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Abstract 

Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. 

Where most studies focus on plasma or serum, other biofluids may contain more informative 

RNA molecules, depending on the type of disease. Here, we present an unprecedented atlas 

of messenger, circular and small RNA transcriptomes of a comprehensive collection of 20 

different human biofluids. By means of synthetic spike-in controls, we compared RNA content 

across biofluids, revealing a more than 10 000-fold difference in RNA concentration. The 

circular RNA fraction is increased in nearly all biofluids compared to tissues. Each biofluid 

transcriptome is enriched for RNA molecules derived from specific tissues and cell types. In 

addition, a subset of biofluids, including stool, sweat, saliva and sputum, contains high levels 

of bacterial RNAs. Our atlas enables a more informed selection of the most relevant biofluid 

to monitor particular diseases. To verify the biomarker potential in these biofluids, four 

validation cohorts representing a broad spectrum of diseases were profiled, revealing 

numerous differential RNAs between case and control subjects. Taken together, our results 

reveal novel insights in the RNA content of human biofluids and may serve as a valuable 

resource for future biomarker studies.  
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Introduction 

Extracellular RNAs (exRNAs) in blood and other biofluids are emerging as potential biomarkers 

for a wide range of diseases1–6. These so-called liquid biopsies may offer a non-invasive 

alternative to tissue biopsies for both diagnosis and treatment response monitoring.  

To date, the characterization of exRNAs in biofluids has mainly focused on small RNAs in blood 

derived samples1–4,7–10. MicroRNA (miRNA) is the most studied small RNA biotype in biofluids, 

but other small RNAs, such as piwi-interacting RNAs (piRNAs), small nuclear RNAs (snRNAs), 

small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNA fragments (tRNAs) and 

Y-RNAs have also been identified5,6,8,10–12. While most studies have focused on plasma and 

serum, some groups have investigated the small RNA content of other human biofluids. 

Weber et al.12 was the first to compare the miRNA content in 12 different human biofluids 

(pooled samples of plasma, saliva, tears, urine, amniotic fluid, colostrum, breast milk, 

bronchial lavage fluid, cerebrospinal fluid, peritoneal fluid, pleural fluid and seminal plasma) 

using reverse transcription quantitative polymerase chain reaction (RT-qPCR) of selected 

miRNAs. Large variations in RNA concentration were observed among the different biofluids, 

with the highest small RNA concentrations measured in breast milk and seminal fluid. Since 

the advent of small RNA sequencing, other small RNA biotypes were characterized in various 

biofluids, such as plasma, serum, stool, urine, amniotic fluid, bronchial lavage fluid, bile, 

cerebrospinal fluid (CSF), saliva, seminal plasma and ovarian follicle fluid5,8,10,10,11. The 

distribution of small RNA biotypes clearly varies across these biofluids, with a high abundance 

of piRNAs and tRNAs reported in urine and a high abundance of Y-RNAs in plasma6,8,11. Also 

non-human RNA sequences, mapping to bacterial genomes, were reported in plasma, urine 

and saliva6. 

A systematic RNA-sequencing analysis of biofluids to explore the messenger RNAs (mRNA) and 

circular RNA (circRNA) transcriptome is challenging due to low RNA concentration and RNA 

fragmentation in biofluids. As such, most studies have explored the abundance of individual 

mRNAs in one specific biofluid by RT-qPCR13–19. CircRNAs have been reported in saliva20, 

semen21, blood22 and urine23,24. Recently, the mRNA content of plasma and serum has been 

investigated using dedicated sequencing approaches like Phospho-RNA-Seq and SILVER-

seq25,26. Studies comparing the small RNA, mRNA and circRNA content in a wide range of 
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human biofluids are currently lacking and are essential to explore the biomarker potential of 

exRNAs. 

The goal of the Human Biofluid RNA Atlas is to define the extracellular transcriptome across a 

wide range of human biofluids (amniotic fluid, aqueous humor, ascites, bile, bronchial lavage 

fluid, breast milk, cerebrospinal fluid, colostrum, gastric fluid, pancreatic cyst fluid, plasma, 

saliva, seminal fluid, serum, sputum, stool, synovial fluid, sweat, tear fluid and urine) and to 

assess biomarker potential in selected case-control cohorts. We used small RNA-sequencing 

to quantify different small RNA species and present a dedicated mRNA-capture sequencing 

workflow to simultaneously quantify mRNAs and circRNAs.  

In the first phase of our study, small RNA sequencing and mRNA capture sequencing was 

performed in a discovery cohort of 20 different biofluids (Fig. 1). The goal of this phase was to 

assess the technical feasibility of the methodology and to generate a comprehensive atlas of 

mRNAs, circRNAs and small RNAs in which the contributing tissues and cell types per biofluid 

were assessed.  

In the second phase of our study, we aimed to investigate the biomarker potential of exRNAs 

in various biofluids. Therefore, mRNA capture sequencing was applied to four different 

case/control cohorts, each consisting of 16-24 samples (Fig. 1). These samples included 

sputum samples from 8 patients with chronic obstructive pulmonary disease (COPD) versus 8 

controls, urine samples from 12 bladder cancer patients versus 12 controls, CSF samples from 

12 glioblastoma patients versus 12 hydrocephalus patients and saliva samples from 12 

diabetes mellitus patients versus 12 controls.  

The resulting catalog of extracellular transcriptomes of 180 human samples can guide 

researchers in the biomarker field to investigate other biofluids besides the well-studied 

blood-derived ones. 
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Fig.1 Study flow chart  

In the discovery cohort, 20 different biofluids were collected in two donors or in a pool of 4-5 

donors. In the case/control cohorts, selected biofluids (sputum, CSF, urine and saliva) were 

collected in 8-12 patients and an equal number of healthy controls. Both small RNA sequencing 

and mRNA capture sequencing were performed in the discovery cohort. In the case/control 

cohorts, mRNA capture sequencing was performed. To compare the RNA content across the 

different biofluids, the RC spikes and the Sequin spikes are used for normalization of small RNA 

and mRNA data, respectively. 

BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; PRP, platelet-rich plasma; PPP, 

platelet-poor plasma; PFP, platelet-free plasma 
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Results 

RNA spike-in controls enable process control of the RNA sequencing workflow 

Synthetic spike-in RNA sequences are crucial to control the process from RNA isolation to RNA 

sequencing, especially when working with challenging and low input material. We applied 4 

different mixes of synthetic RNA spike-in controls (in total 191 RNAs) as workflow processing 

and normalization controls that enable direct comparison of the RNA profiles across the 

different biofluids. Sequin and Small RNA extraction Control (RC) spikes were added prior to 

RNA isolation whereas External RNA Control Consortium (ERCC) spikes and small RNA Library 

Prep (LP) spikes were added to the RNA eluate prior to genomic DNA (gDNA) removal (Fig. 1). 

Of note, every spike mix consists of multiple RNA molecules of different lengths over a wide 

concentration range. Detailed information is provided in Supplementary Note 1. Besides 

normalization, the spike-in controls enabled quality control of the RNA extraction and library 

preparation steps in the workflow and relative quantification of the RNA yield and 

concentration across the different biofluids. 

First, the correlation between the expected and the observed relative quantities for all four 

spike mixes can be used to assess quantitative linearity. In the discovery cohort, the expected 

and the observed relative quantities for all four spike mixes were well correlated (Spearman 

correlation coefficients range from 0.5 to 0.74 for Sequin spikes, 0.92 to 0.99 for ERCC spikes, 

0.44 to 0.98 for RC spikes and 0.40 to 0.96 for LP spikes). In some biofluids (e.g. seminal plasma 

and tears), the sequencing coverage of spikes was low due to a high concentration of 

endogenous RNA. Detailed information per sample is provided in Supplementary Fig. 1. 

The spike-in controls can also be used to assess the RNA isolation efficiency. The Sequin/ERCC 

ratio and the RC/LP ratio reflect the relative mRNA and microRNA isolation efficiency, 

respectively. An 170-fold and 104-fold difference in RNA isolation efficiency across the 

samples was observed when assessing long and small RNAs, respectively (Supplementary Fig. 

2). These differences underline the challenges of working with heterogenous samples and the 

importance of spike-in controls for proper data normalization and cross-sample comparison 

of results.  

Finally, the spikes can be utilized to normalize the endogenous RNA abundance data. In this 

study, we applied a biofluid volume-based normalization by dividing the RNA reads consumed 

by the endogenous transcripts by the sum of the Sequin spikes for mRNA data and by the sum 
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of the RC spikes for small RNA data. The spike-normalized data represent relative abundance 

values of RNA molecules proportional to the input volume. Of note, there is an inverse 

relationship between the number of spike-in RNA reads and the number of endogenous RNA 

reads. As such, the ratio between the sum of the reads consumed by the endogenous 

transcripts and the total number of spike-in reads is a relative measure for the RNA 

concentration of the various samples.  

Highly variable mRNA and small RNA content among biofluids in the discovery cohort 

Both small RNAs and mRNAs were quantified in each of the 20 biofluids in the discovery 

cohort. Mapping rates varied substantially across the different biofluids (Fig. 2A). In general, 

the proportion of mapped reads was higher for the mRNA capture sequencing data (further 

referred to as mRNA data) than for the small RNA sequencing data, in line with the fact that 

human mRNAs were enriched using biotinylated capture probes during the library 

preparation. The fraction of mapped reads in the mRNA data ranged from 16% in stool to 97% 

in seminal plasma. Low mapping rates were observed in stool, in one of the bile samples and 

in saliva. In the small RNA sequencing data, the proportion of mapped reads ranged from ~7% 

in stool, saliva and CSF to 95% in platelet-rich plasma (PRP).  

A 10 000-fold difference in mRNA and small RNA concentration was observed between the 

lowest concentrated fluids, i.e. platelet-free plasma, urine and CSF, and the highest 

concentrated biofluids, i.e. tears, seminal plasma and bile (Fig. 2B). The mRNA and small RNA 

concentrations were significantly correlated across biofluids (Spearman correlation 

coefficient 0.83, p-value = 1.76e-06, Fig. 2D). Normalized abundance levels of exRNAs were 

significantly correlated between biological replicates within each biofluid (Supplementary Fig. 

4). The median Spearman correlation coefficient of the mRNA and the small RNA data was 

0.66 and 0.43, respectively. While the mRNA and small RNA data was well correlated in most 

biofluids (e.g. tears, colostrum, saliva), correlation in other biofluids (e.g. bile, pancreatic cyst 

fluid) was poor. These biofluids are obtained with a more challenging collection method 

involving echo-endoscopy, impacting the reproducibility of collection and the correlation of 

the RNA content between biological replicates. 

The likelihood of identifying RNA biomarkers in a given biofluid will not only depend on its 

relative RNA concentration, but also on its RNA diversity, here approximated by the fraction 

of read counts consumed by the top 10 most abundant mRNAs/miRNAs (Fig. 2C). In aqueous 

humor, the top 10 mRNAs represent up to 70% of all reads, indicating that this fluid does not 
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contain a rich mRNA repertoire. In both PRP and PPP, about 50% of all reads go to the top 10 

mRNAs. While amniotic fluid has a median RNA concentration, this fluid seems to contain a 

diverse mRNA profile, with only 7% of all reads going to the top 10 mRNAs. When looking into 

the miRNA data, the top 10 miRNAs represent more than 90% of all reads in PFP, urine and 

serum. BAL contains the most diverse miRNA repertoire, with 57% of all reads going to the 

top 10 miRNAs. Similar conclusions with respect to biofluid exRNA diversity can be drawn 

based on the number of miRNAs/mRNAs representing 50% of the counts (Supplementary Fig. 

3). RNA diversity is also reflected by the number of detected exRNAs. The total number of 

mRNAs and miRNAs detected with at least 4 counts in both samples of the same biofluid 

ranged from 13 722 mRNAs in pancreatic cyst fluid to 107 mRNAs in aqueous humor and from 

231 miRNAs in tears to 18 miRNAs in stool (Table 1). 

 

Table 1 Number of mRNAs and miRNAs per biofluid.  

The number of mRNAs and miRNAs with at least 4 unique read counts in both replicates is 

shown per biofluid. 

 
biofluid number of mRNAs  biofluid number of miRNAs 
amniotic fluid 10 531  amniotic fluid 119 
aqueous humor 107  aqueous humor 20 
ascites 5578  ascites 75 
BAL 3565  BAL 126 
bile 2279  bile 45 
breastmilk 11 607  breastmilk 213 
colostrum 11 914  colostrum 229 
CSF 438  CSF 32 
gastric fluid 9288  gastric fluid 21 
pancreatic cyst fluid 13 722  pancreatic cyst fluid 129 
PFP 2699  PFP 95 
PPP 4548  PPP 113 
PRP 5440  PRP 192 
saliva 6353  saliva 110 
seminal plasma 11 868  seminal plasma 211 
serum 4152  serum 122 
sputum 7738  sputum 91 
stool 134  stool 19 
stool Calex 135  stool Calex 18 
sweat 410  sweat 45 
synovial fluid 1614  synovial fluid 122 
tears 13 366  tears 231 
urine 2094  urine 41 
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Fig. 2 mRNA and small RNA content varies across the 20 biofluids 

(A) Percentage of the total read count mapping to the human transcriptome.  

(B) Relative RNA concentration per biofluid; every dot represents the relative RNA 

concentration in one sample, every vertical mark indicates the mean per biofluid. 

(C) The diversity of the RNA content expressed as fraction of read counts consumed by the 

top 10 most abundant mRNAs/miRNAs. Only genes with at least 4 unique reads are 

taken into account. Every dot represents the fraction in one sample, every vertical mark 

indicates the mean percentage per biofluid. 

(D) Correlation between the small RNA and the mRNA relative concentration. The 

Spearman correlation coefficient is 0.83 (p-value = 1.76 x 10-6). 

BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; PRP, platelet-rich plasma; PPP, 

platelet-poor plasma; PFP, platelet-free plasma 
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The distribution of small RNA biotypes varies across the different biofluids 

The distribution of small RNA biotypes shows distinct patterns among the 20 different 

biofluids (Fig. 3). The exceptionally high percentage of miscellaneous RNAs (mainly Y-RNAs) 

observed in blood-derived fluids is in line with a previous study11 and with the Y-RNA function 

in platelets. The fraction of reads mapping to miRNAs is lower than 15% in all samples but 

platelet-free plasma and one synovial fluid sample. Tears, bile and amniotic fluid have the 

highest fraction of tRNA fragments while saliva has the highest fraction of piRNAs. The rRNA 

fraction is higher than 15% in all samples but tears, aqueous fluid and the three plasma 

fractions. The majority of these reads map to the 45S ribosomal RNA transcript. The not 

annotated read fraction contains uniquely mapped reads that could not be classified in one of 

the small RNA biotypes. These reads most likely originate from degraded longer RNAs, such 

as mRNAs and long non-coding RNAs. 

 
Fig. 3 Distinct small RNA biotype patterns are present across the different biofluids 

The fraction of reads that align to small RNA biotypes are shown per biofluid. Only mapped 

reads of the small RNA sequencing data are taken into account. BAL, bronchoalveolar lavage 

fluid; CSF, cerebrospinal fluid; miRNA: microRNA; PFP, platelet-free plasma; PPP, platelet-poor 

plasma; PRP, platelet-rich plasma; piRNAs: piwi-interacting RNA; sn(o)RNAs: small nuclear and 

nucleolar RNAs; tRNAs: transfer RNA. 
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Circular RNAs are enriched in biofluids compared to tissues 

CircRNAs are produced from unspliced RNA through a process called back-splicing where a 

downstream 5’ donor binds to an upstream 3’ acceptor. CircRNAs are resistant to endogenous 

exonucleases that target free 5’ or 3’ terminal ends. As a result, circRNAs are highly stable and 

have extended half-lives compared to linear mRNAs.27 CircRNAs have been reported to be 

present in numerous human tissues23 and in a few biofluids such as saliva20, blood28, semen21 

and urine23,24. A direct comparison of the circRNA read fraction between biofluids and tissues 

is currently lacking in literature. We compared the circRNA fraction identified through mRNA 

capture sequencing of the 20 biofluids in this study with the circRNA fraction identified in 

mRNA capture sequencing of 36 cancerous tissue types obtained from the MiOncoCirc 

Database23. While more unique backsplice junctions were identified in tissues compared to 

biofluids, in line with the higher RNA concentration in tissues (Fig. 4B), the circRNA read 

fraction is clearly higher in biofluid exRNA compared to cellular RNA (Fig. 4A). The median 

circRNA read fraction in biofluids is 84.4%, which is significantly higher than the median 

circRNA read fraction in tissues of 17.5% (Mann-Whitney-U test, two-sided, p-value = 5.36 x 

10-12). The exRNA in biofluids thus appears primarily derived from stable circRNAs, while the 

cellular RNA content in tissues is dominated by linear RNAs.  

We used two different methods to define the circRNA read fraction (see “Exogenous RNA 

characterization” in methods; Supplementary Fig. 8): one based on individual backsplice 

junctions (shown in Fig. 4) and another method based on backsplice junctions aggregated at 

gene-level (Supplementary Fig. 5). Both methods clearly point towards a substantial 

enrichment of circRNAs in biofluids. 
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Fig. 4 CircRNAs are enriched in biofluids compared to tissues 

(A) The circRNA fraction, calculated at the backsplice junction level, is plotted per sample 

and is higher in cell-free biofluid RNA than in tissue RNA. Only samples with at least 

100 backsplice junctions are plotted. 

(B) The number of unique backsplice junctions per sample is higher in tissues compared to 

biofluids, in line with the higher input concentration of RNA into the library prep. 

AML, acute myeloid leukemia; BAL, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; 

HNSCC: head and neck squamous-cell carcinoma; PFP, platelet-free plasma; PPP, platelet-

poor plasma; PRP, platelet-rich plasma  

 

Assessment of exogenous RNA in human biofluids 

Two dedicated pipelines were used for the non-trivial assessment of the presence of microbial 

or viral RNA in human biofluid extracellular RNA. Overall, the fraction of bacterial reads is 

lymph node breast cancer 1
ovarian cancer 1

bone metastasis 2
colon cancer 2

bladder cancer 2
cholangiocarcinoma 2

lymph node adenocarcinoma 1
cholangiocarcinoma 3

bone metastasis 1
melanoma 2

lung cancer 1
HNSCC 2

bone marrow AML 2
melanoma 3

lymph node adenocarcinoma 3
renal cell carcinoma 2
cholangiocarcinoma 1

melanoma 1
lymph node adenocarcinoma 2

HNSCC 1
neuroblastoma 1

prostate cancer 1
lymph node breast cancer 2

bladder cancer 3
urothelial cancer 1

breast milk 1
colon cancer 1

bladder cancer 1
medulloblastoma 1

lung cancer 3
synovial fluid 1
lung cancer 2

medulloblastoma 3
colostrum 1

bone marrow AML 3
colostrum 2

bone marrow AML 1
breast milk 2

renal cell carcinoma 1
medulloblastoma 2
bone metastasis 3

gastric fluid 1
t ears 1

seminal plasma 2
gastric fluid 2

BAL 2
t ears 2

pancreatic cyst fluid 2
amniotic fluid 2

seminal plasma 1
bile 1

saliva 1
sputum 2

amniotic fluid 1
PPP 2

saliva 2
PRP 2
urine 1

stool Calex 1
sputum 1
serum 2
serum 1

PRP 1
PPP 1
PFP 2
PFP 1
CSF 2
BAL 1

ascites 2
ascites 1

0 25 50 75 100

circRNA fraction

sa
m

pl
es

 w
ith

 a
t l

ea
st

 1
00

 b
ac

ks
pl

ic
e 

ju
nc

tio
ns

sample type

biofluid

tissue

fraction of circRNAs per sample (calculated on backsplice junction level)A

pancreatic cyst fluid 1
lymph node breast cancer 1

ovarian cancer 1
bone metastasis 2

colon cancer 2
bladder cancer 2

cholangiocarcinoma 2
lymph node adenocarcinoma 1

cholangiocarcinoma 3
bone metastasis 1

melanoma 2
lung cancer 1

HNSCC 2
bone marrow AML 2

melanoma 3
lymph node adenocarcinoma 3

renal cell carcinoma 2
cholangiocarcinoma 1

melanoma 1
lymph node adenocarcinoma 2

HNSCC 1
neuroblastoma 1

prostate cancer 1
lymph node breast cancer 2

bladder cancer 3
urothelial cancer 1

breast milk 1
colon cancer 1

bladder cancer 1
medulloblastoma 1

lung cancer 3
synovial fluid 1

stool 1
lung cancer 2

medulloblastoma 3
colostrum 1

bone marrow AML 3
colostrum 2

bone marrow AML 1
breast milk 2

renal cell carcinoma 1
medulloblastoma 2
bone metastasis 3

gastric fluid 1
t ears 1

seminal plasma 2
gastric fluid 2

BAL 2
t ears 2

pancreatic cyst fluid 2
amniotic fluid 2

seminal plasma 1
bile 1

saliva 1
sputum 2

amniotic fluid 1
PPP 2

saliva 2
PRP 2
urine 2
urine 1

synovial fluid 2
sweat 2
sweat 1

stool Calex 1
sputum 1
serum 2
serum 1

PRP 1
PPP 1
PFP 2
PFP 1
CSF 2
CSF 1
bile 2

BAL 1
ascites 2
ascites 1

10 100 1000 10000

number of backsplice junctions

sa
m

pl
es

sample type

biofluid

tissue

number of unique backsplice junctions identified per sampleB

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 5, 2019. ; https://doi.org/10.1101/823369doi: bioRxiv preprint 

https://doi.org/10.1101/823369
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

higher in small RNA sequencing data than in the mRNA data, in line with the unbiased nature 

of small RNA sequencing and the targeted hybrid capture enrichment using probes against 

human RNA during the mRNA capture library preparation. Stool (both collection methods), 

sweat, saliva and sputum are among the biofluids with the highest fraction of bacterial RNA 

in both the small RNA sequencing data and the mRNA data. The percentage of bacterial reads 

in mRNA data and in small RNA data are significantly correlated across biofluids (Spearman 

correlation coefficient 0.81, p-value = 2.20e-16). 

Bacterial reads in aqueous humor and CSF, two fluids with very low endogenous RNA content 

that were collected in a sterile setting (and thus presumed to be sterile), most likely reflect 

background contamination during the workflow29. To illustrate the biological relevance of the 

bacterial signal, we looked into reads mapping to Campylobacter concisus, a gram-negative 

bacterium that is known to primarily colonize the human oral cavity, with some strains 

translocated to the intestinal tract30. We confirm the selective presence of reads mapping to 

Campylobacter concisus in saliva in both the small RNA and the mRNA data(Fig. 5B). In all 

samples and for both the small RNA and the mRNA data, the percentage of the total reads 

that maps to viral transcriptomes is less than 1%. 
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Fig. 5. Reads mapping to bacterial genomes 

(A) Percentage of reads mapping to bacteria in mRNA data (pink) and in small RNA 

sequencing data (blue). 

(B) Percentage of reads mapping to Campylobacter concisus in mRNA data (pink) and in 

small RNA sequencing data (blue). Campylobacter concisus is known to be present in 

saliva. 
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Assessment of the tissues of origin and deconvolution of pancreatic cyst fluid  

Gaining insights in tissue contribution to biofluid RNA profiles may guide the selection of the 

most appropriate biofluid to investigate a given disease. To define tissues that specifically 

contribute RNA molecules to individual biofluids, we explored the relationship between 

extracellular mRNA levels and tissue or cell type specific mRNA signatures. The heatmap in 

Fig. 6A highlights the relative contribution of tissues and cell types to a specific biofluid 

compared to the other biofluids. More detailed results per biofluid are shown in 

Supplementary Fig. 6. As expected, prostate tissue RNA markers are more abundant in urine 

and in seminal plasma than in any other biofluid. Both sputum and saliva contain mRNAs 

specific for trachea and esophagus. In amniotic fluid, markers for esophagus, small intestine, 

colon and lung are more abundant than the other tissues and cell types, probably reflecting 

organs that actively shed RNA (at the gestational age of sampling) into the amniotic cavity. 

These data strongly suggest that biofluid mRNA levels, at least to some degree, reflect 

intracellular mRNA levels from cells that produce or transport the fluid. To further investigate 

the origin of biofluid RNA at the cellular level, we applied computational deconvolution of the 

pancreatic cyst fluid RNA profiles using single cell RNA sequencing data from 10 pancreatic 

cell types31. Fig. 6B reveals that pancreatic cyst fluid 1 consists of 45% of activated stellate 

cells and 43% of endothelial cells, while pancreatic cyst fluid 2 mainly consists of quiescent 

stellate cells (38%), endothelial cells (31%) and acinar cells (19%). 
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Fig. 6 Identification of the tissues of origin per biofluid and deconvolution of pancreatic cyst 

fluid 

(A) Assessment of the tissues of origin in the biofluids of the discovery cohort. 

Heatmap showing tissues and cell types that contribute more specifically to a certain biofluid 

compared to the other biofluids. Rows depict the biofluids of the discovery cohort and the 

columns are the tissues or cell types for which markers were selected based on the RNA Atlas32. 

For visualization purposes, only tissues and cell types with a z-score transformed log2 fold 

change ≥ |1| in at least one biofluid are shown. 

(B) Composition of pancreatic cyst fluid samples based on deconvolution using sequencing 

data from 10 pancreatic cell types.  

 

Biomarker potential of mRNA in sputum, urine, CSF and saliva in selected case/control 

cohorts 

Additional biofluid samples were collected in patients with a specific disease or in healthy 

controls to investigate potential biologically relevant differences in mRNA content between 

both groups. Sequin RNA spikes were used for biofluid volume-based data normalization. 

Strikingly, the relative RNA concentration in sputum of COPD patients was higher than in non-

COPD patients, probably reflecting the high turnover of immune cells during the state of 

chronic inflammation (Fig. 7A). Differential expression analysis revealed 5513 and 6 mRNAs 

that were significantly up- and downregulated, respectively, in sputum from COPD patients 
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compared to healthy controls (Fig. 7B). CCL20, the most differential mRNA, showed a 146-fold 

upregulation in COPD patients compared to healthy donors. This potent chemokine attracting 

dendritic cells has previously been linked to the pathogenesis of COPD3334. ADA and MMP1, 

also among the most differential mRNAs, have also been associated with the pathogenesis of 

COPD35–37. In contrast to COPD, the relative RNA content is comparable in urine from bladder 

cancer patients and healthy volunteers, in CSF from glioblastoma patients and hydrocephalus 

patient, and in saliva from diabetes patients and healthy volunteers (Fig. 7C/E, Supplementary 

Fig. 7). In urine from patients with a muscle invaded bladder cancer, 529 mRNAs and 9 mRNAs 

were significantly upregulated and downregulated, respectively, compared to urine from 

healthy volunteers (Fig. 7D). The keratin 5 gene, KRT5, is amongst the upregulated genes in 

urine from bladder cancer patients compared to healthy volunteers. The presence of KRT5 

mRNA in tumor tissue has been studied to subclassify muscle-invasive bladder cancers 

according to therapy response and patient outcome38. In CSF from glioblastoma patients, only 

2 mRNAs are significantly upregulated compared to CSF from hydrocephalus patients. CD163, 

one of the upregulated genes in glioblastoma, has been linked with glioblastoma 

pathogenesis39. In saliva from diabetes patients and saliva from healthy volunteers, no 

differentially expressed genes could be identified. A list with differentially expressed genes in 

all case/control cohorts can be found in Supplementary Data 5. 
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Fig. 7 Relative RNA concentration and volcano plot in case/control cohorts 

Top: Boxplots of relative mRNA content, bottom: Volcano plots of differentially expressed 

mRNAs (q<0.05; pink up; blue down in patient vs. control) with labeling of up to 5 most 

differential genes. (A) Sputum from COPD patients (n = 8) compared to sputum from healthy 

donors (n = 8; Wilcoxon rank test, two-sided, p = 0.007); (B) 5513 and 6 mRNAs up and down, 

respectively in COPD samples. (C) Urine from bladder cancer patients (n = 12) compared to 

urine from healthy donors (n = 12; Wilcoxon signed-rank test, two-sided, p = 0.068). (D) 529 

and 9 mRNAs up and down, respectively in bladder cancer samples. (E) CSF from glioblastoma 

cancer patients (n = 12) compared to CSF from hydrocephalus patients (n = 12); Wilcoxon 

signed-rank test, two-sided, p = 0.71); (D) 2 and 33 mRNAs up and down, respectively in 

glioblastoma samples 
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Discussion 

By applying two complementary RNA-sequencing technologies on 20 different biofluids, we 

assembled the most comprehensive human biofluid transcriptome, covering small RNAs, 

mRNAs and circRNAs. Until now, most efforts to investigate and compare the RNA content 

within biofluids focused on small RNA sequencing, most likely because of technical limitations 

and unawareness of the abundance of extracellular mRNA (fragments)5,6,8,10–12. The 

availability of both small RNA sequencing data and mRNA data allows a more in-depth 

characterization of the human transcriptome in biofluids. To our knowledge, this is the first 

study reporting on the mRNA content, generated through a dedicated mRNA enrichment 

sequencing method, in tear fluid, amniotic fluid, aqueous humor, bile, bronchial lavage fluid, 

gastric fluid, saliva, seminal plasma, synovial fluid, sweat and urine. Selected mRNAs were 

previously studied by means of RT-qPCR in amniotic fluid13, pancreatic cyst fluid14,17, seminal 

plasma15, sputum16, stool18 and in extracellular vesicles isolated from cell-free urine19. In 

saliva, selected mRNAs were detected using microarrays40. We have demonstrated that it is 

technically feasible to generate mRNA data from low input biofluid samples. This is expected 

to accelerate biomarker research in these fluids.  

Our small RNA results confirm previous studies observing high miRNA concentration in tears12, 

low mapping rates in CSF5,41 and low miRNA concentration in cell-free urine11.  

Aqueous humor and CSF, although collected in a sterile setting and presumed to be sterile, 

contain up to 11% of reads mapping to bacteria, in line with a previous study41. However, 

bacterial cultures of our two CSF samples were negative. As both CSF and aqueous humor 

display a very low relative RNA content, the exogenous sequences may represent bacterial 

contaminants introduced during the sample processing workflow. Contaminants can derive 

from contaminated spin columns used during RNA purification29, enzymes produced in 

microorganisms 42, or various environmental sources43. Such contaminant signals are likely 

underrepresented in samples with high concentration of endogenous exRNAs. 

Although we collected a broad range of biofluids, only two samples per biofluid were studied, 

limiting our ability to assess donor variability. The input volume for the RNA isolations in all 

biofluids was set to 200 µL and a volume-based comparison of the RNA content was made 

among the biofluids. We did not explore if higher input volumes would result in higher RNA 

yields in biofluids where this could have been possible (e.g. urine). We also note that the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 5, 2019. ; https://doi.org/10.1101/823369doi: bioRxiv preprint 

https://doi.org/10.1101/823369
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

results in Table 1 are impacted by biofluid input volume in the RNA purification, RNA input in 

the sequencing library prep, and the sequencing depth.  

Biofluid data normalization with synthetic spike-in controls is a unique and powerful approach 

and reflects more accurately the biological situation compared to classic normalization 

approaches where global differences on overall abundance are neutralized. For instance, the 

relative mRNA concentration in sputum from COPD patients is higher than in sputum from 

healthy donors. Typically, RNA sequencing data is subsampled or normalized based on the 

library size before performing a differential expression analysis, resulting in an artificially more 

balanced volcano plot, an overcorrection of the biological situation and a loss of information, 

which is not the case when the data is normalized based on spike-in controls.  

Our results highlighting tissues and cell types that contribute more specifically to a certain 

biofluid compared to the other biofluids (Fig. 6A) can be used as a roadmap to formulate 

hypotheses when initiating biomarker research. Not surprisingly, the RNA signal from prostate 

is reflected in urine and seminal plasma. Both fluids can be collected in a non-invasive way 

and may be of value to investigate further in prostate cancer patients. Of interest, the mRNA 

concentration in seminal plasma is 1000-fold higher than in urine and seminal plasma contains 

more unique mRNAs compared to urine, suggesting that the biomarker potential of seminal 

plasma is higher. However, one should also be cautious in interpreting the tissue enrichment 

results: while the RNA signal of breast seems relatively enriched in sweat, this biofluid has the 

lowest RNA concentration. The limited number of detected mRNAs in sweat show overlap 

with mRNAs related to secretion (MCL1 gene, SCGB2A2 gene, SCGB1D2 gene) that also appear 

as markers in breast tissue.  

The pancreatic tissue RNA signal appears to be enriched in pancreatic cyst fluid and a different 

cell type composition is observed when both samples are deconvoluted using single cell RNA 

sequencing data of pancreatic cell types (Fig. 6B). Pancreatic cyst fluid was collected in these 

donors to investigate a cystic lesion in the pancreas. The routine cytological analysis of these 

fluid samples was inconclusive at the moment of sample collection. By following up both 

patients, we discovered that the first patient developed a walled off necrosis collection after 

necrotizing pancreatitis. The incipient high fraction of activated stellate cells in the first cyst 

fluid sample may have been an indication pointing towards the inflammation and necrosis 

that finally occurred. The second patient was diagnosed with a side-branch intra papillary 

mucinous neoplasia, probably reflected by the relative high fraction of acinar cells. Pancreatic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 5, 2019. ; https://doi.org/10.1101/823369doi: bioRxiv preprint 

https://doi.org/10.1101/823369
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

cysts are often detected on abdominal imaging, resulting in a diagnostic and treatment 

dilemma. Furthermore, pancreatic cysts represent a broad group of lesions, ranging from 

benign to malignant entities. The main challenge in their management is to accurately predict 

the malignant potential and to determine the risk to benefit of a surgical resection44. Our 

results show that the cellular contribution to the RNA content of pancreatic cyst fluids can be 

estimated through deconvolution and that these results may be associated with clinical 

phenotypes. Larger cohorts are necessary to investigate the clinical potential of this approach 

and pancreatic tumor cells may also need to be added to the reference set with single cell 

RNA sequencing data to improve the accuracy of the prediction. 

In addition to linear mRNA transcripts, we also explored the circular RNA content in biofluids. 

CircRNAs are a growing class of non-coding RNAs and a promising RNA biotype to investigate 

in the liquid biopsy setting, as they are presumed to be less prone to degradation compared 

to linear forms45. The circRNA fraction in tissues has previously been reported and is in line 

with our findings46. In our study, we clearly demonstrated that circRNAs constitute the main 

mRNA signal in biofluids.  

In conclusion, The Human Biofluid RNA Atlas provides a systematic and comprehensive 

comparison of the RNA content in 20 different human biofluids and provides a unique glimpse 

into the extracellular RNA transcriptome from 180 samples. The results presented here may 

serve as a valuable resource for future biomarker studies.  
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Material and methods 

Donor material, collection and biofluid preparation procedure  

Sample collection for the discovery cohort and sputum collection for the case/control cohort 

was approved by the ethics committee of Ghent University Hospital, Ghent, Belgium (no. 

B670201734450) and written informed consent was obtained from all donors according to the 

Helsinki declaration. Breast milk, colostrum, plasma, serum, sputum, seminal plasma, sweat, 

stool, tears and urine were obtained in healthy volunteers. All other biofluids were collected 

from non-oncological patients.  

The collection of two case series of each 12 cases and 12 control samples was approved by 

the Masaryk Memorial Cancer Institute, Brno, Czech Republic (no. 14-08-27-01 and no. 

MOU190814). Urine was collected in healthy donors and muscle-invasive bladder cancer 

patients; CSF was collected in hydrocephalus patients and glioblastoma patients. 

Collection of saliva samples in 12 healthy donors and in patients with diabetes mellitus for the 

case/control cohort was approved by the ethics committee of the Medical University of 

Vienna, Vienna, Austria (no. 2197/2015). Written informed consent was obtained from all 

donors. The demographic and clinical patient information is provided in Supplementary Table 

1. Detailed information on the sample collection per biofluid is provided in Supplementary 

Note 2. All samples, except tear fluid, plasma and serum, were centrifuged at 2000 g (rcf) for 

10 minutes without brake at room temperature. All samples were processed within 2 hours 

after collection. The cell-free supernatant was carefully pipetted into 2 mL LoBind tubes 

(Eppendorf LoBind microcentrifuge tubes, Z666556-250EA) and stored at -80 °C. 

RNA isolation and gDNA removal 

RNA isolation from all biofluids, except tears 

In the discovery cohort, two RNA isolations per biofluid and per sample were simultaneously 

performed by two researchers (E.V.E. and E.H.). In the end, RNA obtained from both RNA 

isolations was pooled per biofluid and per sample and this pooled RNA was used as starting 

material for both library preparations. Hence, small RNA and mRNA capture sequencing on 

the discovery cohort were performed on the same batch of RNA. In the case/control cohorts, 

one RNA isolation was performed per sample and the RNA was used as starting material for 

mRNA capture sequencing. 
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RNA was isolated with the miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany, 217184) 

according to the manufacturer’s instructions. An input volume of 200 µL was used for all 

samples, except for tear fluid, and total RNA was eluted in 12 µL of RNAse-free water. Tear 

fluid was collected with Schirmer strips and RNA was isolated directly from the strips (see 

further). Per 200 µL biofluid input volume, 2 µL Sequin spike-in controls (Garvan Institute of 

Medical Research) and 2 µl RNA extraction Control (RC) spike-ins (Integrated DNA 

Technologies)47 were added to the lysate for TruSeq RNA Exome Library Prep sequencing and 

TruSeq Small RNA Library Prep sequencing, respectively. Details on the spike-in controls are 

available in the Supplementary Note 1.  

Briefly, 2 µl External RNA Control Consortium (ERCC) spike-in controls (ThermoFisher 

Scientific, Waltham, MA, USA, 4456740), 2 µl Library Prep Control (LP) spike-ins (Integrated 

DNA Technologies)48, 1 µl HL-dsDNase and 1.6 µl reaction buffer were added to 12 µl RNA 

eluate, and incubated for 10 min at 37 °C, followed by 5 min at 55 °C. Per biofluid and per 

donor the RNA after gDNA removal was pooled. RNA was stored at -80 °C and only thawed on 

ice immediately before the start of the library prep. Multiple freeze/thaw cycles did not occur. 

RNA isolation from tear fluid 

Tear fluid was collected in 8 healthy donors with Schirmer strips (2 strips per eye per donor), 

as previously described49,50. RNA was isolated within two hours after tear collection with the 

miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany, 217184), starting from one 2 mL tube 

containing each 4 Schirmer strips. The same reagent volumes as suggested by the 

manufacturer for a 200 µL input volume were used. Throughout the RNA isolation protocol, 

the two final RNA samples each result from 4 tear fluid samples (each containing the 4 strips 

of a single donor) that were pooled in a two-step method. First, the upper aqueous phase of 

two tear fluid samples was put together (in step 8 of the RNA isolation protocol). Second, the 

RNA eluate of these two samples was pooled into the final RNA that was used as input for the 

library prep (in step 15 of the RNA isolation protocol). 

TruSeq RNA Exome library prep sequencing 

Messenger RNA capture based libraries were prepared starting from 8.5 µL DNase treated and 

spike-in supplemented RNA eluate using the TruSeq RNA Exome Library Prep Kit (Illumina, San 

Diego, CA, USA). Each sample underwent individual enrichment according to the 

manufacturer’s protocol. The quality and yield of the prepared libraries were assessed using 

a high sensitivity Small DNA Fragment Analysis Kit (Agilent Technologies, Santa Clara, CA, USA) 
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according to manufacturer’s instructions. The libraries were quantified using qPCR with the 

KAPA Library Quantification Kit (Roche Diagnostics, Diegem, Belgium, KK4854) according to 

manufacturer’s instructions. Based on the qPCR results, equimolar library pools were 

prepared. 

Paired-end sequencing was performed on a NextSeq 500 instrument using a high output v2 

kit (Illumina, San Diego, CA, USA) with a read length of 75 nucleotides to an average 

sequencing depth of 11 million read pairs in the discovery cohort, 16.8 million read pairs in 

the sputum case/control cohorts, 15.4 million read pairs in the urine case/control cohort, 15 

million read pairs in the CSF case/control cohort and 18.8 million read pairs in the saliva 

case/control cohort. Samples from the discovery cohort were randomly assigned over two 

pools and sequenced with a loading concentration of 1.2 pM (5% PhiX) and 1.6 pM (5% PhiX), 

respectively. Urine, CSF and saliva samples from the case/control cohorts were loaded in 3 

separate runs at 2 pM (2% PhiX) and sputum samples from the case/control cohorts were 

loaded at 1.6 pM (5% PhiX). 

TruSeq Small RNA library prep sequencing 

Small RNA libraries were prepared starting from 5 µL DNase treated and spike-in 

supplemented RNA eluate using a TruSeq Small RNA Library Prep Kit (Illumina, San Diego, CA, 

USA) according to the manufacturer’s protocol with two minor modifications(1). The RNA 3’ 

adapter (RA3) and the RNA 5’ adapter (RA5) were 4-fold diluted with RNase-free water(2) and 

the number of PCR cycles was increased to 16.  

First, a volume-based pool of all 46 samples of the discovery cohort was sequenced. After PCR 

amplification, quality of libraries was assessed using a high sensitivity Small DNA Fragment 

Analysis Kit (Agilent Technologies, Santa Clara, CA, USA) according to manufacturer’s 

instructions. Size selection of the pooled samples was performed using 3% agarose dye-free 

marker H cassettes on a Pippin Prep (Sage Science, Beverly, MA, USA) following 

manufacturer’s instructions with a specified collection size range of 125–163 bp. Libraries 

were further purified and concentrated by ethanol precipitation, resuspended in 10 μl of 

10 mM tris-HCl (pH = 8.5) and quantified using qPCR with the KAPA Library Quantification Kit 

(Roche Diagnostics, Diegem, Belgium, KK4854) according to manufacturer’s instructions. The 

pooled library was quality controlled via sequencing at a concentration of 1.7 pM with 35% 

PhiX on a NextSeq 500 using a mid-output v2 kit (single-end 75 nucleotides, Illumina, San 

Diego, CA, USA), resulting in an average sequencing depth of 1 million reads, ranging from 
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3341 reads to 14 million reads. Twenty-three samples with less than 200 000 reads were 

assigned to a low concentrated pool, 23 samples with more than 17 million reads were 

assigned to a highly concentrated pool. Based on the read numbers from the mid output run, 

two new equimolar pools were prepared, purified and quantified as described higher. Both 

re-pooled libraries were then sequenced at a final concentration of 1.7 pM with 25% PhiX on 

a NextSeq 500 using a high output v2 kit (single-end, 75 nucleotides, Illumina, San Diego, CA, 

USA), resulting in an average sequencing depth of 9 million reads (range 817 469 – 41.7 million 

reads). 

Data analysis 

Processing TruSeq RNA Exome sequencing data 

Read quality was assessed by running FastQC (v0.11.5) on the FASTQ files and reads shorter 

than 35 nucleotides and with a quality (phred) score < 30 were removed. The reads were 

mapped with STAR (v2.6.0). Mapped reads were annotated by matching genomic coordinates 

of each read with genomic locations of mRNAs (obtained from UCSC GRCh38/hg38 and 

Ensembl, v91) or by matching the spike-in sequences. Picard (v2.18.5) was used for duplicate 

removal. HTSeq (v0.9.1) was used for quantification of PCR deduplicated reads. A cut-off for 

filtering noisy genes was set based on historic data to remove noisy genes. Using a threshold 

of 4 counts, at least 95% of the single positive replicate values are filtered out. A table with 

the read count of mRNAs per sample is provided in Supplementary Data 6. 

Processing TruSeq Small RNA sequencing data 

Adaptor trimming was performed using Cutadapt (v1.8.1) with a maximum error rate of 0.15. 

Reads shorter than 15 nts and those in which no adaptor was found were discarded. For 

quality control the FASTX-Toolkit (v0.0.14) was used, a minimum quality score of 20 in at least 

80% of nucleotides was applied as a cutoff. The reads were mapped with Bowtie (v1.1.2) 

without allowing mismatches. Mapped reads were annotated by matching genomic 

coordinates of each read with genomic locations of miRNAs (obtained from miRBase, v22) and 

other small RNAs (obtained from UCSC GRCh38/hg38 and Ensembl, v91) or by matching the 

spike-in sequences. Reads assigned as “not annotated” represent uniquely mapped reads that 

could not be classified in one of the small RNA biotype groups. As for the mRNA data, genes 

with fewer than 4 counts were filtered out. A table with the read count of miRNAs per sample 

is provided in Supplementary Data 7. 

Exogenous RNA characterization 
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The exogenous RNA content in the mRNA data was assessed using the MetaMap pipeline51. 

Briefly, all reads were mapped to the human reference genome (hg38) using STAR (v2.5.2)52. 

Unmapped reads were subsequently subjected to metagenomic classification using CLARK-S 

(v1.2.3)53. Reads were summed across all bacterial species. 

 The exogenous RNA content in the small RNA data was assessed using the exceRpt small RNA-

seq pipeline (v4.6.2) in the Genboree workbench with default settings54. Briefly, after adapter 

trimming, read quality was assessed by FASTQC (v0.11.2). A minimum quality score of 20 in at 

least 80% of nucleotides was applied as cutoff. The minimum read length after adapter 

trimming was set to 18 nucleotides. Reads were first mapped to the custom spike-in 

sequences using Bowtie2 (v2.2.6), followed by mapping the unmapped reads with STAR 

(v2.4.2a) to UniVec contaminants and human ribosomal (rRNA) sequences to exclude them 

before mapping (also with STAR) to the following databases: miRbase (v21), gtRNAdb, 

piRNABank, GeneCode version 24 (hg38) and circBase (version last updated in July 2017). A 

single mismatch was allowed during mapping to the human genome. Unmapped reads were 

then mapped with STAR to exogenous miRNAs and rRNAs. In the end, the remaining 

unmapped reads were mapped to the genomes of all sequenced species in Ensembl and NCBI. 

No mismatches were allowed during exogenous alignment. Raw read counts obtained from 

the Genboree workbench were further analyzed in R (v3.5.1) making use of tidyverse (v1.2.1). 

Circular RNA detection and circular/linear ratio determination 

Only TruSeq RNA Exome reads passing quality control (base calling accuracy of ≥ 99% in at 

least 80% of the nucleotides in both mates of a pair) were included in this analysis. Clumpify 

dedupe (v38.26) was used to remove duplicates in paired-end mode (2 allowed substitutions, 

kmer size of 31 and 20 passes). We used a two-step mapping strategy to identify forward 

splice (further referred to as linear) junction reads and backsplice junction reads. First, reads 

were aligned with TopHat2 (v2.1.0) to the GRCh38/hg38 reference genome (Ensembl, v91). 

Micro-exons were included, a minimum anchor length of 6 nucleotides was required, and up 

to two mismatches in the anchor region were allowed. The resulting output contains linear 

junction information. Secondly, unmapped reads from the first mapping strategy were 

realigned with TopHat2 (v2.1.0) to the same reference, but this time with the fusion search 

option that can align reads to potential fusion transcripts. Processing the fusion search output 

with CIRCexplorer2 parse (v2.3.3) results in backsplice junction information. Junction read 

counts obtained with the mapping strategies described above were used as a measure for the 
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relative level of linear and circular RNA in each sample. Only genes with at least one detected 

backsplice junction were considered. Junctions that could be part of both linear and circular 

transcripts (ambiguous junctions) were filtered out. As there is currently no consensus on how 

to calculate the circular to linear ratio (CIRC/LIN), we decided to calculate the ratio in two 

different ways (Supplementary Fig. 8). The circRNA fraction is defined as 100*CIRC/(CIRC+LIN). 

The first method (referred to as “backsplice junction-level method”) zooms in on each 

particular backsplice junction. CIRC was defined as the backsplice junction read count of one 

particular backsplice junction. LIN was defined as the average read count of all junctions 

flanking the backsplice junction of interest. The second method (referred to as “gene-level 

method”) considers all backsplice junctions within a given gene. CIRC was defined as the 

average number of backsplice junction reads for a given gene. LIN was defined as the average 

number of linear junction reads for a given gene. For both methods, CIRC > 3 was used as a 

cut-off for filtering noisy backsplice junctions. To enable a comparison of the circular/linear 

genic ratios in biofluids with those of tissues, the mRNA capture sequencing FASTQ files of 16 

cancerous tissue types (34 samples in total) were downloaded from the MiOncoCirc database 

(dbGaP Study Accession phs000673.v3.p1)23. A list with the downloaded samples is attached 

in Supplementary Table 2. A table with the read count of backsplice junctions per sample is 

provided in Supplementary Data 8. 

Assessment of tissue and cell contribution to biofluid exRNA 

Using total RNA-sequencing data from 27 normal human tissue types and 5 immune cell types 

from peripheral blood from the RNA Atlas32, we created gene sets containing marker genes 

for each individual entity (Supplementary Data 4). We removed redundant tissues and cell 

types from the original RNA Atlas (e.g. granulocytes and monocytes were present twice; brain 

was kept and specific brain sub-regions such as cerebellum, frontal cortex, occipital cortex and 

parietal cortex were removed) and we used genes where at least one tissue or cell type had 

expression values greater or equal to 1 TPM normalized counts. A gene was considered to be 

a marker if its abundance was at least 5 times higher in the most abundant sample compared 

to the others. For the final analysis, only tissues and cell types with at least 3 markers were 

included, resulting in 26 tissues and 5 immune cell types. 

Gene abundance read counts from the biofluids were normalized using Sequin spikes as size 

factors in DESeq2 (v1.22.2). For all marker genes within each gene set, we computed the log2 

fold changes between the median read count of a biofluid sample pair versus the median read 
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count of all other biofluids. The median log2 fold change of all markers in a gene set was 

selected, followed by z-score transformation over all biofluids (Fig. 7). For visualization 

purposes, only tissues and cell types with a z-score ≥ |1|	in at least one biofluid were used. 

Cellular deconvolution of pancreatic cyst fluid samples 

To build the reference matrix for the computational deconvolution of pancreatic cyst fluid 

samples, single cell RNA sequencing data of 10 pancreatic cell types31 was processed with the 

statistical programming language R (v3.6.0). For each gene, the mean count across all 

individual cells from each cell type was computed. Next, this reference matrix was normalized 

using the trimmed means of M values (TMM) with the edgeR package (v3.26.4)5556. Limma-

voom (v3.40.2)57 was used for subsequent differential gene expression analysis and those 

genes with an absolute fold change greater or equal to 2 and an adjusted p-value < 0.05 

(Benjamini-Hochberg) were retained as markers58. Finally, using these markers and both the 

pancreatic cyst fluid samples and the reference matrix described above, the cell type 

proportions were obtained through computational deconvolution using non-negative least 

squares (nnls package; v1.4)5960. 

Differential expression analysis in case/control cohorts 

Further processing of the count tables was done with R (v3.5.1) making use of tidyverse 

(v1.2.1). Gene expression read counts from the biofluids were normalized using Sequin spikes 

as size factors in DESeq2 (v1.20.0)61. To assess the biological signal in the case/control cohorts, 

we performed differential expression analysis between the patients and control groups using 

DESeq2 (v1.20.0). Genes were considered differentially expressed when the absolute log2 fold 

change > 1 and at q < 0.05.  

Data availability 

All RNA-sequencing data have been deposited at the European Genome-phenome Archive 

(EGA) under accession number EGAS00001003917. All other data are available within the 

article and supplementary information, or available from the corresponding authors upon 

request.  

Code availability 

The R scripts to reproduce the analyses and plots reported in this paper are available from the 

corresponding authors upon request. 
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