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Abstract 

Alzheimer’s disease (AD) is the primary cause of dementia worldwide (1), with an increasing 

morbidity burden that may outstrip diagnosis and management capacity as the population ages. 

Current methods integrate patient history, neuropsychological testing and magnetic resonance 

imaging (MRI) to identify likely cases, yet effective practices remain variably-applied and 

lacking in sensitivity and specificity (2). Here we report an explainable deep learning strategy 

that delineates unique AD signatures from multimodal inputs of MRI, age, gender, and mini-

mental state examination (MMSE) score. Our framework linked a fully convolutional network 

(FCN) to a multilayer perceptron (MLP) to construct high resolution maps of disease probability 

from local brain structure. This enabled precise, intuitive visualization of individual AD risk en 

route to accurate diagnosis. The model was trained using clinically-diagnosed AD and 

cognitively normal (NC) subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset (n=417) (3), and validated on three independent cohorts: the Australian Imaging, 

Biomarker & Lifestyle Flagship Study of Ageing (AIBL, n=382) (4), the Framingham Heart 

Study (FHS, n=102) (5), and the National Alzheimer’s Coordinating Center (NACC, n=582) (6). 

Model performance was consistent across datasets, with mean accuracy values of 0.966, 0.948, 

0.815, and 0.916 for ADNI, AIBL, FHS and NACC, respectively. Moreover, our approach 

exceeded the diagnostic performance of a multi-institutional team of practicing neurologists 

(n=11), and high-risk cerebral regions predicted by the model closely tracked postmortem 

histopathological findings. This framework provides a clinically-adaptable strategy for using 

routinely available imaging techniques such as MRI to generate nuanced neuroimaging 

signatures for AD diagnosis, as well as a generalizable approach for linking deep learning to 

pathophysiological processes in human disease. 
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Introduction 

Millions worldwide continue to suffer from AD, while attempts to develop effective disease 

modifying treatments remain stalled. Though tremendous progress has been made towards 

detecting AD pathology using cerebrospinal fluid (CSF) biomarkers (7-9), as well as positron 

emission tomography (PET) amyloid (10, 11), and tau (τ) imaging (12, 13), these modalities 

often remain limited to research contexts. Instead, current standards of diagnosis depend on 

highly skilled neurologists to conduct an examination that includes inquiry of patient history, an 

objective cognitive assessment such as bedside MMSE or neuropsychological testing (2), and a 

structural MRI to rule in findings suggestive of AD (7). Clinicopathological studies suggest the 

diagnostic sensitivity of clinicians range between 70.9-87.3% and specificity between 44.3%-

70.8% (14). While MRIs reveal characteristic cerebral changes noted in AD such as hippocampal 

and parietal lobe atrophy (15), these characteristics are considered to lack specificity for 

imaging-based AD diagnosis (7, 16-18). Given this relatively imprecise diagnostic landscape, as 

well as the invasive nature of CSF and PET diagnostics and a paucity of clinicians with sufficient 

AD diagnostic expertise, advanced machine learning paradigms such as deep learning (19-21), 

offer ways to derive high accuracy predictions from MRI data collected within the bounds of 

neurology practice. 

Recent studies demonstrate the application of deep learning approaches such as 

convolutional neural networks (CNNs) for MRI and multimodal data-based classification of 

cognitive status (22). Despite the promising results, these models have yet to achieve full 

integration into clinical practice for several reasons. First, there is a lack of external validation of 

deep learning algorithms since most models are trained and tested on a single cohort. Second, 

there is a growing notion in the biomedical community that deep learning models are “black-

box” algorithms (23). In other words, although deep learning models demonstrate high-accuracy 

classification across a broad spectrum of disease, they neither elucidate the underlying diagnostic 

decisions nor indicate the input features associated with the output predictions. Lastly, given the 

uncertain onset and heterogeneity of symptoms seen in AD, a computerized individual-level 

characterization of AD remains unresolved. Considering these factors, we surmise that the 

clinical potential of deep learning is attenuated by a lack of external validation of single cohort-

driven models, and an increasing use of opaque decision-making frameworks. Thus, overcoming 
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these challenges is not only crucial to harness the potential of deep learning algorithms to 

improve patient care, but to also pave the way for explainable evidence-based machine learning 

in the medical imaging community. To address these limitations, we developed a novel deep 

learning framework that links a fully convolutional network (FCN) to a traditional multilayer 

perceptron (MLP) to generate high-resolution visualizations of AD risk that can then be used for 

accurate predictions of AD status (Fig. 1). Four distinct datasets were chosen for model 

development and validation (Fig. 2, Table 1). Association of model predictions with 

neuropathological findings along with a head-to-head comparison of the model performance with 

a team of neurologists underscored the validity of the deep learning framework. 
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Results 

Our dual deep learning pipeline can link an FCN to an MLP to predict AD status directly 

from MRI data or from a combination of MRI data and readily available non-imaging data (Fig. 

1). The FCN portion of the framework generated high-resolution visualizations of overall AD 

risk in individuals as a function of local cerebral morphology. We refer to these visualizations as 

disease probability maps (DPMs). The MLP then used DPMs directly (Model A in Fig. 1), or a 

set of non-imaging features such as age, gender and MMSE score (Model B in Fig. 1), or a 

multimodal input data comprising DPMs, MMSE score, age and gender (Model C in Fig. 1), to 

accurately predict AD status across four independent cohorts (Table 1, Fig. 2). We chose these 

known AD risk factors because they can be easily obtained by non-AD specialists. The FCN was 

trained to predict disease probability from randomly-selected patches (sub-volumes) of pixels 

sampled from the full MRI volume (Fig. 1 & Table S1). Given that this type of network accepts 

input of arbitrary size, application of the sub-volumetrically trained FCN could then be used to 

construct high resolution DPMs without the need to redundantly decompose full-sized test 

images. 

Rapid processing of individual MRI volumes generated volumetric distributions of local AD 

probabilities in the brains of affected and unaffected individuals, respectively (Figs. 3a, S1-S3). 

In order to assess the anatomical consistency of AD suggestive morphology hot spots derived 

from these distributions, population-wide maps of Matthew’s Correlation Coefficient (MCC) 

were constructed. MCC mapping enabled identification of areas from which correct predictions 

of disease status were most frequently derived (Fig. 3b), thus acting as a means to demonstrate 

structures most affected by neuropathological changes in AD. 

As confirmation, average regional probabilities extracted from selected segmented brain 

regions (Fig. 4), were highly associated with AD positive findings reported in postmortem 

neuropathology examinations. Specifically, these regions correlated with the locations and 

numerical frequency of Aβ and τ pathologies reported in available autopsy reports from the FHS 

dataset (n=11) (Table S2). Postmortem data indicated that, in addition to predicting higher 

region-specific AD probabilities in individuals with disease compared to those without, 

proteinopathies were more frequent in cerebral regions implicated by the model in AD (Fig. 4). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832519doi: bioRxiv preprint 

https://doi.org/10.1101/832519


Model-predicted regions of high AD risk overlapped with the segmented regions that were 

indicated to have high localized deposition of Aβ and τ. Additionally, predicted AD risk within 

these zones increased with pathology scores. Given that these postmortem findings are definitive 

in terms of confirming AD, these physical findings grounded our computational predictions in 

biological evidence. 

Furthermore, DPMs provided an information-dense feature that yielded sensitive and specific 

binary predictions of AD status when passed independently to the MLP portion of the framework 

(Model A in Figs. 5a-5b). An MLP trained using just the non-imaging features such as age, 

gender and MMSE score also was predictive of AD status (Model B in Figs. 5a-5b). Model 

performance was further improved by expanding the MLP input to include DPMs, gender, age, 

and MMSE score (Model C in Figs. 5a-5b). When other non-imaging features such as ApoE 

status were included, model performance slightly improved (Fig. S4 & Table S3). Given the 

proportionality between age and global cerebral atrophy (17, 18), addition of non-imaging 

variables at the MLP stage also allowed us to control for the natural progression of cerebral 

morphological changes over the lifespan. 

We also compared performance of the deep learning models against an international group of 

clinical neurologists recruited to provide impressions of disease status from a randomly-sampled 

cohort of ADNI participants whose MRI, MMSE score, age and gender were provided. The 

performance of the neurologists (Figs. 5a-5b), indicated variability across different clinical 

practices, with a moderate inter-rater agreement as assessed by pairwise kappa (�) scoring (Fig. 

5a; average �=0.493±0.16). Interestingly, we noted that the deep learning model that was based 

on MRI data alone (Model A; Accuracy: 0.858±0.016; Table S4), outperformed the average 

neurologist (Accuracy: 0.823±0.094; Table S5). When age, gender and MMSE information was 

added to the model, then the performance increased significantly (Model C; Accuracy: 

0.963±0.013; Table S4). High classification performance of the deep learning model was 

confirmed using other metrics (Table S4), and sub-group analyses (Fig. S5). Also, we examined 

the model performance visually by respective clustering of AD cases and the ones who had 

normal cognition (NC) in a t-distributed stochastic neighbor embedding (t-SNE) (26), which 

employed features from the final hidden layer of the MLP (Fig. 6). The t-SNE method takes 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832519doi: bioRxiv preprint 

https://doi.org/10.1101/832519


high-dimensional data and creates a low-dimensional representation of that data, so that it can be 

easily visualized.  

It is worth noting that our strategy represents a significant increase in computational 

efficiency over a traditional CNN approach to the same task (Step 1 in Fig. 1 vs Fig. S6). Given 

fixed dense layer dimensions, generation of DPMs from traditional CNNs requires not only sub-

volumetric training, but also sub-volumetric application to full-sized MRI volumes (Table S1 vs 

Table S6), obligating repeated computations in order to calculate local probabilities of disease 

status. By circumventing this rigidity, our approach readily generates DPMs (Step 2 in Fig. 1), 

which can be integrated with multimodal clinical data for AD diagnosis (Step 3 in Fig. 1). As 

such, this work extends recently reported efforts to abstract visual representations of disease risk 

directly from medical images (24), and also represents the first application of FCNs to disease 

classification tasks as opposed to semantic segmentation (25). In a head-to-head comparison, the 

FCN model outperformed the traditional CNN model in predicting AD status, and this result was 

consistent across all the datasets (Fig. S7 & Table S7). 
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Discussion 

Our deep learning framework links an FCN to an MLP and generates high resolution DPMs 

for neurologist-level diagnostic accuracy of AD status. The intuitive local probabilities outputted 

by our model are readily interpretable, thus contributing to the growing movement towards 

explainable artificial intelligence in medicine, and deriving an individualized phenotype of 

insidious disease from conventional diagnostic tools. Indeed, the DPMs provide a means for 

tracking conspicuous brain regions implicated in AD during diagnosis. We then aggregated 

DPMs across the entire cohort to demonstrate population-level differences in neuroanatomical 

risk mapping of AD and NC cases. Critically, by the standards of several different metrics, our 

model displayed high predictive performance, yielding high and consistent values on all the test 

datasets. Such consistency between cohorts featuring broad variance in MRI protocol, 

geographic location, and recruitment criteria, suggests a strong degree of generalizability. Thus, 

these findings demonstrate innovation at the nexus of medicine and computing, simultaneously 

contributing new insights to the field of computer vision while also expanding the scope of 

biomedical applications of neural networks. 

DPMs were created by element-wise application of a softmax function to the final array of 

activations generated by the FCN. This step enabled the conversion of abstract tensor encodings 

of neuroanatomical information to probability arrays demonstrating the likelihood of AD at 

different locations in the brain given their local geometry. Alternatively put, the model develops 

a granular conceptualization of AD-suggestive morphologies throughout the brain, and then uses 

this learning information in test cases to assess the probability of AD-related pathophysiologic 

processes occurring at each region. The simple presentation of these probabilities as a coherent 

colormap displayed alongside traditional neuroimaging thus allows a point-by-point prediction of 

where disease-related changes are likely to be present. While DPMs are generated using the FCN 

framework, a conceptual understanding of neural networks is not warranted for their 

interpretation. Recent work has also demonstrated effective differentiation of AD and NC cases 

using a patch-based sampling algorithm (27), but is limited by simultaneous reliance on MRI and 

FDG-PET as well as a model whose inputs are computed as scalar averages of intensities from 

multi-voxel cerebral loci. Furthermore, we believe that the broader notion of disease process 

mapping with deep learning has the potential to be applied in many fields of medicine. The 
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simple presentation of disease risk as a coherent colormap overlaid on traditional imaging 

modalities aids interpretability. This is in contrast to saliency mapping strategies that highlight 

certain pixels based only on their utility to the internal functioning of a network (25), as well as 

methods that highlight penultimate-layer activation values (27). Consequently, informative 

anatomical information is abstracted and lost. Our work builds upon such advances by requiring 

just a single imaging modality en route to mapping an array of raw pixel values to a DPM that 

isomorphically preserves neuroanatomical information. While traditional neural networks require 

an input of fixed magnitude, FCNs are capable of acting on inputs of arbitrary size. Thus, the 

same patch-trained model was then applied to test inputs of full MRIs. This allowed the local 

representations of AD status learned by the model during training to be transferred to the task of 

predicting disease processes throughout the entire brain. Importantly, just as the input size was 

larger in testing, so too was the size of the output. Thus, during application of the FCN to unseen 

MRI stacks, the model produces two 3D matrices of activation values, which get converted to 

arrays of probability values by element-wise softmax application. Together, these two arrays 

represented spatial distributions of AD and NC probabilities, respectively. 

Certainly, limitations to the current study must be acknowledged. We considered a case-

control population, where two sub-populations were chosen in advance that were either 

cognitively normal (NC) or have the diagnosis (AD). Therefore, the clinical relevance of our 

model is restricted to scenarios when patients are screened out for other forms of dementia or 

pseudodementia. While this may not be the clinical scenario faced by the majority of 

neurologists, who see individuals with any number of diagnoses and then must distinguish 

between them, certainly it is still an interesting and important clinical question. Furthermore, the 

circularity that MMSE tests and other demographic parameters used to determine clinical 

diagnosis may capture a biased diagnosis which in turn may differ across the different studies. 

Consequently, our results indicate the potential to augment standard methods of AD management 

via emerging computational strategies. It is also worthwhile to note that non-imaging data-based 

models performed better on AIBL and NACC data, while the MRI-based model performed better 

on the FHS data. As such, the MMSE value was a key element in the study criteria for ADNI, 

AIBL and NACC, and this may explain why the non-imaging data-based model performed better 

on these datasets. Since FHS is a community cohort, it more or less remained as a fairly unbiased 

dataset for analysis. Despite this study selection, our MRI-based model provides compelling 
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evidence that use of an imaging biomarker alone can provide strong classification in a deep 

learning framework. 

Our approach has significant translational potential beyond AD diagnosis. Indeed, the tissue-

level changes predicted by our model suggest the prospect of directly highlighting areas of 

pathophysiology across a spectrum of human disease. This ability may be particularly useful in 

conditions where diffuse symptomologies are accompanied by insidious lesions, including non-

AD dementias and cognitive conditions. Additionally, it may be of interest in future studies to 

determine whether the well-defined pattern of high-risk findings from the currently-presented 

framework may follow regions of interest from PET. In such cases, our model may aid in both 

noninvasive monitoring of AD development and expanding access to high quality care in 

resource-limited settings. 

In conclusion, our deep learning framework was able to obtain high accuracy AD 

classification signatures from MRI data, and our model was validated against data from 

independent cohorts, neuropathological findings and expert-driven assessment. If confirmed in 

clinical settings, this approach has the potential to expand the scope of neuroimaging techniques 

for disease detection and management. Further validation could lead to improved care and 

outcomes compared with current neurologic assessment, as the search for disease modifying 

therapies continues.  
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Methods 

Study participants and data collection 

Data from ADNI, AIBL, FHS, and NACC cohorts were used in the study (Fig. 2 & Table 1). 

ADNI is a longitudinal multicenter study designed to develop clinical, imaging, genetic, and 

biochemical biomarkers for the early detection and tracking of AD (3). AIBL, launched in 2006, 

is the largest study of its kind in Australia and aims to discover biomarkers, cognitive 

characteristics, and lifestyle factors that influence the development of symptomatic AD (4). FHS 

is a longitudinal community cohort study and has collected a broad spectrum of clinical data 

from three generations (5). Since 1976, FHS expanded to evaluate factors contributing to 

cognitive decline, dementia, and AD. Finally, NACC that was established in 1999, maintains a 

large relational database of standardized clinical and neuropathological research data collected 

from AD centers across the US (6). 

Model training, internal validation and testing were performed on the ADNI dataset. 

Following training and internal testing on the ADNI data, we validated the predictions on AIBL, 

FHS, and NACC. The criterion for selection included individuals over age �55 years, with 1.5 

Tesla, T1-weighted MRI scans taken within ±6 months from the date of clinically confirmed 

diagnosis of AD or NC (Fig. 2). We excluded cases including AD with mixed dementia, non-AD 

dementias, history of severe traumatic brain injury, severe depression, stroke, and brain tumors, 

as well as incident major systemic illnesses. Note that this inclusion and exclusion criterion was 

adapted from the baseline recruitment protocol developed by the ADNI study (3), and to 

maintain consistency, the same criterion was applied to other cohorts as applicable. This led to 

the selection of 417 individuals from the ADNI cohort 382 individuals from AIBL, 102 FHS 

participants, and 565 individuals from the NACC cohort. If an individual had multiple MRI 

scans taken within the time window, then we selected the scan closest to the date of clinical 

diagnosis. For all these selected cases, age, gender and MMSE score were available. 

 

Algorithm development 

A fully convolutional network (FCN) was designed to input a registered volumetric MRI 

scan of size 181x217x181 voxels and output the AD class probability at every location. We 

employed a novel, computationally efficient patch-wise training strategy to train the FCN model 
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(Fig. 1). This process involved random sampling of 3000 volumetric patches of size 47x47x47 

voxels from each training subject’s MRI scan and used this information to predict the output of 

interest. The size of the patches was the same as the receptive field of the FCN. 

The FCN consists of six convolutional blocks (Table S1). The first four convolutional blocks 

consist of a 3D convolutional layer followed by the operations: 3D max pooling, 3D batch-

normalization, Leaky Relu and Dropout. The last two convolutional layers function as dense 

layers in terms of the classification task and these two layers play a key role in boosting model 

efficiency (25). The network was trained de novo with random initialization of the weights. We 

used the Adam optimizer with a 0.0001 learning rate and a mini-batch size of 10. During the 

training process, the model was saved when it achieved the lowest error on the ADNI validation 

dataset. After FCN training, a single volumetric MRI scan was forwarded to get a complete 

disease probability map (DPM) was an instantaneous process taking about a second on an 

NVIDIA GTX Titan GPU. 

The FCN was trained by repeated application to cuboidal patches of voxels randomly-

sampled from a full volume of sequential MRI slices. Since the convolutions decrease the size of 

the input across successive layers of the network, the size of each patch was selected such that 

the shape of the final output from each patch was equal to 2x1x1x1 (Table S1); i.e., the 

application of the FCN to each patch during training produced a list of two scalar values. These 

values can be converted to respective AD and NC probabilities by application of a softmax 

function, and the greater of the two probabilities was then used for classification of disease 

status. In this way, the model was trained to infer local patterns of cerebral structure that 

suggested an overall disease state. 

After generating DPMs for all subjects, an MLP model framework was developed to perform 

binary classification to predict AD status by selecting AD probability values from the DPMs. 

This selection was based on observation of the overall performance of the FCN classifier as 

estimated using the MCC values on the ADNI training data. Specifically, we selected DPM 

voxels from 106 fixed locations that were indicated to have high MCC values (�0.6). The 

features extracted from these locations served as input to the MLP model that performed binary 

classification of AD status (Model A in Step 3 in Fig. 1). Two additional MLP models were 

developed where one model used age, gender and MMSE score values as input to predict AD 

status (Model B in Step 3 in Fig. 1), and the other MLP took the 106 features along with age, 
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gender and MMSE score as input to predict AD status (Model C in Step 3 in Fig. 1). All the 

MLP models comprised of a single hidden layer with width 64 and an output layer with size 2. 

The MLP models also included nonlinear operators such as ReLu and Dropout.  

 

Volumetric MRI segmentation and neuropathological validation 

Cortical and sub-cortical structures from volumetric MRI scans of 11 individuals from the 

FHS cohort, with brain autopsies, were segmented using FreeSurfer (28). In-built functions such 

as ‘recon-all’, ‘mri_annotation2label’, ‘tkregister2’, ‘mri_label2vol’, ‘mri_convert’ and 

‘mris_calc’ were used to obtain the segmented structures. 

We validated the FCN model’s ability to identify regions of high AD risk by overlapping the 

predicted brain regions with postmortem findings. Eleven individuals from the FHS dataset had 

histopathological evaluations of autopsied brains, and 4 individuals out of the 11 had confirmed 

AD. A blinded assessment to all demographic and clinical information was conducted during the 

neuropathological evaluation. Detailed descriptions of the neuropathological evaluation have 

been previously reported (29). For this study, we examined the density of neurofibrillary tangles 

(NFTs), diffuse senile (DP), neuritic or compacted senile (NPL) plaques, from paraffin-

embedded sections extracted within the cortical and sub-cortical regions. The sections were 

stained using Bielschowsky silver stain. Immunocytochemistry was performed for 

phosphorylated tau protein (Innogenetics, AT8, 1:2000) and amyloid-ß protein (Dako, 6F-3D, 

1:500, pretreated in 90% formic acid for 2 minutes). The maximum density of NFTs per 200× 

field was assessed semi-quantitatively and scores ranging from 1-4 were assigned (1+: 1 

NFT/field; 2+: 2-5 NFT/field; 3+: 6-9/field; and 4+: ≥10 NFT/field). Similarly, DP and NPL 

were examined in a 100× microscopic field and rated separately with scores ranging between 1-4 

(1+: 1-9 plaques/field; 2+: 10-19/field, 3+: 20-32/field, and 4+: >32/field). The final 

determinations were made by averaging the count in 3 microscopic fields. The density of NFTs, 

NPLs and DPs in each brain region were qualitatively compared with the model’s AD 

probability in that region. 

 

Clinical validation  

Nine US board-certified practicing neurologists and two non-US practicing neurologists (all 

referred to as neurologists) were asked to provide a diagnostic impression (AD versus NC) of 80 
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randomly selected cases from the ADNI dataset that were not used for model training. For each 

case, the neurologists were provided with full volumetric, T1-weighted MRI scan, subject’s age, 

gender and their MMSE score for evaluation. The same parameters were used for training the 

model (Model C in Fig. 1). To obtain estimates of how the deep learning model compared to an 

average neurologist, the characteristics of neurologist performance were averaged across the 

neurologists who individually evaluated each test case. More details on the neurologist approach 

to the ratings can be found in the Supplement. 

 

CNN model development 

A three-dimensional (3D) convolutional neural network (CNN) was created to perform 

classification of AD and NC cases and compare its results with the FCN model. The CNN model 

was trained, validated and tested on the same split of data that was used for the FCN model. To 

facilitate direct comparison with the FCN model, one CNN model was developed using the MRI 

data alone, as well as an additional MLP which included the CNN model-derived features along 

with age, gender and MMSE score. Similar to the FCN-MLP model, we merged the CNN-based 

imaging features and non-imaging features at the dense layer.  

The CNN model consisted of 10 convolutional layers followed by 3 dense layers (Fig. S6 & 

Table S6). Each convolution layer was followed by ReLu activations. Max-pooling layers 

between the convolution blocks were used to down-sample the feature maps. Nonlinear 

activation function, including ReLu, dropout, softmax and batch-normalization were applied on 

feature vectors of the dense layers. The CNN model was trained from scratch with the same 

optimizer and loss function as the FCN model. We used a learning rate of 0.0001 and mini-batch 

size of 6. 

 

Performance metrics 

We first generated sensitivity-specificity (SS) and precision-recall (PR) curves based on 

model predictions on the ADNI test data as well as on the other independent datasets (NACC, 

AIBL and FHS). For each SS and PR curve, we also computed the area under curve (AUC) 

values. Additionally, we computed sensitivity, specificity, F1-score and Matthews correlation 

coefficient on each set of model predictions. The F1-score considers both precision and recall of 

a test and is defined as:  
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F1 = 2 * TP / (2* TP + FP + FN) – (1).  

Here, TP denotes true positive values, and FP and FN denote false-positive and false-negative 

cases, respectively. MCC is a balanced measure of quality for dataset classes of different sizes of 

a binary classifier and defined as follows: 

MCC = [(TP*TN) - (FP*FN)] / [(TP+FP) * (TP+FN) * (TN+FP) * (TN+FN)]0.5 – (2). 

The, TN denotes true negative values. We also calculated inter-annotator agreement using 

Cohen’s kappa (κ), as the ratio of the number of times two annotators agreed on a diagnosis. The 

κ statistic measures interrater agreement for categorical items. A κ score of 1 indicates perfect 

agreement between the annotators. Average pairwise κ was computed that provided an overall 

measure of agreement between the neurologists.  

 

Statistical analysis 

To assess the overall significant levels of differences between NC and AD groups, two-

sample t-test and the Chi square test were used for continuous and categorical variables, 

respectively. The FCN model’s ability to identify regions of high AD risk was evaluated by 

overlapping the DPMs with postmortem histopathological findings. A subset of 11 individuals 

from the FHS study sample had undergone brain autopsy and were used for the analysis. In these 

participants, the locations and frequencies of Aβ and τ pathologies, semi-quantitatively reported 

by neuropathologists, were associated with high-AD risk regions. The Spearman's rank 

correlation coefficient test was used to determine the strength and direction (negative or positive) 

of the relationship between these regional AD probabilities and pathology scores. Lastly, given 

the widespread recognition of diffuse cerebral atrophy in the normal aging process, we 

performed an age-based subgroup analysis. We used the ANOVA test to determine whether age 

distributions differed across TP, TN, FP and FN cases obtained from the multimodal MLP model 

(Model C). Separate analysis was conducted across each study cohort. 
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Main figure and table legends 
 

Figure 1: Schematic of the deep learning framework. The fully convolutional network (FCN) 

model was developed using a patch-based strategy in which randomly selected samples (sub-

volumes of size 47x47x47 voxels) of T1-weighted full MRI volumes were passed to the model 

for training (Step 1). The corresponding AD status of the individual served as the output for the 

classification model. Given that the operation of FCNs is independent of input data size, the 

model led to the generation of participant-specific disease probability maps (DPMs) of the brain 

(Step 2). Selected voxels of high-risk from the DPMs were then passed to the MLP for binary 

classification of disease status (Model A in Step 3). As a further control, we used only the non-

imaging features including age, gender and MMSE and developed an MLP model to classify 

individuals with AD and the ones with normal cognition (Model B in Step 3). We also developed 

another model that integrated multimodal input data including the selected voxels of high-risk 

DPMs alongside age, gender and MMSE score to perform binary classification of AD status 

(Model C in Step 3).  

 

Figure 2: Subject selection criterion. In each dataset, T1-weighted, 1.5 Tesla MRIs were 

selected from participants (See Methods for more details). Only MRIs gathered within 6 months 

of AD diagnosis or last confirmed clinical visit (in the case of NC participants) were included for 

analysis. From there, ADNI data was split in a 2:1:1 ratio for training, validation, and testing 

sets, and fully trained models were applied to NACC, FHS, and AIBL to assess model 

generalizability.  

 

Table 1: Study population and characteristics. Four independent datasets including (a) the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, (b) the Australian Imaging, 

Biomarker & Lifestyle Flagship Study of Ageing (AIBL), (c) the Framingham Heart Study 

(FHS), and (d) the National Alzheimer’s Coordinating Center (NACC)) were used for this study. 

The ADNI dataset was randomly split in the ratio of 2:1:1, where 50% of it was used for model 

training, 25% of the data was used for internal validation and the rest was used for internal 

testing. The best performing model on the validation dataset was selected for making predictions 

on the ADNI test data as well as on the AIBL, FHS and NACC datasets, which served as 
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external test datasets for model validation. All the MRI scans considered for this study were 

performed on individuals within ±6 months from the date of clinical diagnosis. 

 

Figure 3: Fully convolutional network (FCN) model performance. (a) Disease probability 

maps (DPMs) generated by the FCN model highlight high-risk brain regions that are associated 

with AD pathology. Individual cases are shown (two NC and two AD), where the blue color 

indicates low-risk and red indicates high-risk of AD. The first two individuals were clinically 

confirmed to have normal cognition whereas the other two individuals had clinical diagnosis of 

AD. (b) Pixel-wise maps of Matthew’s correlation coefficient were computed independently 

across all the datasets to demonstrate predictive performance derived from all regions within the 

brain.  

 

Figure 4: Correlation of model findings with neuropathology. Overlap of model predicted 

regions of high AD risk with postmortem findings of AD pathology. The scans were generated 

by averaging across 11 individuals from the FHS cohort on whom the postmortem findings were 

also available. (i) The first column (a) shows MRI slices in three different planes followed by a 

column (b), which shows corresponding model predicted DPMs. A cutoff value of 0.85 was 

chosen to delineate the regions of high AD risk and overlapped with the MRI scan in the next 

column (c). The next column (d), depicts a segmented mask of cortical and sub-cortical 

structures of the brain obtained from FreeSurfer (28). A sequential color-coding scheme denotes 

different levels of pathology ranging from green (0-low) to pale red (4-high). The final column 

(e), shows the overlay of the MR scan, DPMs of high AD risk and the color-coded regions based 

on pathology grade. (ii) We then qualitatively assessed trends of neuropathological findings from 

the FHS dataset (n=11). The same color-coding scheme as described above was used to represent 

the pathology grade (0-4) in the heat maps. The boxes colored in ‘white’ in the heat maps 

indicate missing data. Using the Spearman's Rank correlation coefficient test, an increasing AD 

probability risk was associated with a higher grade of Aβ and τ accumulation, in the 

hippocampal formation, the temporal region, and the olfactory bulbs, respectively. A similar 

trend was qualitatively observed in the amygdala; however, this region did not reach statistical 

significance at the 0.05 level. 
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Figure 5: Performance of the MLP model for AD classification and model comparison with 

neurologists. (a) Sensitivity-specificity (SS) and precision-recall (PR) curves showing the 

sensitivity, the true positive rate, versus specificity, the true negative rate, calculated on the 

ADNI test set. Individual neurologist performance is indicated by the red (+) symbol and 

averaged neurologist performance along with the error bars is indicated by the green (+) symbol 

on both the SS and PR curves on the ADNI test data. Visual description of pairwise Cohen’s 

kappa (�), which denotes the inter-operator agreement between all the 11 neurologists is also 

shown. (b) SS and PR curves calculated on the AIBL, FHS and NACC datasets, respectively. For 

all cases, Model A indicates the performance of the MLP model that used MRI data as the sole 

input, model B is the MLP model with non-imaging features as input and model C indicates the 

MLP model that used MRI data along with age, gender and MMSE values as the inputs for 

binary classification. 

 

Figure 6: Visualization of data. FCN-based outputs that served as input features to the MLP 

model were embedded in a two-dimensional plot generated using t-SNE, a method for 

visualizing high-dimensional data, for the two classes (AD and NC). The color (blue versus red) 

was used to distinguish NC from AD cases, whereas a unique symbol shape was used to 

represent individuals derived from the same cohort. Several individual cases that were clinically 

confirmed to have AD or normal cognition are also shown (indicated as a black circle overlaying 

the respective data point in the figure). The plot also indicates co-localization of subjects in the 

feature space based on the disease state and not on the dataset of origin. 
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Supplementary figure captions 

 

Figure S1: Axial stack of DPMs from a single subject. Local probabilities of disease were 

predicted for all slices of MRI stacks from each individual meeting inclusion criterion. All 

imaging planes were used to construct 3D DPMs. Here, we demonstrate the results of the model 

as applied to a full MRI sequence of an individual as viewed in the axial plane. Red color 

indicates locally-inferred probability of AD greater than 0.5, whereas blue indicates less than 0.5. 

 

Figure S2: Coronal stack of DPMs from a single subject. Local probabilities of disease were 

predicted for all slices of MRI stacks from each individual meeting inclusion criterion. All 

imaging planes were used to construct 3D DPMs. Here, we demonstrate the results of the model 

as applied to a full MRI sequence of an individual as viewed in the coronal plane. Red color 

indicates locally-inferred probability of AD greater than 0.5, whereas blue indicates less than 0.5. 

 

Figure S3: Sagittal stack of DPMs from a single subject. Local probabilities of disease were 

predicted for all slices of MRI stacks from each individual meeting inclusion criterion. All 

imaging planes were used to construct 3D DPMs. Here, we demonstrate the results of the model 

as applied to a full MRI sequence of an individual as viewed in the sagittal plane. Red color 

indicates locally-inferred probability of AD greater than 0.5, whereas blue indicates less than 0.5.  

 

Figure S4: Performance of non-imaging and multimodal models utilizing ApoE status. 

ApoE status was added as an additional feature to the set of clinical variables utilized in the 

construction of the MLP and multimodal models described summarized in Figure 3a/3b. In this 

figure, Model B refers to the MLP model using age, gender, MMSE score and ApoE status as 

features whereas Model C refers to the MLP model that was developed using the FCN model 

features, age, gender, MMSE score and the ApoE status.  

 

Figure S5: Violin plots of model performance by age. We conducted subgroup analyses on 

each dataset to determine potential effects of age in biasing the distribution of true negative, true 

positive, false negative, and false positive cases derived from the multimodal MLP model 

(Model C). This was particularly important given widespread recognition of diffuse cerebral 
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atrophy in the normal aging process. Age was not found to have a large confounding effect on 

predictive performance.  

 

Figure S6: Schematic of the 3D convolutional neural network (CNN). The CNN model 

comprising 10 convolutional layers followed by 3 dense layers, was trained on the whole MRI 

volume to predict AD status. 

 

Figure S7: Performance of the 3D convolutional neural network (CNN). (a) SS curves 

comparing the CNN model developed using MRI as the sole input (Model A), and the other that 

included the CNN features and the non-imaging features including age, gender and MMSE score 

(Model C). (b) PR curves comparing the CNN model developed using MRI as the sole input 

(Model A), and the other that included the CNN features and the non-imaging features including 

age, gender and MMSE score (Model C). 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832519doi: bioRxiv preprint 

https://doi.org/10.1101/832519


Supplementary table captions  

 

Table S1: Summary of FCN architecture and hyperparameters for patch-wise training and 

full-volume application. The FCN model was trained on patches of size 47x47x47 in order to 

yield scalar (1x1x1) predictions of AD status from randomly-sampled sub-volumes. Each 

convolutional step within the network was followed by max-pooling and batch-normalization 

prior to passage to a leaky rectified linear unit (ReLu) activation. Channel depth, kernel size, 

padding, and stride hyperparameters are shown along with dropout probabilities at each step of 

the network. Application of the same model architecture to full-sized images yielded rank 3 

tensors of size 46x55x46 that could be translated to DPMs via passage to a softmax function. 

 

Table S2: Correlation between neuropathologic findings and regional AD probability 

predictions. The MRI scans were segmented to represent various brain lobes using a 

segmentation platform (FreeSurfer), and population-averaged regional AD probabilities were 

computed for each segmented region. Spearman correlation coefficients were then calculated to 

quantify the relationship between the regional probabilities and semiquantitative pathology 

scores derived from pathologist-scored densities of neurofibrillary tangles (NFT), neuritic 

plaques (NPL) and diffuse plaques (DP). Using this non-parametric test, the strength and 

direction (negative or positive) of a relationship between the regional AD probabilities and 

pathology scores were assessed for significance at the 0.05 level. A positive correlation was 

observed across the numerous pathologies across these regions, however only the NFTs in the 

left hippocampal CA1 region, NFTs in the right olfactory bulb, and diffuse plaques in the 

temporal region reached statistical significance. 

 

Table S3: Summary of the models with ApoE included. Accuracy, sensitivity, specificity, F1-

score and Matthew’s correlation coefficient (MCC) are displayed for the respective ApoE-

inclusive models. Here, Model B refers to the MLP alone whereas Model C refers to the MLP 

model that was developed using the CNN model features, age, gender and MMSE score.  

 

Table S4: Summary of FCN-based model performance. Three models were constructed for 

explicit performance comparison. Model A predicted AD status based upon imaging features 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/832519doi: bioRxiv preprint 

https://doi.org/10.1101/832519


derived from the patch-wise trained FCN. Model B consisted of a multilayer perceptron (MLP) 

that processed non-imaging clinical variables (age, gender, MMSE). Model C appended the 

clinical variables used by Model A to the MLP portion of Model B in order to form a multimodal 

imaging/non-imaging input. Accuracy, sensitivity, specificity, F1-score, and Matthew’s 

Correlation Coefficient (MCC) are demonstrated for each. Model C (multimodal) was found to 

outperform A and B in nearly all metrics in each of the four datasets. Of interest, however, we 

noted that the performance of Models A and B still displayed higher specificity and sensitivity 

than many of the human neurologists, all of whom used the full suite of available data sources to 

arrive at an impression (see Table S7 below). 

 

Table S5: Summary of neurologist performance. Neurologists were recruited to perform 

validation of the deep learning model’s predictive performance. Each physician was presented 

with clinical information from 80 randomly-selected individuals from the ADNI cohort whose 

disease status was masked. For each case, MMSE score, age, and gender were given. Volumetric 

MRIs were made available for examination using an open source platform 

(http://www.slicer.org). Each neurologist provided diagnostic impressions using the given 

materials and accuracy, sensitivity, specificity, F1-score, and MCC were calculated relative to 

the clinical diagnosis. Of note, participating neurologists were requested to explain their 

reasoning when tasked to predict AD status from collections of MRIs, age, gender, and MMSE 

score for a subset of individuals with masked disease diagnosis. While there was notable 

variation in the order in which imaging and non-imaging data were considered, the two forms of 

information were widely considered complementary. Focal atrophy of key cerebral regions 

(notably the hippocampus and temporal lobes) was considered in light of generalized age-

appropriate atrophy, and imaging was broadly utilized to rule out competing etiologies of 

dementia such as frontotemporal degeneration and vascular disease. MMSE, often considered in 

the context of age, was widely employed as comparison to salient imaging features as well. 

Collectively, these perspectives speak to the importance of an integrated approach to AD 

diagnosis in which distinct forms of information are reconciled prior to an ultimate classification 

of disease status. 
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Table S6: Summary of the convolutional neural network (CNN) architecture and 

hyperparameters. Each convolutional layer within the CNN model was followed by a rectified 

linear unit (ReLu) activation. Specific settings of each layers, i.e., channel depth, kernel size, 

padding, stride, dropout rate and momentum are shown.   

 

Table S7: Summary of the 3D convolutional neural network (CNN) model performance. 

Accuracy, sensitivity, specificity, F1-score and Matthew’s correlation coefficient (MCC) are 

displayed for the 3D CNN model. Here, Model A refers to the CNN model alone whereas Model 

C refers to the MLP model that was developed using the CNN model features, age, gender and 

MMSE score.  
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Code availability: 

Code for the algorithm development, evaluation, and statistical analysis will be made open 

source with no restrictions at the time of publication. 

 

Data availability: 

Data for the algorithm development will be made open source at the time of publication. 
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Figure 1

Step 1: Random sampling of patches from all subjects for fully convolutional network training

Whole MRI Probability map

Step 2: Forward whole volumetric MRI to generate probability maps after fully convolutional network training

Step 3: Multilayer perceptron to generate overall prediction. (A) MRI only model, (B) Model using non-imaging features, 

(C) Fusion model combining imaging and non-imaging features
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Figure 2



Table 1

Dataset ADNI (a) AIBL (b) FHS (c) NACC (d)

Characteristic NC
(n=229)

AD
(n=188)

p-value NC
(n=320)

AD
(n=62)

p-value NC
(n=73)

AD
(n=29)

p-value NC
(n=356)

AD
(n=209)

p-value

Age, y, median 

[range]

76
[60, 90]

76
[55, 91]

0.4185 72
[60, 92]

73
[55, 93]

0.5395 73
[57, 100]

81
[67, 94]

<0.0001 74  
[56, 94]

77 
[55, 95]

0.0332

Education, y, median

[range]

16 
[6, 20]

16
[4, 20]

<0.0001 N.A. N.A. N.A. 14
[8, 25]

13
[5, 25]

0.3835 16
[0, 22]*

14.5
[2, 24]⋕

0.8363

Gender, male (%) 119 
(51.96)

101 
(53.72)

0.7677 144 
(45.00)

24 
(38.71)

0.4031 37
(50.68)

12
(41.38)

0.5105 126 
(35.39)

95
(45.45)

0.0203

MMSE, median

[range]

29
[25, 30]

23.5
[18, 28]

<0.0001 29
[25, 30]

21
[6, 28]

<0.0001 29
[22, 
30]⊥

25
[10, 29]

<0.0001 29
[20, 30]⨡

22
[0, 30]⊺

<0.0001

APOE4, positive (%) 61 (27) 124 (66) <0.0001 11 (3.4) 12 (19.4) <0.0001 13 
(17.81)

11
(40.74)∧

0.0355 102
(28.65)

112
(53.59)

<0.0001

* -- Education information not available for two subjects
⋕ -- Education information not available for one subject 
⨡ -- MMSE score was not available for one subject
⊺ -- MMSE score was not available for one subject
⊥ -- Six subjects do not have available MMSE scores
∧ -- APOE4 information not available for one subject
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Layer Specification Size of output 
(Patch)

Size of output 
(Whole)

Input (1, 47, 47, 47) (1, 227, 263, 227)

3D Convolution channel 20, kernel 4, stride 1, padding 0 (20, 44, 44, 44) (20, 224, 260, 224)

3D Max-pooling kernel 2, stride 1, padding 0 (20, 43, 43, 43) (20, 223, 259, 223)

3D Batch-Normalization eps=1e-05, momentum=0.1, affine=True

Leaky ReLu Negative slope = 0.01

Dropout P=0.1

3D Convolution channel 40, kernel 4, stride 1, padding 0 (40, 40, 40, 40) (40, 220, 256, 220)

3D Max-pooling kernel 2, stride 2, padding 0 (40, 20, 20, 20) (40, 110, 128, 110)

3D Batch-Normalization eps=1e-05, momentum=0.1, affine=True

Leaky ReLu Negative slope = 0.01

Dropout P=0.1

3D Convolution channel 80, kernel 3, stride 1, padding 0 (80, 18, 18, 18) (80, 108, 126, 108)

3D Max-pooling kernel 2, stride 2, padding 0 (80, 9, 9, 9) (80, 54, 63, 54)

3D Batch-Normalization eps=1e-05, momentum=0.1, affine=True

Leaky ReLu Negative slope = 0.01

Dropout P=0.1

3D Convolution channel 160, kernel 3, stride 1, padding 0 (160, 7, 7, 7) (160, 52, 61, 52)

3D Max-pooling kernel 2, stride 1, padding 0 (160, 6, 6, 6) (160, 51, 60, 51)

3D Batch-Normalization eps=1e-05, momentum=0.1, affine=True

Leaky ReLu Negative slope = 0.01

Dropout P=0.6

3D Convolution channel 30, kernel 6, stride 1, padding 0 (30, 1, 1, 1) (30, 46, 55, 46)

Leaky ReLu Negative slope = 0.01

Dropout P=0.6

3D Convolution channel 2, kernel 1, stride 1, padding 0 (2, 1, 1, 1) (2, 46, 55, 46)

Table S1



Table S2

Region (ρ (p-value))
NFT (AT8) NFT (Biel) NPL DP

Left Right Left Right Left Right Left Right

Hippocampal 
Formation

CA1 0.68 
(0.02)*

0.58 
(0.13)

0.68 
(0.02)*

0.59 
(0.07)

0.49 
(0.12)

0.53 
(0.11)

0.51 
(0.11)

0.40 
(0.25)

CA2 0.09 
(0.86)

0.09 
(0.86) 0 0.4 

(0.60)

Olfactory bulbs . 0.74
(0.02)*

Amygdala 0.56 (0.07) 0.41 (0.22) 0.45 (0.16) 0.59 (0.06)

Temporal region 0.48 (0.13) 0.53 (0.10) 0.47 (0.15) 0.75 (0.008)*

NFT - Density of neurofibrillary tangles per 20X field
NPL - Density of neuritic plaques per 100X field
DP - Density of diffuse plaques per 100X field
*p-values<0.05



Model B Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.974±0.015 0.949±0.031 0.994±0.016 0.970±0.017 0.948±0.028

AIBL 0.940±0.016 0.881±0.036 0.951±0.024 0.828±0.032 0.796±0.036
FHS 0.752±0.030 0.706±0.056 0.771±0.054 0.627±0.030 0.454±0.048

NACC 0.862±0.012 0.884±0.025 0.849±0.031 0.822±0.009 0.716±0.016

Table S3

Model C Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.966±0.013 0.942±0.027 0.986±0.011 0.962±0.015 0.933±0.025

AIBL 0.948±0.006 0.852±0.017 0.967±0.007 0.843±0.016 0.812±0.019
FHS 0.815±0.024 0.801±0.044 0.821±0.043 0.719±0.025 0.593±0.038

NACC 0.916±0.012 0.922±0.011 0.913±0.022 0.888±0.013 0.824±0.021

a

b



Table S4

a

b

c

Model A Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.858±0.016 0.749±0.035 0.946±0.017 0.825±0.022 0.718±0.032

AIBL 0.893±0.004 0.641±0.026 0.941±0.006 0.660±0.013 0.597±0.015
FHS 0.828±0.016 0.815±0.072 0.833±0.019 0.740±0.035 0.620±0.048

NACC 0.852±0.005 0.794±0.020 0.885±0.015 0.798±0.006 0.681±0.009

Model B Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.954±0.014 0.927±0.034 0.976±0.031 0.947±0.016 0.908±0.027

AIBL 0.908±0.024 0.880±0.042 0.913±0.037 0.759±0.040 0.718±0.042
FHS 0.731±0.027 0.747±0.046 0.724±0.050 0.627±0.024 0.441±0.038

NACC 0.851±0.020 0.892±0.022 0.827±0.042 0.816±0.017 0.700±0.030

Model C Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.963±0.013 0.928±0.025 0.992±0.011 0.957±0.015 0.926±0.025

AIBL 0.946±0.005 0.851±0.014 0.965±0.006 0.838±0.014 0.806±0.016
FHS 0.824±0.023 0.812±0.034 0.829±0.036 0.736±0.026 0.613±0.040

NACC 0.915±0.009 0.913±0.011 0.916±0.018 0.888±0.010 0.821±0.016



Accuracy Sensitivity Specificity F1-score MCC
Neurologist 1 0.850 0.833 0.864 0.833 0.697
Neurologist 2 0.675 0.361 0.932 0.500 0.364
Neurologist 3 0.888 0.861 0.909 0.873 0.772
Neurologist 4 0.938 0.917 0.955 0.930 0.874
Neurologist 5 0.888 0.917 0.864 0.880 0.777
Neurologist 6 0.660 0.556 0.636 0.556 0.192
Neurologist 7 0.825 0.611 1.000 0.759 0.681
Neurologist 8 0.925 0.944 0.909 0.919 0.850
Neurologist 9 0.825 0.806 0.841 0.806 0.646

Neurologist 10 0.838 0.750 0.909 0.806 0.673
Neurologist 11 0.738 0.444 0.977 0.604 0.513

Table S5



Layer Specification Size of output 
(Whole)

Input (1, 181, 217, 181)

3D Convolution, ReLu channel 8, kernel 3, stride 1, padding 0 (8, 179, 215, 179)
3D Convolution, ReLu channel 8, kernel 3, stride 1, padding 0 (8, 177, 213, 177)
3D Max-pooling kernel 2, stride 2, padding 0 (8, 88, 106, 88)
3D Convolution, ReLu channel 16, kernel 3, stride 1, padding 0 (16, 86, 104, 86)
3D Convolution, ReLu channel 16, kernel 3, stride 1, padding 0 (16, 84, 102, 84)
3D Max-pooling kernel 2, stride 2, padding 0 (16, 42, 51, 42)
3D Convolution, ReLu channel 32, kernel 3, stride 1, padding 0

3D Convolution, ReLu channel 32, kernel 3, stride 1, padding 0 (32, 40, 49, 40)
3D Convolution, ReLu channel 32, kernel 3, stride 1, padding 0 (32, 38, 47, 38)
3D Max-pooling kernel 2, stride 2, padding 0 (32, 19, 23, 19)
3D Convolution, ReLu channel 64, kernel 3, stride 1, padding 0 (64, 17, 21, 17)
3D Convolution, ReLu channel 64, kernel 3, stride 1, padding 0 (64, 15, 19, 15)
3D Convolution, ReLu channel 64, kernel 3, stride 1, padding 0 (64, 13, 17, 13)

3D Max-pooling kernel 2, stride 2, padding 0 (64, 6, 8, 6)
Flatten (18432)
Dense, ReLu (128)
Batch Normalization eps=1e-05, momentum=0.1, affine=True
Dropout P=0.7
Dense, ReLu (64)
Dense (2)

Softmax

Table S6



Model A Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.738±0.042 0.704±0.152 0.766±0.174 0.703±0.045 0.497±0.056

AIBL 0.790±0.088 0.710±0.135 0.805±0.128 0.535±0.050 0.451±0.052
FHS 0.687±0.076 0.597±0.149 0.726±0.165 0.532±0.057 0.328±0.067

NACC 0.804±0.035 0.712±0.122 0.858±0.106 0.726±0.043 0.591±0.040

Table S7

Model C Accuracy Sensitivity Specificity F1-score MCC
ADNI Test 0.946±0.023 0.939±0.050 0.952±0.048 0.940±0.024 0.895±0.040

AIBL 0.907±0.050 0.892±0.038 0.910±0.066 0.770±0.082 0.732±0.089
FHS 0.777±0.030 0.721±0.081 0.801±0.069 0.661±0.026 0.507±0.035

NACC 0.907±0.024 0.898±0.046 0.913±0.059 0.878±0.021 0.809±0.035

a

b


