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Abstract 

Classical r- vs. K-selection theory describes the trade-offs between high reproductive output 

and competitiveness and guides research in evolutionary ecology1–5. While its impact has 

waned in the recent past, cancer evolution may rekindle it6–10. Indeed, solid tumors are an ideal 

theater for r- and K-selection and, hence, a good testing ground for ideas on life-history strategy 

evolution11,12. In this study, we impose r- or K-selection on HeLa cells to obtain strongly 

proliferative r cells and highly competitive K cells. RNA-seq analysis indicates that phenotypic 

trade-offs in r and K cells are associated with distinct patterns of expression of genes involved 

in the cell cycle, adhesion, apoptosis, and contact inhibition. Both empirical observations and 

simulations based on an ecological competition model show that the trade-off between cell 

proliferation and competitiveness can evolve adaptively and rapidly in naïve cell lines. It is 

conceivable that the contrasting selective pressure may operate in a realistic ecological setting 

of actual tumors. When the r and K cells are mixed in vitro, they exhibit strikingly different 

spatial and temporal distributions in the resultant cultures. Thanks to this niche separation, the 

fitness of the entire tumor increases. Our analyses of life-history trade-offs are pertinent to 

evolutionary ecology as well as cancer biology.  
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Introduction  1 

Diverse environmental conditions act on populations and species, leading to selection-driven 2 

emergence of niche-specific adaptive phenotypes and preventing the emergence of a 3 

“superorganism”13. Such a superorganism, often dubbed “Darwinian demon,” would produce 4 

very large numbers of offspring and live indefinitely14. Existence of such entities is contrary to 5 

life history theory and empirical observation. Indeed, evolution of adaptive traits is typically 6 

restricted by fitness constrains15. These constrains often take the form of trade-offs whereby a 7 

life history trait can affect different components of fitness in opposite directions. Thus, 8 

directional evolution of such a trait would increase some measures of organismal performance 9 

at the expense of others16. The trade-offs are fundamentally shaped by the way the organism 10 

allocates its energy and resources between reproduction and survival17,18. Due to the 11 

complexity of life-history traits and environmental variables, empirical measurement of 12 

plausible trade-offs and their driving forces remains difficult15.  13 

In contrast to natural organisms, cancers appear to be exempt from all constraints during the 14 

process of somatic cell evolution. A series of biological features, the so-called “hallmarks of 15 

cancer”, are characterized by fast proliferation, resistance to low oxygen and crowded 16 

environment, and the ability to recruit blood vessels and escape the immune system19. How 17 

can all aspects of fitness be maximized in cancers? Perhaps heterogeneity within tumors 18 

enables several cell lineages to adopt a variety of characteristics  and colonize different niches 19 

in a changing environment12,20–25. The internal and external microenvironments that cancer 20 

cells are confronted with in a multicellular organism are akin to complex ecosystems25–34. 21 

Trade-offs between cell proliferation and survival may apply to such cancer cell 22 

populations25,33,35. Both rapid cell proliferation and stable survival strategies must complement 23 

each other to achieve high fitness of a tumor as a whole12. Therefore, cancer cell populations 24 

can be used to test selection pressures and adaptive strategies that govern the trade-off between 25 

increasing proliferation and survival, and the ecological mechanisms that underlie these trade-26 

offs in heterogenous populations. 27 

An important and well-defined environmental variable governing evolutionary change is 28 

population density relative to essential resources36. The theory of density-dependent natural 29 

selection, often called r- and K-selection, states that at extreme population densities evolution 30 

produces alternative strategies37. The trade-offs are presumed to arise because the genotypes 31 

with the highest fitness at high population densities have low fitness at low density and vice-32 
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versa15,38. The r-populations are selected for high intrinsic rate of growth (r) in environments 33 

where population density is low and resources are abundant but perform badly at high density. 34 

In contrast, K-populations, experiencing strong competition for limited resources under high 35 

density conditions, should evolve high intraspecific competitive ability and enhance their 36 

carrying capacity (K). K-selected populations do not have high growth rates because they are 37 

near the carrying capacity for their environment1,2,5,39,40. 38 

In this study, we performed artificial selection for cell density on HeLa cell lines in order to 39 

amplify the diversity of cell growth within tumors. We asked whether selection under different 40 

density regimes modifies per capita growth rates and competitiveness as predicted by models 41 

that postulate a trade-off between r- and K-selection.  To examine the phenotypic trade-offs at 42 

the molecular level, we carry out RNA-seq and explore the specific gene expression and 43 

pathway characteristics of r and K cells. The dynamics of density-dependent population growth 44 

in mixed populations change with the proportions of r and K cells within them. We model these 45 

dynamics and fit our models to empirical observations in order to quantify the interaction 46 

among the various trade-off phenotypes in a heterogenous population and their effect on fitness 47 

of whole tumors.  48 

 49 

Results 50 

Density-dependent selection and fitness changes of r- and K-selected cell 51 

populations 52 

The initial cell population (IN cells) was a single cell clone from a HeLa cell line. When the 53 

size of the population reached 10# cells, we divided the clone in two sub-populations. One sub-54 

population was marked with eGFP (IN_G) and the other with dsRed (IN_R) through lentivirus 55 

transfection. Three r-selection replicates (using IN_G cells) and three K-selection replicates 56 

(using IN_R cells) were derived independently. After approximately 200 passages under r-57 

selection (the low-density condition) and about 130 passages under K-selection (the high-58 

density condition), we obtained six populations of r-selected (r cells) and six of K-selected cells 59 

(K cells). The density-dependent selection scheme is illustrated in Figure 1a. 60 
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    To test whether the selected r and K cells are more adapted to their corresponding conditions 61 

than the ancestral IN cells, we pairwise co-cultured the three types of cells at high and low 62 

density. r cells become dominant within two passages (three days, Extended Data Figure 1a) 63 

in the r-IN mix, suggesting that the r cells have evolved higher fitness than IN cells under these 64 

conditions. Likewise, K cells rapidly take over the K-IN mixed population (in four days, two 65 

passages, Extended Data Figure 1b). Both r and K cells display better fitness than their 66 

counterpart in the r-K mix under corresponding selection conditions (Figure 1b and 1c). We 67 

thus successfully selected for alternative life histories in our experiment. 68 

Density-dependent rates of population growth of r and K cells in 2D- and 3D-69 

growth environments 70 

To explore the possibility that the r and K cells exhibit a trade-off in their density-dependent 71 

population growth, we first measured the growth rates of these cells in 2D in vitro systems at 72 

low and high density. Under low-density, r cells grow faster than K cells (Figure 1d). When 73 

the test was performed at high density, there is no significant difference between r and K cells, 74 

whereas growth rates of r-cell populations decrease remarkably compared to low density 75 

conditions (Figure 1d). 76 

We next tested the difference between r and K cells in their density-dependent rates of 77 

population growth in 3D cellular environments. We quantified tumorigenicity by measuring 78 

colony growth and formation in a semi-solid agarose gel. r cells displayed a significantly higher 79 

rate of colony formation than K cells within seven days (Figure 1e). However, K-cell clones 80 

were significantly larger than r-cell colonies on day 21 (Figure 1f). The diameter of K-cell 81 

clones was 5 mm on average, while it was 0.5 mm for r-clones. This suggests K-cells have 82 

evolved to tolerate high density better than r-cells. 83 

Xenograft mouse models were used to investigate the population growth rate of r and K 84 

cells in vivo. Cells were injected into the inguinal skin of BALB/c Nude mice. Tumor nodules 85 

were established in all xenografts in about two weeks. The mean growth rate of r-cell tumors 86 

was significantly higher than that of K-cell tumors in vivo (Figure 1g). 87 
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Trade-off between cell proliferation and survival in r- and K-cells 88 

The net rate of population growth is determined by both cell death and birth rates. Using 89 

annexin-V and DAPI staining, reflecting cell death and the G0/G1 phase of the cell cycle, we 90 

measured the proportions of dead cells and distinguished the resting/quiescent (G0/G1) from 91 

total cells in the r and K populations at high and low density. Figure 2a shows that the 92 

proportion of G0/G1 phase cells is lower in the r- than in the K-cell populations, indicating that 93 

r cells proliferate relatively quickly at both low and high density. It also demonstrates that K 94 

cell birth rate does not increase at high density. 95 

The K cell death rate is relatively stable under both conditions (Figure 2b). In contrast, the 96 

r cell death rate increases significantly under high compared to low density. The r cells also 97 

die more frequently at high density than K cells (Figure 2b). The high birth and death rates of 98 

r cells suggest that they have evolved to quickly produce offspring rather than to increase their 99 

survival, while K cells tend to ensure offspring quality rather than number. The high incidence 100 

of cell death leads to a decrease in growth rate of r cells at high density, and the effect of density 101 

in r-selected populations is mainly on cell death.  102 

Transcriptome characteristics support a trade-off between cell proliferation and 103 

survival in r- and K-cells 104 

To find molecular characteristics that may be correlated with the phenotypic trade-offs in r and 105 

K cells, we carried out RNA-seq in 22 samples, including two replicates of initial cell 106 

populations, five K cell lines, five r-cell lines under routine cell culture conditions, and r- and 107 

K- replicate lines under high density stress. Multiple comparisons were performed among 108 

transcriptional profiles of cell lines across and within density conditions. Differentially 109 

expressed genes in these comparisons were identified using standard methods41,42. Figure 2c 110 

shows that r and IN cell populations cluster closely and differ from the K-cell populations under 111 

routine cell-culture conditions (at low density). We detect that 3161 genes show significant 112 

difference in gene expression (DEGs) between the r and K cells (with 1748 up- and 1413 down-113 

regulated genes in K cells, Extended Data Table 1). Using the Functional Annotation Tool 114 

from the DAVID package, we found 25 pathways significantly enriched for these differentially 115 

expressed genes. The top three of these are the spliceosome, pathways involved in cancer, and 116 

ribosome biogenesis (Extended Data Table 2). 117 
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Genes from the same signaling pathway may increase or decrease its overall expression 118 

level, resulting in the enhancement or inhibition of related biological functions43–45. The top 20 119 

highly expressed pathways in K or r cells based on the GAGE (General Applicable Gene-set 120 

Enrichment for Pathway Analysis)46 are listed in Figure 2d. The upregulated pathways in K 121 

cells include cell and focal adhesion, ErbB signaling, ECM-receptor interaction, phagosome, 122 

regulation of actin cytoskeleton, and Jak-STAT signaling. The cell cycle (upper panel in Figure 123 

2d), metabolism, and genetic information processing (such as ribosome biogenesis and mRNA 124 

surveillance) pathways are significantly highly expressed in r cells (Figure 2d). 125 

We next detected the transcriptional difference in responding to density constraints between 126 

r and K cells. Dramatic change at the transcriptional level is found in r cells when they are 127 

grown at high density. The expression levels of 6373 genes are significantly different from low 128 

density (Extended Data Table 1), while the number of DEGs is 2278 in K cells (Extended Data 129 

Table 1). Compared to the gene expression profiles under low-density conditions, 1775 genes 130 

(859 genes up-regulated; 916 genes down-regulated) present the same trend of expression 131 

change in both r and K cells under high density. These are involved in metabolic and serial 132 

RNA related pathways. These results suggest that high culture density has a prominent effect 133 

on cell metabolism (Extended Data Table 3). In addition to these common changes, only 503 134 

(=2278-1775) genes respond to density change specifically in K cells. The number of genes 135 

(6373-1775=4598 genes) responding to the density change in r cells is approximately nine 136 

times larger than that, indicating that r cells are more sensitive and less stable at high density 137 

than K cells. 138 

Underrepresentation of contact inhibition in K cells 139 

The direct cellular response to cell density is contact inhibition which mediates cell growth and 140 

proliferation via interplay between growth signaling pathways and density constraints. Contact 141 

inhibition of proliferation is typically absent in cancer cells47. Both RNA-seq analysis and 142 

trypsinization assay showed that K cells are prone to form cell-cell adhesion at high density 143 

(Figure 2d and Extended Data Figure 6), implying a loss or decrease of contact inhibition48. In 144 

contrast, cell cycle arrest and the slower  growth may still be triggered in r cells by signaling 145 

pathways that downregulate proliferation in a cell-density dependent manner49. One such 146 

pathway is the Hippo-YAP signaling pathway, which is largely responsible for inhibiting cell 147 

growth and controls organ size in many organisms50. The RNA_seq results in this study show 148 
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that expression of YAP/TAZ is significantly upregulated in K cells, while the hippo-signaling 149 

pathway is overrepresented in gene expression comparison between r and K cells (Extended 150 

Data Table 2). In addition, the crosstalk among the hippo signaling and eight other pathways 151 

(including adherens junction, focal adhesion, tight junction, PI3K-Akt signaling, mTOR 152 

signaling, ErbB signaling, TGF-beta signaling, and Wnt signaling) constructs a regulation 153 

network associated with cell cycle, cell survival, cell proliferation, and apoptosis51–53. A gene 154 

cluster analysis shows that the r and K cells can be distinguished by the expression profile of 155 

DEGs involved in these nine signaling pathways (Extended Data Figure 2). 156 

The expression of anti-apoptotic factors can be activated by the transport of 157 

dephosphorylated YAP into the cell nucleus52. In reacting to high cell density, activated 158 

LATS1/2 regulates phosphorylation of the coactivator YAP/TAZ, promoting cytoplasmic 159 

localization of YAP and leading to cell apoptosis and restriction of organ overgrowth54. 160 

Overexpression or hyperactivation of YAP/TAZ has been observed in many types of tumors, 161 

stimulating growth and proliferation55–57. We performed an immunofluorescence assay to 162 

identify the localization of YAP/TAZ in r and K cells under both low- and high-density 163 

conditions. The localization of YAP/TAZ in the cytoplasm and nuclei was observed in both r 164 

and K cells at low density (Extended Data Figure 3a). In contrast, the nuclear localization of 165 

YAP/TAZ is absent in r cells but is still maintained in K cells grown at high density (Figure 166 

3a). This suggests that YAP/TAZ phosphorylation is inhibited in K cells under high density, 167 

resulting in the loss of cell contact inhibition58. Consequently, cell apoptosis may be triggered 168 

by cytoplasmic localization of YAP in r cells but not in K cells as cell density increases. 169 

In addition, Dlg-2 is a cell polarity gene in the hippo signaling pathway, regulating the 170 

inhibition of phosphorylated active YAP/TAZ proteins in the cytoplasm51,59. Our transcriptome 171 

analysis shows that expression of Dlg-2 is significantly higher in K cells at high than at low 172 

density (Extended Data document 1). We confirmed this by RT-PCR (Extended Data Figure 173 

3b). We carried out an siRNA assay to knock down the expression of Dlg-2 in K cells 174 

(Extended Data Figure 3c). The apoptosis rate of Dlg-2 knock-down K cells significantly 175 

increased at high density (Figure 3b), confirming that the high expression level of Dlg-2 176 

contributes to survival of K cells grown under these conditions. 177 
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Dynamics of density-dependent population growth and competitiveness of r and 178 

K cells  179 

1) Empirical observations 180 

Population proportion changes, as well birth and death rates of r and K cells were measured in 181 

a co-culture assay. When r and K cells are co-cultured at high density, the proportion of r cells 182 

decreases over time (Figure 1c, Extended Data Figure 3) and the death incidence of r cells is 183 

significantly higher than of K cells (Figure 4a). The death rate and G0/G1 phase proportion 184 

among r cells in co-cultures are both significantly higher than when the r cells are cultured 185 

individually under crowded conditions (Figure 4a and 4b). Compared to r, K cells have a 186 

relatively stable incidence of death and proportion of cells in G0/G1 phase under co-culture or 187 

in individual cultures, although their death rate increases under co-culture (Figure 4a and 4b). 188 

These results show that the birth of r cells is restrained and cell death is accelerated when these 189 

two different types of cells are cultured together at high density, suggesting that they are in 190 

competition when they coexist. 191 

Competition may result in niche separation among co-existing populations in an ecological 192 

community60. To examine this possibility, we carried out co-cultures where approximately 106 193 

r and K cells were well mixed at equal proportion and seeded in the centers of wells in six-well 194 

plates. Three replicate co-cultures were scanned every 72 hours. We observed that r and K cells 195 

in the co-culture assay tended to occupy different regions in a well. The r cells disperse to the 196 

periphery, while K cells grow and occupy the crowded central area (Figure 4c). This 197 

observation reveals an additional density-dependent difference in the phenotypes of r and K 198 

cells61,62. 199 

2) Simulation and parameter estimation  200 

To investigate the inter-population relationship between r and K cells, we adopt the Lotka-201 

Volterra model which has been widely used to study population interaction63,64–54. Mixed 202 

populations were initiated in our computer simulations with different fractions of r and K cells 203 

(Materials and Methods), followed by 30 cell passages at high density. We compared the 204 

growth curves of r and K populations in the simulation to the empirical observations described 205 

in the previous section. Figure 4d shows that even when the initial proportion of r cells was 206 

highest (r:K=9:1) the extinction time of r cells in the simulation with no between-cell type 207 
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interaction (α = β =0; no effect of one cell population on the other) is approximately five times 208 

longer than observed. Simulations reveal that the extinction time of the r cell population is 209 

shortened when α is higher than β (Extended Data Figure 5). Comparing the growth curves 210 

from empirical observations (blue line in Figure 4d) and in simulations across values of α and	β 211 

(green and red lines in Figure 4d), we find that the values of α = 2.2 and β = 0 fit the data best 212 

(Figure 4d, Extended Data Table 4). Thus, we infer that there is an interaction between r and 213 

K cells and K cells influence r cell death.  214 

Phenotypic diversity promotes cancer cell population growth 215 

In silico -- To test whether the existence of phenotypic diversity and inter-population 216 

interaction promote total fitness, we first carried out stochastic simulations to compare the 217 

growth dynamics of r-K mixed populations to pure r- and K-cell assemblages. Unlike in the 218 

previous section, the current computational model considers space and density heterogeneity 219 

in the environment where the tumor cells grow, and the interaction of r and K cells in these 220 

conditions. The rates of cell division and death depend on local cell density. Due to the density 221 

effect, cells are able to divide and migrate only if there is sufficient nearby space. The 222 

simulation is described in detail in the Materials and Methods and Extended Data Figure 13. 223 

Figure 4c illustrates that in silico growth distribution of r and K cells in the mixed population 224 

is consistent with empirical observations (the upper panel of Figure 4c). Among-cell interaction 225 

and the density effect promote the re-localization of r and K cells, from well-mixed at the 226 

beginning of cell culture to a biased distribution with the entire occupation of the K cells in the 227 

middle and the outward spread of r cells (the bottom panel of Figure 4c).The mixed 228 

populations exhibit significantly higher rate of growth than the pure r- or K-cell populations 229 

(Figure 5a and 5b).  230 

In vivo – Mouse xenografts initiated with r, K, and r-K mixed cells were weighed on the 34th 231 

day, followed by H & E staining. The necrotic and non-necrotic regions were distinguished 232 

using the gray threshold method. We observed a high incidence of death in the r-xenografts 233 

(Figure 5c) and a significantly higher proportion of non-necrotic cells the mixed xenografts 234 

(Figure 5d). Although average fresh weight of the r-xenografts is much larger than the fresh 235 

weight of K- and mixed xenografts (reflecting the higher r cell proliferation rate, Figure 5e), 236 

the mean weight of viable cells in the mixed xenografts is the highest. It indicates that the 237 
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existence of phenotypic trade-offs within a cell population is advantageous to cell viability and 238 

population growth.  239 

 240 

Discussion 241 

r- and K- selection theory predicts that natural selection increases density-dependent rates of 242 

population growth. This has been tested experimentally on specific model systems from 243 

bacteria and Drosophila to vertebrates accounting for life history details15,70–73. The notion of 244 

trade-offs in life-history evolution became a prominent feature of the theory and prompted a 245 

focus of theoreticians and field scientists both in ecology and evolutionary biology1,2,15,37,74. 246 

However, the heart of continuing controversy on the theory of r- and K-selection between 247 

theoreticians and field biologists is that many complex life-history characters of natural 248 

populations contradict theoretical expectations1,4,5. It is unrealistic to expect that a theory could 249 

account for all aspects of the natural environment and its impact on evolutionary processes in 250 

all organisms1,5. Thus, the only proper way to test the theoretical predictions is in controlled 251 

settings congruent with the assumptions of the simple models.  252 

Tumorigenesis is an evolving and dynamic process where highly genetically and 253 

phenotypically heterogeneous neoplastic cell populations persist in challenging environments. 254 

In fact hallmarks of cancer cannot be acquired in all cancer cells all the time75. An important 255 

cell-to-cell phenotypic variability is determined by several exterior and interior constrains12,76–256 
79. For instance, environments in tumors are both stable (but crowded, hypoxic, and nutrient-257 

poor) in the interior, and fluctuating in nutrients, space, and interaction between the 258 

components in the microenvironment at the edge of the tumors80,81. The consequences of 259 

somatic cell evolution under complex environmental pressures parallel ecological processes in 260 

nature, with inevitable survival-reproduction trade-offs because organisms have to allocate 261 

limited resources among several functions that affect fitness. Neoplastic cells may also be 262 

subject to evolutionary trade-offs with respect to resource allocation and growth 263 

constraints12,20,21,35. The mixture of biotypes that form cancer cell populations can be 264 

characterized by survival-proliferation trade-offs, and directly quantified in controlled 265 

environments in vitro. Carrying out experimental evolution under r- and K-selection in cancer 266 

cell lines, we observe that cancer cell populations face a survival-reproduction trade-off. r cells 267 

are selectively favored to allocate the majority of their resources to reproductive activities at 268 
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the cost of their ability to propagate under crowded conditions, consistent with the central idea 269 

of the r- and K-selection theory4. 270 

Our analysis of pathway enrichment and expression of differentially expressed genes 271 

reflects phenotypic differences in cell proliferation, cell death, and adhesion between r and K 272 

cells in vitro and in vivo. We observe higher growth and death rates in r cells, compared to K 273 

cells (Figure 1d and 1g, Figure 2b). Additionally, adhesion junctions and focal adhesion affect 274 

adherence capability of cells. Since trypsin is frequently applied to dissociate adhesive cells 275 

from their substratum82, we performed a trypsinization assay to quantify cell adhesive ability 276 

(Extended Data Figure 6). Extended Data Figure 14 shows that it takes significantly longer to 277 

digest attached K than r cells, confirming that K cells are more prone to adhesion. 278 

Cells with higher fitness tend to maintain a relatively high transcriptome stability83. Changes 279 

in transcriptional profiles reveal that r cells are much more sensitive to density change than K 280 

cells, consistent with the observation that r cells have lower fitness at high density in 281 

competition assays (Figure 1b and 1c, Extended Data Figure 1a and 1b). Remarkably, 282 

differentially expressed genes that respond to density change in r cells are enriched in the cell 283 

cycle and DNA replication pathways (Extended Data Figure 7, 8), suggesting that r cells have 284 

different growth rates depending on culture conditions. This is consistent with direct 285 

measurements of growth rate at high and low density (Figure 1d). 286 

Computer simulations which integrate of r- and K-selection theory predictions and 287 

parameters of inter-cell interaction based on Lotka–Volterra models illustrate temporal and 288 

spatial dynamics of population growth of heterogeneous cell populations following r- and K-289 

strategies. The growth curves based on empirical data and mathematical models show that 290 

growth rates and fitness of r- and K-selected cells follow the logistic equations predicted by 291 

theory. As density increases, K cells dominate mixed cell populations. Our simulations, fitted 292 

to empirical data, establish a competitive relationship between phenotypically diverse cancer 293 

cells. In the short term, competition can decrease whole-population fitness. However it triggers 294 

niche differentiation leading cell types to occupy different niches, thus maximizing the use of 295 

available resources in  the ecosystem60. Interaction between tumor cells further improves the 296 

total fitness of a tumor in the long term (Figure 5). 297 

Materials and Methods 298 
 299 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829135doi: bioRxiv preprint 

https://doi.org/10.1101/829135


Cell line 300 

The HeLa cell line was provided by the Cell Bank, Type Culture Collection Committee, 301 

Chinese Academy of Sciences. The test for mycoplasma contamination was negative. The 302 

HeLa-HPV18 single-nucleotide variants84 were identified in the cell line. The HeLa cells were 303 

cultured in complete DMEM (Gibco) medium containing 10% FBS (Gibco) and antibiotics 304 

(100 μg/mL streptomycin and 100 units/mL penicillin, Sigma-Aldrich) at 37 °C in an 305 

atmosphere of 5% CO2. 306 

Cell cryopreservation 307 

Cells were first trypsinized using a 1X trypsin-EDTA solution at room temperature for three 308 

minutes and suspended in complete growth medium. Suspended cells were collected by 309 

centrifugation (1300 rpm, 5 min) and resuspended in 1X PBS. PBS suspended cells were 310 

collected by centrifugation (1300 rpm, 5 min) and resuspended in cryopreservation medium. 311 

The cryopreservation medium contains 10% DMSO and 90% FBS. Cryopreservation medium 312 

suspended cells were pipetted into a cryopreservation vial gently, and placed into a -80 °C 313 

freezer. Finally, vials were transferred intoliquid nitrogen for long-term storage when 314 

temperature decreased to -40°C. 315 

Subculture and Single-cell isolation 316 

Cells were washed with 1X PBS three times after discarding cell culture medium, and 317 

trypsinized with 1X trypsin-EDTA solution at room temperature for three minutes. The 318 

detached cells were suspended, divided, and transferred into plates. Single cells were sorted 319 

into individual wells of 96-well plates by flow cytometry (BD) from a HeLa cell population. 320 

After six hours, a microscopic examination was performed to ensure only one cell in a well. 321 

eGFP and dsRed transfection 322 

Cells were transfected by Lentiviral vectors pLenti6.3-MCS-IRES-eGFP and pLenti6.3-323 

MCS-IRES-dsRed (Invitrogen). Approximately 5 × 10) HeLa cells were incubated in a 10cm 324 

dish with DMEM before transfection.  After incubating for 24 h, the DMEM medium was 325 

replaced by 10 mL transfection-mix-medium that contains 8 μg/mL polybrene and 10) IU/mL 326 

lentivirus particles. The multiplicity of infection (MOI) value was 1. After transfecting for 24 327 
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hours, cells were washed with PBS three times. To select cells that stably express eGFP and 328 

DsRed, the transfected cells were cultured in DMEM medium with blasticidin (10 µg/mL) for 329 

at least four weeks. 330 

Density-dependent selection 331 

Evolution experimental system 332 

The initial cell population (IN-cells) derived from a single cell which was randomly selected 333 

from the HeLa cell line. When the population size of IN-cells reached 10#, it was randomly 334 

divided into two sub-populations of equal size. Each of sub-population was labeled with 335 

fluorescent proteins as described above. Density-dependent selection was performed on labeled 336 

cells. 337 

r-selection 338 

Cells were cultured under low-density. To ensure low density, cells were seeded on the 339 

surface of a 10 cm dish with approximately 128	𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 . Every 120 hours when the 340 

population density reached to about 4 × 104	𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2, a subset of cells was transferred to a 341 

new plate to keep a similar density as the original population (128	𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2). Six replicates 342 

(three with dsRed and three with eGFP) were maintained in this manner for almost 200 cell 343 

generations (200 days). Samples from each population were cryopreserved in liquid nitrogen 344 

every 40 days. 345 

K-selection 346 

Cells were cultured under high-density. To ensure high density, cells were seeded on the 347 

surface of a 10 cm dish with approximately 106	𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2 . Every 72 hours, when the 348 

population density reached to about 2.2 × 106	𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2, a subset of cells was transferred to 349 

a new plate to keep a similar density as the original population (106	𝑐𝑒𝑙𝑙𝑠/𝑐𝑚2). Six replicates 350 

(three with dsRed and three with eGFP) were maintained in this manner for almost 130 cell 351 

generations (200 days). Samples from each population were cryopreserved in liquid nitrogen 352 

every 40 generations. 353 
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Relative fitness assay 354 

To measure the relative fitness of two cell populations cultured under a specific cell density 355 

(routine-, r-, or K-), the two cell populations were mixed and cultured together. The proportions 356 

of the two populations were monitored by flow cytometry (BD, Ex/Em (nm): 346/442) once a 357 

subculture was performed. Time between two subcultures depended on the culture protocol. 358 

The higher fitness population is the one dominating the mixed population over time. 359 

Measurement of growth rate 360 

Population growth rate was estimated using the equation (1): 361 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑟𝑁(𝑡),																																																							(1) 362 

where 𝑑𝑁(𝑡) is the total number of cells at time 𝑡, and 𝑟 is a constant coefficient. To obtain 363 

a linear function, cell numbers were converted to base-2 logarithms. The least-squares method 364 

(LSM) was used to fit the linear regression with the slope (r) of the regression line estimating 365 

the growth rate. 366 

Soft agar colony formation assay 367 

Approximately 1,000 cells were suspended in a top layer of 0.4% soft agar (SeaPlaque 368 

Agarose, BMA products). The cell suspensions were then overlaid onto a bottom layer of 1% 369 

soft agar containing complete DMEM supplemented with 10% FBS in six-well plates. After a 370 

week, colony number was counted. After three weeks, the images of colonies were collected 371 

to compare their diameters by microscopy. 372 

In vivo tumor growth 373 

Female BALB/c Nude mice were purchased from the Beijing Vital River Laboratory Animal 374 

Technology Co., Ltd. Mice were 5–10 weeks of age for all experiments and kept in germ-free 375 

environments in the Institute of Zoology, Chinese Academy of Science. 376 

Five-week female BALB/c Nude mice were assigned randomly into cages upon arrival. IN-377 

cells, r-cells, and K-cells were suspended in normal saline separately. 50 μL cell suspension 378 
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(2 × 106𝐶𝑒𝑙𝑙𝑠/𝜇𝐿) was inoculated under the inguinal skin of the mice. For each type of cell 379 

inoculation, three mice were randomly selected and sacrificed every week from the third week 380 

after inoculation. Xenografts were collected for further analysis. Sample sizes were determined 381 

empirically (based on experience of other investigators who did similar assays). The 382 

experiments were not performed blind. All animal study protocols were reviewed and approved 383 

by the review boards of the Institute of Zoology Animal Care and Use Committee, Chinese 384 

Academy of Science (ethical approval reference number IOZ-20150061) and were conducted 385 

in accordance with the National Institutes of Health Guidelines for the Care and Use of 386 

Laboratory Animals. The maximal tumor diameter of 20 mm was permitted by Institute of 387 

Zoology Animal Care and Use Committee, Chinese Academy of Science. None of the 388 

experiments in this study exceeded this limit. 389 

FACS analysis of G0/G1 phase and cell death/apoptosis 390 

Cells were trypsinized and suspended in cold 1X PBS.Five μL propidium iodide (Sigma, 391 

P4170) was added to the suspension. Cells were incubated at 4 ºC for 30 minutes. Stained cells 392 

were analyzed by flow cytometry (BD, Ex/Em (nm): 346/442). Data were collected from 10000 393 

stained cells. 394 

The Annexin V, Alexa Fluor® 350 conjugate (Invitrogen, a23202) was used for apoptosis 395 

rate detection. Cells were trypsinized and diluted to ~1 × 106 cells/mL in the annexin binding 396 

buffer. Five μL annexin V conjugate was added to 100 μL of the cell suspension. The cell 397 

suspension was incubated at room temperature for 15 minutes. After the incubation, 400 µL 398 

annexin-binding buffer was added. The samples were kept on ice after mixing gently. The 399 

stained cells were analyzed by flow cytometry (BD, Ex/Em (nm): 346/442). Data were 400 

collected from 10000 stained cells. 401 

Necrotic area detection and calculation of the weight of viable cells in mouse 402 

xenografts 403 

The H&E (haematoxylin and eosin) staining of tumor sections was used to detect necrotic 404 

cells85. First, we prepared the central H&E staining section of a xenograft. The sections were 405 

then converted into digital images using Aperio Digital Pathology Slide Scanner (Leica). To 406 

detect necrotic areas in a xenograft, the images of sections were read via Matlab (MathWorks) 407 
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and converted to gray scale (rgb2gray function in Matlab). Image contrast was enhanced using 408 

histogram equalization (histeq function in Matlab). We then adjusted image intensity values 409 

twice with parameters low_in=0.1 and high_in=0.7 (imadjust function in Matlab) and applied 410 

the 2-D median filtering to the image with the filtering parameters m=5 and n=5 (medfilt2 411 

function in Matlab). Finally, we set grey scale value 90 as the threshold to distinguish the 412 

necrotic and non-necrotic areas of the image. The pixels in the tumor region with the grey scale 413 

value less than 90 were considered necrotic. The net weight of viable cells in a xenograft tumor 414 

was obtained by multiplying the total weight of a tumor by the proportion of the non-necrotic 415 

area. 416 

RNA-seq and data analysis 417 

Total RNA was isolated using the TRIzol reagent, as described by the manufacturer 418 

(15596018, Invitrogen). RNA-seq libraries were constructed and sequenced by Berry 419 

Genomics. RNA-seq NGS reads were aligned to the hg19 reference genome using the 420 

Mapsplice aligner (version 2.1.8)86 with default parameters. The gene-level expression levels 421 

were quantified by RSEM (Version 1.2.19)41, based on the TCGA mRNA-seq Pipeline 422 

(https://webshare.bioinf.unc.edu/public/mRNAseq_TCGA/UNC_mRNAseq_summary.pdf). 423 

Differentially expressed genes between samples were detected using EBSeq (Version 1.1.5)87 424 

and were defined as the PPDE over 0.99. Gene set enrichment analysis of KEGG pathways 425 

was performed using the Functional Annotation Tool from DAVID with default parameters88,89. 426 

Expression perturbations in significant KEGG pathways were determined by GAGE 46 with 427 

default parameters. 428 

Trypsinization assay 429 

Cells were seeded on a six-well plate. After 12 hours, we discarded the culture medium and 430 

washed the cells with cold PBS three times. 500µL 0.05% Trypsin was added into the well at 431 

room temperature. The plate was swayed softly and slowly 20 times. All supernatant (about 432 

500µL) was transferred into a new tube. We pipetted the supernatant gently to make sure most 433 

cells were single individuals. 400µL of the supernatant was put back on the plate to trypsinize 434 

the remaining cells. Finally, we estimated cell numbers in the 100 µL of the remaining 435 

supernatant (𝑁B) and among the remaining cells (𝑁2) using a hemocytometer. The following 436 

equation was used to calculate the trypsinised cell ratio within a time interval:  437 
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Ratio = 	
𝑁B

𝑁B + 𝑁2
	× 100%.																																																					(2)	 438 

Immunofluorescence assay 439 

Cells were seeded on coverslips. The coverslips were then placed on six-well plates. After a 440 

48-hour incubation, cells were fixed with 4% paraformaldehyde (PFA) in PBS for 20 minutes 441 

at room temperature, followed by blocking and permeabilizatuion for 30 minutes in blocking 442 

buffer, comprising 2% bovine serum albumin (BSA) and 0.2% Triton X-100 in PBS. Cells 443 

were incubated with the Yap1 antibody (GTX35195, GeneTex) for one hour, then with the 444 

FITC-conjugated goat anti-rabbit IgG (H+L) polyclonal antibody (GTX 77059, GeneTex) for 445 

30 minutes. Both antibodies were diluted in PBS with 2% BSA. Cell nuclei were stained with 446 

Hoechst 33342 (H3570, Invitrogen). Images were acquired using a Leica TCS SP8 confocal 447 

laser microscopy system (Leica Microsystems).  448 

Real-time quantitative PCR with reverse transcription 449 

Total RNA was isolated using the TRIzol reagent, as described by the manufacturer 450 

(15596018, Invitrogen). 1 μg of RNA was used to generate cDNA with the High Capacity 451 

cDNA Reverse Transcription Kit (4368814, Applied Biosystems). Real-time quantitative PCR 452 

was performed to amplify cDNA by using Maxima STBR Green/ROX qPCR Master (K0223, 453 

Thermo Scientific) in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). The 454 

average threshold cycle (Ct) of quadruplicate reactions was determined and amplification was 455 

analyzed by the ΔΔCt method. Gene expression was normalized to that of GAPDH. Real-time 456 

quantitative PCR with reverse transcription data were representative of at least three 457 

independent experiments, with two technical replicates per experiment. Primer sequences used 458 

to amplify human DLG2 and GAPDH as follows: 459 

human DLG2 forward: CAATGGGATGGCAGACTTTT; 460 

human DLG2 reverse: ACAGCTCGGTGGAGAAACAT; 461 

human GAPDH forward: ACAGCCTCAAGATCATCAGC; 462 

human GAPDH reverse: ATGGACTGTGGTCATGAGTC. 463 
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siRNA knockdown 464 

siRNAs (Lipofectamine 3000 transfection reagent) were used to knock down the expression 465 

of DLG2. To check the knockdown efficiency, total RNA was isolated and quantified by 466 

quantitative PCR (qPCR) three days after transfection. The target sequences used to knock 467 

down human DLG2 are as follows: 468 

si-h-DLG2_001: ACCUCAUUCUUUCCUAUGA; 469 

si-h-DLG2_002: GCUAGAACAAGAAUUUGGA; 470 

si-h-DLG2_003: GGAGAUGAAUAAGCGUCUA. 471 

r/K competition assay in vitro 472 

K cells with dsRed and r cells with eGFP were mixed together equally. Cell density of the 473 

mixture population was about 2×106 cells/mL. 500 μL of cell mixture was loaded on the central 474 

surface of an empty culture plate. After five minutes, the plate was put back to the incubator.  475 

When all cells attached (almost two hours), sufficient complete growth medium was added to 476 

the plate. Microscopic fluorescent field images of the plate were collected using imageXpress 477 

XLS (Molecular Devices) every three days. Image data were analyzed following the pipeline 478 

in the imageXpress XLS data analysis software (Molecular Devices). 479 

Model fitting 480 

Density dependent population dynamics can be predicted using a variety of mathematical 481 

models90,91. The logistic and Gompertz growth models are most frequently used92,93. To 482 

determine which mathematical model is suitable for us to predict cell population dynamics, we 483 

first obtained cell population dynamics data over eight days via the MTT cell proliferation 484 

assay, then fit population dynamics curves to three models: Logistic, Gompertiz, and 485 

Exponential (Extended data Figure 9). We created a nonlinear model for cell population growth 486 

based on the data from the MTT assay (fitnlm function in Matlab). The adjusted r-squared 487 

value of the logistic growth curve is 0.856, the Gompertz – 0.828, and exponential – 0.739. 488 

This suggests that the logistic growth model fits the data best. 489 
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Density-dependent population growth model 490 

We chose the Lotka-Volterra (L-V) model to investigate population dynamics  cell type 491 

mixtures64,94. We assume that the cell population 1 and cell population 2 are two sub-types of 492 

cells from the same population. These two types of cells compete for the same resources in a 493 

mixted population. The competitive Lotka–Volterra equations are  494 

⎩
⎨

⎧
𝑑𝑥B
𝑑𝑡

= 𝑅OB𝑥B P1 −
𝑁R + 𝛼𝑥2

𝐶B
T

𝑑𝑥2
𝑑𝑡

= 𝑅O2𝑥2 P1 −
𝑁R + 𝛽𝑥B

𝐶2
T
,																																														(3) 495 

where 𝑥Wis the size of the ith population; 𝑅OW is the inherent per-capita growth rate, and 𝐶W is 496 

the carrying capacity. 𝛼  represents that the additional effect of cell population 2 on cell 497 

population 1 and 𝛽 represents the additional effect cell population 1 on cell population 2. 𝑁R 498 

represents the total cell number at time 𝑡. Note, the meanings of 𝛼 and 𝛽 are slightly different 499 

from the competitive coefficients in the general Lotka–Volterra equations. 𝛼 + 1 and 𝛽 + 1 500 

are equivalent to competitive coefficients in the general Lotka–Volterra equations. 501 

Per-capita growth rate (𝐑𝟎) estimation: The inherent per-capita growth rate of every cell must 502 

be known at the beginning as the population growth model calculates the growth rate of every 503 

cell and its progenitors separately. It is an easy way to evaluate the inherent per-capita growth 504 

rate of every cell at the beginning via random sampling if the inherent per-capita growth rate 505 

distribution of a cell population is known. We isolated 141 single cells from the K-cell 506 

population and 100 single cells from the r-cell population and cultured them separately in wells 507 

of 96-well plates. Cells were counted every day for each clone over five days. The growth each 508 

cell over five days is considered exponential because cell density is very low. 509 

Growth rate was estimated using the equation 4: 510 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑟𝑁(𝑡),																																																														(4) 511 

where 𝑑𝑁(𝑡) is the total number of cells at time 𝑡, and 𝑟 is a constant. To obtain a linear 512 

function, cell numbers were converted to base-2 logarithms. The least-squares method (LSM) 513 

was used to fit the linear regression in which the slope (r) of the regression line estimates the 514 

growth rate.  515 
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We assume that mutations do not drastically affect the growth rate immediately. Therefore, 516 

r is equivalent to the RO of the initial single cell. We assume that the growth rate of any given 517 

type of cell comes from a specified normal distribution. We estimate distribution parameters 518 

from empirical growth rates of 141 K cells (for K cell simulations) and from 111 r cells. 519 

(Extended Data Table 5).  520 

The distribution of the inherent per-capita growth rate of a cell population is 521 

𝑅O~Norm(𝜇, 𝜎2) and lies within the interval 𝑅O ∈ (−∞, +∞). The parameters of the inherent 522 

per-capita growth rate distributions are estimated using the function ‘normfit’ in MATLAB. 523 

The fitted distributions are  524 

𝐷𝑅Ob~Norm(1.1832, 0.24412)	and	𝐷𝑅Oe~Norm(0.6823, 0.37642). 525 

Carrying capacity (C) estimation: Given the logistic cell population growth curve, carrying 526 

capacity can be estimated using the logistic growth function. We seeded r and K cells separately 527 

on six-well plates separately and assessed population size every 24 hours. The initial population 528 

size was 1.5 × 104cells (Extended Data Figure 10).  529 

Since apoptotic cells could not be distinguished when the cell counting was performed each 530 

day, cell number may have been over-estimated. Severity of over estimation of r-cell number 531 

grows as cell density increases because these cells go into apoptosis at a high rater as conditions 532 

become crowded. It is necessary to correct the estimation of carrying capacity to eliminate the 533 

effect of apoptotic cells on cell count. The carrying capacity could be corrected by 534 

𝐶hib = 𝐶jkRl1 − 𝑟mnio,																																																							(5) 535 

where the Cqrs  represents the corrected carrying capacity, Ctuv  represents the estimated 536 

carrying capacity via curve fitting, rwxr represents the r- or K-cell apoptosis rate under high 537 

density (data were collected via FACS analysis of cell apoptosis). 538 

The carrying capacity of r cells was estimated as 𝐶b = 1.937 × 10z 	𝑐𝑒𝑙𝑙𝑠 𝑐𝑚2⁄  and of K 539 

cells as 𝐶e = 2.2216 × 10z 	𝑐𝑒𝑙𝑙𝑠 𝑐𝑚2⁄ . 540 

𝛂 and 𝛃 estimation: α and β directly influence population size. Cell growth rates can decrease 541 

rapidly α  and β  are both large, leading to population sizes far beyond carrying capacity. 542 

However, empirical observations did not show significant reduction of population size when 543 

r- and K-cell were mixed together at high density. It suggests that either α or β is very small. 544 
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The r- and K cells co-cultural assays suggest that K cells may have a higher competitive ability 545 

(Figure 4). This inference indicates that β should be near 0. Here we assume that β is between 546 

0 and 0.5 and α between 0.5 and 3. 547 

First, we use a grid-search scheme, all parameter pairs traversed with intervals 0.5, to 548 

estimate the α and β. We predict the dynamics of an r and K-cell mixture population using the 549 

density-dependent growth model with set values of α and β. Other parameters were fixed. We 550 

then calculated Pearson correlation coefficients between predictions and observations. These 551 

correlations are maximized when (α, β) = (2.5,0). This fit is better than when (α, β) = (2,0) 552 

or (α, β) = (3,0) (Extended Data Table 4). The correlation values increase and then decrease 553 

within the interval α ∈ [2,3] when β = 0. This suggests that the values of	α between 2 to 3 and 554 

β = 0 maximize the agreement between simulations and data.  555 

We next repeated the grid-search scheme, traversing values of α between 2 and 3 with 556 

intervals of 0.1 and setting β = 0. The final estimates are: α = 2.2 and β = 0 (Extended Data 557 

Figure 5;11, Extended Data Table 4). 558 

Cell population dynamics of the mixed population with among-cell competition are based 559 

on the values of 𝐶b ,	𝐶e , 𝐶b 𝛼�  and 𝐶e 𝛽� . WE estimate  Cs  = 1.937 × 10z 	𝑐𝑒𝑙𝑙𝑠 𝑐𝑚2⁄ ,	C�  = 560 

2.2216 × 10z 	𝑐𝑒𝑙𝑙𝑠 𝑐𝑚2⁄ , α = 2.2, and 𝛽 = 0. Thus, 𝐶b 𝛼�  = 9.685× 104 and 𝐶e 𝛽�  is infinite. 561 

Here 𝐶e >
𝐶b 𝛼�  and 𝐶b <

𝐶e
𝛽�  indicate that r cells would eventually go extinct when 562 

competing with K cells95. 563 

Spatial growth model 564 

Tumor cells living in a limited space cannot move freely. Among-cell interactions are also 565 

confined to a limited space, precluding interaction when between-cell distance is large. Given 566 

these considerations, we assume that there is a cell-centric limited space for every cell where 567 

the density-dependent effects which impact the central cell are confined. We call this density-568 

dependent space (DDS; for more details see Stochastic simulation of cell growth with spatial 569 

structure).  570 

When a population grows logistically, its growth is exponential early on, provided it 571 

carrying capacity is much greater than its size. However, if carrying capacity is small, early-572 
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stage population size increase results in a drastic decrease in growth rate. Carrying capacity is 573 

related to the size of the habitat. In a DDS, the maximum carrying capacity is 36 (Extended 574 

Data Figure 13, methods: Carrying capacity estimation of spatial growth model). Here we use 575 

𝐶k to represent the carrying capacity in a DDS. Because the 𝐶k value is very small (compare to 576 

𝐶 in equations (3)), the equations (1) are not applicable to predict the dynamics of r- and K-577 

cell mixed population using the spatial growth model. In addition, only when cell density 578 

exceeds a certain threshold, do the cells become subject to density-dependent growth. A 579 

reasonable value of the threshold is ��
2

 as the population growth rate achieves its maximum 580 

when the population size reaches ��
2

. 581 

    For two cell sub-populations, we let 582 

𝑋B = 𝑁R + 𝛼𝑥2,																																																																(6) 583 

𝑋2 = 𝑁R + 𝛽𝑥B,																																																																(7) 584 

where 𝑋B  represents the practical population size which determines the density-dependent 585 

growth rate of population 1;  𝑋2	is defined similarly for population 2.  586 

When 𝑋B ≤
���
2

, the growth rate of population 1 is equal to its inherent growth rate, and 587 

similarly for population 2 when 𝑋2 ≤
���
2

. For population 1,	we have  588 

1 −
𝜆 �𝐶kB −

𝐶kB
2 �

𝐶kB
= 0,																																																											(8) 589 

Where the 𝜆 is a constant. By solving the equations 7, we get 𝜆 = 2. The final equations are 590 

⎩
⎪
⎪⎪
⎨

⎪⎪
⎪
⎧
𝑑𝑥B
𝑑𝑡 = 𝑅OB𝑥B																																																			𝑋B ≤

𝐶kB
2

𝑑𝑥B
𝑑𝑡 = 𝑅OB𝑥B P1 −

2(𝑁R + 𝛼𝑥2) − 𝐶kB
𝐶kB

T 				𝑋B >
𝐶kB
2

𝑑𝑥2
𝑑𝑡

= 𝑅O2𝑥2																																																			𝑋2 ≤
𝐶k2
2

𝑑𝑥2
𝑑𝑡

= 𝑅O2𝑥2 P1 −
2(𝑁R + 𝛽𝑥B) − 𝐶k2

𝐶k2
T			𝑋2 >

𝐶k2
2

.																													(9) 591 

Carrying capacity estimation of the spatial growth model: In the spatial model, we assume that 592 

the density-dependent space (DDS) is a square area which contains 36 grid coordinates (6X6 593 
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grids, Extended Date Figure 10). Because the carrying capacity of K-cells is 1.147 times that 594 

of r-cells (��
��
≈ 1.147; more details see the carrying capacity estimation), in a DDS the 595 

carrying capacity of K-cells is 𝐶ke = 36 (the maximum number for the region), and of r-cells 596 

is 𝐶kb = 31. 597 

Stochastic simulation of population growth of r and K cells in co-cultures 598 

Cells in culture are subject to artifacts, such as subculture. A subculture is performed when cell 599 

density exceeds a threshold (roughly 70% to 90% confluent) and is used to maintain cell density. 600 

The subculturing procedure includes recommended split-ratios and cultural medium 601 

replenishment schedules. A realistic in silico cell culture model should take into account such 602 

artifacts. The details of the stochastic simulation procedures are as follows: 603 

Initiation: We assign the initial inherent per-capita growth rate to every cell on initialization. 604 

Here we assumed that growth rates of cells in a population come from a normal distribution. 605 

Every cell is assigned an initial growth rate sampled from its growth rate distribution (see the 606 

per-capita growth rate estimation for details). To avoid outliers, random sampling was based 607 

on a truncated distribution (within the interval 𝑅O ∈ (Q1, Q3))  of the inherent per-capita 608 

growth rate. Q1  is the lower quartile and Q3	the upper quartile of the observed growth rate 609 

distribution respectively (Extended Data Table 5). The initial population size was chosen 610 

according to culturing methods being simulated and followed experimental conditions. 611 

Population growth and sub-culture: Cell division is based on growth rate. Each cell in a 612 

population, enters the division stage only if the cell growth rate is over 0. In the stochastic 613 

simulation, the time of a cell cycle (CT) was defined as  614 

𝐶𝑇 = 24 𝑅⁄ ,																																																																		(10) 615 

where the 𝑅  represents the growth rate of a cell calculated from the density-dependent 616 

population growth model. CT is measured in hours. The biological meaning of 𝑅 is the number 617 

of cell divisions within 24 hours. Considering the characteristics of the cell cycle, the time of 618 

interphase of mitosis occupies nearly 90% of the entire cycle96. Thus, cell division time (DT) 619 

is:  620 

 𝐷𝑇 = 0.9 ∙ 𝐶𝑇 + 𝑔𝑒𝑜𝑟𝑛𝑑(1 (0.1 ∙ 𝐶𝑇)⁄ ),																																			(11) 621 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829135doi: bioRxiv preprint 

https://doi.org/10.1101/829135


where 𝑔𝑒𝑜𝑟𝑛𝑑 means a random number sampled from a geometric distribution. If the time 622 

since the last cell division is greater than DT, the cell divides into two cells. When the culture 623 

time exceeds 72 hours (K-selection conditions), subculture was performed. Population size was 624 

reduced to the initial population size during subculture by random selection. After subculture, 625 

cells continue to grow in silico.  626 

Six mixed populations with different r- and K-cell initial proportions (r:K=99:1, r:K =9:1, 627 

r:K =7:3, r:K =1:1, r:K =3:7, r:K =1:9) were simulated. 100 simulations were performed for 628 

each population type (Extended Data Figure 12). 629 

Stochastic simulation of population growth with spatial structure 630 

Tumor cells live in a spacially heterogeneous environment97,98. The distribution of cell density 631 

within a tumor should therefore be non-uniform. Spatial structure plays an important role in 632 

population dynamics31,61,99–105. In a given cell growth space, if the real-time location of cells 633 

can be determined, the spatial structure of the whole population can be described. For this 634 

reason, we constructed a two-dimensional lattice-based growth space where physiological 635 

activities such as cell growth and migration are carried out. The location of cells is determined 636 

by grid coordinates. (Extended Data Figure 13)  637 

To simulate the population dynamics of cells which grow on a two-dimensional surface as 638 

realistically as possible, we considered the following factors that can influence spatial structure: 639 

cellular morphological characteristics, cell migration, cell proliferation, and cell death.  640 

In-silico cellular morphology: The growth of cells on a two-dimensional surface may result 641 

in regional differences in cell density due to uneven cell distribution or different growth rates 642 

(Extended Data Figure 14a). In other words, the density-dependent spatial heterogeneity exists 643 

in the cell growth environment. In addition, space occupied by cells varies under different 644 

densities. In a low-density environment, cells occupy a larger area, increasing cell surface to 645 

maximize contact with the culture medium. Because of crowding, cells are arranged closely. 646 

The attachment area of a cell decreases in a high-density environment (Extended Data Figure 647 

14b). Therefore, we assume cells have two in-silico morphological types: large cell, 648 

corresponding to cells growing in a low density environment, occupying four coordinate grid; 649 

small cell, corresponding to cells growing in high density environment, occupying one 650 

coordinate grid (Extended Data Figure 13). The in silico cellular morphology can be 651 
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transformed between large and small cells. When there is an empty coordinate around a small 652 

cell that can accommodate a large cell, the small cell preferentially transforms into a large cell. 653 

A large cell will switch its morphology to two small cells via cell division when and only when 654 

there is no space around it that can accommodate two large cells, and there is space to 655 

accommodate two small cells.  656 

Cell migration: Cells migrate with a certain rate in their growth space. When a migration event 657 

occurs, the coordinates of cells in the growth space change once, and the migration must occur 658 

to adjacent coordinates (Extended Data Figure 13). The migration direction of each step is 659 

assumed random. Cells differ in their migration speed. r cells migrate more readily than K cells, 660 

as measured by a trans-well migration assay. The mean migration speed of r-cells is close to 661 

five times higher than K cells (Extended Data Figure 15). Here we assume that the migration 662 

speed follows a beta distribution. The parameter “a” of the beta distribution is 5. The expected 663 

migration speed of r cells is 0.5 and of K cells is 0.1. 664 

Cell proliferation: A division event can only be completed in two adjacent coordinates. Cells 665 

retain their original cellular morphology during division. If there is no space to proliferate, 666 

small cells die. 667 

Cell death: When a cell dies, its original coordinate is marked as empty and can be occupied 668 

by another cell via cell division or migration. Death occurs if a cell that must divide but has no 669 

space to do so, or if a cell is affected by high density (calculated by Equations (9)). 670 

Density-dependent space: Density-dependent space (DDS) is a square region containing 36 671 

grids (6X6 grids). A cell can be in the center (large cells) or on the grid coordinate (3,3) whose 672 

origin is the top-left of the DDS grid (small cells). We assume that only the cells located in the 673 

DDS contribute the density effects to the central cell (Extended Data Figure 13). 674 

Simulation process: The simulation program of cell growth with spatial structure is divided 675 

into two processes: initiation and population growth. In the initiation process, cells were loaded 676 

in the center of the growth space. All cells were clustered together to form a circle community. 677 

This constructs a density-dependent spatially heterogeneous environment for cell growth. The 678 

outside space low-density, while inside the cell community is a relatively high-density 679 

environment. The inherent per-capita growth rate (Normal distribution; the same as the 680 

initiation process in the stochastic simulation of cell growth with subculture) and migration 681 

speed (Beta distribution) of each cell were initiated with random sampling. Finally, the 682 
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program calculates a constant variable δt, which represents the minimal time interval that can 683 

contain a migration event. In the population growth process, the migration and proliferation of 684 

cells depend on the migration rate and the density growth rate (calculated by Equations (9)). 685 

The migration rate and the inherent per-capita growth rate were maintained between mother 686 

and daughter cells. The program iterates all cells and calculates their density growth rates. δt 687 

is the time interval between iterations.  688 

MTT assay 689 

Cells were suspended and seeded at the concentration of 500 cells/well in 96-well plate. A 690 

volume of 20 μl dissolved MTT was pipetted into each well. After incubating for 4 h at 37 °C 691 

in a humidified CO2 incubator, the medium was removed and 200 μl sterile DMSO was added 692 

to each well. Absorbance values were then read at 570 nm with a microplate spectrophotometer. 693 

The proliferation of living cells was monitored based on absorbance values.  694 

Migration assay 695 

Migration assay was performed using 6.5mm Transwell inserts (3422, Corning) containing 696 

polycarbonate membrane filters (8-μm pore size) for 24-well plates. Briefly, cells were 697 

digested with 0.05% trypsin, and suspended in a FBS-free DMEM culture medium. Cells were 698 

then plated into the upper chamber (3×103 cells/well). At the same time, 650µL of DMEM 699 

with 10% FBS was added to the lower chamber of the well and the plates were incubated for 700 

five hours at 37 °C with 5% CO2. After incubation, cells on the upper surface of the membranes 701 

were removed gently with cotton swabs. Cells that had entered the lower surface of the filter 702 

membrane were stained with 0.1% Hoechst 33342 (H3570, Invitrogen) for 30 minutes at room 703 

temperature, and washed three times with PBS. Four randomly selected fields in each well 704 

were image captured with the ImageXpress Micro HCS (Molecular Devices), and migrated 705 

cells were counted. n = 3 independent experiments. 706 

Statistical analyses 707 

Statistical analyses were performed using R. Student’s t-test and Wilcoxon test were used 708 

for calculating significance of between-group differences. Statistical significance is indicated 709 

by P < 0.05. All data were expressed as mean ± s.d. of at least three independent experiments. 710 
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 902 

Figure 1 | r- and K-selection in HeLa cells and their growth rate cells in 2D and 3D 903 
cultures. a) r- and K-selection strategies. An initial single cell clone was split into six 904 
populations, with three labeled with dsRed (R; red dots) and three with eGFP (G; green dots). 905 
Each cell culture was passaged >200 times at low (r-selection) and high (K-selection) 906 
density. Fitness tests were performed at b) low and c) high density. The Y-axis is the 907 
proportion of r and K cells estimated by flow cytometry during five passages (x-axis) of r-K 908 
mixed cell cultures. d) The growth rate of r and K cells across culture conditions. Cells in 909 
111 r- and 141 K-cell clones were counted every 24 hours. Growth rate is calculated based on 910 
cell number change within seven days. The tumorigenicity of r and K cells is presented 911 
based on the number e) and size f) of tumor clones in a soft agar assay on the 7th 21st 912 
day. g) The growth rate of r- and K-cell xenografts. Error bars represent standard 913 
deviations. Dash lines separate culture conditions or strategies. Error bars represent standard 914 
deviations. Student's t-test: *P<0.05, **P<0.01, ***P<0.005, ****P<0.0001. Scale bars in f) 915 
represent 500μm. n= 3 independent experiments per population in b), c), d), and e); n= 12 916 
xenografts in g). mean ± SD. 917 
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 918 
Figure 2 | Differences in cell cycle, cell death and gene expression between r and K cells. 919 
a) The G0/G1 phase proportion and b) the proportion of cell death in r (gray) and K cells 920 
(black) are analyzed using PI and Annexin V staining via flow cytometry under high- and 921 
low-density conditions. Dashed lines separate culture conditions. Error bars represent 922 
standard deviations. Student's t-test: *P<0.05, **P<0.01, ***P<0.005, ****P<0.0001. n=3 923 
independent experiments per population. c) Gene expression correlation between IN, r-, 924 
and K-cell populations. d) Pathways that show significantly different expression 925 
between r and K cells. The left panel presents signaling pathways that are overexpressed in 926 
five K-cell populations (pink), the right presents pathways overexpressed in five r-cell 927 
populations (green). The z-score heatmap indicates the scale of gene expression difference. 928 
The upper panel shows the cell cycle pathway with relatively over- (red) and under- (green) 929 
expressed genes in r vs. K cells highlighted. 930 
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 931 
Figure 3 | YAP/TAZ colocalization in r and K cells under high density andthe effect of 932 
Dlg-2 knock-down in K cells. a) YAP/TAZ colocalization in the cytoplasm and nuclei 933 
under high density. YAP/TAZ was immunofluorescently stained with FITC. Hoechst 934 
staining marks nuclei. Scale bars represent 50μm. b) The proportion of cell death in Dlg-2 935 
knockdown K cells under high density. The death rate was measured by Annexin V 936 
staining via flow cytometry. Student's t-test: *P<0.05, **P<0.01, ***P<0.005. n=8 937 
independent experiments per population mean ± SD.  938 
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 939 
Figure 4 | Inter-population interaction and temporal and spatial growth of r and K cells 940 
in mixed populations. a) Cell death and b) G0/G1 phase proportion of r and K cells in 941 
individual and mixed cultures. The y-axis in a) and b) shows death rates and G0/G1 phase 942 
proportion of r (gray) and K (black) cells. Death rates were measured by Annexin V staining. 943 
G0/G1 phase proportions were measured by PI staining via flow cytometry. Cells were 944 
cultured alone or co-cultivated at high density. Dashed lines separate culture strategies. Error 945 
bars represent standard deviations. Student's t-test: ns: non-significant, *P<0.05, 946 
****P<0.0001. n=3 independent experiments per population. c) Spatial structure in an r-K 947 
mixed population. K and r cells are well mixed in equal proportion and seeded in the center 948 
of a six-well plate with total cell number  ~10). Each column represents time points from 949 
day 3 to day 9 after cell seeding. r and K cells are eGFP and dsRed positive shown in green 950 
and red, respectively. The top and bottom panels show the spatial distribution of r and K cells 951 
in empirical observations and computer simulations, respectively. d) The distribution of r 952 
cell fractions estimated in vitro (blue) and in silico (red (α=2.2, β=0) and green (α=β=0)). 953 
The co-culture of r and K cells is initiated with r/K ratio of 9:1. The y-axis reflects the 954 
fraction of r cells in the co-culture; x-axis represents cell passages. (n=100 stochastic 955 
simulations per population; n=3 independent experiments; mean ± SD).  956 
 957 
 958 
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 960 
Figure 5 | Populartion fitness of r, K, and r/K mixtures. a) Growth curves for different 961 
populations from the spatial computational model. The yellow line represents the r-cell 962 
population, the green line represents the mixture population of r- and K- cells and the red line 963 
represents the K-cell population. The Y-axis represents population size. The X-axis 964 
represents time. (n = 100 stochastic simulations per population; mean ± SD). b) Mean 965 
growth rate comparison among populations. The growth rate was measured at 1 hour 966 
intervals. The Y-axis represents mean growth rate. The X-axis represents time. (n = 100 967 
stochastic simulations per population; mean ± SD, Student's t-test: ****P<0.0001). c) 968 
Necrotic area detection. The second column represents the necrotic area in xenografts. d) 969 
Proportion of the non-necrotic area (y-axis) in xenografts. e) Whole tumor (black) and 970 
viable cell (gray) weight in xenografts. The xenografts were extracted at the sixth week 971 
after cell inoculation. n=6 for each xenograft type; Student's t-test: *P<0.05, ****P<0.0001.  972 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829135doi: bioRxiv preprint 

https://doi.org/10.1101/829135


 973 

 974 
Extended Data Figure 1 | Fitness, growth, and apoptosis rates of r- and K-cells in 2D 975 
and 3D environments. IN cells and the a) r-cells or b) K-cells were mixed together at equal 976 
amounts at the beginning. The mixed populations were cultured under normal culture 977 
conditions. The proportion of each type of cells was measured by flow cytometry every two 978 
days during subculture. Error bars represent standard deviations. N= 3 independent 979 
experiments per population, mean ± SD. 980 
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 982 
Extended Data Figure 2 | Cluster of Hippo-related pathways.  983 
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 985 
Extended Data Figure 3 | YAP/TAZ colocalization in r and K cells under low density 986 
and shRNA knockout of Dlg-2 in K cells. a) YAP/TAZ colocalization in the cytoplasm and 987 
nuclei at low density. YAP/TAZ were stained with FITC by immunofluorescence. Positive 988 
Hoechst staining marks nuclei. Scale bars represent 50μm. b) The expression level of Dlg-2 989 
in r and K cells at high density by q-PCR. c) Dlg-2 shRNA in K cells. Three shRNAs were 990 
used for the Dlg-2 knockdown. n=3 independent experiments per population, mean ± SD. 991 
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 993 

Extended data Figure 4 | Observed dynamics of mixted populations initiated with 90% 994 
r-cells and 10% K-cells. Mixed populations were cultured under K-selection. The proportion 995 
of each type of cells was measured by flowcytometry every three days during. The bars 996 
represent the proportion change of cell population by time. The grey bars represent r- and 997 
black bars K-cells. The x-axis represents subculture times, the y-axis represents cell-type 998 
proportions. Three replicates were performed on each assay. Error bars represent standard 999 
deviations. n=3 independent experiments per population, mean ± SD. 1000 
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 1002 

Extended Data Figure 5 | Predicted dynamics of r- and K-cell mixed populations. The 1003 
proportion of each type of cells in the population was measured when subculturing. Sub-1004 
figures show the predicted population dynamics with different α and β. Black boxes and lines 1005 
represent simulation results. Gray boxed and lines represent observations. n = 100 stochastic 1006 
simulations per population, n= 3 independent experiments per population, mean ± SD. 1007 
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 1008 
 1009 
Extended Data Figure 6 | Detachment curves of r- and K-cells under trypsinization. 1010 
Cells were digested by 1X Trypsin under room temperature. Cells which detached under 1011 
trypsinization were counted every minute. The x-axis represents time and the y-axis 1012 
represents the proportion of total cells that have been digested. Grey lines and box diagrams 1013 
represent observations of r-cell populations. Black lines and box diagrams represent 1014 
observations of K-cell populations. n= 6 independent experiments per population, mean ± 1015 
SD. This figure shows that it takes significantly longer to digest attached K than r cells. 1016 
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 1017 
 1018 
Extended Data Figure 7 | The DNA replication pathway is significantly lower expressed 1019 
in r cells under high than under low density. 1020 
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 1021 
Extended Data Figure 8 | The cell cycle pathway is significantly lower expressed in r 1022 
cells under high than under low density. 1023 
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 1025 
Extended data Figure 9 | Growth model fitting. Cell growth was calculated using the MTT 1026 
cell proliferation assay. We take the absorbance at 570 nm as the relative cell number. The 1027 
assay was performed over eight days. We chose three population growth models: 1028 
exponential, Gompertz, and logistic. Curves represent different models’ predictions. 1029 
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Extended Data Figure 10 | Carrying capacity estimation. The X-axis represents days after 1030 
cell seeding. The Y-axis represents cell density. The unit of cell density is the number of cells 1031 
per square centimeter. Grey points represent the cell density of r- and black points of K cells. 1032 
Data were collected from experiments. Solid grey and solid black lines represent estimated 1033 
growth curves of r- and K-cell populations respectively. Curve fitting was based on a logistic 1034 
growth function. Parameters are shown in the legend. Adjusted R2 of the r-cell growth curve 1035 
estimation is 0.985, for K-cells it is 0.991. The P-value of the r-cell growth curve is 1036 
2.21 × 10�� and for K-cell it is 6.4 × 10��. The estimate of the carrying capacity is 1037 
239120	 cells cm2⁄  for r- and 228280	 cells cm2⁄ for K cells. 1038 
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 1039 

Extended Data Figure 11 | Predicted dynamics of r- and K-cell mixted populations. The 1040 
mixed populations were cultured under high density based on the density dependent 1041 
population growth model. The populations were initialed with cell density of 1042 
4 × 10zcells/cm2 and subcultured every 72 hours. The proportion of r cells is a) 10%, b) 1043 
30%, c) 50%, d) 70% e) 90% at the beginning. The proportion of each type of cells in a 1044 
population was measured when subculturing. n = 100 stochastic simulations per population; 1045 
mean ± SD. 1046 
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 1047 
 1048 
Extended Data Figure 12 | The dynamics of r- and K-cell mixture populations. Each 1049 
panel shows 100 simulation predictions of a mixture population with a certain initial r  and K 1050 
cells ratio. The x-axis represents the passage times and the y-axis represents the r-cell 1051 
fraction. 1052 
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 1053 
Extended Data Figure 13 | The spatial computational model of population growth. The 1054 
cell growth space was assumed to be a two-dimensional planar grid. The location of cells is 1055 
determined by grid coordinates. Cell migration and division are on the two-dimensional grid 1056 
plane. The first line represents the division process. Yellow cells are undergoing mitosis. The 1057 
second row represents migration with migrated cells in green. The red regions in the third 1058 
row represent density dependent regions of migrated cells (orange). 1059 
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 1060 

 1061 
Extended Data Figure 14 | Density-dependent spatial heterogeneity and cell size  1062 
Upper: Images show density-dependent spatial heterogeneity across culture densities: low 1063 
density on the left and high density on the right.  1064 
Bottom: Fluorescence imaging of cells at two densities. Red marks cell bodies. On the left is 1065 
the image of cells growing under low density and on the right under high. 1066 
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 1067 
Extended Data Figure 15. Ratio of migrated cells. r cells migrate more readily than K cells 1068 
(t-test). The data were collected using a trans-well migration assay. n = 6 independent 1069 
experiments; mean ± SD. 1070 
  

*

t.test; * p−value < 0.05

0.02

0.04

0.06

r−cell
K−c

ell

Cell type

Th
e 

ra
tio

 o
f m

ig
ra

te
d 

ce
lls

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829135doi: bioRxiv preprint 

https://doi.org/10.1101/829135


Extended Data Table 1 | The number of DEGs across comparisons. 1071 
 1072 
 1073 
 1074 

Comparisons High-expressed 
genes number 

Low-expressed 
genes number 

Total DEGs 
number 

KL vs. rL 1748 1413 3161 
KH vs. KL 1151 1126 2277 
rH vs. rL 3284 3098 6382 
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Extended Data Table 2 | Enrichment of DEGs in r- and K-cells under low-density. 1076 
KEGG Pathway Count % P-Value 

Spliceosome 54 1.7 1.00E-10 

Pathways in cancer 97 3.1 2.90E-05 

Ribosome biogenesis in eukaryotes 30 1 9.70E-05 

Small cell lung cancer 29 0.9 1.60E-04 

Hepatitis B 40 1.3 1.10E-03 

PI3K-Akt signaling pathway 79 2.5 2.00E-03 

ECM-receptor interaction 26 0.8 3.20E-03 

RNA transport 43 1.4 5.20E-03 

Proteasome 15 0.5 9.50E-03 

Base excision repair 12 0.4 1.40E-02 

p53 signaling pathway 19 0.6 2.30E-02 

Amoebiasis 27 0.9 2.30E-02 

Epstein-Barr virus infection 43 1.4 2.80E-02 

Pyrimidine metabolism 26 0.8 3.20E-02 

Hippo signaling pathway 35 1.1 3.50E-02 

Axon guidance 30 1 4.20E-02 

Cell cycle 29 0.9 5.10E-02 

Arginine and proline metabolism 14 0.4 6.10E-02 

Amyotrophic lateral sclerosis (ALS) 14 0.4 6.10E-02 

Influenza A 38 1.2 6.30E-02 

Pertussis 19 0.6 6.30E-02 

AMPK signaling pathway 28 0.9 6.70E-02 

Purine metabolism 38 1.2 7.20E-02 

RNA degradation 19 0.6 7.80E-02 

Complement and coagulation cascades 17 0.5 9.90E-02 

1077 
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Extended Data Table 3 | Top 25 pathways enriched in r- and K-cells under crowed 1078 
culture. 1079 

Term Count % PValue Fold 
Enrichment 

Proteasome 19 1.07344633 9.32E-09 4.89157973 

Spliceosome 34 1.92090395 2.58E-08 2.89584617 

RNA transport 34 1.92090395 1.30E-05 2.23922989 

Oxidative phosphorylation 26 1.46892655 2.03E-04 2.2144706 

Alzheimer's disease 30 1.69491525 3.02E-04 2.02283372 

Ribosome biogenesis in eukaryotes 19 1.07344633 4.70E-04 2.47390239 

Huntington's disease 32 1.8079096 6.32E-04 1.88797814 

Parkinson's disease 24 1.3559322 0.00293437 1.91456938 

Non-alcoholic fatty liver disease (NAFLD) 25 1.41242938 0.00310229 1.87547498 

Epstein-Barr virus infection 29 1.63841808 0.00448698 1.72899051 

RNA polymerase 9 0.50847458 0.00543855 3.18596311 

mRNA surveillance pathway 17 0.96045198 0.00545382 2.11619528 

RNA degradation 15 0.84745763 0.00669615 2.2067277 

Ribosome 22 1.24293785 0.00765604 1.83244937 

Pyrimidine metabolism 18 1.01694915 0.00895992 1.96059269 

Lysosome 19 1.07344633 0.01859407 1.77875627 

Cytosolic DNA-sensing pathway 12 0.6779661 0.02280654 2.12397541 

Metabolic pathways 128 7.23163842 0.02350298 1.18075506 

Herpes simplex infection 25 1.41242938 0.03073077 1.54752307 

p53 signaling pathway 12 0.6779661 0.03105377 2.02887203 

Protein export 6 0.33898305 0.04640999 2.95509622 

Purine metabolism 23 1.29943503 0.05854707 1.4803465 

Protein processing in endoplasmic reticulum 22 1.24293785 0.0668094 1.47463382 

Lysine degradation 9 0.50847458 0.08312794 1.96059269 

Synaptic vesicle cycle 10 0.56497175 0.09925729 1.79807442 
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Extended Data Table 4 |	𝛂 and 𝛃 estimation. 1081 

α β 
Pearson 

correlation 
coefficient 

P-value α β 
Pearson 

correlation 
coefficient 

P-value 

2.5 0 0.9689388 0.00143221 2.2 0 0.972255 0.001144 
2 0 0.9676702 0.00155093 2.3 0 0.9707893 0.00126744 

1.5 0 0.9513884 0.00348719 2.4 0 0.9692185 0.00140667 
3 0 0.9389382 0.00547899 2.1 0 0.9681876 0.00150194 

0.5 0 0.9222155 0.00884034 2 0 0.9678161 0.00153704 
2 0.5 0.9203873 0.00925496 2.5 0 0.9666132 0.00165341 

1.5 0.5 0.9047305 0.01318207 1.9 0 0.966591 0.0016556 
1 0 0.9023298 0.01384333 2.6 0 0.9658321 0.00173122 

2.5 0.5 0.8532767 0.03071229 1.8 0 0.9641388 0.00190598 
1 0.5 0.8498899 0.03210835 2.7 0 0.9611661 0.00223283 
3 0.5 0.8459967 0.03374926 1.7 0 0.959654 0.00240886 
3 1 0.4874954 0.32668390 1.6 0 0.9552124 0.00296398 
0 0 -0.2844327 0.58485660 2.8 0 0.953362 0.00321194 
0 1 -0.6824631 0.13523590 1.5 0 0.9515176 0.00346884 
0 1.5 -0.6824631 0.13523590 2.9 0 0.9476675 0.00403637 
0 2 -0.6824631 0.13523590 3 0 0.9367681 0.005871 

0.5 1.5 -0.6824631 0.13523590 
0.5 2 -0.6824631 0.13523590 
1 1.5 -0.6824631 0.13523590 
1 2 -0.6824631 0.13523590 

1.5 1.5 -0.6824631 0.13523590 
1.5 2 -0.6824631 0.13523590 
2 1.5 -0.6824631 0.13523590 
2 2 -0.6824631 0.13523590 

2.5 1.5 -0.6824631 0.13523590 
2.5 2 -0.6824631 0.13523590 
3 1.5 -0.6824631 0.13523590 
3 2 -0.6824631 0.13523590 

2.5 1 -0.8229516 0.04424429 
0.5 0.5 -0.8677189 0.02509009 
0 0.5 -0.9578561 0.00262674 
2 1 -0.9673633 0.00158035 

1.5 1 -0.9828175 0.00044032 
1 1 -0.9835389 0.00040422 

0.5 1 -0.9973591 0.00001045 
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Extended Data Table 5 |	𝐒𝐢𝐧𝐠𝐥𝐞	𝐜𝐞𝐥𝐥	𝐠𝐫𝐨𝐰𝐭𝐡	𝐫𝐚𝐭𝐞. 1083 
Single cell growth rate 

Samples IN_G IN_R H1G3KS H1R1KS H1G3RS H1R1RS 
1 1.18205451 0.9099664 1.05785739 0.4169925 1.1529676 1.36096405 
2 0.78450625 1.09276245 0.96578718 0.3 0.63894989 1.20447356 
3 0.68331135 0.92571359 0.40356018 1.20420227 1.35024631 1.26211361 
4 0.96146344 0.37275673 0.96610808 0.75038257 1.26650438 1.29541963 
5 0.69223035 0.97243412 1.17496324 0.73516754 1.24553979 1.35627194 
6 0.55066724 0.96347845 0.10820526 1.06598844 1.29776714 1.27910611 
7 1.11262124 0.65023927 0.64227275 1.33353816 1.3162349 1.29989319 
8 0.78234633 0.32142857 0.62534911 0.0830075 1.34890222 1.22927817 
9 0.85056211 0.60949718 0.40645792 1.2428491 1.06745604 1.25850872 
10 0.97209214 0.78990066 0.89551763 1 1.19063932 1.31476819 
11 0.69328098 0.09441166 0.3050203 0.29657843 1.29025241 0.74968538 
12 0.28188874 0.9669731 1.22090362 0.1169925 1.35733656 1.27015772 
13 1.06924641 0.93169468 0.03571429 0.14150375 1.27256068 1.34576374 
14 0.83532878 0.86647011 0.59787896 0.53219281 1.00358289 1.32127623 
15 0.90082758 0.95006167 0.90651607 1.15065555 1.24181886 1.3181352 
16 1.12741936 1.16930541 0.38410313 1.09248125 1.34462084 1.38411497 
17 0.94026379 1.01658765 0.16374866 1.03257973 1.11478234 1.09955316 
18 1.22249553 1.03685187 1.13752093 0.99068906 1.24553253 1.51453513 
19 0.70769319 0.99006821 0.52363493 1.11065629 1.25292585 1.14394413 
20 0.3090178 0.57221968 0.69534322 0.95216004 1.20452535 0.80808175 
21 0.20838377 1.06415693 0.74422446 1.25041672 1.3004986 0.35686687 
22 1.04414208 0.71627403 0.10714286 1 1.20976265 1.34431378 
23 0.81863137 1.01558597 0.3187433 1.18371023 0.5992702 0.9137845 
24 0.77428678 0.69809307 0.98152095 0.79366379 1.19494849 1.38846475 
25 0.95431981 0.61747098 1.14700834 0.37598882 1.11092661 1.49837062 
26 1.06200509 1.05243698 1.04377307 0.1169925 0.11321161 1.45951409 
27 1.17748589 0.85243595 1.04125522 0.35108335 1.21091295 1.26717622 
28 1.02449193 0.9846867 0.35633143 0.54431378 1.23501737 1.43353816 
29 0.70446769 0.82035446 0.56899428 0.19967234 1.23319832 0.45395466 
30 0.65930187 0.68832903 1.04866898 0.99772799 1.32590857 0.2 
31 0.8158403 0.55060698 0.33996806 0.15849625 0.8263962 0.62407913 
32 0.92821544 1.03767951 1.20698559 0.5 0.11595502 1.50891297 
33 0.90263343 0.95049219 0.89434196 0.2299685 1.23633227 0.62419087 
34 0.74990959 0.40670889 0.46312742 0.9194603 1.07652077 1.37139771 
35 1.30573712 0.86764158 0.98416201 0.1169925 1.29667389 1.21301415 
36 0.57407648 1.00402174 0.77471437 1.19858419 0.97046398 1.39163564 
37 0.69373464 1.08973541 1.26907276 1.06438562 1.30892878 1.42041182 
38 0.86274954 0.57086811 0.37654 1.23151496 1.30859543 1.28812369 
39 1.11052423 0.19070893 0.80118862 1.1019417 1.11123277 1.30429845 
40 1.16363931 0.68239273 0.73597283 0.59188632 1.34714326 1.24576374 
41 0.31025775 0.70440812 1.17714937 1.09858419 1.30414223 1.06800298 
42 1.09899887 1.03028933 0.93832419 0.9509775 0.83086675 1.30887882 
43 1.02120064 0.77007585 0.9203289 0.40808175 1.33986971 1.53174597 
44 1.06970496 0.75111087 0.87874437 0.2 0.31939515 1.49887069 
45 0.41965783 0.75696406 0.7838964 1.12753486 1.20365572 0.38846475 
46 0.68318868 1.00157957 0.94014636 0.5169925 1.30990997 1.42316337 
47 1.11510448 0.97776 0.51172694 0.75038257 1.18687715 1.21357093 
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48 0.35658708 0.78473438 0.9950518 0.3 1.20095467 0.44576374 
49 0.5841186 0.96386567 0.32020658 0.26767629 1.34738565 1.2258566 
50 0.6865186 0.26844754 0.21428571 0.933985 0.94737447 0.67234 
51 0.99740186 0.23728058 0.02696027 0.8 1.14735149 0.9950518 
52 0.2343992 1.26351184 1.04299544 0.8 0.78302047 1.15481502 
53 0.16042332 0.78684039 1.11587849 0.99083926 1.12030475 0.34330054 
54 0.81002746 0.60953941 0.21428571 0.81032878 0.2947848 ---- 
55 0.28893487 1.07336619 0.14285714 0.90947375 ---- ---- 
56 ---- 0.99543854 0.95528537 0.96232719 ---- ---- 
57 ---- 0.81517588 0.10714286 0.3 ---- ---- 
58 ----  1.26762588 0.92306393 1.06219946 ---- ---- 
59 ---- 0.60449721 0.94750032 0.88137812 ---- ---- 
60 ---- 0.9382225 0.19946295 1.11357093 ---- ---- 
61 ---- 0.68801814 0.19946295 0.96211361 ---- ---- 
62 ---- 1.00723175 0.21428571 0.04150375 ---- ---- 
63 ---- 0.73484628 0.33963482 1.26800298 ---- ---- 
64 ---- 0.62672214 0.67506152 0.51083347 ---- ---- 
65 ---- 0.82513271 0.36921685 0.05849625 ---- ---- 
66 ---- 0.85640135 ---- 0.0509775 ---- ---- 
67 ---- 0.94903135 ---- 0.2 ---- ---- 
68 ---- 0.78134801 ---- 0.12288187 ---- ---- 
69 ---- 0.09838884 ---- 0.82288187 ---- ---- 
70 ---- 0.80426275 ---- 0.76617781 ---- ---- 
71 ---- 0.26280965 ---- 0.3 ---- ---- 
72 ---- ---- ---- 0.69858419 ---- ---- 
73 ---- ---- ---- 0.56438562 ---- ---- 
74 ---- ---- ---- 0.51083347 ---- ---- 
75 ---- ---- ---- 0.69645165 ---- ---- 
76 ---- ---- ---- 0.39138389 ---- ---- 
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