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Single neurons in visual cortex provide unreliable measurements of visual features due to their high trial-
to-trial variability. It is not known if this “noise” extends its effects over large neural populations to impair
the global encoding of stimuli. We recorded simultaneously from ∼20,000 neurons in mouse primary visual
cortex (V1) and found that the neural populations had discrimination thresholds of ∼0.34◦ in an orientation
decoding task. These thresholds were nearly 100 times smaller than those reported behaviorally in mice.
The discrepancy between neural and behavioral discrimination could not be explained by the types of stimuli
we used, by behavioral states or by the sequential nature of perceptual learning tasks. Furthermore, higher-
order visual areas lateral to V1 could be decoded equally well. These results imply that the limits of sensory
perception in mice are not set by neural noise in sensory cortex, but by the limitations of downstream de-
coders.

Sensory neurons respond with high variability to re-
peated presentations of the same stimulus1;2;3;4;5;6;7;8.
This variability is thought to limit the accuracy of per-
ceptual judgements because it is pervasive9;10;11;12,
and it is reduced during attentional engagement13;14;15

and over the course of perceptual learning16. The
hypothetical links between neural variability, sensory
information and perception form the foundations of
several theoretical frameworks such as the efficient
coding hypothesis17;18, the information bottleneck19,
the ideal observer model20, the Bayesian coding hy-
pothesis21;22;23 and the probabilistic sampling hypoth-
esis24;25.

However, it is not clear how variability measured
from single neurons or from pairs of neurons scales to
local circuits of tens of thousands of neurons10. Intu-
itively, one might expect the noise to be averaged out.
Theoretical studies show that most types of noise are
indeed harmless at the population level26;27;28;29; only
a special kind of correlated noise is detrimental to neu-
ral coding because it limits the total information avail-
able in the system. This “information-limiting” noise
arises when the estimation errors of single neurons are
correlated to each other across the population29.

In geometric terms, noise only affects the encoding
of a stimulus when it aligns to the same neural sub-
spaces which the stimuli drive30;31;32. Previous studies
have shown that at least some of the neural variabil-
ity, that induced by the animal’s own behavior33, is or-
thogonal to the stimulus subspace and thus harmless.
However, such behavior-related variability accounts for
only ∼35% of the population-level variability, leaving
the possibility that the rest is stimulus-related and thus
potentially information-limiting.

Estimating the impact of information-limiting noise
on coding is difficult, because even small amounts of

such noise can put absolute bounds on the precision
of stimulus encoding29. To detect the effects of po-
tentially small but information-limiting noise, it is thus
necessary to record from large numbers of neurons
during a large number of trials. To estimate the in-
formation content of such multi-neuron recordings, we
used decoding approaches. Previous studies in anes-
thetized macaques show that one-dimensional vari-
ables, like the orientation of a grating, can be decoded
from populations of 10-100 simultaneously-recorded
neurons with errors in the 3-20◦ range34;35;36. It is
not known if these errors represent an absolute lower
bound, or may decrease further for larger neural popu-
lations. Some studies claim that small subsets of neu-
rons are as discriminative as the entire population35;37,
while others show consistent improvements in decod-
ing with increasing numbers of neurons38. It is also
not known if having more training trials would reduce
overfitting and thus allow the decoding of even smaller
orientation differences; previous studies were limited
to stimulus densities of 4-10 trials per degree35;36.

Here we aimed to determine if neural noise puts
fundamental limits on stimulus encoding accuracy, by
recording from populations of ∼20,000 neurons in
mice, using stimulus sets with densities of up to 1,000
trials/degree. If information-limiting noise exists, the
decoding error should asymptote at some non-zero
value as we increase the number of neurons and tri-
als we consider29. We found that the error did not
asymptote, and the discrimination thresholds were as
low as 0.3◦. To achieve this decoding performance,
we had to use decoders that take correlations into ac-
count. Thus, the visual cortex encodes stimuli to high
precision on a trial-by-trial basis in mice, a species
not known for high acuity vision, and which performs
poorly in orientation discrimination tasks39;40;41.
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Figure 1: Recording setup and single-neuron variability. a, Visual presentation setup. b, Multi-plane imaging setup. c, Section from a
recorded plane. (top plot) maximum fluorescence image. (bottom plot) cell masks detected with Suite2p, randomly colored. d, Activity raster of
all neurons in one recording in response to static gratings of various angles. Neurons are sorted along the vertical axis by their preferred angle,
and smoothed with a Gaussian of width 50 neurons. e, Single trial stimulus responses of an example neuron. f, Responses from e averaged
over 3 bins following stimulus onset (gray dots), with average tuning curve (black line). g, Distribution of the signal-to-noise ratio (SNR) across
neurons in this session. h, Hypotheses for the alignment of decoding errors across the neural population. Each circle represents a different
trial. The black line denotes the true angle of the stimulus. Each arrow represents the decoded angle from a single neuron’s response. (i)
the errors are uncorrelated across neurons. (ii) some errors are correlated. (iii) all errors are correlated, and therefore information about the
stimulus is lost.

Results

We recorded from primary visual cortex in awake,
head-fixed mice that were free to run on an air floating
ball. Each session lasted for 120-180 minutes during
which we presented images to the left eye (Figure 1a).
Our main stimuli were static gratings rotated at a ran-
dom orientation on each trial, which lasted for 750ms,
followed by 500 ms of gray screen. We recorded neu-
ral activity from visual cortex using multi-plane two-
photon calcium imaging, with 10-17 planes spaced 25
µm apart in depth, scanning the entire stack repeat-
edly at an average 2.5-4 Hz (Figure 1b). For the main
stimulus set, we obtained 19,665 ± 3,062 (s.d., n=6
animals) neurons per recording using the processing
pipeline Suite2p42 (Figure 1c and Movie 1). All analy-
ses were performed on deconvolved data, which local-
izes in time the fluorescence responses of the calcium
indicator43. The responses to each stimulus were de-
fined as the average, deconvolved fluorescence over

the 3 bins following stimulus onset. We have publicly
shared the data and code for this paper44.

To visualize the patterns of population activity in
a raster plot, we sorted neurons by their preferred
stimulus (Figure 1d). As previously shown45, sin-
gle neurons had high trial-to-trial variability and some-
times failed to respond at all to their preferred stimu-
lus (Figure 1e and Movie 1). We quantified this vari-
ability by the signal-to-noise ratio (SNR) (Figure 1f),
and found a mean SNR of 0.11 for the example ses-
sion, and 0.13 ± 0.01 (s.e.m., n=6) across record-
ings, similar to the single-trial SNR previously re-
ported for natural image stimuli38. We also compared
the single-neuron, single-trial signal variance from our
two-photon datasets to that from electrophysiological
recordings (0.11 vs 0.12) and found that there was
little loss of information due to our recording method
(Figure S1a,b)46. The aligned, population-averaged
tuning curves had a mean half-width at half-max of
14.1◦ (Figure S1d)47. The correlation between neu-
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Figure 2: Independent decoders of stimulus orientation. a, Single-neuron single-trial stimulus responses (gray dots) with average tuning
curves (black line). Right panel: log-likelihood of stimulus orientation based on each neuron’s observed response on trial #904. Actual stimulus
is gray dotted line. Right, bottom panel: average log-likelihood over all neurons. b, True versus decoded stimulus on test trials. c, Distribution
of absolute angle errors across trials. (inset: distribution of median decoding errors across recordings). d, Neurons were split into two random
populations and the decoder was fit separately to each population. e, Scatter plot of decoding errors from the two populations. The Spearman
correlation RS is reported (inset: distribution of RS across recordings).

ral response vectors for different orientations decayed
smoothly as a function of the difference in orientation
(Figure S1g,h). Using a manifold embedding algorithm
in three dimensions (ISOMAP48), we found a predom-
inantly one-dimensional representation of the stimu-
lus space, but nonetheless a representation corrupted
with noise (Figure S1i).

We distinguish between three possible types of neu-
ral variability that affect coding in different ways (Fig-
ure 1h). First, the decoding errors of single neurons
might be uncorrelated, in which case averaging over
single-neuron predictions would give an unbiased esti-
mate of the true stimulus angle with a small error (Fig-
ure 1h(i)). A second possibility is that decoding er-
rors are partially-correlated, for example if subsets of
neurons have correlated errors, in which case averag-
ing would not be as effective and the optimal decoder
needs to take correlations into account (Figure 1h(ii)).
The third and final possibility is that decoding errors
are fully correlated over the population, so that averag-
ing over the predictions of even infinitely many neurons
would give a biased estimate of the true stimulus ori-
entation (Figure 1h(iii)). This situation would indicate
the presence of information-limiting correlations29.

Independent neuron decoder

Consider the first possibility, that the stimulus-
dependent variability is uncorrelated between neu-
rons. If that was true in the data, we could decode
from the neural population using the “Naive Bayes”
classifier49, which applies Bayes’ theorem under the

assumption of independence between neurons. Given
a response R(n, t) of neuron n on trial t, we estimated
the probability P(θ|R(n, t))∼N (R(n, t)| fn(θ),σn), for
every possible angle θ (Figure 2a). On training data,
we derived fn(θ) and σn as the mean tuning curve and
the variance of the neural response, respectively (Fig-
ure 2a). The Naive Bayes classifier multiplies these
probabilities across neurons, or equivalently sums the
log-likelihoods (Figure 2a). Finally, the stimulus with
the highest summed probability is selected as the de-
coded orientation, using interpolation to predict frac-
tional stimulus values (see Methods).

This population decoder had a median error of 2.31
± 0.14◦ (s.e.m., n=6 animals) (Figure 2b,c). This error
may be either due to single-neuron noise that was not
fully averaged out, or due to correlations in decoding
errors between neurons. To distinguish between these
two scenarios, we split the neurons into two popula-
tions, decoded from each, and asked if their decod-
ing errors were in the same direction with respect to
the true stimulus (Figure 2d). We found that the er-
rors were highly correlated (Spearman’s R = 0.65 ±
0.12, s.e.m, n=6), which invalidated the independence
assumption of the Naive Bayes decoder (Figure 2e).
This suggests that the error may decrease further if
correlations are taken into account, which we show in
the next section.

Linear decoders account for correlations

To account for correlations, a decoder must be able
to appropriately weigh neurons, potentially discarding
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Figure 3: Linear decoders of stimulus orientation. a, Schematic of linear decoder, with ”super-neuron” responses to test stimuli (same
example trial as Figure 2a). b, True versus decoded stimulus on test trials. c, Distribution of absolute angle errors across trials. (inset:
distribution of median decoding errors across recordings). d, Scaling of decoding error as function of the number of neurons considered,
together with fitted curve α+ β/

√
N where N is the number of neurons. e, Same as d for increasing number of trials, and fitted curve

α+ γ/
√

T where T is the number of trials.

neurons that have correlations which are detrimen-
tal to coding. This is easily achieved with simple lin-
ear decoders, which we trained to predict continuous
functions of the stimulus orientation (Figure 3a). We
call these intermediate functions “super-neurons” and
chose them to have von Mises tuning to orientation θ

(Figure 3a): F(θ|θpref) = exp(cos(θ− θpref)/σ) with
σ = 0.1. Different super-neurons had different val-
ues of θpref that tiled the full range [0,2π]. On test
data, the decoded stimulus was the preferred angle of
the super-neuron with the highest activation, using in-
terpolation methods to decode fractional angles (Fig-
ure 3a).

The error of the linear decoder was 1.03 ± 0.04◦

(s.e.m., n=6 animals) compared to 2.31◦ for the inde-
pendent decoder (Figure 3b,c). One hypothesis for the
improvements of the linear decoder is that it accounts
for fluctuations in multiplicative gain, which make up
a large fraction of the trial-to-trial variability33;50;51.
This is unlikely to be true, because adding a trial-
by-trial multiplicative gain to the independent-neuron
model only improved its performance very little (2.20
± 0.13◦, s.e.m., n=6, Figure S2a-c). The linear de-
coder also outperformed a discriminative generaliza-
tion of the population vector decoding approach35;52

(2.77 ± 0.15◦, s.e.m., n=6, Figure S2d-f).

The best decoding was achieved for horizontal grat-
ings, and the worst for vertical gratings, although the
differences were small (Figure S3). The linear de-
coder was not affected by the presence of sponta-
neous activity patterns because it performed equally

well whether these patterns were subtracted out or
not (Figure S4). This confirms our previous results,
that stimulus responses live in an orthogonal space
to the spontaneous, behaviorally-driven activity33. Fi-
nally, the lowest decoding error could not be achieved
after reducing the dimensionality of the data to fewer
than 128 principal components (Figure S2g-i).

To determine if the linear decoder achieved the min-
imum possible error, we analyzed the asymptotic be-
havior of the decoding error. We found that the error
continued to decrease with increasing numbers of neu-
rons and stimuli, and estimated that it would plateau at
0.71◦ in the limit of very many neurons (Figure 3d),
and 0.38◦ in the limit of very many training set stimuli
(Figure 3e). This analysis suggested that the most ef-
fective way to further improve decoding performance
would be to show more stimuli, presumably because
this would further prevent overfitting.

Neural discrimination thresholds of 0.3◦

We therefore ran such experiments next, by restrict-
ing the range of stimuli to 43-47◦, and presenting
∼4,000 stimuli in this range. This increased the stim-
ulus density from ∼10 trials/deg to ∼1,000 trials/deg.
To avoid boundary effects when decoding orientations
from such a limited range, we switched to a decoding
task in which the decoder reports if the true stimulus is
above or below the middle value of 45◦. For this new
decoding task, we fit linear decoders to directly predict
the difference in angle between the presented stimu-
lus and the middle stimulus of 45◦, and evaluated on
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Figure 4: Orientation discrimination in primary and higher-order visual cortex. a, Decoding task schematic. Stimuli in the range 43-
47◦ were passively shown to the mice, and the neural activity was used to decode if the stimulus angle was smaller or larger than 45◦. b,
Neurometric curves were symmetrized (see Methods) and averaged across sessions. A sigmoid function was fit to the neurometric data
points. The discrimination threshold was computed from the sigmoid as the angle difference for which 75% correct performance is achieved. c,
Horizontal retinotopy for single cells recorded with a mesoscope. The lateral higher-order visual areas with reversed retinotopy were targeted
for multi-plane recordings. d, Same as b for higher-order areas. e, Discrimination thresholds as a function of the number of trials and neurons
used for decoding, averaged across sessions. Also plotted are fits of the function α+β/

√
N+γ/

√
T to the asymptotic behavior of the decoding

error. f, The inverse mean-squared error (MSE), from predicting the stimulus with a linear decoder, as a function of trials / deg and neurons. g,
Same as e for higher-order areas.

test data if the decoder correctly reported whether the
stimulus was larger or smaller than 45◦ (Figure 4a).

Following common conventions, we defined the neu-
ral discrimination threshold as the angle at which
the decoder achieved 75% correct performance. We
found an average discrimination threshold of 0.34 ±
0.04◦ (s.e.m., n=5 animals) for this stimulus set of
1,000 trials/deg (Figure 4b). As a sanity check, we per-
formed control recordings with the laser path blocked
(shutter on) and found no ability to decode from the
very low bleedthrough of the screen into the micro-
scope (Figure S5).

In contrast to the very low neural discrimination
thresholds, reported behavioral discrimination thresh-
olds in mice at 75% correct are in the range of 20-30◦

when directly estimated40 or inferred from available
data39;41. Why then is neural decoding from primary
visual cortex (V1) so much better? One hypothesis
is that the information never leaves the primary sen-
sory area. To test this, we repeated the experiments in
higher-order visual areas that are lateral to V1, iden-
tified by retinotopic mapping at single cell resolution
(Figure 4c). Again we found very low discrimination
thresholds of 0.37 ± 0.05 ◦ (s.e.m., n=3 animals, Fig-

ure 4d).
To determine if the decoding error achieved asymp-

totes at these values, we computed discrimination
thresholds for increasingly larger, random subsets of
neurons and trials (Figure 4e). We then designed a
parametric model of the error as a function of the num-
ber of trials and neurons, which provided excellent fits
of the asymptotic behavior of the decoding error (Fig-
ure 4e). We used this parametric model to extrapo-
late the decoding error from primary visual cortex to
an asymptote of 0.1◦ in the limit of very many neu-
rons and trials. We also calculated the inverse mean
squared error of the decoder (Figure 4f), which is pro-
portional to a lower bound on the information content
by the Cramer-Rao bound53. We observed no satura-
tion in this metric either. Finally, we repeated the fitting
procedure for the data acquired in higher-order visual
cortex, and again found that the likely asymptote was
not yet reached (Figure 4g).

For comparison, we also performed the discrimina-
tion using the original stimulus set from Figure 2 and
Figure 3, which only contained a stimulus density of 10
trials/degree. For this analysis, we picked 12 bound-
ary stimuli uniformly in the range 0-360◦, and discrim-
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Figure 5: Discrimination thresholds for different stimuli and behavioral state changes. a, Neurometric curve for data from Figures 2 and
3, divided into intervals of ± 30◦, and analyzed with a discrimination decoding task like that in Figure 4. Note the much smaller density of trials
(10 trials/deg vs 1,000 trials/deg). The line is a sigmoid fitted to the data points. Error bars across recording sessions (s.e.m.) are plotted,
but they are smaller than the marker size. a, Neurometric curves for subsets of trials divided into running and passive trials. c-i, Neurometric
curves for other stimulus types: c, short, d, sinusoidal and random phase, e, localized, f, complex, g, drifting, h, drifting + low-contrast, i,
drifting + low-contrast + noise. All these stimulus sets were presented at ∼10 trials/deg.

inated stimuli within ±30◦. The discrimination thresh-
olds were 1.06 ± 0.04◦ (Figure 5a), somewhat lower
than the ∼ 2◦ estimate for the same number of trials
using the high density stimulus set (Figure 4d). This
discrepancy may be explained by the higher rates of
response adaptation in the latter case.

We wondered if some of the difference between
neural and behavioral discrimination could be related
to behavioral states, because the mice in our experi-
ments were free to run on an air-floating ball. To quan-
tify running-related differences, we split test trials (but
not training trials) in two groups based on locomotion,
and found that passive trials had modestly increased
discrimination thresholds of 1.27◦ compared to 1.06◦

for running trials (Figure 5b). Thus, behavioral states
cannot account for the large discrepancy between be-
havioral and neural discrimination thresholds.

We next asked if the discrepancy might be ac-
counted for by stimulus properties. We recorded neu-
ral responses to new stimulus sets (Figure 5c-i) to in-
vestigate this possibility. We varied the duration of the
static grating stimuli from 750ms to 100ms (Figure 5c),
and changed it from a square to a sinusoidal grating,
varying the phase randomly on every trial (Figure 5d).
We also varied the size of the static grating stimuli
from full field to 30◦ (Figure 5e), and we presented a
complex stimulus without a well-defined absolute ori-
entation that was rotated around its center (Figure 5f).
Finally, we presented drifting gratings (2Hz), drifting
gratings with low contrast (5%) and drifting gratings
with low contrast and large added noise (Figure 5g-i).
These manipulations either did not increase discrim-

ination thresholds or did so modestly, up to at most
1.86◦ for the low-contrast, drifting gratings (Figure 5h).

We also considered the possibility that the neural
code might change over time, making decoders ob-
tained from the first half of the recording ineffective
on the second half. We therefore split train/test tri-
als chronologically rather than choosing them inter-
spersed throughout the recording. We found a modest
increase in discrimination threshold to 1.17◦ compared
to the original 1.06◦ (Figure S6a,b). We also did not
find a difference in discrimination threshold between
layers 2/3 and layer 4 (Figure S6c,d).

Thus, neither the stimulus properties nor the behav-
ioral states can account for the discrepancy between
behavioral and neural discrimination thresholds. We
conclude that mice are not using the available neural
information efficiently in laboratory tasks. There may
be several reasons for this, which we explore in the dis-
cussion. First, we show that the discrepancy between
neural and behavioral discrimination is not necessarily
a consequence of trial-by-trial learning limitations.

Biologically-plausible learning by perceptrons
It might be that the sequential nature of trial-by-trial
learning makes it difficult to learn optimal decoders
without storing the neural responses to all previously
presented stimuli, which seems unfeasible. We con-
structed online decoders which process trials sequen-
tially by using perceptrons53;54;55;56;57 (Figure 6a). The
perceptron sums the activities of its input neurons x
multiplied by a set of weights w (ypred = w · x). The
sign of ypred is then used to predict the label (-1,+1).
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Figure 6: Online learning of discrimination tasks. a, Trial-by-trial learning for a perceptron can use either 1) only the label information (blue),
2) only the trial reinforcement (yellow), or 3) both the trial reinforcement and the continuous valued prediction (red). Finally, non-incremental
learning can use all trials simultaneously, such the linear decoder previously used in Figure 3 (green). b, ”Easy task” configuration and decoder
learning performance, averaged over the neural datasets which provide the inputs x. c, Same as b for the ”hard task”. d, Alternative learning
strategies that are plausible but weak. The ”best neuron” learner chooses the neuron most correlated with the correct choice on the training
set. The ”one shot” learner uses just one training example of each class (left and right) to find a linear discriminant. The ”random projection”
learner chooses the best performing random projection out of 100. e, Performance of the weak learners on the easy task.

The objective of learning in a perceptron is to change
the weights so as to minimize the mean-squared error
of the prediction.

Simple forms of online learning in a perceptron can
be biologically realistic if they only require global er-
ror signals in addition to information available locally at
a synapse. We investigate three such versions here.
First, we consider a “supervised Hebbian” learner,
which changes the weight of neuron k (wk) using the
trial label ylabel, which is either -1 or +1, and the neural
response xk (Figure 6a):

∆wk = ylabel · xk.

We also consider a gradient descent learner, which
changes the weights by

∆wk = (ylabel− ypred) · xk,

and a restricted form of gradient descent called “re-
inforcement descent”, which uses the reinforcement
feedback (correct/wrong) in place of the full prediction
error:

∆wk = sign(ylabel− ypred) · xk.

To test these online learning strategies, we designed
two tasks, one easy and one hard. In the easy task,
the learning agents used the neural responses to our
first stimulus set with 10 trials/deg, restricted to angles
between -30 and -5 degrees for the “left” choice, and
5 to 30 for the “right” choice (Figure 6b). All three per-
ceptron learners performed the easy task perfectly, us-
ing a small number of training trials (Figure 6b). In the
hard task, the learners had to discriminate between
positive and negative stimulus angles of up to 2◦, us-
ing the neural data recorded at 1,000 trials/deg (Fig-
ure 6c). The supervised Hebbian learner was unable
to perform well in this task with an asymptotic perfor-
mance of 66%. However, the learners based on gradi-
ent descent and reinforcement descent performed rel-
atively well at 83% and 81% compared to 85% for the
optimal linear decoder, which had instantaneous ac-
cess to all trials in its history (Figure 6c). Therefore,
the perceptrons that used error feedback acquired in-
formation nearly as efficiently as the optimal linear de-
coder did.

We conclude that simple online decoders can learn
even difficult orientation discrimination tasks from neu-
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ral data in a sample-efficient way. Therefore, se-
quential learning strategies do not fundamentally limit
behavioral task performance. It follows that animals
use suboptimal learning strategies in laboratory ex-
periments, perhaps because those strategies are fa-
vorable in ecological contexts. We end this study
by proposing examples of weak but potentially rele-
vant decoders, and leave it to future work to evaluate
these weak learners against animal behavior. The de-
coders we propose (Figure 6e) are: 1) the “best neu-
ron” learner, which finds the neuron most correlated
with the correct choice on the training set and uses this
neuron to make predictions on the test set; 2) the “one-
shot” learner, which learns from only one trial of each
stimulus category and builds a linear decoder along
the discriminant direction of these two trials; and 3)
the “random projection” learner, which evaluates 100
different random projections and retains the one that
maximizes training set performance. These decoders
had test set performance on the easy task in the 65-
90% range (Figure 6e), which is in line with mouse
behavioral performance on similar tasks39;40;41;58;59.

Discussion
Here we have shown that mouse visual cortex en-
codes visual features to a very high precision on a
single-trial basis, despite large single-neuron variabil-
ity and multi-neuron co-variability. To show this we
recorded from large populations of neurons in visual
cortex and used decoders to compute neurometric
discrimination thresholds as low as 0.34◦ in mice, a
species thought to have poor visual acuity. We also
decoded the visual stimulus from higher-order visual
areas and found similarly low thresholds of 0.37◦. Sim-
ple linear decoders were sufficient to achieve this per-
formance, although it is possible that nonlinear de-
coders may perform even better60 (but see our anal-
yses of multi-layer networks and random forest clas-
sifiers in Figure S6e,f). Furthermore, the neural dis-
crimination thresholds did not appear to saturate with
the number of neurons and trials, leading to asymp-
totic estimates of ∼0.1◦. The neural discrimination
thresholds we estimated were ∼100x lower than the
behavioral discrimination thresholds reported by pre-
vious studies39;40;41. We could not explain the differ-
ence between behavioral and neural discrimination by
varying several stimulus properties, by splitting trials
according to behavioral states, or by learning the de-
coders in a biologically plausible way. Our results imply
that neural noise does not set a fundamental limit on
the accuracy of sensory perception.

One previous study in primates has found that the
neurometric detection sensitivity exceeded the ani-
mal’s behavior61, however by a much smaller amount

than what we have shown here (less than 2x con-
trast threshold improvement). Furthermore, the 0.3
degree neural discrimination thresholds we report in
mice are lower than even the reported thresholds of
highly-trained humans in this task, which were esti-
mated at ∼1◦ 62. We suggest three potential expla-
nations for the discrepancy between behavioral perfor-
mance and neural information content. First, it is pos-
sible that downstream decoders in the mouse brain are
computationally limited, and cannot find the same dis-
crimination directions in neural space that are found by
an ideal external observer63 (Figure 5). Second, it is
possible that the fine stimulus information is not avail-
able for perceptual report, but is used by other visual
functions such as change detection or sensory-guided
motor behavior59;64;65. Finally, it may be that animals
do have latent task knowledge even when their be-
havior is poor66, in which case future task improve-
ments could target the expression of this latent knowl-
edge, for example via immersive virtual reality naviga-
tion41;58;67.

To make progress on neural coding, future compu-
tational and experimental work could focus more on
ethological tasks and learning strategies68;69. Learn-
ing strategies that are optimal in complex, dynamic
environments may perform poorly in laboratory tasks
where a very small number of stimuli are shown thou-
sands of times to the same animal. Such tasks have
been rationally designed to isolate the phenomenon
of interest — sensory perception — but may have
stripped away the relevant behavioral contexts which
make sensory perception difficult. Perception in the
real world is only one part of an animal’s strategy, and
requires coordination with other neural functions like
decision-making, memory and motor control. There-
fore, the true neural limitations of sensory perception
may only be revealed in the context of more complex
and more naturalistic tasks.
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Methods
Animals
All experimental procedures were conducted accord-
ing to IACUC.

We performed 18 recordings in five mice
bred to express GCaMP6s in excitatory neu-
rons: TetO-GCaMP6s x Emx1-IRES-Cre mice
(available as RRID:IMSR JAX:024742 and
RRID:IMSR JAX:005628). We also performed
17 recordings in three wild-type C57 mice. In
these mice, AAV-GCaMP6s-P2A-nls-dTomato
(RRID:Addgene 51084) was expressed virally through
injections into visual cortex. These mice were male
and female, and ranged from 2 to 8 months of age.
Mice were housed in reverse light cycle.

Surgical procedures
Surgical methods were similar to those described else-
where33. Briefly, surgeries were performed in adult
mice (P35–P125) under isoflurane anesthesia (5% for
induction, 1-2% during the surgery) in a stereotaxic
frame. Before surgery, buprenorphine was admin-
istered as a systemic analgesic and lidocaine was
administered locally at the surgery site. During the
surgery we implanted a head-plate for later head-
fixation, and made a craniotomy of 4 mm in diameter
with a cranial window implant for optical access. We
targeted virus injections (50-200 nl, 1-3 x 1012 GC/ml)
to monocular V1 (2.1-3.3 mm laterally and 3.5-4.0mm
posteriorly from Bregma). To obtain large fields of view
for imaging, we typically performed several injections
at nearby locations, at multiple depths (∼500 µm and
∼200 µm). After surgery, buprenorphine was admin-
istered in the drinking water as a post-operative anal-
gesic for two days.

Data acquisition
We used a custom-built 2-photon mesoscope70 to
record neural activity, and ScanImage71 for data acqui-
sition. Multi-plane acquisition was controlled by a reso-
nance mirror, with planes spaced 25 µm apart in depth.
10-17 planes were acquired sequentially, scanning the
entire stack repeatedly on average at 3 Hz. We syn-
chronized stimulus presentation to the beginning of
each frame for the first plane, and computed stimulus
responses from the first three frames acquired after
stimulus onset for each plane. We used a custom on-
line Z-correction module (now in ScanImage), to cor-
rect for Z and XY drift online during the recording.

The mice were free to run on an air-floating ball. For
all static image presentations an LED tablet screen at
a 45◦ from the left eye (we recorded in right visual cor-
tex). For drifting grating image presentations a cus-
tom circular screen made of LED arrays was placed

around the head of the mouse72. We also repeated
the static grating experiments with this screen and ob-
tained comparable decoding errors. To prevent direct
contamination of the PMT from the screen, we placed
gel filters in front of the screen which exclude green
light, and used only the red channel of the screens.

For each mouse, recordings were made over mul-
tiple days, always returning to the same field of view.
The field of view was selected on the first recording
day such that large numbers of neurons could be ob-
served, with clear calcium transients and a retinotopic
location that was localized on the screen (identified
by neuropil fluorescence responses to sparse noise).
For three mice, we recorded in higher-order visual ar-
eas, located based on retinotopic responses to sparse
noise. We were able to identify with high confidence
the reversal in horizontal retinotopic preference, and
used the random-access mesoscope to record from
two fields of view simultaneous in higher-order visual
areas that would correspond primarily to areas LM and
PM in the Allen Brain Atlas73.

Visual stimuli

We showed various gratings and localized images.
To present stimuli, we used PsychToolbox-3 in MAT-
LAB74. The stimuli were presented for 750 ms (unless
otherwise stated), alternating with a gray-screen inter-
stimulus interval lasting on average 650 ms. After ev-
ery 150 stimuli, the screen was left blank (gray screen)
for 32 seconds. The activity during these non-stimulus
periods was used to project out spontaneous dimen-
sions from the neuronal population responses (see be-
low).

All gratings shown had a spatial frequency of 0.05
cycles / degree. Almost all stimuli were square
gratings at a fixed phase, except for the sinusoidal-
intensity gratings, which also had a random phase. All
stimuli had full contrast, except for the low contrast and
low contrast+noisy drifting gratings, which had a con-
trast of 5%. Drifting gratings had a temporal frequency
of 2 Hz. We showed random orientations of these stim-
uli between 0◦ and 360◦ on each trial. For the stim-
uli with random phase, there is no difference between
orientations that are 180◦ out of phase, therefore we
pooled those trials, resulting in a range of orientations
between 0◦ and 180◦.

The localized stimulus was restricted to 30◦ of visual
space and used a lower frequency grating, so that it
contained only one black and one white sub-field. The
complex ”minimouse” stimulus also spanned 30◦ of vi-
sual space and was rotated around its center. Outside
of these stimuli, the screen was gray.
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Calcium imaging processing
The calcium imaging processing pipeline and the sub-
sequent analyses use numpy, scipy, numba, scikit-
image, and scikit-learn75;76;77;78;79. The figures in the
paper were made using matplotlib in jupyter80;81.

Calcium imaging data was processed using the
Suite2p toolbox42, available at www.github.com/
MouseLand/suite2p. Suite2p performs motion cor-
rection, ROI detection, cell classification, neuropil cor-
rection, and spike deconvolution as described else-
where33. For non-negative deconvolution, we used a
timescale of decay of 1.25 seconds43;82. We obtained
18,496± 3,441 (s.d., n=35) neurons in the recordings.

In three recordings, we closed the shutter on the 2p
laser. In this case the extracted ROIs were randomly
placed disks with similar numbers of average pixels
as measured for real cells. These traces were neither
neuropil-corrected, nor deconvolved.

Stimulus responses
We defined the stimulus response as the summed ac-
tivity of the first three bins (∼1 second) following stim-
ulus onset. We split the trials 75/25 into training and
testing sets, with every 4th trial assigned to the test
set.

Splitting cells into two populations
When looking at correlated decoding errors, we split
the neurons into two populations. We first divided the
XY plane into 8 non-overlapping strips of width 150
µm, and assigned the neurons in the even strips to
one group, and the neurons in the odd strips to the
other group, regardless of the neuron’s depth. Thus,
there did not exist neuron pairs in the two sets that had
the same XY position but a different depth. This spe-
cial division was performed to avoid contamination ar-
tifacts between overlapping cells or between consecu-
tive planes.

Tuning curves and SNR
We fit the training trials with nbasis = 10 cosine and sine
basis functions, where θ is the angle of the stimulus
shown in radians:

B =



cos(0)
sin(θ)
cos(θ)

...
sin(nbasis ·θ)
cos(nbasis ·θ)


We performed linear regression from B to the neural
responses and used the fitted function fn(θ) as the

tuning curve. To compute the signal-to-noise ratio, we
defined the signal as the variance of the tuning curve
and the noise as the variance of the residual noise af-
ter subtracting out the tuning curve value.

Removal of ongoing activity dimensions

Approximately a third of the variance of visual cortical
population activity represents behavior-related fluctu-
ations33. In Figure S4 we projected out the ongo-
ing activity dimensions to show that they had no influ-
ence on sensory coding. To do this we computed the
top 32 principal components of z-scored and binned
(3 frames ≈ 1 second) ongoing activity. The spon-
taneous, ongoing neural activity was recorded dur-
ing gray screen presentations, and these were pre-
sented after every 150 stimulus presentations for 32
seconds each time. To remove these dimensions from
stimulus responses, the stimulus-driven activity was
first z-scored (using the mean and variance of each
neuron computed from ongoing activity), and then we
computed the projection onto the 32 top spontaneous
dimensions and subtracted it off from the z-scored
stimulus-driven activity (Figure S4, y-axis).

Independent decoder

For the independent decoder, we built generative mod-
els of the neural data by modelling the mean and stan-
dard deviation of each neuron on the training set. The
mean was obtained as a function of stimulus angle us-
ing the tuning curve fits fn(θ) above. The standard
deviation σn(θ) was fit similarly, after subtracting the
mean predictions on the training set, by squaring the
residuals and fitting them in the same set of basis func-
tions. With the mean and standard deviation defined
for each neuron and each stimulus, we computed the
probability that a novel neural pattern R(n) was pro-
duced by a putative stimulus orientation θ′:

P(θ′|R(n))∼N (R(n)| fn(θ
′),σn(θ

′)).

These probabilities were evaluated in log-space for
a discrete set of θ′ (n=48 orientations) and summed
across neurons. To decode orientations more finely,
we upsampled the log-probability curves by a factor
of 100 using kriging interpolation. The stimulus angle
corresponding to the peak of the upsampled curve was
used as the decoded orientation.

We also tested an extension of this decoder with
multiplicative single-trial gains. On single trials, we de-
termined the best-fitting multiplicative gain gn and used
it to compute the likelihood:

P(θ′|R(n))∼N (R(n)|gn fn(θ
′),σn(θ

′)).
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Linear decoder
To decode circular angles using locally linear de-
coders, we regressed the neural activity onto ”super”-
neurons (see Figure 3a). These super-neurons were
von Mises tuning curves (n = 48) with peaks equally
spaced along 360◦ and with σ = 0.1:

vk = e(cos(θ−θk)−1)/σ

θk = 360(k−1)/n
We fit the transformation from neurons to super-
neurons on training trials using a ridge regularization
constant of 1 (the default for the scikit-learn Python
package), and then predicted the super-neuron re-
sponses on test trials. We then upsampled the super-
neuron responses from 48 to 4,800 to decode stimulus
angle more finely (like we did in the independent de-
coder). For efficient estimation of the linear decoder
we used the matrix inversion lemma in the case where
the number of trials was less than the number of neu-
rons.

Conditional probability model
In Figure S2 we evaluate a conditional probability
model, which can account for correlations, just like the
linear models shown in the main text. The model is a
generalization of the population vector approach and
follows in the footsteps of previous work in this direc-
tion35;52. We fit the model directly by maximum likeli-
hood estimation, unlike previous methods which used
indirect fitting procedures. The conditional probability
model is defined implicitly by its energy function

log p(θ|r) = a · rcosθ+b · rsinθ− logZ(a,b,r)

where r is the vector of neural activity in response to
a stimulus, a,b are parameters to be learned from the
training data, and Z is the partition function of this en-
ergy model, which ensures that probabilities normalize
to 1. The advantage of this model is that it is defined
probabilistically and has fewer parameters than the lin-
ear decoders. However, fitting a,b is analytically in-
tractable. We adopt a gradient descent optimization
strategy, which requires numerical integration of the
log-partition function over the 1-dimensional orienta-
tion variable:

∂logZ(a,b,r)
∂a

=
∂Z(a,b,r))

∂a
· 1

Z(a,b,r))

Z(a,b,r) =
∫ 2π

0
ea·rcosθ+b·rsinθdθ

∂Z(a,b,r))
∂a

=
∫ 2π

0
r cosθea·rcosθ+b·rsinθdθ

and an equivalent derivation for ∂log(Z)/∂b. Thus,
on each step of gradient descent, numerical integrals
must be computed for Z, ∂Z/∂a and ∂Z/∂b, for each
sample r of neural activity on the training set. The gra-
dients for the rest of the log p(θ|r) are straightforward.
On test data, the most likely presented stimulus can
be easily inferred as the angle of the complex number
a · r+ ib · r.

We used a momentum of 0.95, and ran the opti-
mization for 800 iterations. No further improvements
on the validation set could be observed by running the
optimization longer. We also tested L2 regularized ver-
sions of this model, which brought small improvements
and constitute the results shown in Figure S2. The
optimization code is included in the repository for this
paper.

Neurometric fitting
For the discrimination task, we used a simple linear
decoder for the high density stimulus set, because the
range of predicted angles is small (4◦) and thus the
behavior of the neural data is expected to be linear in
that range. For the low density stimulus set, we pre-
dicted angles in the range ±30◦ by first predicting a
function f of the stimulus θ and the threshold stimulus
θ0, which was a difference of von Mises basis func-
tions:

f (θ) = e(cos(θ−θk+15◦)−1)/σ− e(cos(θ−θ0−15◦)−1)/σ

where σ was the same as it was for the linear decoder.
We used the sign of the neural prediction f on test
trials as the predicted class label of the decoder.

To quantify discrimination performance, we com-
puted the probability P(θ) as the fraction of correct
predictions when θ was in a bin of 1◦ (10 trials/deg
stimuli) or a bin of 0.1◦ (1,000 trials/deg stimuli). This
produced the neurometric data points. For the 10 tri-
als/deg stimuli, we used 32 different threshold stimuli
(θ0), spaced evenly from 0◦ to 360◦, and averaged the
neurometric curves from these 32 different discrimina-
tion tasks. To symmetrize the neurometric curves, we
used

Psymm(θ) =
P(θ)+1−P(−θ)

2
,

as if the discrimination task was repeated with left vs
right labels interchanged. To fit P(θ) we used centered
sigmoids with a single free parameter β:

P(θ)≈ 1
1+ exp(−θ/β)

.

We fit β using the ”curve fit” function in scipy76. The
fit curves are shown as continuous lines in Figure 4b
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and Figure 5. To compute the discrimination threshold,
we took the value of this function at 75%:

θDT =−β log(1/0.75−1).

Asymptotics
To fit the asymptotic error, we modeled the scaling
of the median error with the parametrization α+ β√

N
,

where N is the number of neurons or α+ γ√
T

, where
T is the number of trials (Figure 3d,e). The scaling
of 1/

√
N was chosen because it corresponds to the

decay of the standard deviation of an average of in-
dependent random variables with the same variance.
We fit α and β (or α and γ) to the last 12 points of each
curve in Figure 3d,e using linear regression.

In Figure 4e we fit the function α+ β√
N
+ γ√

T
, where

N is the number of neurons and T is the number of tri-
als per degree (4 degrees total shown in these exper-
iments). We fit this function using linear regression to
the discrimination thresholds obtained with data sub-
sampled at > 100 trials/deg and > 1,000 neurons (72
points in total).

Neural networks for decoding
We used PyTorch83 to train a neural network to per-
form the discrimination task in Figure 3 on the 10 tri-
als/degree recordings. This network consisted of two
rectified-linear layers and an output sigmoid. The in-
put layer consisted of 256 units using the top prin-
cipal components from the data (this reduced over-
fitting). The two hidden layers consisted of 100 units
each. We trained the network for 50,000 iterations us-
ing stochastic gradient descent with momentum of 0.9
and a learning rate of 1e-3. The cost was a binary
cross-entropy loss. We averaged over 5 random ini-
tializations of the neural network for each recording.
Figure S6e shows the average discrimination perfor-
mance over all recordings.

Random forests for decoding
We used scikit-learn79 to train a random forest ensem-
ble classifier to perform the discrimination task using
the neural activity from the 10 trials/degree recordings.
We used 1000 trees and averaged over 5 random ini-
tializations of the classifier for each recording. Fig-
ure S6f shows the average discrimination performance
over all recordings.

Perceptron learners
The perceptrons used the learning rule for weight wk
for neuron k:

wk = wk +η · xk ·E,
E ∈ {ylabel, sign(ypred− ylabel) , ypred− ylabel}

where η is the learning rate and ypred = w · x. The
three cases for E correspond to the supervised Heb-
bian, the reinforcement descent and the gradient de-
scent decoders. The gradient descent decoder has
been derived from the error cost function:

Cost(w) = ∑
trials

(w ·x− ylabel)
2 .

Signal variance
We computed the signal variance of the static gratings
responses using two repeats of the same stimuli38;43.
We estimated the signal variance as the correlation
coefficient between the two repeats - the ”repeat cor-
relation”. Because the stimuli we presented were of
random orientation, we technically did not have two re-
peats of the exact same stimulus. Therefore we sorted
the stimuli by orientation and divided the responses
into two halves using this sorting: one half was the odd
stimuli and the other half was the even stimuli. The av-
erage repeat correlations over all neurons in 6 record-
ings was 0.11.

Analysis of electrophysiological data
We quantified the SNR of mouse electrophysiologi-
cal recordings collected by the Allen Institute using
Neuropixels probes46. We used the recordings in
which the ”brain observatory 1.1” stimulus set was
shown. During these recordings a variety of stimuli
were shown including static gratings with 4 possible
phases, 6 possible orientations, and 5 different spatial
frequencies presented for 400 ms each. We used the
responses of neurons to the static gratings at spatial
frequency 0.04 cpd (because this was closest to our
gratings of 0.05 cpd). The response of each neuron
was defined as the sum of spikes in a 400 ms window
following the stimulus onset. We then divided the re-
sponses into two halves, matching the phases in each
half, resulting in two sets of at least 123 responses
each (it varied slightly from dataset to dataset). The
repeat correlation of each neuron was computed in the
same way as it was for the two-photon calcium imaging
data, using the correlation coefficient between the two
repeats. The average repeat correlations over primary
visual cortex neurons in 32 recordings was 0.12.
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S1: Signal variance and tuning curves. a, Signal variance from two-photon calcium imaging of responses to static gratings (0.05 cpd) at
fixed phase (0◦). Left: example neuron responses to two repeats of the same orientations and correlation r between responses to the two
repeats. Right: Distribution of r across neurons in our recordings. r is also an unbiased estimate of the signal variance in each neuron’s
responses. b, Same as a for electrophysiological recordings using Neuropixels in primary visual cortex from46. Static gratings of 6 different
orientations at a similar spatial frequency (0.04 cpd) and 4 different phases were shown for 400 ms each. The response is the sum of spikes
in the 400 ms following the stimulus onset. c, Distribution of preferred orientation across cells. Each line represents a different recording. d,
On test trials, the responses of neurons with similar preferred angles (determined on training trials) were averaged across all recordings, and
normalized between 0 and 1. The half-width half-max of these tuning curves was 14.1◦. e,f, Same as c,d for drifting grating responses. The
half-width half-max of the tuning curves in f was 15.1◦. g, Correlation between neural responses on all pairs of trials of static grating recordings.
h, Same data as g, with correlation plotted as a function of stimulus angle difference. The black line shows the binned and smoothed average.
i, The ∼20,000-dimensional response vectors were embedded into three dimensions using ISOMAP. Points are colored by the angle of the
presented stimulus.
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S2: Conditional probability model, and linear decoding after dimensionality reduction. a, Schematic of independent decoder with
multiplicative single-trial gain shared across all neurons. b, Decoded stimuli. c, Decoding errors for this model. Compare to Figure2c.
d, Schematic of conditional probability model of the predictive likelihood distribution. e, Decoded stimuli. f, Distribution of decoding error
and (inset) distribution of median decoding errors across datasets. Compare to Figure3c. g, Schematic of linear decoder applied after
dimensionality reduction. h, True angle versus decoded angle for an example recording, for different number of principal components (PCs). i,
Median decoding error as a function of the number of PCs, averaged over recordings. Error bars are standard error. Dashed line is decoding
error using all neurons (without dimensionality reduction).
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S3: Decoding error as a function of stimulus angle. a, All the stimulus sets. b, Decoding error vs stimulus angle for each trial of an
example recording of each stimulus set. c, Plot of B after taking the absolute value and binning. Each line is a different recording.
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S4: Principal components of spontaneous, ongoing activity do not influence decoding accuracy. 32 principal components of spon-
taneous, ongoing activity were subtracted from the stimulus responses, and the linear decoder was trained on these responses. The median
decoding errors of the subtracted responses are plotted vs the original.
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a b c

S5: Control (laser off). To ensure that the visual stimulus screen did not contaminate the fluorescence signals collected by the photo-multiplier
tube (PMT), we performed recordings in which the shutter on the 2p laser was kept closed, but all other conditions remained the same. With the
laser off, the PMT signals were near-zero and reflected mainly auto-fluorescence, photon noise and 60Hz signals. a, Example frame from one
of the recordings used in the paper. b, Example frame of control recording with laser OFF. c, Discrimination of stimuli in laser OFF recordings
(n=3 mice, >4000 total trials/mouse). The discrimination performance appeared to be at chance.
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S6: Discrimination thresholds for different data splits and decoders. a, Train and test trials interleaved (same data as Figure5a). b,
Chronological split across the 120-180 minutes of recording: training trials were first 75% of stimuli presented and test trials were last 25% of
stimuli presented. Compare to a. c, Discrimination of static gratings (10 trials/deg) using only neurons at depths ∼125-225 µm. d, Same as c,
with neurons at depths ∼375-475 µm. e, Two-layer neural network on the same 10 trials/deg data. Compare to a. f, Random forest classifier
for the same data. Compare to a.
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