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Abstract 7 

The firing pattern of grid cells in rats has been shown to exhibit elastic distortions that compresses and 8 

shears the pattern and suggests that the grid is locally anchored. Anchoring points may need to be 9 

learned to account for different environments. We recorded grid cells in animals encountering a novel 10 

environment. The grid pattern was not stable but moved between the first few sessions predicted by 11 

the animals running behavior. Using a learning continuous attractor network model, we show that 12 

learning distributed anchoring points may lead to such grid field movement as well as previously 13 

observed shearing and compression distortions. The model further predicted topological defects 14 

comprising a pentagonal/heptagonal break in the pattern. Grids recorded in large environments were 15 

shown to exhibit such topological defects. Taken together, the final pattern may be a compromise 16 

between local network attractor states driven by self-motion signals and distributed anchoring inputs 17 

from place cells.  18 

Introduction 19 

Cortex may represent variables in discrete or continuous low dimensional attractor states. Although 20 

point attractors may be stably learned, for instance by Hopfield networks(Hopfield 1982), continuous 21 

attractors networks (CANs) are notably difficult to balance as small perturbations will lead them to 22 

wander away from the proper state. Thus, CANs need to monitor and reset their state either by lower 23 

level sensory inputs or by learned associations with representations found in higher cortical levels.  24 

Grid cells in the medial entorhinal cortex fire in a periodic hexagonal pattern which display translational 25 

symmetry across cells suggesting they may use low dimensional continuous attractor dynamics to 26 

function as a path integrator by taking self-movement signals as inputs to update the animal’s 27 

representation of position in allocentric space(Fuhs and Touretzky 2006; Hafting et al. 2005; 28 

McNaughton et al. 2006; Yoon et al. 2013). The grid pattern is not perfectly hexagonal but displays 29 

elastic distortions that shears the grid along the orientation of a square environment(Stensola et al. 30 

2015). Moreover, local elastic distortions have been described that stems from an interaction with the 31 

borders of the environment, compressing the grid along the axes of the walls(Hagglund et al. 2019). 32 

Crystalline materials may undergo similar elastic distortions to a certain degree, after which increased 33 

shear strain is released by slippage of a grain boundary, or nucleation of topological defects such as 34 

dislocations. Whether strong local elastic distortions may lead to similar topological defects in the grid 35 

pattern is unknown, but they would provide strong evidence of anchoring mechanics.  36 

A concern for any system that relies solely on internal locomotor cues to update a position estimate is 37 

sensitivity to noise. Incomplete or imperfect sensory input may impart drift to the representation and 38 

undermine the possibility to derive stable spatial information from it over time. This caveat could be 39 

mitigated by a resetting mechanism that would ensure the systems long-term stability. Thus, to be 40 

useful as a spatial reference the grid needs to anchor to its environment. Anchoring has been 41 

suggested as a process where stable features of the environment provides a reference frame that will 42 

reset the position estimate at these various locations(Campbell et al. 2018; Dordek et al. 2016; Mulas, 43 

Waniek, and Conradt 2016; Ocko et al. 2018). However, compression distortions lead to a gradual 44 
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contortion of the pattern across the environment which may necessitate resetting to occur at multiple 45 

locations distal to local cues and borders to keep the pattern stable. Anchoring further implies learning 46 

which has been observed where the grid has been locally altered by local changes in the 47 

environment(Boccara et al. 2019; Sanguinetti-Scheck 2019; Wernle et al. 2018). Thus, effects of 48 

anchoring in an open field may be most conspicuous during initial encounters with a novel 49 

environment where the pattern may depend more strongly on plastic interactions with the 50 

environmental layout. The grid has been shown to get increasingly hexagonal over the first few 51 

sessions after being subjected to a novel environment(Barry et al. 2012), possibly as a process of 52 

increasingly acquired anchoring points.  53 

Here we demonstrate how the grid pattern develops in relation to behavior when subjected to a novel 54 

environment, how anchoring may explain details of the development as well as previously described 55 

distortions of the grid, and how anchoring may affect the topology of the grid pattern.  56 

Results 57 

GRID FIELDS MOVE OPPOSITE TO THE RUNNING DIRECTION DURING NOVELTY 58 

To investigate the impact of learning on anchoring and the form of the grid we implanted rats with 59 

multi-tetrode devices and recorded grid cells in the medial entorhinal cortex. Animals foraged for 60 

rewards in a square 1.5 m box, a 1.8 m equilateral triangle or a 2.4 m equilateral triangle for a novel 61 

session followed by several subsequent sessions in the same box between 5 h to 3 days later (5 animals 62 

in 9 novelty exposures, 40 grid cells, 2-6 grid cells recorded simultaneously in each experiment). Cells 63 

that had a gridness score(Langston et al. 2010) above that of the 95th percentile of a shuffled 64 

distribution was chosen, if this were true for at least one of the sessions. Thus, some cells in the 65 

analyses did not qualify as a grid cell in the initial session. Only cells with grid spacing smaller than 75 66 

cm was chosen to improve the resolution of the local analyses below.  67 

Local changes in the grid were studied by subdividing firing rate maps into 9 equal squares for the 68 

square environments (Figure 1A), 9 equilateral triangles for the large triangular environment and 4 69 

equilateral triangles for the smaller triangle, leading to subdivisions of 0.25 m2, 0.28 m2 and 0.45 m2 70 

respectively. For each cell, each subdivision from session 1 was cross-correlated with that from session 71 

2 (Figure 1A, blue vs red respectively). Spatial differences in the grid between session 1 and 2 was 72 

measured from the offset of the peak closest to the middle of the cross-correlogram in each 73 

subdivision, if the peak was higher than 0.4 r and the peak had not moved more than 25% of the grid 74 

spacing of the cell. Grid fields were not stable between the 1st and 2nd session but had shifted a mean 75 

of 5.1 cm (sd = 3.2 cm, Figure 1B). There were no differences in the magnitude of the shift in the 76 

corners, along the walls nor in the middle subdivisions of the experiments in the square environment 77 

(mean magnitude 5.0 cm, sd = 2.9; 5.1 cm, sd = 3.6; and 5.4 cm, sd 2.7,  in the mid, corner and wall 78 

compartments respectively, Wilcoxon’s rank sum test of the magnitude in the mid vs corner 79 

compartments, p = 0.96, mid vs wall, p = 0.35, and corner vs wall compartments, p = 0.21).  80 

Across animals, the grid did not shift in any coherent pattern (N = 303 subdivision measurements, 81 

mean resultant vector length (MVL) = 0.052, weighted circular mean direction = 21°, Rayleigh’s test for 82 

circular non-uniformity, p = 0.18). However, when correcting for the behavior within each subdivision 83 

by rotating the grid shift direction according to the prevailing running direction in that subdivision from 84 

the first session, the shift of the grid was significantly distributed oppositely to the average local 85 

running direction (Figure 1B right shows example and Figure 1C, left,  shows the entire data set; MVL 86 

= 0.17, weighted circular mean direction = 197°, Rayleigh’s test for circular non-uniformity, p = 0.031, 87 

weighted circular V-test for non-uniformity around the specific direction 180° from the average 88 

running direction (V-test180), v = 179, p = 9.4 × 10-15). Using a subset of the same cells recorded at later  89 
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 90 

Figure 1. Individual grid fields move oppositely to the average running velocity during novelty.  91 

(A) Two example cells recording during novelty (blue) and a subsequent session (red) are shown 92 
together with the average running velocity (right).  93 
(B) The cross-correlation between sub compartments in session 1 and 2 shows how the grid moves 94 
locally (left, black arrows, 6 cells) displayed in relation to the average running velocity (blue arrows). 95 
Normalizing the grid movement to the running direction in this example shows that most shifts occur 96 
in the opposite direction of the average running direction (right).  97 
(C) Pooling the shifts normalized to average running direction shows that the shifts from 40 grid cells 98 
from 9 experiments run in the opposite direction of the behavior (left). Black arrows denote field 99 
shifts, the red arrow displays the mean vector and the blue running direction. The circular histogram is 100 
divided into 10° bins and displays counts weighted by shift magnitude (bottom). The 2nd to last vs last 101 
session grid movement was smaller in magnitude and did not shift in any significant direction (C).  102 
(D) The mean magnitude of movement dropped during subsequent exposure to the environment 103 
(mean and SEM).  104 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 5, 2019. ; https://doi.org/10.1101/830158doi: bioRxiv preprint 

https://doi.org/10.1101/830158
http://creativecommons.org/licenses/by/4.0/


4 
 

sessions demonstrated that the effect was due to novelty (Figure 2C, right; 26 grid cells comparing 105 

sessions 4 and 5, 7 and 8, 3 and 4, 5 and 6, 2 and 3, 5 and 6 and finally 5 and 6 for the respective 106 

experiments, MVL = 0.089, weighted circular mean direction after rotating according to running 107 

direction  = 284°, V-test180, v = -13, p = 0.78). Although the direction of the shift in relation to the 108 

running direction was significant, the resultant mean vector length was short, suggesting that the grid 109 

may move locally also in other directions, possibly to consolidate a less regular initial pattern (Barry et 110 

al. 2012). The movement of the grid fields opposite to behavior was significant between session 1 and 111 

2 and between session 2 and 3 (MVL = 0.10, V-test180, V = 58, p = 0.0036) after which any movement 112 

was statistically undetectable by these means (Figure 1D, session 3 to 4, MVL 0.07, V-test180, V = -8.3, 113 

p = 0.67).  114 

Although the shift was undetectable after a few sessions, there is a possibility that movement 115 

continues albeit at a slower pace. We therefore analyzed a set of previously recorded data(Stensola et 116 

al. 2012) that spanned over weeks. Since cells were only recorded once, we here examine whether the 117 

population representation of the shape of the grid changed by measuring the offset of the grid axis 118 

that was most closely aligned to a wall of the environment. Out of 39 modules, 15 modules were 119 

recorded at more than 10 occasions. The correlation between the absolute offset of the axis and 120 

recording day showed that in 6 of these cases (40%), the orientation changed over time. In 4 out of the 121 

6 cases, the orientation rotated towards 0° offset (r = -0.44, p = 0.025; r = -0.71, p = 0.0010; r = -0.45, 122 

p = 2.3 × 10-5; r = -0.30, p = 0.029) and in the remaining two cases it rotated away from 0° (r = 0.45, p 123 

= 0.01; r = 0.27, p = 0.0055).  124 

Thus, these data show that the grid is initially volatile and moves between the first and subsequent 125 

encounter with an unfamiliar environment and that this movement occurs preferentially in the 126 

direction opposite to the animals typical running direction. This movement slows down within a few 127 

sessions so that it is undetectable by these means but on a population level the grid may continue 128 

moving over weeks.  129 

AN ANCHORING CAN MODEL RECAPITULATES FIELD MOVEMENT AND DISTORTIONS  130 

The movement of the pattern suggests that the grid may change its points of anchoring. To investigate 131 

whether plastic anchoring inputs to a CAN would permit these dynamics we modelled a small CAN of 132 

672 grid cells connected to plastic inputs from 289 place cells with place fields in a square lattice 133 

covering the entire environment. Place cells closer than 20 cm to a wall had an 20% lower firing rate 134 

than the rest to mimic the real distribution of firing rates of hippocampal CA1 place cells(Muessig et 135 

al. 2015).  Each grid cell received inputs from every place cell through Hebbian synapses modelled by 136 

the BCM-rule(Bienenstock, Cooper, and Munro 1982) where the sliding threshold was modulated by 137 

the firing rate during the last 300 ms. The patterning on the cortical sheet within the CAN aligned to 138 

an edge because of the square architecture of the modeling environment. To allow for arbitrary 139 

orientations, an offset variable µ was added to the head direction. Every 100 seconds, the grid 140 

orientation was measured from an autocorrelogram of the last 300 seconds of activity and µ was 141 

updated according to the prevailing orientation. This rather artificial operation allows the CAN to 142 

slowly realign the orientation of the attractor to the pattern expressed during the last few minutes. In 143 

the brain, this operation could be performed by plastic interactions between the head direction system 144 

and the grid cells. 145 

The balance between the collateral connections within the CAN and the inputs from the place cells 146 

was set by α so that α = 1 meant that grid cells only received inputs from other grid cells, and at α = 0, 147 

they only received place cell inputs. As α was increased, the lower inputs from the place cells made 148 

the grid smaller and less stable and at α = 1, the grid pattern was completely abolished, the firing rate 149 

was approximately 80% lower and the cells activity strongly reflected the head direction inputs 150 
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(Supplementary Figure 1), similar to experimental data(Bonnevie et al. 2013). The simulated animal 151 

moved with anisotropic behavior so that whenever it reached a wall there was 0.02 higher probability 152 

per iteration of turning to the left than the right, which also leads to a higher average velocity and 153 

higher occupancy along the walls (Figure 2A). This stereotypical behavior of rats is correlated to 154 

compression distortions(Hagglund et al. 2019). 155 

The model was run 100 times for 500 000 iterations (83 minutes) in a 1.5 m box with 289 place cells, α 156 

= 0.92, an initial position in the corner of the box and the initial orientation of the CAN at 0°. We chose 157 

a subset of 10 random cells from each simulation to produce an average that we compared between 158 

the simulations. After rotating and reflecting the grid pattern from different simulations so that their 159 

primary axis was between 0° and 15° the final pattern displayed a median primary axis offset of 5.3°, 160 

sd = 3.7 ° with few simulations with offsets close to 0° and 15° (Figure 2B, top). Minimizing the elliptic 161 

distortion by shearing the pattern along the box axis led to a smaller median primary offset of 2.9°, sd 162 

= 4.9° (Figure 2B, bottom, Wilcoxon rank test, p = 0.00010) and there was a negative correlation 163 

between the shearing factor that minimized the ellipticity and the offset of the orientation of the 164 

primary axis (r = -0.38, p = 8.3 × 10-5). Thus, the pattern had sheared along the N-S axes, similar to real 165 

grid cells (Stensola et al. 2015).  166 

The development of the pattern was measured by performing a local cross-correlation in each of 9 167 

sub-compartments between an initial epoch (Figure 2C, blue) and a subsequent epoch (red), with 168 

epochs being 125000 iterations (21 minutes) long. The grid had moved in directions that were highly 169 

distributed overall (Figure 2C right shows an example simulation, red arrows denote the shift of 170 

individual cells, 20 cells plotted), but when adjusting the shifts for the average running velocity in each 171 

sub-compartment, the shift of the grid was directed in the opposing direction (Figure 2D shows the 172 

example in C, for the whole population the circular mean direction was 167.5°, MVL = 0.63, V-test180, 173 

p < 10 × 10-20, mean shift magnitude = 3.3 cm). The deviation from 180° was smaller if half of the 174 

simulations were reflected so that the running anisotropy direction was unbiased (circular mean 175 

direction 179.5°, MVL 0.35, V-test180, p < 10 × 10-20). Although larger than in the data, the modest MVL 176 

suggest that the grid pattern also here moved in other directions. The shifts were most conspicuous in 177 

the first epochs and later subsided (Figure 2E, shows epoch 3 and 4, and Figure 2F shows the average 178 

magnitude of the shifts for 7 different simulations with measurements starting every 5 min of the 179 

duration of the simulation) but had not disappeared at epoch 3 vs 4.  180 

To further elucidate the effects of anchoring on the finer spatial details of the grid we ran the model 181 

in a larger 2.2 m environment with a smaller spacing and a lower α to uncover whether anchoring may 182 

also reproduce local spatial compression distortions found in such an environment(Hagglund et al. 183 

2019). 100 simulations were run for 750 000 iterations (125 min) with 625 place cells and α = 0.85. To 184 

relate the grid to both environmental axes we defined a secondary axis of the grid as the line that 185 

passes through the 2nd and 6th field of an autocorrelogram when counting counter clock wise from 0° 186 

and runs orthogonal to the primary axis (Figure 2A, right). Local grid spacing was measured from the 4 187 

out of 9 equal square sub-compartments that abutted each mid-wall section. The average 188 

autocorrelogram of 10 randomly chosen cells from each simulation showed that the primary axis was 189 

compressed by 8% along the walls that aligned to the primary axis (Figure 2G; spacing difference 190 

between the E-W and the N-S mid wall bin 2.3 cm, Wilcoxon’s test, p = 8.2 × 10-12). The spacing along 191 

the secondary axis was similarly compressed by 12% along the walls that aligned to the secondary axis 192 

(Figure 2G bottom left and right; difference between N-S and E-W mid wall bins 5.8 cm, Wilcoxon’s 193 

test, p = 2.3 × 10-19). Furthermore, the grid displayed diagonal symmetric local distortions which have 194 

been shown to follow from compression distortions (Supplementary Figure 2A).  195 
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 196 

Figure 2. An anchoring CAN model reproduces distortions and field movement 197 
(A) A CAN model with distributed anchoring was simulated with anisotropic running behavior (left) 198 
produced grid patterns (right).  199 
(B) The model produced a grid with an offset of the primary axis that was diminished upon minimizing 200 
the ellipticity by shearing (top vs bottom) reproducing previously described distortions.  201 
(C) Local cross-correlation between an initial epoch (left, blue) and a subsequent epoch (left, red), with 202 
epochs being 21 minutes long, shows that the grid fields in the model moved locally (right, 20 cells) 203 
Blue arrows show movement of individual cells and black arrows show the average running velocity.  204 
(D) Normalizing the movement according to the local average running direction of the simulated 205 
animal showed that the grid shift was distributed in the opposite direction from the running direction 206 
(example from C).  207 
(E) During later epochs the movement had subsided.  208 
(F) Measuring the shift every 5 minutes displays how the magnitude of the shift goes down with time 209 
(7 simulations shown).  210 
(G) The model reproduced local spatial distortions. The spacing of the primary and secondary axes was 211 
smaller along the walls that ran alongside those axes (arrows denote the axial direction). The boxplot 212 
displays the spacing at the mid wall of each axis (notches show the 95% confidence intervals).  213 
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Disabling the differential place cell firing rates did not remove the compression distortion (primary and 214 

secondary axis compressed by 9% and 7% respectively, Wilcoxon’s test p = 1.2 × 10-20 and p = 7.3 × 10-215 
17 respectively) but it did abolish the diagonally symmetric form of the grid (Supplementary Figure 2B). 216 

However, as the BCM-rule may introduce intrinsic grid formation on the single cell level independently 217 

from the CAN(Stepanyuk 2015) we speculated that the compression distortion may stem from border 218 

fields not being constrained by fields lying outside the box (Supplementary Figure 2C). The 219 

compression stemming from this effect should thus be reduced by lowering the impact of the plasticity 220 

by increasing α (and lowering the speed gain to compensate for the smaller spacing stemming from 221 

the smaller anchoring input), which is exactly what we saw. With α = 0.96 (as high as possible without 222 

losing stability of the grid) and vgain = 0.018, primary and secondary axes were less compressed (both 223 

by 4%; smaller than simulations run at α = 0.85, Wilcoxon’s test p = 0.0030 and p = 4.5 × 10-5 for the 224 

primary and secondary axes respectively). Shearing depended on both the anisotropic behavior and 225 

the compression distortion and was abolished if either one was not present (Supplementary Figure 2D; 226 

without anisotropic behavior, median primary axis offset increased from 3.5°, sd = 3.4° to 5.5° sd = 5.1° 227 

after shearing, Wilcoxon’s test, p = 0.013; correlation between shearing factor and offset, r = -0.21 and 228 

p = 0.02;  with homogenous place cell firing rates and α = 0.97 (as high as possible without losing 229 

stability of the grid), vgain = 0.018, median primary axis offset went from 1.8°, sd = 3.7° to 4.9°, sd = 4.4° 230 

after shearing, Wilcoxon’s test, p = 0.0014; correlation between shearing factor and offset, r = -0.10, p 231 

= 0.28).  232 

Thus, the model reproduced the field movement seen during novelty by re-anchoring individual grid 233 

fields to new place cells in the opposite direction of consistently traversed paths. Moreover, both 234 

shearing and compression distortions were found that depended on anisotropic behavior, 235 

heterogenous place cell activity and the influence of plasticity on single cell level pattern formation.  236 

THE MODEL PRODUCED TOPOLOGICAL DEFECTS IN THE PATTERN 237 

A subset of simulations contained notable local inconsistencies in the pattern. The coherence of the 238 

grid was therefore investigated by estimating the local hexagonality of the pattern. The de-elliptified 239 

gridness score(Yoon et al. 2013) was measured locally using a sliding window autocorrelogram 240 

approach. The de-elliptified gridness score is a metric that fits an ellipse on the 6 innermost peaks of 241 

the autocorrelogram (excluding the center peak) and then transforms the autocorrelogram so that the 242 

peaks lie on a circle. The gridness score(Langston et al. 2010) is subsequently measured throughout 243 

the environment to provide an estimate for hexagonality that is not biased by ellipticity. Henceforth 244 

we will only use this de-elliptified gridness score.  245 

Many maps exhibited a homogenously distributed high gridness score throughout the environment 246 

(Supplementary Figure 3, top) In some simulations there was a local region where the score was either 247 

below zero or undefined because the 6 innermost peaks of the autocorrelogram did not form an ellipse 248 

(Figure 3A). In the same region as these low gridness scores, the local spacing and orientation of the 249 

grid underwent a spatial phase transition around a nexus, where one or two of the axes of the grid 250 

suddenly jumped to a different configuration (Figure 3B and 3C). This jump signified that the two peaks 251 

(autocorrelograms are 180° rotationally symmetric so peaks come in pairs) closest to the center of the 252 

autocorrelogram became farther away than another pair of peaks. Thus, we concluded that in the 253 

location of the anomaly, one row of fields locally exhibited a larger spacing than a neighboring row, 254 

but farther from the anomaly the pattern was again coherent. Taken together, these transitions are 255 

consistent with a phenomenon known as a dislocation.  256 

Dislocations have been studied in materials science for over 80 years as they have a large impact on 257 

the properties of metals and other crystalline materials(Burgers 1939). They are defined by the  258 
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 259 

Figure 3. The model produces grids with topological defects.  260 
(A) Some simulations contained local dips in local gridness score (blue) and areas where the gridness 261 
score could not be defined (white pixels). 262 
(B and C) The regions of low gridness score were accompanied by a local phase transition in spacing 263 
and orientation respectively showing that these grids had a dislocation defect.  264 
(D) A Burgers circuit can be drawn that encapsulates the defect and shows the discrepancy in 265 
positional order.  266 
(E) Voronoi tesselation analyses was used to identify pentagonal and heptagonal fields.  267 
(F) There was a local pentagon/heptagon hot-spot in the same area as the low gridness score (same 268 
simulation as in A, B, C and D).  Transparent red and blue fields denote those fields that had one 269 
Voronoi edge closer than 20 cm to a wall.  270 
(G) The gridness scores at the areas with pentagons, hexagons and heptagons shows that non-271 
hexagonal Voronoi cells display a lower gridness score (outliers not shown).  272 
(H) The translational symmetry was examined by locally cross-correlating rate maps from pairs of grid 273 
cells (left). A dislocated simulated grid (top, dislocated region encircled) and a non-dislocated 274 
simulation (bottom) is shown for comparison. The deviation from the average direction and 275 
magnitude, and the amplitude of local cross-correlations show that the local translational symmetry is 276 
not topologically deteriorated at the locations of the dislocation but compares to the variability seen 277 
in the non-dislocated maps.  278 
(I) Direction and magnitude of the cross-correlation offset deviation, and the amplitude of the cross-279 
correlation was not significant between the area of the highest local gridness scores vs the lowest 280 
local gridness scores in simulations with a dislocation (notches show the 95% confidence intervals).  281 
 282 

Burgers vector, which highlights the topological irregularity by drawing a loop (the Burgers circuit, 283 

Figure 3D) around the defect and defining the lattice displacement d as the difference in position R in 284 

the dislocated lattice with the corresponding position Ro in a perfectly crystalline counterpart, after 285 

integrating over the circuit. Thus d = R - Ro and Burgers vector b is then ∮ d = b. In a 2-dimensional 286 
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pattern, a dislocation will always have a |b| = 1. Moreover, dislocations can be visualized as an extra 287 

axis inserted from one of two directions, or as a pentagon - heptagon pair adjacent to each other in 288 

the lattice. A dislocation is a break in the topology and cannot be dissolved by local restructuring 289 

neighboring bonds.   290 

To confirm the dislocations by a different method we quantified the number of pentagons and 291 

heptagons in the pattern using Voronoi tessellation by Delaunay triangulation, with grid field locations 292 

as seeds (Figure 3E). All maps had high deviation from hexagonality along the borders (Figure 3G), 293 

which is to be expected from this method, as there are no fields outside the borders to constrain the 294 

Delaunay triangulation. Therefor we disregarded any Voronoi cells that had an edge closer than 20 cm 295 

to the border (Figure 3F, transparent colored fields). The number of bins with a zero or lower gridness 296 

score, or an undefined gridness score, correlated with the mean number of pentagons (r = 0.57, p = 297 

6.1 × 10-10) and heptagons (r = 0.52, p = 2.1 × 10-8) in the population. Moreover, the location of the 298 

pentagonal/heptagonal fields coincided with the areas of lower gridness scores (Figure 3G; median 299 

local gridness scores where there were pentagonal fields, 0.99; hexagonal fields, 1.33; heptagonal 300 

fields 1.27; 1000 cells from 100 simulations, ANOVA, F(4, 11955) = 1114, p = 2.9 × 10-182, Wilcoxon’s 301 

test of local gridness scores at pentagons and heptagons vs hexagons, p = 6.8 × 10-99).  302 

We next asked whether the local phase structure of the dislocated simulations displayed topological 303 

breaks in the translational symmetry between grid cell pairs, such as a reflection of the phase-to-phase 304 

coupling between cells, or a disclination defect where the rotational order is altered, in contrast to the 305 

positional order which is changed in dislocations. To visualize the variations in translational phase 306 

coupling, a sliding window cross-correlation was performed between 50 cell pairs that had an average 307 

offset distance of 25% +/-10% of the grid spacing (see examples in Figure 3H). The offset between cell 308 

pairs were normalized by the mean so that a map could be constructed displaying the local average 309 

directional and magnitude deviation as well as cross-correlation amplitude between cells in the 310 

population (Figure 3H, 3 right-most panels) showing that close to areas with low gridness score the 311 

map often underwent a local change in the phase structure, but it was not much different from the 312 

variation seen in non-dislocated simulations. In each map with a gridness score of zero or below, or 313 

where the gridness score was undefined, we measured the amplitude and deviation of magnitude and 314 

direction at the minimum and maximum level of gridness score (Figure 3I). None of these variables 315 

were different across the population (difference in deviation in direction 0.3°, magnitude 4.7 cm, 316 

amplitude r = 0.0043, Wilcoxon’s test p = 0.19, p = 0.55, p = 0.07 respectively). To further quantify the 317 

phase structure, we subdivided rate maps into 9 sub-compartments and measured the phase offset 318 

between 50 cells if their average distance were 25% +/- 10%. The results showed that in locations 319 

where the gridness score was zero or smaller or undefined the offset magnitude and the offset 320 

direction displayed mean deviations of 0.4 cm and 0.4° respectively, compared to where the gridness 321 

score was higher than 0 (Wilcoxon’s test, p = 0.35 and p = 0.018, respectively). Although significant, 322 

the phase offset deviation within dislocated regions were small and the overall translational symmetry 323 

between cells was thus mostly contained, which is not surprising since we impose the phase structure 324 

with the synaptic connectivity architecture of the CAN.  325 

DISLOCATIONS ARE FOUND IN REAL GRID CELLS 326 

To investigate whether the dislocations described above could occur in real grid cells we analyzed a 327 

data set of 131 grid cells from 5 modules recorded from three animals foraging in a 2.2 m square 328 

environment(Stensola et al. 2012). Grid modules were selected from the population if they had a mean 329 

spacing of less than 60 cm and were part of a module consisting of more than 10 cells. Modules were 330 

assigned in a previous study from which the data came from(Stensola et al. 2012). De-elliptified 331 

gridness scores were measured locally throughout the environment using a sliding window with a size 332 
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of 73 cm (Figure 4A). Three of the modules (here referred to as module 1-3) described a consistently 333 

high gridness score throughout the environment. However, two modules (module 4 and 5) contained 334 

a region of negative or undefined gridness score denoting low hexagonality. At these locations, local 335 

spacing and orientation was found to exhibit a similar transition as that found in the modelled grid 336 

(Figure 4C and D).  337 

To investigate the hexagonality and deviations from it directly, fields were defined as regional maxima 338 

in locally normalized oversmoothed rate maps (Figure 4B, bottom) with a smoothing kernel 339 

proportional to the grid spacing (see Methods). The Voronoi method was used as described above, 340 

disregarding any Voronoi cells that had an edge closer than 20 cm to the border. Non-hexagonal 341 

Voronoi cells were found scattered throughout the environment in each module, likely false positives 342 

stemming from the noise of low sampling, individual differences in firing rate and disproportionate 343 

coverage. However, in module 4 and 5 there was a local hot-spot of non-hexagonal Voronoi cells 344 

(example in Figure 4E). For each rate map the numbers of pentagonal and hexagonal Voronoi cells 345 

were counted. Module 4 and 5 contained a higher ratio of grid cells with at least one heptagonal or 346 

pentagonal Voronoi cell (Figure 4F left; chi-square test, chi = 18.9, p = 1.4 × 10-5), higher ratio of 347 

heptagons (Figure 4F mid; chi-square test, chi = 11.5, p = 6.7 × 10-4) and a higher ratio of pentagons 348 

(Figure 4F right; chi-square test, chi = 6.4, p = 0.011). The local gridness score was lower at pentagonal 349 

and heptagonal fields compared to hexagonal fields (Figure 4G; median gridness scores at pentagonal 350 

fields for modules 4 and 5 respectively, 1.32 and 0.34; hexagons, 1.35 and 1.40; heptagons, 1.27 and 351 

1.24, F(4, 434) = 13, p = 0.0008 and F(3, 295) = 73, p = 1.9 × 10-35; Wilcoxon’s test for pentagons and 352 

heptagons vs hexagons, p = 2.1 × 10-6 and p = 1.0 × 10-20  for modules 4 and 5 respectively). The local 353 

gridness score and Voronoi analyses were also applied to a data set of three modules from animals 354 

running in a geometrically manipulated environment from a previous study(Wernle et al. 2018). 2 out 355 

of 3 modules also displayed negative/absent local gridness scores and had a higher ratio of heptagons 356 

and pentagons (supplementary Figure 4). 357 

The two dislocations in the 2.2 m data set were conveniently located within quadrant boundaries. To 358 

examine whether the grid pattern was different in the dislocated quadrants, the amplitudes of the 359 

cross-correlations within cells of the environment was measured in the four quadrants. The mean of 360 

the three innermost maxima of the cross-correlograms were used to get a consistent measure of the 361 

amplitude. The amplitude was significantly lower for modules 4 and 5 containing a dislocation (ANOVA 362 

of cross correlation amplitudes between quadrants for each cell F(5, 72) = 1.00, p = 0.43; F(5, 138) = 363 

1.14, p = 0.34; F(5, 120) = 0.86, p = 0.51; F(5, 186) = 5.31, p = 0.00039; F(5, 240) = 14, p = 3.4 × 10-12  for 364 

modules 1-5, respectively). The quadrants containing the dislocation had the lowest mean cross-365 

correlation amplitude (mean cross correlation amplitude in the dislocated quadrant in module 4, r = 366 

0.35, sd = 0.12 vs the three other quadrants, r = 0.38, sd = 0.13, Wilcoxon’s test, p = 0. 021; and r = 367 

0.37, sd = 0.12 in the dislocated quadrant of module 5 vs the three other quadrants, r = 0.41, sd = 0.12, 368 

Wilcoxon’s test, p = 2.0 × 10-5). Thus, within each rate map, the grid in the quadrant containing a 369 

dislocation had a different shape compared to the three other quadrants.   370 

As in the model, we asked whether the local phase structure of the dislocated modules displayed any 371 

topological breaks in the translational symmetry of the grid, such as a reflection of the phase-to-phase 372 

coupling between cells or a disclination defect. Local phase deviation maps showed that similar to the 373 

model, the offset displayed a local deviation at the region of the dislocations which was not abrupt but 374 

continuous (see example in Figure 4H, top three panels and bottom left).  375 
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 376 

Figure 4. Topological defects may be found in real grid cells.  377 
(A) Local gridness score maps of 5 modules reveals that two of the modules contain a a region of low 378 
or undefined gridness score.  379 
(B) An example of how the Burgers circuit encapsulates the dislocation (top) and an example of a 380 
Voronoi diagram of a grid with a pentagonal field in red (bottom).  381 
(C and D) The local shape of the grid in the dislocated modules demonstrated sudden transitions 382 
visible in the local spacing and orientation maps respectively (bottom).  383 
(E) The distribution of polygons as measured using Voronoi tessellation (B, bottom) shows the 384 
accumulation of pentagonal and heptagonal fields in the dislocated area.  385 
(F) Modules 4 and 5 contained a higher ratio of pentagons and heptagons compared to the other 386 
three modules.  387 
(G) The local gridness scores in module 4 (top) and module 5 (bottom) were lower at pentagonal and 388 
heptagonal fields compared to hexagonal fields (outliers not shown, notches show the 95% confidence 389 
intervals).  390 
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(H) The phase offsets between different cells in a module (H, top row two example cells) is mostly 391 
maintained also across dislocations. Local cell pair cross-correlations displays small deviations across 392 
the environment (bottom left). On the population level (mid bottom) the deviation from the mean 393 
orientation is different in the dislocated area (encircled region). The mean vector for the deviations 394 
from the mean in dislocated quadrants vs the rest (bottom right) shows that the translational 395 
symmetry is different in direction in module 4 and in both magnitude and direction in module 5. Error 396 
bars show standard error.  397 
 398 

To quantify the local translational symmetry, each quadrant of the rate maps was cross-correlated 399 

between cells within each of the dislocated modules. The distance and direction offset from the middle 400 

to the closest peak in the cross-correlogram was measured. Local population deviation of direction and 401 

distance between cells were evaluated by subtracting the mean magnitude and direction of the offset 402 

from each measurement (Figure 4H, bottom right). In module 4, the offset magnitude between cells 403 

was larger in the dislocated quadrant (deviation from mean offset magnitude 0.73 cm, sd 3.2 vs -0.24 404 

cm, sd 0.20 in the three remaining quadrants, Wilcoxon’s test, p = 1.0 × 10-19). However, the cells had 405 

the same directional offset in the dislocated region as in the rest of the environment (circular mean 406 

deviation 2.2° in the dislocated quadrant vs 0.72° in non-dislocated quadrants, Fishers test for median 407 

circular variables, p = 0.57). In module 5, the phase offset magnitude was significantly smaller 408 

(deviation from mean offset -0.87 cm, sd = 3.3 in dislocated quadrant vs 0.29 cm, sd = 0.35 in the rest, 409 

Wilcoxon’s test, p = 5.6 × 10-31) and the directional component was different in the dislocated quadrant 410 

(circular mean deviation in orientation 5.4°, circular sd 38.2° in the dislocated quadrant vs -1.7°, circular 411 

sd 34.2, Fishers test for median circular variables, p << 0.001). Although significant, these results show 412 

that the variability in phase relationships between cells is small in a dislocated region. The translational 413 

symmetry between cells is thus not topologically disturbed but may stay roughly consistent also across 414 

dislocations.  415 

Discussion 416 

We have shown that the layout of the grid pattern is experience dependent and may be in a state of 417 

change depending on the behavior during initial encounters of an environment as well as over longer 418 

time spans. The novelty induced re-anchoring could be reproduced by a CAN that learns to anchor to 419 

place cell inputs. Moreover, the learning CAN explained previously described spatial distortions and 420 

predicted topological defects with retained translational symmetry between cells. These topological 421 

defects were found in a data set of animals running in a large environment.  422 

Grid cells have been shown to fire in anticipation of grid fields(Kropff et al. 2015; De Almeida et al. 423 

2012). This effect may lead to associative re-anchoring during times of high plasticity that likely occurs 424 

during an encounter with a novel environment. In our model, upon entering a grid field, a grid cells 425 

firing rate increases which leads to potentiation of place cell synapses from place cells with place fields 426 

at this grid field entry. However, potentiation according to adapting Hebbian learning, such as with the 427 

BCM-rule used here, saturates with time, which means that when the animal exits the grid field place 428 

cell synapses from place cells with fields at the exit point will be less potentiated or may even be 429 

depressed. Thus, grid cells slowly shifted their representation by changing which place cells they 430 

anchored to. Within session movement was not analyzed because of a lack of data. Although possible, 431 

we find it less likely that the field shift occurred solely during the inter-session rest period and more 432 

likely to be a gradual process unfolding during a session. The possible influence of top-down inputs 433 

from hippocampal cells do not change the likely scenario that grid cells also influence and stabilize 434 

place cell fields in an interactive process (Renno-Costa and Tort 2017).  435 
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Other evidence of local shifting and re-anchoring overriding the coherence of the grid pattern have 436 

been found where grid fields moved locally close to reward sites(Boccara et al. 2019), home 437 

locations(Sanguinetti-Scheck 2019) or where the environment had been geometrically altered(Krupic 438 

et al. 2018; Wernle et al. 2018) further implicating the behavioral impact of local anchoring on the grid 439 

pattern. Here we found a close connection of the grid movement to the action of the animal suggesting 440 

that the previously described grid field changes may be accounted for by the behavioral constraint that 441 

the rearranged environments produced in contrast to stemming from direct sensory inputs.  442 

Several anchoring CAN models have been suggested where the grid has been proposed to be reset by 443 

borders(Hardcastle, Ganguli, and Giocomo 2015; Ocko et al. 2018; Keinath, Epstein, and 444 

Balasubramanian 2018), salient visual landmarks(Mulas, Waniek, and Conradt 2016), landmark 445 

cells(Campbell et al. 2018). In the current work however, anchoring stemmed from a distributed 446 

population of place field inputs, akin to(Guanella, Kiper, and Verschure 2007; Kropff and Treves 2008; 447 

Dordek et al. 2016; Stepanyuk 2015). Both the novelty induced grid field shifting and the dislocations 448 

depended on place cells with place fields far removed from any immediate salient cues. The most likely 449 

candidate for such an input stems from the CA1, which sends a massive descending input to the deep 450 

layers of the MEC. Other possible sources include the subiculum and a population of place cells that 451 

reside in the retrosplenial cortex, since both these areas also project heavily to the MEC. Place cells 452 

may form fields attached to landmarks and salient local features but are to a great extent found in the 453 

open field of an experimental box(Muessig et al. 2015).  454 

Local compression distortions and shearing could be explained by anisotropic behavior and the 455 

intrinsic periodicity induced by the synaptic plasticity(Stepanyuk 2015). The latter may depend on a 456 

lack of traversal of fields lying outside the environment which leads to a lesser force separating the 457 

fields. The lack of constraining neighboring fields along the secondary axis would impose a stronger 458 

force than along the primary axis which is why the secondary axis is relatively more compressed than 459 

the primary axis. This effect may further explain why the pattern is not only rotated by the anisotropic 460 

behavior but shears because of unequal compression between the primary and the secondary axis.  461 

Dislocations in the grid system have been suggested as a proof of continuous attractor dynamics, if the 462 

translational symmetry between cells are preserved(Burak and Fiete 2009), which is what we found. 463 

However, a CAN with a dislocation in its cortical sheet could not be stable over time which is a strong 464 

evidence for an external input. Furthermore, the fact that dislocations could occur in the open field, 465 

removed from proximal cues and without environmental manipulations, is a strong evidence for 466 

distributed anchoring not dependent on direct sensory input from landmark or border cells. 467 

Dislocations form an entanglement in the spatial attractor landscape formed within the hippocampal 468 

formation which may have cognitive and behavioral consequences. Traversing the dislocation 469 

suddenly changes the spacing and orientation of the grid possibly providing a source of confusion or 470 

less fidelity of the representation of space. Dislocations formed serendipitously in the model and, 471 

although not addressed directly in the current study, may be biased by several factors. Large 472 

environments, small grid spacing, and strong anchoring could all lead to a decrease in long range 473 

interactions of the pattern and subsequent breaks in the topology of the grid. Possibly they are more 474 

prone to form from two or more disparate anchoring points between which the pattern could not 475 

coherently consolidate, which may predispose them in geometrically altered environments 476 

(Supplementary Figure 4). If and how dislocations may generalize to other attractor systems of the 477 

brain is an intriguing question for future studies.  478 

Taken together, these experimental and numerical results suggest that the grid may be anchored by 479 

distributed place cell inputs. Such anchoring can explain why grid fields move in opposition to animals 480 
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typical running pattern during learning. Moreover, local anchoring to place cells and stereotypical 481 

behaviors may explain the origin of elastic distortions and topological defects in the grid pattern.  482 

 483 

  484 
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Methods 564 

ELECTROPHYSIOLOGY AND SURGERY 565 

The experiments were performed in accordance with the Norwegian Animal Welfare Act and the 566 

European Convention for the Protection of Vertebrate Animals used for Experimental and Other 567 

Scientific Purposes. Five male Long Evans rats were implanted with a multi-tetrode device carrying 4 568 

or 14 tetrodes atop the medial entorhinal cortex (MEC) at 4.7 mm left of bregma and 0.5 mm rostral 569 

to the transverse sinus. Recordings were made using the Neuralynx (Neuralynx, Tuscon, AZ) or Axona 570 

(Axona Ltd., UK) acquisition systems. Spikes were sorted manually using the MClust software (A.D. 571 

Redish). Tetrodes were lowered over days or weeks until strongly theta modulated neurons were 572 

found signifying the location of the MEC. Animals were trained to forage for cereal crumbs in a 1.5 m 573 

box. LEDs on the device was tracked by a recording camera situated in the ceiling. When multiple grid 574 

cells were stably recorded in a familiar box the animal was subjected to a novel 1.5 m square, 2.4 m 575 

triangular or 1.8 m triangular enclosure in a novel room or novel box with a different geometry in a 576 

familiar room where cells were continuously recorded for several sessions.  577 

DATA PROCESSING AND ANALYSES 578 

All data analyses and modelling were performed using MATLAB (Mathworks Inc, MA). Grid cells were 579 

determined by repeated shuffling of the experimental data as previously described (Langston 2010). If 580 

the gridness score was larger than that of the 95th percentile of the grid scores from the shuffled data, 581 

the cell was defined as a grid cell.  582 

Rate maps of well separated neural signals were produced as described earlier(Sargolini et al. 2006). 583 

Position estimates were smoothed with a 15-point median filter. The position data were sorted into 584 

1.5 cm bins and a smoothing algorithm using a Gaussian kernel with a sigma of 6 cm was applied to 585 

the spike position data, which was normalized by the spatial occupancy. Locations further than 3 cm 586 

away from the animal’s path were considered unvisited. The local shift of the grid from one session to 587 

the next was measured by subdividing each map into 9 equal bins and measuring the offset by cross-588 

correlation. Average running velocity was also collected from each sub-compartment and the grid shift 589 

was normalized to the average running direction by subtraction.  590 

Parameters of the grid were measured in autocorrelograms where the location of the six innermost 591 

local maxima, excluding the middle peak, were extracted. The mean orientation of three axes of the 592 

grid in each module was measured and a primary axis was determined as the axis that was closest to 593 

either the N-S or E-W axis of the recording enclosure. All cells within a module/simulation were rotated 594 

and/or reflected consistently depending on the mean orientation of the primary axis of each 595 

module/simulation so that it ended up between 0° and 15° offset from the E-W axis.  596 

To evaluate the ellipticity of the grid, an ellipse was fitted to the six innermost peaks of 597 

autocorrelograms (excluding the middle peak) using a least-square criterion and the orientation of the 598 

long axis of the ellipse was defined within the interval 0° to 180° (Fitzgibbon 1999). Ellipticity was 599 

defined as the length of the semi-major axis divided by the semi-minor axis. 600 

In the shearing analyses, the position of the six innermost peaks was incrementally sheared by step-601 

wise increasing the shearing factor q in 602 

(
𝑥𝑠

𝑦𝑠
) = (

𝑥

𝑦 + 𝑞𝑥
) 603 
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along the y axis and the value of the shearing factor q and primary axis offset was measured where 604 

shearing produced the lowest the ellipticity.  605 

To measure the de-elliptified gridness score, autocorrelograms were rotated to align their elliptic 606 

orientation with the environmental orientation after which they were compressed along this axis to 607 

retain a circular layout of the innermost 6 peaks. After this transformation the gridness score was 608 

measured (Langston 2010).  609 

Local grid parameter maps were constructed by sliding a 74 × 74 cm window across 10 randomly 610 

chosen cells from each simulation, calculating an autocorrelogram at every 7.5 cm. Autocorrelograms 611 

were averaged between cells to get a mean representation of the grid at each location of the 612 

environment. Local spacing (Figure 2G, 3B, 4C), orientation (Figure 2B, 4D, Supplementary Figure 2) 613 

and gridness scores (Figure 3 and 4) was measured in each simulation and was then averaged to 614 

produce the final maps. However, in the data analysis all cells from respective modules were used and 615 

the step-size of the sliding window was 1.5 cm.  616 

Local phase deviation maps were constructed by a sliding window cross-correlation in steps of 4.5 cm 617 

or 1.5 cm per measurement in the model and data respectively. In the model, 50 randomly chosen cell 618 

pair combinations from each simulation was cross-correlated locally in a 74 × 74 bin window if their 619 

grid offset was between 15% - 35%. At each location the peak closest to the middle was interpreted as 620 

the translational phase offset between the cells. The mean offset was measured from the full map 621 

cross-correlation which was subsequently subtracted from the local maps to produce maps describing 622 

the local deviation from the mean. Magnitude, direction and amplitude of the cross-correlation offset 623 

peak was then extracted and plotted as individual parameters in color coded maps. In the data the 624 

process was the same except for the number of cell pairs used (293), the size of the window (30 × 30) 625 

and the step size = 1.5 cm.  626 

GRID POLYGONS 627 

Fields were defined as local maxima in rate maps produced by two filtering steps. Rate maps were first 628 

locally normalized by being divided by a gaussian over-smoothed version of themselves with a σ = 15 629 

cm. Next, in the model data the resulting map was further smoothed with a σ = 9 cm. In the real data 630 

the σ for the second smoothing was  631 

σ = 𝑠𝑝𝑎𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅  2 / 200 632 

derived from the average spacing  𝑠𝑝𝑎𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅  of the entire module. Field locations were extracted as local 633 

maxima and used as seeds for Delaunay triangulation. Grid field polygonal structure was analyzed by 634 

Voronoi diagrams derived from the Delaunay triangulation. 635 

MODEL  636 

The model consists of a periodic CAN with 24 x 28 grid cells situated on a twisted torus(Guanella, Kiper, 637 

and Verschure 2007), connected to 289 or 625 gaussian place cells in the 1.5 m and 2.2 m boxes 638 

respectively, distributed evenly every 9 cm with a sigma of 15cm. Each grid cell integrates grid cell 639 

inputs, place cell inputs and velocity input, and after this the synaptic weights from the place cells are 640 

updated according to the BCM rule with a temporal sliding threshold β based on the average firing rate 641 

for each neuron for the last 300 ms. The balance between the place cell and grid cell inputs to a grid 642 

cell is set by α.  643 

The firing rate g of neuron i at time t is 644 
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0.05

1arctan( cos( ) (1 ) )it it ij i gain t t i ijg g e W g v v P pc 

 
          645 

where  646 

2 2

2 2

( cos ) ( sin )

( cos ) ( sin )

ij inh inh i j i i j i

exc exc i j i i j i

W W R x x I y y I

W R x x I y y I

 

 





        
 

      
 

 647 

are the weights within the CAN. […]+ is the Heaviside threshold-linear function,  Rinh = 10 and denotes 648 

the radial extent of the inhibitory connectivity = and Rexc = 3 is the radial extent of the excitatory 649 

connectivity, Winh and Wexc is the strength of the inhibitory and the excitatory connectivity set at -0.02 650 

and 0.05 respectively. Thus, grid cells are connected by excitatory synapses to close neighbors and 651 

inhibitory synapses to distant neighbors as inferred from functional connectivity and noise correlation 652 

studies (Tocker, Barak, and Derdikman 2015; Dunn, Morreaunet, and Roudi 2015). x and y denote 653 

positions on the cortical sheet, and I is an offset of 2 neurons, shifting the activity of this neuron 654 

towards the preferred direction of θi (one of the 4 directions (N, W, S or W), neurons with different 655 

preferences are tiled evenly over the cortical sheet). vgain = 0.0023 and 0.0032 is the speed gain in the 656 

1.5 m and 2.2 m environments respectively unless otherwise noted, vt is the current speed, θt is the 657 

current running. µ is measured as the average orientation of the three grid axes within (-90,90] from 658 

an autocorrelogram of the grid produced during the last 300 s of activity and is measured from 10 grid 659 

cells every 100 s. The whole expression saturates with the inverse tangent function and cannot be 660 

negative. 661 

Pij denotes the weights from place cell j to grid cell i with pcj being the firing rate of place cell j. α sets 662 

the gain and balance between place cell and grid cell inputs with α = 0.92 in the 1.5 m box and 0.85 in 663 

the 2.2 m box unless otherwise noted. Weights were initialized as a normal distribution centered on 664 

0.1 with a σ = 0.003 which after normalization leads to a distribution with a peak around 0.6.  665 

P is modified using the BCM-rule as 666 

, 1 , ,(1 ) ( )ik t ik t ik t it it it itP P P pc g g mfr 
        667 

and normalized similar to (Kropff et al) with the Euclidian norm so that 668 

2 15ik

k

P   669 

Thus, the synaptic weights have a soft upper boundary approaching 1. mfrit is the temporal average 670 

activity of neuron i over the last β = 300 ms, and Ω = 0.2 is the learning rate.  671 

RUNNING BEHAVIOR 672 

The simulated animal moved along a random path with speed v according to 673 

vt = vt-1 + r + mv - fvt-1 674 
and position updated as  675 

xt = xt-1 + cos(at-1)τvt-1 676 
yt = yt-1 + sin(at-1)τvt-1 677 

with  678 
at = at-1 + κτ(ψ + n) 679 

 680 
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where f = 0.01, τ = 0.015s, the turning rate is κ = 9.2, r and n are drawn randomly from a standard 681 

distribution, ψ is 0 unless encountering a wall when it denotes the probability of turning left = -0.02, 682 

mv = 30cm/s sets the median speed.  The speed was threshold at 5 cm/s.  683 

Model grid cell ratemaps were produced as a 99x99 (1.5 m box) or 147x147 (2.2 m box) binned 2d 684 

histogram of firing rate divided by the occupancy.  685 
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Supplementary �gure 1. 

Removing the place cell input to the model abolished grid cell activity (lower left) and 
revealed a strong head directional component (right, green). 
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A. Diagonally opposing corners displayed similar orientations, both of the primary and the 
secondary axes but di�erent from the other pair of corners (median orientation of the 
primary axis in NW + SE corner 1.6° and NE + SW 3.8°, Wilcoxon’s test, p = 0.0045. Median 
orientation of the secondary axis in NW + SE corner 93.0° and NE + SW 91.9°, Wilcoxon’s 
test, p = 0.026). This diagonal symmetry is a hallmark of the border compression distortion. 
The notches in the boxlot show the 95% con�dence intervals. 

B. Disabling the di�erential place cell �ring rates eliminated the diagonal symmetry (medi-
an orientation of the primary axis in NW + SE corner 5.2° and NE + SW 3.8°, Wilcoxon’s test, 
p = 0.20. Median orientation of the secondary axis in NW + SE corner 93.0° and NE + SW 
92.2°, Wilcoxon’s test, p = 0.19). The notches in the boxlot show the 95% con�dence inter-
vals. 

C. Fields in the middle of the environment (red) are constrained from all directions. Fields 
along the borders lack neighboring �elds outside the box (dashed circles) and are thus less 
constrained (green arrows denote lacking forces) meaning the axis along the wall may 
compress (blue arrows). The lack of constraint has a stronger e�ect along the secondary 
axis since the lacking border �eld (green dashed circle) would have had a larger constrain-
ing in�uence on the spacing. 

D. The grid did not shear if there was no anisotropic behavior (left) or if there was no com-
pression distortions because of a homogenous place cell �ring rates and a low � (right). 
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Supplementary �gure 3. 

Example rate maps, local gridness scores and Voronoi diagram summaries 
from the 2.2 m simulations. The Voronoi maps shows the �elds of 50 cells in 
each map (black dots) and deviations from hexagonality as red (pentagons), 
blue (heptagons) or green (quadragons). Transparent �elds have an edge of 
their Voronoi cell lying outside of the cuto� of 20 cm from the wall. 
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Environmentally modulated grid modules from Wernle et. al. 
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Supplementary �gure 4. 

A dataset where animals had been subjected to a merging of two 1x2 
m familiar environments was also investigated (Wernle et al. 2018). 
From 13 animals, three grid modules had more than 3 cells with a grid 
spacing less than 60 cm. Local gridness score maps (top) revealed 
that two of the modules contained areas of low �delity, and in one of 
the (Module 7) seemed to contain 2 such areas. The ratio of pentago-
nal or heptagonal Voronoi cells is signi�cantly higher in the modules 
that had a zero or below or unde�ned gridness score (chi = 22.4, p = 
2.2e-6). 
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