figure   S1   for   details).   Thus,   manipulating   pairs’   extrinsic  

motivation   to   socially   engage   appeared   to   exclusively   override   the   effect   of   self-reported   focus  

on   inter-brain   synchrony.  

A   final   piece   of   evidence   in   support   of   the   proposed   role   of   shared   engagement   in   inter-brain  

synchrony   comes   from   the   finding   that   participants’   inter-brain   synchrony   changes   were   not  

affected   if   they   were   presented   with   a   sham   A/V   environment.   Recall   that   half   the   pairs   in   the  

LOWLANDS   dataset   saw   visuals   that   were   randomly   generated   rather   than   being   controlled   by  

true   inter-brain   synchrony   values.   Importantly,   all   pairs   in   the   LOWLANDS   dataset   were   explicit  

told   that   the   A/V   environment   was   related   to   their   ongoing   inter-brain   synchrony.   As   shown   in  

Figure   S2,   in   contrast   to   the   BENAKI   pairs,   where   only   the   “explicit   feedback”   group   showed  

an   increase   in   inter-brain   synchrony   for   the   second   compared   to   the   first   half   of   the   experience,  

in   the   LOWLANDS   dataset   inter-brain   synchrony   increased   over   time   for   all   pairs   irrespective  

of   whether   the   inter-brain   synchrony   environment   was   true   or   sham   (projected   power  

correlations   at   16-18   Hz:   t(1,55)   =    3.2379,   p   =    0.002,   SD   =   0.0193;   i.e.,   in   the   same  

frequency   range   as   for   the   BENAKI   data   shown   in   Figure   6).   This   suggests   that    believing    that  
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the   visuals   were   directly   related   to   the   success   of   the   interaction   motivated   participants   to  

remain   socially   engaged,   irrespective   of   the   actual   relationship   between   inter-brain   synchrony  

and   the   visual   environment.   

Importantly,   no   other   differences   were   observed   between   the   two   datasets:   with   the  

exception   of   social   closeness,   all   findings   reported   in   Figures   4   and   5   for   the   BENAKI   dataset  

were   replicated   in   the   LOWLANDS   dataset   (See   Figure   S2   for   details).   A   further   minor  

difference   was   that   the   frequency   ranges   of   the   projected   power   correlations   were   a   bit   higher  

for   the   LOWLANDS   dataset   (~10   Hz   as   opposed   to   8   Hz).   This   could   be   due   to   age   differences  

between   the   two   groups:   Alpha   peak   frequency   is   typically   lower   for   older   than   for   younger  

adults   (e.g.,    Duffy,   McAnulty,   &   Albert,   1993)    and   while   no   age   information   available   for   the  

BENAKI   participants,   the   music   festival   Lowlands   is   known   to   attract   a   younger   demographic  

than   the   Benaki   art   museum.   

  

Social   behavior   as   an   exogenous   synchronizer  

Finally,   we   asked   whether   the   type   of   social   behavior   that   pairs   engaged   in   during   the   social  

interaction   was   predictive   of   their   inter-brain   synchrony   (Cf.   Figure   1e;   LOWLANDS   dataset  

only).   Participants   listed   a   number   of   different   strategies   they   used   to   try   to   synchronize   with  

one   another,   which   included   “no   strategy”   (10.7%   of   pairs),   and   “stimulus   entrainment”  

(focusing   on   the   visuals:   37.5%   of   pairs),   in   addition   to   three   main   categories   of   social  

behavior:   “eye   contact”   (71.4%   of   pairs),   “joint   action”   (performing   the   same   physical   action  

such   as   smiling   or   having   a   conversation,   playing   hand   games:   25%   of   pairs),   and   “joint  

thought”   (thinking   about   the   same   object,   event,   or   each   other:   32   %   of   pairs).   As   can   be   seen  

in   Figure   7a-b,   “eye   contact”   and   “joint   action”   were   positively   associated   with   inter-brain  
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synchrony   (eye   contact:   projected   power   correlations   at   9-11   Hz   (r(56)   =   0.3786,   p   =   0.0040)  

and   26-30   Hz   (r   (56)   =   0.3509,   p   =   0.008);   joint   action:   imaginary   coherence   at   18-21   Hz   (r(56)  

=   0.3651,   p   =   0.0057),   but   “joint   thought”   was   not   predictive   of   inter-brain   synchrony   (Figure  

7c).   

 

 

 

 

Figure   7.   Synchronizing   “strategies”   predict   inter-brain   synchrony   in   the   Lowlands   dataset  

Using    (A)    “eye   contact”   or   ( B)    “joint   action”   as   strategies   to   connect   was   positively   associated   with   inter-brain  

synchrony   (eye   contact:   projected   power   correlations   at   9-11   Hz   (r(56)   =   0.3786,   p   =   0.0040)   and   26-30   Hz   (r   (56)  

=   0.3509,   p   =   0.008);   joint   action:   imaginary   coherence   at   18-21   Hz   (r(56)   =   0.3651,   p   =   0.0057),   but   ( C )   “joint  

thought”   strategies   were   not.   See   main   text   for   a   description   of   the   categories.   Values   are   max-min   normalized  

for   presentation   purposes.  

 

DATA   AND   RESULTS   DISSEMINATION  

All   data   is   made   publicly   available   at    https://osf.io/hpgkt/    and   the   results   are   disseminated   to  

participants   and   the   general   public   via    wp.nyu.edu/mutualwavemachine  
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DISCUSSION  

In   an   effort   to   explore   the   neural   correlates   of   real-world   social   behavior,   we   present   data  

acquired   in   a   novel   context   departing   from   laboratory-constrained   cognitive   neuroscience.  

Building   on   recent   technical   and   analytic   advances   in   recording   neural   data   from   groups   in  

natural   settings,   we   extended   such   data   acquisition   approaches   in   a   new   direction,   recording  

EEG   from   a   very   large   number   of   people,   recruited   from   the   general   public,   as   they   engaged   in  

naturalistic   face-to-face   interaction.   Specifically,   we   created   an   interactive   neurofeedback   art  

experience,   the   Mutual   Wave   Machine,   which   allowed   us   to   ask   how   pairs’   relationship,  

personality   traits,   mental   states,   and   social   behavior   predicted   inter-brain   synchrony   during  

face-to-face   interactions,   extending   ongoing   laboratory   research   on   neuronal   oscillations   and  

their   role   in   perception   and   cognition,   as   well   as   previous   EEG   hyperscanning   studies   ( Babiloni  

et   al.,   2007;   Dumas   et   al.,   2010;   Kinreich   et   al.,   2017;   Pérez   et   al.,   2018;   Sänger,   Müller,   &  

Lindenberger,   2012 ;   and   many   others).    We   employed   a   ‘crowdsourcing’   neuroscience  

approach,   recruiting   museum   visitors   and   festival   goers     to   help   us   explore   our   research  

questions.   For   example,   we   asked   participants   to   indicate   what   kind   of   behavior    they    thought  

had   helped   them   synchronize   their   brain   activity.   

In   a   subgroup   of   726   participants   whose   data   survived   rigorous   criteria   licensing   further  

analyses,   we   found   that   inter-brain   synchrony   was   positively   related   to   pairs’   social   closeness,  

personality   traits,   focus   level,   and   motivation   to   connect.   Further,   modulations   in   alpha  

synchrony   (projected   power   correlations)   co-varied   with   changes   in   beta   coherence   (at   21-22  

Hz),   suggestive   of   a   relationship   between   lower   and   higher   frequency   inter-brain   synchrony.  
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Shared   attention   and   engagement  

In   line   with   previous   work,   our   findings   invite   an   interpretation   based   on   shared   attention,   or  

shared   engagement    (Cohen,   Henin,   &   Parra,   2017;   Dikker   et   al.,   2017;   Ki,   Kelly,   &   Parra,  

2016) ,   illustrated   in   Figure   8.   

 

 
 
Figure   8.   Shared   engagement   facilitates   the   formation   of   shared   internal   models  
A   schematic   model   showing   how   two   people   who   have   more   instances   in   shared   attention   (‘moments   of  

meeting’)   can   be   measured   as   similar   low   frequency   power   changes,   which   in   turn   enables   the   tuning   of   shared  

internal   models.   

 

Projected   power   correlations,   by   hypothesis,   would   capture   whether   pairs   show   concurrent  

changes   in   attentive   states,   with   positive   correlations   indicating   that   they   are   (in)attentive   at   the  

same   time   and   low   correlations   or   negative   correlations   indicating   that   they   do   not   often   share  

the   same   attentional   state   during   the   experience.   ‘Synchrony’,   thus,   does   not   imply   that   pairs  

maintain   a   high   focus   level   throughout   the   experience,   just   that   their   in-and-out   of   attention  

states   co-fluctuate.   Pairs   who   are   more   often   in   an   attentive   state   together   (similar   alpha   power  
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changes)   are   more   likely   to   simultaneously   pay   attention   to   each   other’s   actions   or   other   cues  

from   the   surrounding   environment,   resulting   in   more   similar   neural   representations   or  

predictions    (Arnal   &   Giraud,   2012) .   In   other   words,   shared   attention   states   facilitate  

interpersonal   brain   synchrony   at   the   oscillatory   phase   level   (beta   synchrony).  

Inter-brain   synchrony   in   the   beta   band   as   a   function   of   (social)   attention   converges   with  

research   showing   that joint   action   is   supported   by   oscillatory   activity   in   the   beta   frequency  

range.   Beta/mu   rhythms,   typically   measured   over   sensorimotor   areas    (Hari,   2006;   Pineda,  

2005) , have   been   associated   with   attention    (Anderson   &   Ding,   2011) ,   motor   control   and   motor  

simulation    (Pfurtscheller   &   Lopes   da   Silva,   1999) ,     as   well   as   prediction   of   another   person’s  

actions    (Sebanz   et   al.,   2006) .   Changes   in   beta/mu   are   observed   both   when   people   perform   an  

action   and   when   they   watch   someone   perform   a   similar   action    (Nishitani   &   Hari,   2000) .  

Crucially,   beta   activity   during   action   perception   varies   as   a   function   of   social   evaluation  

(Koelewijn,   Van   Schie,   Bekkering,   Oostenveld,   &   Jensen,   2008)    as   well   as   social   traits   such   as  

empathic   concern    (Perry,   Troje,   &   Bentin,   2010)    and,   in   line   with   our   findings,   Personal  

Distress    (Saarela   et   al.,   2007;   Yang,   Decety,   Lee,   Chen,   &   Cheng,   2009) . Our   work   also   links  

to   previous   EEG   studies   comparing   neural   oscillations   between   people   during   interpersonal  

coordination   tasks    (Babiloni   &   Astolfi,   2014;   Dumas   et   al.,   2010;   Sänger   et   al.,   2012;  

Szymanski   et   al.,   2017) .   For   example,   recent   work   by   Novembre   and   colleagues    (Novembre,  

Knoblich,   Dunne,   &   Keller,   2017)    showed   that   dual   in-phase   20 Hz   brain   stimulation   enhanced  

interpersonal   movement   synchrony   between   two   participants   performing   a   finger-tapping   task.  

We   expand   on   these   findings   by   showing   that   brain-to-brain   synchrony   in   the   beta   frequency  

range   is   sensitive   to   interpersonal   factors   such   as   affective   personality   traits   during   real-world  

face-to-face   social   interaction,   which   can   further   be   linked   to   research   that   has   associated   beta  
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oscillations   with endogenous   content   representations   and   expectations    (Arnal   &   Giraud,   2012;  

Spitzer   &   Haegens,   2017) .   

In   sum,   we   propose   an   account   wherein    shared   attention    (Dikker   et   al.,   2017;   Kang   &  

Wheatley,   2017;   Ki   et   al.,   2016;   Leong,   Byrne,   &   Clackson,   2017) ,    measured   via   an   increase   in  

projected   power   correlations   in   the   alpha   frequency   range,   provides   ‘temporal   windows   of  

opportunity’   to   establish   shared   (motor,   perceptual,   cognitive)   representations,   measured   via  

an   increase   in   imaginary   coherence   at   20   Hz.  

 

On   conducting   “neuroscience   in   the   wild”  

Carrying   out   “crowdsourcing”   neuroscience   research   outside   of   the   laboratory   comes   with  

many   benefits,   but   also   a   number   of   challenges.   First,   it   is   near-impossible   to   obtain   full  

experimental   control   in   public   spaces,   and   this   project   was   especially   challenging   in   this  

regard.   For   example,   the   LOWLANDS   dataset   was   collected   during   a   music   festival,   which  

required   extra   care   with   respect   to   noise   contamination   from   surrounding   events.   Further,   due  

to   the   sheer   number   of   participants   as   well   as   other   logistical   and   privacy-related  

considerations,   we   were   unable   to   keep   a   close   record   of   participant   behavior   during   the  

interaction.   As   a   result,   we   had   to   rely   on   participant   self-report   (see   Figure   7),   which   provided  

us   with   information   to   assess   the   brain-behavior   relationship   during   the   social   interactions,   but  

of   course   this   information   was   incomplete.   

Another   challenge   was   the   hybrid   art/science/tech   nature   of   the   Mutual   Wave   Machine.  

While   participants   took   their   roles   seriously   in   both   BENAKI   and   LOWLANDS,   for   a   few   other  

sites   listed   in   Table   S1,   visitors   did   not   treat   the   experience   as   a   scientific   experiment   but  

rather   as   a   curiosity   (e.g.,   taking   selfies   instead   of   interacting   with   each   other).   People   were  
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also   often   waiting   in   line   to   participate,   sometimes   even   getting   impatient,   jeopardizing   the  

setup   and   reliability   of   their   questionnaire   responses.   At   these   sites,   the   experience   was  

shortened   to   6   minutes   or   less.   For   these   and   other   reasons,   we   only   analyzed   datasets   that  

were   collected   during   multiple   days   and   where   20-minute   timeslots   were   assigned   with   5-   to  

10-minute   buffers   on   each   side.   At   BENAKI,   participants   further   self-selected   by   signing   up   in  

advance   via   an   online   portal.   

Another   challenge   relates   to   equipment.   The   EEG   devices   used   here   (EMOTIV)   were   very  

suitable   for   our   purposes   because   they   are   sturdy,   fast   to   apply,   easy   to   handle,   and  

affordable.   However,   data   quality   may   be   lower   compared   to   laboratory-grade   equipment  

(Krigolson,   Williams,   Norton,   Hassall,   &   Colino,   2017) .   As   discussed   in   the   Methods,   we   took  

various   steps   to   ensure   that   our   data   met   rigorous   standards   despite   these   limitations.   

On   the   flipside,   the   benefits   of   conducting   neuroscience   research   outside   of   traditional  

laboratory   environments   are   clear.   First,   using   a   citizen   science   approach   affords   researchers  

the   opportunity   to   collect   data   from   large   numbers   of   people   with   a   more   varied   demographic  

profile   than   the   typical   participant   population   of   laboratory   neuroscience   research.   Further,  

actively   involving   the   general   public   in   research   has   a   number   of   benefits   beyond   constituting   a  

rich   opportunity   for   neuroscience   outreach   and   education:   While   it   is   common   to   view  

interactions   between   scientists   and   the   general   public   as   merely   unilateral   (scientists   educate  

the   public   about   their   work),   we   would   like   to   argue   that   interactions   with   artists,   educators,   and  

the   general   public   can   inform   scientific   inquiry   in   a   fruitful   way:   non-specialists   may   force  

scientists   to   remain   aware   of   any   translational   value   of   their   work   to   everyday   practice,  

challenge   methodological   approaches   that   are   taken   for   granted,   and   inspire   research  

questions   that   may   inform   laboratory   research.   To   close   with   an   emphasis   on   the   latter   point:  
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while   the   field   may   be   ‘ready’   for   real-world   neuroscience    (Matusz,   Dikker,   Huth,   Perrodin,  

2019) ,   in   our   opinion   it   will   flourish   only   if   paired   with   rigorous   laboratory-based   work   and   solid,  

careful   methodology.  

 

CONCLUSION  

A   large   group   of   museum   and   festival   visitors   engaged   in   dynamic   face-to-face   interactions  

while   their   brain   activity   was   recorded   using   EEG. This   setup   made   it   possible   to   explore   the  

limits   and   opportunities   afforded   by   conducting   human   social   neuroscience   research   outside   of  

the   traditional   laboratory   context.   Drawing   on   our   two   most   comprehensive   datasets   to   date,  

we   were   able   to   evaluate   how   intra-   and   interpersonal   factors   predict   the   extent   to   which   brain  

activity   becomes   synchronized   between   people   during   face-to-face   interaction.   Pairwise  

synchronized   brain   activity   was   related   to   people’s   relationship,   affective   personality   traits,  

mental   states,   as   well   as   their   motivation   and   strategy   to   connect   to   the   other   person.   We  

propose   an   account   for   brain-to-brain   synchrony   in   which   shared   engagement   provides   a  

vehicle   for   synchronous   brain   activity   (measured   in   the   alpha   and   beta   frequencies,  

respectively),   and   joint   action   is   used   to   mutually   adapt   neural   and   behavioral   representations.  

Taken   together,   we   demonstrate   that   an   unconventional,   ‘crowdsourcing   neuroscience’  

approach   can   provide   valuable   insights   into   the   brain   basis   of   dynamic   real-world   social  

behavior.   
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