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Abstract 

In the last decade, increasing incidence of type 1 diabetes (T1D) stabilized in Finland, a phenomenon 

that coincides with tighter regulation of perfluoroalkyl substances (PFAS). Here, we quantified PFAS 

to examine their effects, during pregnancy, on lipid-related and immune markers of T1D risk in 

children. In a mother-infant cohort (264 dyads), high PFAS exposure during pregnancy associated with 

decreased cord serum phospholipids and progression to T1D-associated islet autoantibodies in the 

offspring. This PFAS-lipid association was exacerbated by increased human leukocyte antigen-

conferred risk of T1D in infants. Exposure to a single PFAS compound or a mixture of organic 

pollutants in non-obese diabetic mice resulted in a profile characterized by a similar decrease in 

phospholipids, a marked increase of lithocholic acid, and accelerated insulitis. Our findings suggest 

that PFAS exposure during pregnancy contributes to risk and pathogenesis of T1D in offspring. 
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INTRODUCTION 

T1D is an autoimmune disease caused by destruction of insulin-secreting pancreatic beta-cells1. The 

strongest genetic risk factors for T1D are found within the human leukocyte antigen (HLA) gene 

complex2, yet only 3-10% of individuals carrying HLA-conferred disease susceptibility develop T1D3. 

The role of environmental factors in T1D pathogenesis is thus obvious4. We and others previously 

observed that children progressing to T1D-associated islet autoantibody positivity or to overt T1D later 

in life have a distinct lipidomic profile characterized by decreased blood phospholipid levels, including 

sphingomyelins (SMs), within the first months of life, preceding the onset of islet autoimmunity5, 6, 7 

and even as early as at birth8, 9. The cause of these metabolic changes is currently poorly understood. 

The gut microbiome is known to affect host lipid metabolism10 and is associated with progression to 

T1D11, 12, particularly in the period after islet autoantibody seroconversion, but current data does not 

offer an explanation for the earlier changes in phospholipid levels11. 

The incidence of T1D has been increasing over the last decades in many industrialized countries13. 

However, for unknown reasons, this has stabilized in the last decade, particularly in the Nordic 

countries14, 15. Environmental triggers and specific co-morbidities are often implicated in T1D, such as 

enterovirus infection, diet, and obesity4, yet these do not explain this observation. Obesity, for 

example, has not shown a concomitant decrease since 200516, and the number of severe enterovirus 

infections in Finland 2006-2010 increased, in fact, by 10 fold15. 

Notably, the time trend of human exposure levels to two widely-used industrial chemicals, namely, 

perfluorooctane sulfonate and perfluorooctanoic acid (PFOS and PFOA), does coincide with this trend 

in T1D incidence rate15. These two compounds belong to the group of per- and poly-fluoroalkyl 

substances (PFAS) which are widely-used in food packaging materials, paper and textile coatings, and 

fire-fighting foams17. The use of PFOS and PFOA has increased substantially since production started 

in the 1950s until the main, global manufacturer phased out its production of PFOS, PFOS-related 

substances and PFOA between 2000-2002. In the European Union, all uses of PFOS are now prohibited 

under Directive (2006/122/EC) which came into force in 2008 due to concerns regarding persistent 

effects in the environment and both bioaccumulation and toxic effects in humans. PFOA is still 

manufactured and a large number of other PFAS compounds are currently in use. With a half-life of 

up to five years for PFOS and two to four years for PFOA in humans, concentrations of PFOS and 

PFOA started to decrease in man only after ca. 2005, with the levels of many other PFAS still showing 

increasing trends18, 19. The main sources of exposure to PFAS in the general population are food and 

drinking water, with lesser sources including house dust and air. PFAS are transferred from mother to 

fetus via the placenta and to breast-fed infants via maternal milk20. 

Structurally, most PFAS resemble endogenous fatty acids, with fluorine substituted in place of 

hydrogen. Functionally, PFAS share some common features with bile acids, which are key metabolites 
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involved in the digestion and absorption of lipids in the small intestine as well as in the maintenance 

of lipid and glucose homeostasis21. Bile acids are excreted into the intestine and reabsorbed, and similar 

enterohepatic circulation has been suggested for PFOS and PFOA22, 23. It has been estimated that over 

90% of PFOS and PFOA have to be reabsorbed in order to explain the long half-life of these compounds 

in humans24, 25. Bile acids can therefore potentially act as mediators, linking PFAS exposures and 

altered lipid metabolism. In fact, prenatal exposure to PFAS was recently shown to associate with 

worsening metabolic outcomes in the offspring, including impaired glucose tolerance26. 

There is a dearth of knowledge regarding PFAS as possible contributors to T1D pathogenesis, although 

a contribution to the development of T1D has been proposed via impaired beta/immune-cell functions 

and immunomodulation27. It has also been reported that PFOA and PFOS disrupt generation of human 

pancreatic progenitor cells28. Prenatal and early-life exposure to perfluoroundecanoic acid (PFUnDA) 

aggravated insulitis development in NOD mice29. Recently, elevated levels of PFOS were reported in 

children at the point of diagnosis of T1D30. 

Here we hypothesized that PFAS exposure in utero affects the phospholipid profile of newborn infants, 

which may contribute to increased T1D risk. In a mother-infant cohort study, we (1) analyzed 

metabolite profiles of pregnant mothers and their offspring at birth, (2) quantified selected PFAS in 

maternal samples during pregnancy, and (3) examined prenatal PFAS exposures in relation to neonatal 

metabolite profiles and progression to T1D-associated islet autoantibody positivity (AAb+) during 

follow-up. We then further experimentally examined the impact of PFAS exposure on lipidomic and 

bile acid profiles and the development of insulitis / autoimmune diabetes in NOD mice as well as 

verified our key findings in a prospective birth cohort study comprising children at risk for T1D. 

RESULTS 

Metabolomic analyses of the mother-infant cohort 

A total of 264 mother-infant dyads were included in the study (Figure 1; Supplementary Table 1). 

Age at delivery was between 18.5 and 45.8 years, pre-pregnancy body mass index (BMI) was between 

16.9 and 45.7 kg/m2, with 62% of the mothers being normal weight (BMI 18.5-25). All babies were born 

after gestational week 35. 74 children at-risk for T1D were assayed for AAb+ during follow-up, and ten 

among these progressed to at least one islet autoantibody. 

Serum concentrations of 25 PFAS compounds were determined in the mothers during the pregnancy, 

collected at two time points, one during pregnancy and one at delivery (Supplementary Table 2). 

The two most abundant PFAS were PFOS and PFOA, detected in all subjects. Our detected levels of 

PFOS and PFOA were lower than reported in previous studies19, most of which used samples collected 

before 2010, and therefore before recent, noted decreases in population blood levels of PFOS and 

PFOA31. 
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Metabolomic analyses were performed using two analytical platforms. Serum molecular lipids and 

polar metabolites were quantified from the mothers during pregnancy and from newborn infants (cord 

serum). Identified lipids (n = 206) and quantified polar metabolites (n = 35) were included in the final 

datasets. To reduce dimensional complexity and facilitate identification of global associations between 

metabolic profiles and maternal PFAS exposure, we first clustered the metabolites from all datasets 

into cluster variables using model-based clustering32, followed by partial-correlation network 

analysis33. The optimum number of clusters for each dataset, as assessed by Bayesian Information 

Criterion (Supplementary Figure 1), returned ten Maternal Lipid Clusters (MLCs) and four Maternal 

polar Metabolite Clusters (MMCs) (Supplementary Table 3), while the cord serum lipidomics data 

yielded eight Child Lipid Clusters (CLCs) and four Child polar Metabolite Clusters (CMCs) 

(Supplementary Table 4). 

Metabolic profiles in mothers associate with PFAS exposure 

PFAS exposure impacted the maternal metabolome (Figure 2, Supplementary Figure 2), both at the 

cluster variable level as well as at the individual metabolite level. Total PFAS, as well as several 

individual PFAS, levels were positively associated with MMC1 (amino acids, saturated free fatty acids 

and cholesterol). At the individual metabolite level, a positive correlation with total PFAS was also 

observed for octanoic and decanoic acids as well as for lysine and alanine. The authors note here that 

whilst no strong associations were found between MLCs and individual PFAS exposures, network 

analysis drew links between two PFASs and three of the MLCs. These associations were found to not 

be spurious in the network/correlation analysis (see Methods) in that they passed the non-rejection 

rate (NRR) threshold of 0.5 (see Methods). Firstly, perfluoropentanoic acid (PFPeA) associated with 

(1) MLC7 (certain ethyl phospholipids) with an inverse association of -0.11, NRR = 0.40 and also with 

(2) MLC9 (large (>57 carbon), polyunsaturated fatty acid (PUFA)-containing triglycerides) with an 

inverse association also of -0.11, NRR = 0.15). Secondly, PFTDA associated with (1) MLC7 (positive 

association: 0.1, NRR = 0.46) and also with (2) MLC8 (small (<50 carbon) short chain fatty acid-

containing triacylglycerols, having a positive association: 0.14, NRR = 0.13 (associations visible in the 

network plot of Figure 2). 

For a subset of the cohort (n = 116), detailed lifestyle data, including dietary data during pregnancy, 

were available, and this dataset was used to estimate dietary sources of PFAS (Supplementary Figure 

3). Shellfish showed the strongest correlation with serum PFAS levels, with other food items also 

showing significant associations with the PFAS levels, such as fish, cereals and fruit juice. Fish oil 

consumption, which is not associated with PFAS exposure34, increases serum levels of phospholipids 

and PUFA-containing TGs35. Conversely, PFAS exposure is associated with increased levels of these 

lipids36. This suggests that, to a large extent, seafood consumption drives maternal PFAS levels. 
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In agreement with previous studies37, 38, we observed inverse correlations between the number of 

previous deliveries and levels of specific PFAS: PFOA (r = -0.44, FDR q < 0.01), PFHpS (r = -0.39, q < 

0.01), PFOS (r = -0.31, q = 0.07), total PFAS (r = -0.26, q = 0.23, nominal p = 0.006). 

Cord serum profiles in newborn infants associate with PFAS exposure 

Partial correlation network analysis revealed a marked impact of maternal PFAS exposure on the cord 

serum metabolome of newborn infants (Figure 2). Inverse associations between cord serum lipids and 

PFOS, PFOA and total PFAS exposure were observed, particularly for clusters CLC2 (PUFA-containing 

phosphatidylcholines/PCs), CLC4 (lysophosphatidylcholines/LPCs) and CLC5 (sphingomyelin, 

abundant PCs). CMC4 (mainly specific amino acids) was positively associated with PFOS and 

perfluorodecanoic acid (PFDA) exposure. 

Next, the infants were classified into four groups (quartiles) based on total maternal PFAS exposure 

levels during the pregnancy, as a sum of all measured PFAS exposures. Among the eight CLCs and four 

CMCs, one lipid cluster (CLC4) and one polar metabolite cluster (CMC4) were significantly different 

between the highest (Q4) and lowest (Q1) PFAS exposure quartiles, with two additional being of 

interest for their nominal p-value (CLC5 and CMC1) (Supplementary Table 5). At the individual 

metabolite level, several lipid species including LPCs, PCs, SMs and TGs were downregulated as total 

PFAS exposure increased. Specific amino acids, including phenylalanine, methionine and aspartic acid 

were significantly upregulated in the highest exposure group (Figure 3, Supplementary Table 6). 

We then studied the associations between the matched maternal and cord serum metabolite levels 

using Spearman correlation. Following multiple hypothesis correction, only four lipids remained 

significantly correlated between the mothers and offspring. However, the correlation between the 

lipids was low overall (|R| < 0.24). Polar metabolites showed no significant correlations between 

maternal and cord blood samples. 

Impact of PFAS exposure on cord serum lipids associated with risk of T1D progression 

As the cord serum lipid profile associated with total maternal PFAS exposure here proved similar to 

that found previously as being associated with progression to T1D8, we also examined the impact of 

PFAS exposure on T1D-associated lipids. First, we assigned the lipids from the present study to the 

same lipid clusters (LCs) as used in our previous study, and investigated their association with PFAS 

levels. 

Of the ten lipid clusters used in the earlier study, five showed significant differences between the 

highest and lowest exposure groups (Supplementary Table 7). In our previous study, the most 

significantly-changing lipid clusters associated with T1D progression were LC2 (major PCs) and LC7 

(sphingomyelins), which were down-regulated in newborn infants who later progressed to clinical 

T1D. In agreement with these results, the lipid levels in those same clusters were also reduced in the 
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highest (Q4) exposure group by comparison to the lowest (Q1) exposure levels in the current study. In 

addition, lipid clusters LC3 (LPCs) and LC6 (PUFA-containing phospholipids) showed clear 

differences in the current study, with lower lipid levels seen in the highest exposure group. 

Of the 15 top-ranked lipids reported to have significant associations with T1D development8, seven of 

these showed significant association with total PFAS exposure (p < 0.05). It is also of interest that the 

other lipids showed changes and also attained small nominal p-values (p < 0.08) (Supplementary 

Table 8). Among the individual PFAS, the strongest association was observed for perfluorononanoic 

acid (PFNA), with all 15 cord serum lipids were significantly associated with prenatal PFNA exposure. 

Given the observed impact of prenatal exposure to PFAS on cord serum lipids associated with 

progression to T1D, we also examined whether HLA-conferred risk of T1D plays a role in mediating the 

impact of PFAS exposure on lipids in newborn infants. We divided the infants into two categories 

according to HLA-associated T1D risk: (low vs. increased; Supplementary Table 1) and two categories 

according to prenatal total PFAS exposure (quartiles 1 & 2 vs. 3 & 4). A multi-way ANOVA was then 

performed across these groups for the eleven lipids found associated with PFAS exposure. When 

examining the interaction effect between HLA risk and PFAS exposure, we found four lipids with a p-

value < 0.05 (Supplementary Table 9). 

In a subset of the cohort, which included 74 children enrolled in the clinical trial and for whom follow-

up data were available, we then compared prenatal PFAS exposure in children who progressed to islet 

autoantibody positivity during the follow-up (n=10) vs. those that did not. We found that the children 

who progressed to one or more autoantibodies had elevated prenatal levels of several PFAS, with the 

largest effect being observed for PFOS, perfluoroheptane sulfonate (PFHpS) and perfluorohexane 

sulfonate (PFHxS) (Supplementary Table 10). We also compared the ratios of sphingomyelins and 

LPCs to PFAS between the two groups of children, as potential markers of the impact of exposure. 

Marked differences were observed between the groups, particularly for PFAS with 5 to 8 carbons in 

their structures (Supplementary Table 10). 

Pre- and postnatal PFAS exposure in NOD mice alters offspring lipid profiles 

Based on the metabolomics results from the mother-infant cohort, we hypothesized that PFAS 

exposure during pregnancy has a contributing, causal impact on phospholipid levels, which, in turn, 

associates with increased risk of T1D. Two previously-reported studies in NOD mice suggest that 

maternal PFAS exposure accelerates insulitis development and progression to autoimmune diabetes29, 

39. We analyzed serum lipidomic profiles from these two studies, these being carried out in NOD mice 

(11 weeks of age) with exposure eitherto (1) PFUnDA in drinking water (0, 3, 30 and 300 μg/L)29 or to 

(2) a mixture of persistent organic pollutants (POPs) in feeds (total PFAS intakes of 0, 0.14 (low), and 

2.8μg/day (high)), with the low level corresponding to the approximate level of PFAS in human serum 

and the high level representing a 50-times higher level of total PFAS in serum40, 41, 42). It should be 
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noted that the levels of the other POPs were significantly lower than those of PFAS41. These exposures 

occurred at the times of mating, during gestation and lactation and until 11 weeks of age39. 

Exposure to PFUnDA caused significant changes in lipid profiles at the highest exposure level, with 

similar patterns of changes found with the two lower concentrations, although these did not reach 

statistical significance (Supplementary Table 11). Marked changes were observed also in the second 

study, where mice were exposed to the POP mixture, with the strongest effects seen in the high 

exposure group, but with significant changes still occurring also in the low exposure group which 

corresponded to expected human exposure levels (Supplementary Table 12). Specifically, exposure 

caused a marked reduction of a large number of phospholipids, with several PUFA-containing TGs 

being significantly down-regulated as well. We also identified significant changes in the levels of 

several free fatty acids, free cholesterol, amino acids, glycerol-3-phosphate and 3-hydroxybutyric acid, 

particularly in the high exposure group, with significant upregulation of TCA cycle metabolites. 

As bile acids and PFAS utilize similar enterohepatic circulation22, 23, we also examined the impact of 

the POP mixture on serum bile acid levels in serum of NOD mice. Indeed, the bile acid profiles were 

markedly altered, in a dose-dependent manner, due to the exposure to the POP mixture (Figure 4a; 

Supplementary Table 13). A majority of the bile acids, including the primary bile acids (CA, CDCA) 

were downregulated, while lithocholic acid (LCA) was markedly upregulated in comparison to the 

control group (Figure 4a; fold changes of 2.1 and 5.9 at low and high exposure to POP, p-values of 

6.7×10-4 and 5.6×10-8, respectively). Notably, there was a strong inverse association between the levels 

of LCA and the levels of SMs and LPCs (two examples shown in Figure 4b-c). Specifically, all SMs were 

downregulated (median R = -0.63, p = 0.000071-0.04) while 70% of the LPCs were significantly 

inversely associated with the LCA (median R = -0.60, p = 4.1×10-7-0.01), except for LPC(22:3), which was 

positively correlated with LCA (R=0.54, p=0.007). 

Next, we assigned the measured lipids to the same lipid clusters (LCs) as in our previous study8 and 

investigated the association of PFAS exposure with these lipid clusters. Of the ten lipid clusters, four 

showed significant differences between the highest PFUnDA-exposure group and the control mice. 

One lipid cluster showed a significant difference even at the lowest level of exposure compared to 

control. In mice exposed to the POP mixture, eight of ten clusters showed significant changes between 

control and high exposure groups, and two clusters changed significantly between control and low 

exposure groups. In agreement with our previous study and our mother-infant cohort study presented 

here, LC2 decreased significantly with increasing PFAS exposure. In addition, clusters LC4, LC9 and 

LC10 showed clear differences in the current study with significantly lower lipid levels in the highest 

exposure group. These clusters contained mainly minor phospholipids, major TGs and long-chain 

PUFA-containing TGs. Using the cluster assignments from the earlier study8, a remarkable similarity 

was observed when comparing the results across all four studies (Figure 5): (1) a previously-reported 
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study of the cord serum lipidome in relation to progression to T1D8, (2) the association between PFAS 

exposure and cord serum lipid profiles in the mother-infant cohort presented here, and (3) the effects 

of PFUnDA and (4) a PFAS-containing POP mixture on the lipid profiles of NOD mice. Among the 15 

individual lipids reported to have significant association with the development of T1D, 11 and 10 of 

these were detected also in the NOD mice, exposed to PFUnDA and POP mixture, respectively. Among 

these lipids, three showed significant differences between control and high exposure groups in the 

PFUnDA model and nine in the POP mixture exposure model. Notably, the pattern of the changes in 

the two mouse models were very similar, and in vitro exposure of macrophages to groups of chemicals 

from the POP mixture revealed that the PFAS mixture was driving the differences also in the POP 

mixture model29, 39. Strikingly, all lipid changes taking place in association with higher PFAS exposure 

occurred in the same direction as reported previously in relation to increased risk of T1D. 

High exposure to PFOS in breastfed children at genetic risk for T1D associates with autoantibody 

positivity and with elevated levels of lithocholic acid 

Next, we compared the plasma PFOS and lithocholic acid (LCA) concentration differences between 

the children who progressed to multiple islet autoantibodies (mAAb+) vs. controls (CTR), who 

remained AAb negative, in a previously-reported subgroup of the DIABIMMUNE study11. In line with 

our findings in the mother-child cohort, we observed higher level of PFOS, particularly in breast-fed 

(≥ 30 days) children who progressed to mAAb+ (n = 6) than in CTR (n = 20) at 18 months of age (p-

value < 0.05, Supplementary Figure 4a). In addition, we found that in the longitudinal profile, PFOS 

remained persistently higher in the mAAb+ group than in CTR (Supplementary Figure 4b). We then 

sought to determine if LCA levels were altered with exposure. We found that children with the highest 

level (Q4) of PFOS exposure tended to have increased levels of LCA compared with children who had 

a low level (Q1) of PFOS exposure (Supplementary Figure 5a). We also observed that LCA differed 

between the cases and controls. Higher levels of LCA were found in children who progressed to mAAb+ 

than in the CTR at 6 and 36 months of age (p-value < 0.05, Supplementary Figure 5b-c). 

DISCUSSION 

By integrating PFAS exposure and metabolomic data from pregnant mothers with metabolomic data 

from their newborn infants, we were able to demonstrate altered cord serum metabolic signatures 

associated with high PFAS exposure during pregnancy and subsequently verify these in NOD mouse 

models of pre- and postnatal PFAS exposure. We also reported a remarkable similarity between the 

metabolic signature observed in the current (EDIA) study and the known signature associated with 

progression to T1D. 

The composition of the cord blood metabolome reflects maternal metabolism, placental transfer 

across the maternal-fetal axis as well as fetal metabolism itself43. This may explain the weak 

associations between metabolic profiles of mothers and their offspring. The observed PFAS-associated 
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metabolic changes seen in cord blood were not associated with PFAS-related maternal metabolic 

changes. These fetal metabolic changes are therefore likely the result of PFAS exposure itself, rather 

than a downstream consequence of maternal metabolic changes. Several studies have shown that 

maternal levels of PFAS are reflected in the developing fetus44 and there is a strong correlation between 

PFAS levels in maternal and cord blood45. One recent study indicates that PFAS concentrations in first 

trimester fetuses represent 5% to 27% of maternal plasma concentrations, fetal concentrations 

increasing with gestational age46. A comparison of transplacental transfer efficiency (TTE) for different 

PFAS suggests an inverse relationship with the chain-length of the perfluoroalkyl group and a 

somewhat lower transfer efficiency for perfluorosulfonic acids compared to perfluorocarboxylic 

acids44. We did not determine PFAS levels in newborn infants due to the limited volumes of samples 

available for quantification. 

There is general consensus that exposure to PFOA and PFOS alters the immune system in 

experimental models, with documented effects including altered antibody and cytokine production47. 

In our study, we observed that prenatal PFAS exposure caused decreased levels of several 

phospholipids, particularly SMs and specific PCs, which were previously found to be persistently 

down-regulated in children who later progressed to islet autoimmunity7 and clinical T1D5, 6. The 

importance of sphingolipid metabolism in the pathogenesis of T1D was recently highlighted by a 

genome-wide association study (GWAS) which identified eight gene polymorphisms involved in 

sphingolipid metabolism which contribute to T1D predisposition, and levels of which also correlated 

with the degree of islet autoimmunity in patients with recent-onset T1D48. Among the PFAS measured 

in our study, the main implicated drivers of the observed changes in cord serum phospholipid levels 

were PFNA, PFOS, PFUnDA and PFOA. Also, serine and palmitic acid (precursors of SMs) were found 

to be down-regulated with higher PFAS exposure and correlated with SM levels (R > 0.4), both in 

newborn infants as well as in NOD mice, where the exposure to PFAS was also associated with 

accelerated insulitis development29. We conclude that high PFAS exposure may alter sphingolipid 

levels during fetal development which may then go on to play a pathogenic role in the development 

of T1D later in life. The potential role of HLA-associated T1D risk in exacerbating the effect of prenatal 

PFAS exposure on lipid levels in the offspring, as suggested by our data, clearly demands further 

investigation. 

Altered bile acid levels as observed in NOD mice exposed to POP mixtures, and in children positive 

for multiple islet autoantibodies, may explain altered lipid profiles. In animal models, LCA exposure 

has been shown to cause downregulation of LPCs and SMs in circulation49, which is precisely what we 

have observed both in previous T1D studies (linking early lipid changes with progression to T1D later 

in life)5, 6 as well as in the current study in relation to PFAS exposure. Notably, LCA has been previously 

linked to autoimmunity as it has been shown that LCA inhibits Th1 activation in Jurkat T cells, human 

and mouse primary CD4+ Th cells by inhibiting Th1 activation, mainly via vitamin D receptor50. LCA 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/588350doi: bioRxiv preprint 

https://doi.org/10.1101/588350


 11 

is also an agonist for membrane receptor TGR5 which mediates the release of glucagon-like peptide 1 

(GLP-1) promoting insulin release from pancreatic β-cells21, 23. Bile acid metabolism is also closely 

linked with gut microbiotal activity and, indeed, PFAS exposure has been shown to cause reduced 

microbiome diversity in infants51. In the DIABIMMUNE cohort, matching the sample studied here, the 

children that progressed to multiple islet autoantibodies later in life were found to have decreased 

alpha-diversity of gut microbiota. Decreased levels of LCA and increased levels of SMs in stool were 

also associated with relative overabundance of pathobionts, including mAAb+-associated 

Ruminococcus11. Our data presented in the current study thus suggests that PFAS impact absorption 

of bile acids, which may, in turn, affect circulating lipid levels (Figure 6). 

We also observed an inverse association between maternal levels of specific PFAS and the number of 

previous deliveries, due to transfer of PFAS to the fetus, and excretion via breast milk (i.e., breast 

feeding) which is in line with earlier reports37, 38. Interestingly, pooled analysis across multiple studies 

suggests that increasing birth order is associated with lower risk of T1D52. Our findings therefore 

support the notion that decreased maternal PFAS levels, due to multiple pregnancies, is one possible 

cause of this previously unexplained phenomenon. 

Taken together, we conclude that high prenatal exposure to PFAS appears to alter lipid profiles in 

newborn infants, which, in turn, may increase the risk of islet autoimmunity and T1D. Our data also 

highlight a potential role for a gene-environment interaction (HLA risk genotype and prenatal PFAS 

exposure), which may lead to altered lipid profiles in newborn infants at-risk of developing T1D. Our 

findings may offer an explanation for the changing trend in the incidence of T1D in Western countries 

as well as underscore the need for investigations of how exposures to specific PFAS and other 

persistent chemical pollutants during pregnancy and early childhood affect the risk and pathogenesis 

of T1D. 

METHODS 

Mother-infant cohort 

Pregnant women were recruited from January 28, 2013 to February 26, 2015, in the context of the EDIA 

(Early Dietary Intervention and Later Signs of Beta-Cell Autoimmunity: Potential Mechanisms) study, 

which is a small-scale intervention trial comparing weaning infants onto an extensively-hydrolyzed 

milk formula vs. a conventional cow’s milk-based formula. Families were contacted at the time of the 

fetal ultrasonography visit, which is arranged for all pregnant women in Finland around gestational 

week 20. Written, informed consent was signed by the parents to permit analysis of their HLA 

genotype to exclude infants without HLA-conferred susceptibility to T1D. At this point, 68% of the 

infants to be born were excluded. Separate informed consent was obtained from eligible parents at the 

beginning of the third trimester to analyze the offspring’s genotype and to continue in the intervention 

study. 
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The cord blood from 309 newborn infants was screened to determine the HLA genotype, as previously 

described53. The degree of HLA susceptibility to T1D was divided into six categories (high-risk, 

moderate-risk, low-risk, neutral, protective and strongly protective genotypes), as earlier defined54. A 

total of 89 infants were eligible for participation in the intervention study, carrying high-risk and 

moderate-risk genotypes. In that study, 82 infants were randomized and 73 remained in follow-up 

until the age of 12 months. 

For the current study, the HLA risk categories were combined into two classes; the increased risk 

genotypes and the low-risk genotypes. Genotypes where HLA-(DR3)-DQA1*05-DQB*02 and/or 

DRB1*04:01/2/4/5-DQA1*03-DQB1*03:02 were present with each other, homozygous or heterozygous 

with a neutral haplotype were classified as increased risk and all other genotypes as low risk. Maternal 

diet during pregnancy was assessed by validated semiquantitative food frequency questionnaire55. 

Food and individual nutrient intakes were calculated using the national food composition database, 

Fineli56. We had access to 329 maternal serum samples collected at the beginning of the third trimester 

and 274 samples taken at delivery. We had, altogether, 300 cord blood samples. By pairing maternal 

and cord blood samples we obtained 264 paired mother-infant samples. 

DIABIMMUNE study 

The DIABIMMUNE study recruited 832 families in Finland (Espoo), Estonia (Tartu), and Russia 

(Petrozavodsk) with infants carrying HLA alleles that conferred risk for autoimmunity. The subjects 

involved in the current study were chosen from the subset (n = 62) of international DIABIMMUNE 

study children who progressed to multiple islet autoantibodies (n = 14) and controls (CTR, n = 38) who 

remained AAb negative in a longitudinal series of samples collected up to 3, 6, 12, 18, 24 and 36 months 

for each child11. The study groups were matched by HLA-associated diabetes risk, sex, country and 

period of birth. This study was conducted according to the guidelines in the Declaration of Helsinki. 

The Ethics and Research Committee of the participating Universities and Hospitals approved the study 

protocol. All families provided written informed consent prior to sample collection. 

NOD mouse study – summary  

The study setting of the two NOD mouse studies mice was reported previously29, 39. In short, 

NOD/ShiLtJ mice from the Jackson Laboratory (Maine, USA) were used for breeding at 8 and 10 weeks 

of age and randomly allocated to the exposure groups. Female offspring were, in both studies, exposed 

at mating, through gestation and early life until 11-12 weeks of age when the serum samples were 

collected, with 4-5 mice kept per cage and 5-8 mice per exposure group. 

The exposure in the first study was to PFUnDA in the drinking water (n=8 per group) (0, 3, 30 and 300 

µg/L, corresponding to 0.417, 4.17 and 41.7 μg/kg bw/day). The lowest exposure level of PFUnDA is 

about five times higher than the maximal calculated intake of PFOA in human infants. The exposure 

in the second study (n=5 per exposure group) was to a mixture of persistent organic pollutants in feed, 
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with a high and a low dose mixture (chemical composition based on human intake39, 41). The total 

intake of PFAS was 0.14 μg/day and 2.8 μg/day from the (1) low and (2) high dose groups, respectively, 

corresponding to (1) 1-50 times human serum levels of PFAS and (2) 20-1000 times the human serum 

levels41. In both studies, the mice had ad libitum access to food and water (Harlan Teklad 2919 

irradiated, Madison, WI) and had a 12 h light/12 h dark cycle with 35–75% humidity. 

All experiments were performed in conformity with the laws and regulations for experiments with live 

animals in Norway and were approved by the local representative of the Norwegian Animal Research 

Authority. In the NOD mouse model, insulitis is the most prominent feature preceding diabetes 

onset57 with impaired macrophage phagocytosis being associated with seroconversion58. Insulitis was 

assessed by grading of hematoxylin and eosin-stained pancreatic tissue sections. Early signs of insulitis 

included an increased number of apoptotic cells, a decreased number of tissue-resident macrophages 

in pancreatic islets and reduced phagocytic function of macrophages isolated from the peritoneum. 

Analysis of PFAS 

Sample preparation and analysis for PFAS was carried out as described previously59. In short, 450 µL 

acetonitrile with 1% formic acid, and internal standards were added to 150 µL serum and samples 

subsequently treated with Ostro sample preparation in a 96-well plate for protein precipitation and 

phospholipid removal. The analysis of PFAS was performed using automated column-switching ultra-

performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) (Waters, Milford, 

USA) using an ACQUITY C18 BEH 2.1×100mm×1.7µm column and a gradient with 30% methanol in 

2mM NH4Ac water and 2mM NH4Ac in methanol with a flow rate of 0.3 mL/min. Quantitative 

analysis of the selected analytes was performed using the isotope dilution method; all standards (i.e., 

internal standards, recovery standards, and native calibration standards) were purchased from 

Wellington Laboratories (Guelph, Ontario, Canada). The method’s detection limits ranged between 

0.02-0.19 ng/mL, depending on the analyte. 

Analysis of bile acids 

The bile acids were measured in NOD mice and in human serum as described recently60, with some 

modifications in the sample preparation. 100 μL of acetonitrile and 10 μL of PFAS internal standard 

mixture (c = 200 µg/mL in methanol) and 20 µL of BA internal standard mixture (c = 440-670 µg/mL in 

methanol) and 50 μL NOD serum respectively were mixed, the samples were centrifuged and the 

organic phase was collected, evaporated to dryness after which 13C injection standards were added (10 

µL of 200 µg/mL PFAS in methanol) as was 300 µL of 2 mM NH4AC in water. For human samples, 20 

μL of serum, using the same internal standard mixtures, was filtered through a frit filter plate (96-Well 

Protein Precipitation Filter Plate, Sigma Aldrich), and the effluent was collected and evaporated to 

dryness and the residue was dissolved in 20 µL of a 40:60 MeOH:H2O v/v mixture containing the same 
13C-PFAS injection standards. Analyses were performed on an ACQUITY UPLC system coupled to a 
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triple quadrupole mass spectrometer (Waters Corporation, Milford, USA) with an atmospheric 

electrospray interface operating in negative ion mode60. An external calibration with six calibration 

points (0.5-160 ng/mL), including a solvent blank, was carried out for use in quantitation. 

Analysis of molecular lipids by UHPLC-QTOFMS 

Serum samples were randomized and extracted using a modified version of the previously published 

Folch procedure61. In short, 10 µL of 0.9% NaCl and, 120 µL of CHCl3: MeOH (2:1, v/v) containing the 

internal standards (c = 2.5 µg/mL) was added to 10 µL of each serum sample. The standard solution 

contained the following compounds: 1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine 

(PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine (SM(d18:1/17:0)), N-

heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadecanoyl-sn-glycero-3-

phosphocholine (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(17:0)) 

and 1-palmitoyl-d31-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1)), were purchased from 

Avanti Polar Lipids, Inc. (Alabaster, AL, USA), and, triheptadecanoylglycerol (TG(17:0/17:0/17:0)) was 

purchased from Larodan AB (Solna, Sweden). The samples were vortex mixed and incubated on ice 

for 30 min after which they were centrifuged (9400 × g, 3 min). 60 µL from the lower layer of each 

sample was then transferred to a glass vial with an insert and 60 µL of CHCl3: MeOH (2:1, v/v) was 

added to each sample. The samples were stored at -80 °C until analysis. 

Calibration curves using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine 

(PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine 

(PC(18:0p/18:1(9Z))), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:0)), 1-oleoyl-2-

hydroxy-sn-glycero-3-phosphocholine (LPC(18:1)), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (PE(16:0/18:1)), 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-

phosphocholine (PC(18:0p/22:6)) and 1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/18:2)), 1-(9Z-

octadecenoyl)-sn-glycero-3-phosphoethanolamine (LPE(18:1)), N-(9Z-octadecenoyl)-sphinganine 

(Cer(d18:0/18:1(9Z))), 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine 

(PE(16:0/18:1)) from Avanti Polar Lipids, 1-Palmitoyl-2-Hydroxy-sn-Glycero-3-Phosphatidylcholine 

(LPC(16:0)), 1,2,3 trihexadecanoalglycerol (TG(16:0/16:0/16:0)), 1,2,3-trioctadecanoylglycerol 

(TG(18:0/18:0/18:)) and 3β-hydroxy-5-cholestene-3-stearate (ChoE(18:0)), 3β-Hydroxy-5-cholestene-3-

linoleate (ChoE(18:2)) from Larodan, were prepared to the following concentration levels: 100, 500, 

1000, 1500, 2000 and 2500 ng/mL (in CHCl3:MeOH, 2:1, v/v) including 1250 ng/mL of each internal 

standard. 

The samples were analyzed by ultra-high-performance liquid chromatography quadrupole time-of-

flight mass spectrometry (UHPLC-QTOFMS)62. Briefly, the UHPLC system used in this work was a 

1290 Infinity II system from Agilent Technologies (Santa Clara, CA, USA). The system was equipped 

with a multi sampler (maintained at 10 °C), a quaternary solvent manager and a column thermostat 
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(maintained at 50 °C). Injection volume was 1 µL and the separations were performed on an ACQUITY 

UPLC® BEH C18 column (2.1 mm × 100 mm, particle size 1.7 µm) by Waters (Milford, MA, USA). The 

mass spectrometer coupled to the UHPLC was a 6545 QTOF from Agilent Technologies interfaced 

with a dual jet stream electrospray (Ddual ESI) ion source. All analyses were performed in positive ion 

mode and MassHunter B.06.01 (Agilent Technologies) was used for all data acquisition. Quality control 

was performed throughout the dataset by including blanks, pure standard samples, extracted standard 

samples and control serum samples. Relative standard deviations (% RSDs) for peak areas for lipid 

standards representing each lipid class in the control serum samples (n= 12) and in the pooled serum 

samples (n = 77) were calculated on average 15.9% and 13.6% (raw variation) in maternal samples and 

in cord blood samples, respectively. For serum samples from NOD mice, RSD was on average 11.9%. 

The lipid concentrations in pooled control samples showed % RSDs within accepted analytical limits 

at averages of 14.7% and 20.4% for the maternal and cord blood serum samples, respectively, and 7.3% 

for serum samples from NOD mice. 

Mass spectrometry data processing was performed using the open source software package MZmine 

2.1863. The following steps were applied in this processing: (1) Crop filtering with a m/z range of 350 – 

1200 m/z and an RT range of 2.0 to 12 minutes, (2) Mass detection with a noise level of 750, (3) 

Chromatogram builder with a minimum time span of 0.08 min, minimum height of 1000 and a m/z 

tolerance of 0.006 m/z or 10.0 ppm, (4) Chromatogram deconvolution using the local minimum search 

algorithm with a 70% chromatographic threshold, 0.05 min minimum RT range, 5% minimum relative 

height, 1200 minimum absolute height, a minimum ration of peak top/edge of 1.2 and a peak duration 

range of 0.08 - 5.0, (5), Isotopic peak grouper with a m/z tolerance of 5.0 ppm, RT tolerance of 0.05 

min, maximum charge of 2 and with the most intense isotope set as the representative isotope, (6) 

Peak filter with minimum 12 data points, a FWHM between 0.0 and 0.2, tailing factor between 0.45 

and 2.22 and asymmetry factor between 0.40 and 2.50, (7) Join aligner with a m/z tolerance of 0.009 

or 10.0 ppm and a weight for of 2, a RT tolerance of 0.1 min and a weight of 1 and with no requirement 

of charge state or ID and no comparison of isotope pattern, (8) Peak list row filter with a minimum of 

10% of the samples (10) Gap filling using the same RT and m/z range gap filler algorithm with an m/z 

tolerance of 0.009 m/z or 11.0 ppm, (11) Identification of lipids using a custom database search with an 

m/z tolerance of 0.009 m/z or 10.0 ppm and a RT tolerance of 0.1 min, and (12) Normalization using 

internal standards PE(17:0/17:0), SM(d18:1/17:0), Cer(d18:1/17:0), LPC(17:0), TG(17:0/17:0/17:0) and 

PC(16:0/d30/18:1)) for identified lipids and closest ISTD for the unknown lipids followed by calculation 

of the concentrations based on lipid-class concentration curves. 

An aliquot of each sample was collected and pooled and used as quality control sample, together with 

NIST SRM1950 reference plasma sample, an in-house pooled serum sample. 

Analysis of polar metabolites by GC-TOFMS 
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Serum samples were randomized and sample preparation was carried out as described previously64, 65. 

In summary, 400 μL of MeOH containing ISTDs (heptadecanoic acid, deuterium-labeled DL-valine, 

deuterium-labeled succinic acid, and deuterium-labeled glutamic acid, c= 1 µg/mL) was added to 30 µl 

of the serum samples which were vortex mixed and incubated on ice for 30 min after which they were 

centrifuged (9400 × g, 3 min) and 350 μL of the supernatant was collected after centrifugation. The 

solvent was evaporated to dryness and 25 μL of MOX reagent was added and the sample was incubated 

for 60 min at 45 °C. 25 μL of MSTFA was added and after 60 min incubation at 45 °C 25 μL of the 

retention index standard mixture (n-alkanes, c=10 µg/mL) was added. 

The analyses were carried out on an Agilent 7890B GC coupled to 7200 Q-TOF MS. Injection volume 

was 1 µL with 100:1 cold solvent split on PTV at 70 °C, heating to 300 °C at 120 °C/minute. Column: 

Zebron ZB-SemiVolatiles. Length: 20m, I.D. 0.18mm, film thickness: 0.18 µm. With initial Helium flow 

1.2 mL/min, increasing to 2.4 mL/min after 16 mins. Oven temperature program: 50 °C (5 min), then 

to 270°C at 20 °C/min and then to 300 °C at 40 °C/min (5 min). EI source: 250 °C, 70 eV electron energy, 

35µA emission, solvent delay 3 min. Mass range 55 to 650 amu, acquisition rate 5 spectra/s, acquisition 

time 200 ms/spectrum. Quad at 150 °C, 1.5 mL/min N2 collision flow, aux-2 temperature: 280 °C. 

Calibration curves were constructed using alanine, citric acid, fumaric acid, glutamic acid, glycine, 

lactic acid, malic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, linoleic acid, oleic acid, palmitic 

acid, stearic acid, cholesterol, fructose, glutamine, indole-3-propionic acid, isoleucine, leucine, proline, 

succinic acid, valine, asparagine, aspartic acid, arachidonic acid, glycerol-3-phosphate, lysine, 

methionine, ornithine, phenylalanine, serine and threonine purchased from Sigma-Aldrich (St. Louis, 

MO, USA) at concentration range of 0.1 to 80 μg/mL. An aliquot of each sample was collected and 

pooled and used as quality control samples, together with a NIST SRM 1950 serum sample and an in-

house pooled serum sample. Relative standard deviations (% RSDs) of the metabolite concentrations 

in control serum samples showed % RSDs within accepted analytical limits at averages of 12.3% and 

19.6% for the maternal and cord blood serum samples, respectively, and 7.2% for serum samples from 

NOD mice. 

Analysis of islet autoantibodies (EDIA and DIABIMMUNE studies) 

Four diabetes-associated autoantibodies were analyzed from each serum sample with specific 

radiobinding assays: insulin autoantibodies (IAA), glutamic acid decarboxylase antibodies (GADA), 

islet antigen-2 antibodies (IA-2A), and zinc transporter 8 antibodies (ZnT8A) as described 

previously66. Islet cell antibodies (ICA) were analyzed with immunofluoresence in those subjects who 

tested positive for at least one of the biochemical autoantibodies. The cut-off values were based on the 

99th percentile in non-diabetic children and were 2.80 relative units (RU) for IAA, 5.36 RU for GADA, 

0.78 RU for IA-2A and 0.61 RU for ZnT8A, Detection limit in the ICA assay was 2.5 Juvenile Diabetes 

Foundation units (JDFU). 
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Data transformation and descriptive statistical analysis 

Spreadsheets containing concentration data were converted to .csv format for loading into the R 

statistical programming language67. For all datasets, the following transformations were carried out: 

1. NA values in the data were replaced with zeroes. 

2. The aforementioned zeroes were then replaced with imputed half-minimums (for each variable, 

the minimum value was found, and half of this value was used). 

3. All values were log2 transformed. 

4. Each variable was scaled to zero mean and unit variance. 

Total PFAS exposure in pregnant mothers was assessed as a simple sum of exposure to all measured 

PFAS. Mothers and matching children were then sorted into quartiles of this total maternal PFAS 

exposure. Analysis by both ANOVA and Tukey’s honest significant difference (TukeyHSD) were 

carried out on all lipids and metabolites in the infants’ cord blood, grouping these into the 

aforementioned maternal PFAS exposure quartiles to reveal any significant changes in their level as 

exposure increased. To visualize this, the R beanplot package (version 1.2)68 was used to show both the 

changes in the means across exposure quartiles, and the densities of samples in each quartile. 

Multiu-way analysis of variance was performed with factors HLA risk and PFAS exposure) and their 

interactions in MATLAB R2017b (Mathworks, Inc., Natick, MA, USA) using Statistical Toolbox. 

The Wilcoxon rank-sum test was used in comparing the two study groups of samples (e.g. CTR vs. 

mAAb+ group) in a specific age cohort. These statistical analyses were computed in MATLAB 2017b 

using the statistical toolbox. For statistical comparison, subjects with missing peaks for the given 

quantified compound and children who were not exclusively breast-fed for 30 days were excluded. The 

longitudinal profiles of the PFOS in the samples obtained from children who progressed to multiple 

autoantibodies and autoantibody negative controls were compared using linear mixed-effects model 

with the fixed effect being case, age, sex, and the random effect being subject-wise variation using 

lme4 package in R. The fully parametrized model was compared with a null model using analysis of 

variance (ANOVA) as deployed in the lme4 package. The locally weighted regression plot was made 

using smoothing interpolation function loess (with span = 0.85) available from ggplot2 package in R. 

The individual metabolite levels were visualized as scatter plot as well as box plot using GraphPad 

Prism 7 (GraphPad Software, La Jolla, CA, USA). 

Clustering 

All metabolomics datasets were then analyzed using the mclust R package (version 5.4.1)32 to assign 

variables (lipids / metabolites) from each dataset to separate clusters. Here, mclust attempts to fit 

various model types and assesses their performance using the Bayesian Information Criterion (BIC). 
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Maximization of the BIC is a gold-standard method for model selection, particularly useful in the case 

of clustering of data, to choose the optimum number of clusters by way of maximizing the likelihood 

of fit of the clustering model, whilst this metric penalizes (and thereby avoids) unnecessary 

complexity. As the mclust package tries its various model types and increasing numbers of clusters 

into which to divide the data. The BIC is calculated at each iteration, and the optimal (maximal) BIC 

will occur when the lowest number of clusters are used before the point at which increasing the 

number of clusters gives a lesser return in the fitness of the model. The highest BIC achieved by mclust 

for each dataset was therefore used to determine both the model type and the number of clusters into 

which the variables should be divided. The variables in each dataset were accordingly given numbers 

to denote their cluster membership. Plots demonstrating the distribution of BICs for each dataset, and 

therefore justifying the choice of a specific number of clusters for downstream processing, are given 

in supplementary data (Supplementary Figure 1). 

For each sample in each dataset, cluster variables were then generated. For each dataset, the number 

of clusters k found by mclust equals the number of cluster variables generated. Each cluster variable 

is the mean value of the lipids / metabolites that make up that cluster, meaning that samples in that 

dataset are represented now only by k values. These cluster variables were given acronyms indicating 

the dataset from which they were generated (Maternal blood Lipids Cluster – MLC, Maternal polar 

Metabolites Cluster - MMC, Offspring Lipids Cluster - CLC, Offspring polar Metabolites Cluster – 

CMC). 

These cluster variable acronyms had their cluster numbers (1-k for each dataset) appended to them to 

form their final labels. Assignment of individual lipids / metabolites to each cluster variable is given 

for each dataset in supplementary files, along with total membership counts in each cluster. 

PFAS compounds were not clustered in this manner and so retain their names. 

Identification of potentially-confounded variables in the mother-child cohort 

Analyses which draw upon large numbers of human samples in order to elucidate patterns therein can 

suffer from the effects of confounding between their features of biological / experimental interest (in 

this case, the levels of circulating lipids and polar metabolites) and the underlying distribution of the 

demographics of that cohort. It is possible, in the case of our analysis, for example, that the results 

that we see in the form of lipid/metabolites levels and therefore the downstream associations that we 

find between lipids / metabolites and clinical outcomes are, in reality, attributable to a greater or lesser 

degree to anthropometric values such as the age, sex or BMI of the subjects in the cohort. In the event 

of significant confounding effects of these demographic variables upon a sizeable number of lipids / 

polar metabolites, various correction methods would need to be employed to mitigate such effects, if 

possible. 
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In order to rule out the effects of these common, but important, demographic factors, a comprehensive 

analysis was carried out, modeling the relationship between all lipids and polar metabolites in both 

mothers and children, and the variables of age, BMI and sex. Relationships between lipids / polar 

metabolites and the covariates of age / BMI / sex were modeled applying generalized linear models 

(GLMs) using the glm() package provided as a base function in the R statistical programming language. 

Models were constructed aiming to link each lipid/polar metabolite with the covariates of age, BMI 

and sex, returning coefficients, intercepts and, crucially significance values for any relationship that 

could be modeled. For each dataset (n = 4 (maternal lipids, maternal polar metabolites, offspring 

lipids, offspring polar metabolites)), all p-values of associations between the covariates and individual 

lipids/polar metabolites were collected. These were then corrected for multiple hypothesis generation, 

both by Bonferroni and Benjamini-Hochberg correction methods. 

This analysis therefore attempted to fit a total of (n = (206 maternal lipids + 206 offspring lipids + 34 

maternal polar metabolites + 31 offspring metabolites) * 3 covariates = 1431) models by GLM, thereby 

exhaustively searching for any confounded relationships. The largest number (n = 46) of significant 

relationships was found, intuitively, to occur between maternal blood lipids and BMI, although none 

of these potential associations remained after multiple hypothesis correction. In fact, the only 

associations which did pass multiple hypothesis correction were two (with Bonferroni correction) or 

three (with Benjamini-Hochberg correction) associations between BMI and maternal polar 

metabolites, accounting for only between 5.9% to 8.8% of the maternal polar metabolites. No other 

datasets had any significant relationship between their lipids/polar metabolites and the potentially-

confounding factors of age, BMI or sex. In summary, therefore, a maximum of three relationships from 

a potential pool of 1431 could be argued to be affected by age, BMI or sex in our data, corresponding to 

0.21%. Therefore (1) the data itself does not suffer from confounding by the covariates of age, BMI or 

sex, before any downstream analysis was performed, thus removing this as a concern for all 

downstream analyses and inferences. 

A summary of the numbers of significant relationships in all datasets and regarding all three covariates 

(age, BMI, sex) are given both as p and corrected q values in Supplementary Table 14. 

Partial correlation network analysis 

With dataset dimensionality reduced to the aforementioned cluster variables, partial correlation 

analysis was employed, taking all cluster variables into account, along with clinical variables, 

simultaneously. Pairwise Spearman correlations between all of the aforementioned variables were 

calculated. To subsequently visualize this, the corrplot R package (version 0.84) was used. For legibility 

of figures, the colors of these plots generated by corrplot were limited to either solid orange or blue 

for positive or inverse correlations respectively, with correlation strength represented purely through 

the size of the filled circles for each pairwise correlation. 
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For network analysis and representation based on the generated partial correlations, the qpNrr() 

function from the qpgraph R package (version 2.16.0)33 was run with default parameters to estimate 

non-rejection rates (NRRs) of the aforementioned correlation matrix of all datasets’ cluster variables 

and clinical features. This is a means for rejecting spurious correlations. The obtained NRR matrix was 

then filtered at various thresholds (0.1 to 1, with an increment of 0.1) to provide the edges for network 

graphing. The distribution of NRRs was also visualized as a histogram to assist with choosing an 

appropriate cut-off threshold for retaining plausible, and rejecting likely spurious, correlations. These 

are given in supplementary figures. Based on the distribution of NRRs and observed network topology 

of the generated networks, a cut-off of 0.5 was deemed appropriate. 

The Rgraphviz R package (version 2.26.0)69 was used to generate network topography plots. Node and 

edge properties for these network graphs were generated in a custom fashion. Edges were colored by 

the directionality of the relationship between the nodes that they connect. Edge width was plotted as 

a function of the strength of the Spearman correlation between the two variables that the edge 

connects. Nodes were colored and shaped purely for clarity and to group like variables (PFAS, clinical 

variables, cluster variables) and sample sources (mothers, infants) together. Network layout is 

generated by the Rgraphviz package itself, and layout was set to the “neato” parameter to balance 

clarity and compactness. 

For both the final correlation plot and network figure, values were used only from those sample 

identifiers uniquely represented in all four datasets (maternal blood lipids, maternal polar metabolites, 

offspring blood lipids, offspring blood polar metabolites), totaling (n = 224 samples, n = 59 variables). 

Data accessibility 

The lipidomics datasets and the clinical metadata generated in this study were submitted to 

MetaboLights70 under accession number (MTBLS875). The relevant clinical metadata from the EDIA 

study was linked to the lipidomics dataset using the ISA-creator package from MetaboLights. 
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gave their written informed consent to their own participation and to the participation of their 
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Declaration of Helsinki. 
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Figure captions 

Figure 1. Overview of the workflow integrating prenatal PFAS exposure assessment, serum 

metabolomics and risk of type 1 diabetes. a. In a mother-infant cohort, PFAS levels and metabolomic 

profiles were determined from pregnant mothers, and metabolomics performed on cord serum from 

newborn infants. b. Metabolites were summarized as clusters, and (c) associations between prenatal 

PFAS exposure and metabolomes were studied. Cord serum lipid changes due to prenatal PFAS 

exposure were then compared to (d) previously reported8 lipid-related differences between newborn 

infants who progressed to T1D later in life vs. those that remained healthy (Type 1 Diabetes Prediction 

and Prevention study – DIPP), and to (e) changes in lipid profiles brought on by exposure to a single 

PFAS compound or mixture of persistent organic pollutants, respectively, from two studies in non-

obese diabetic (NOD) mice. f. The data across the four different studies (a, d, e) were summarized and 

compared by assigning lipids from each respective study to lipid clusters from the T1D study8. 

Figure 2. Partial correlation network showing associations between demographic data, maternal PFAS 

levels and lipidome / metabolome cluster variables from mothers and their newborn infants. The 

network was constructed using the qpgraph R package33. Node color represents different types of 

variables, edge color denotes a positive (orange) or negative (blue) association. The threshold non-

rejection rate was set as 0.5. Node abbreviations: PregWk, weeks of pregnancy; HLA, HLA risk locus (1 

= lower risk, 2 = higher risk); Head_C, head circumference of child; BWei, birth weight; BLen, birth 

length; MBMI, maternal BMI; MAge, maternal age. 

Figure 3. Beanplots showing levels of four selected lipids and two polar metabolites, measured in cord 

serum, having significant (adjusted p < 0.05) associations with total maternal prenatal PFAS exposure 

(Supplementary Table 6). X-axis numbers correspond to total maternal PFAS exposure level from 

lowest (1) to highest (4) quartile. Red, horizontal bars indicate means, black horizontal bars are 

individual sample values and “bean” width represents the density of samples occurring at that level. 

All values plotted are log2 transformed and scaled to zero mean and unit variance. 

Figure 4. Impact of POP mixture on levels of lithocholic acid in NOD mice. a. LCA levels in NOD mice 

exposed to POP mixture at two different doses. Associations of LCA levels in NOD mice exposed to 

POP mixture, with b. SM(d38:2) and c. LPC(22:5). 

Figure 5. Comparison of lipidomic profiles across four different studies, using lipid cluster 

assignments from an earlier study8. a. Cord serum profiles from progressors to T1D (yellow bars) and 

control children (blue bars), from a previous report in the Diabetes Prediction and Prevention (DIPP) 

study in Finland8. b. Cord serum from mother-infant (EDIA) cohort, with high PFAS exposure (yellow) 

and low exposure (blue). c. NOD mice exposed to a high level of PFUnDA (yellow) and unexposed 

control mice (blue). d. NOD mice exposed to POP mixture at a high level (yellow) and unexposed mice 
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(blue). e. Fold changes between the groups in a-d of lipids in cluster LC2. Statistical significance levels: 

*p<0.05, **p<0.01, ***p<0.001. 

Figure 6. Summary of findings, linking prenatal PFAS exposure with decreased phospholipids and 

increased risk of T1D in the offspring. PFAS exposure decreases levels of most bile acids, which may be 

due to common enterohepatic circulation, but the microbially-produced secondary bile acid LCA is 

markedly increased. This proinflammatory bile acid is known to decrease SMs and LPCs in circulation, 

which is also supported by our data. Phospholipids (incl. SMs) are known to be inversely associated 

with risk of T1D5, 6, 7, 8, 9.  
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4  
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FIGURE 5 
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FIGURE 6 
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