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Abstract 

Hantaviruses are a newly zoonotic emerging group of rodent-borne viruses that have a significant impact on global public health by increasing amplitude 

and magnitude of outbreaks. As no permanent cure yet, it is now growing and challenging interest to develop a vaccine against Hantavirus. This study 

endeavored to design a robust subunit vaccine using a novel immunoinformatics approach. After meticulous evaluation, top ones from predicted CTL, 

HTL, and B-cell epitopes were considered as potential vaccine candidates. Among generated four vaccine models with different adjuvant, the model with 

TLR-4 agonist adjuvant was selected for its high antigenicity, non-allergenicity, and structural quality. The conformational B-cell epitope prediction 

assured its humoral response inducing ability. Thereafter, the molecular docking and dynamics simulation confirmed a good binding affinity with 

immune receptor TLR-4 and stability of the vaccine-receptor complex. In immune simulation, significantly high levels of IgM and IgG1 

immunoglobulins, TC and TH-cell populations, and various cytokines (i.e. IFN-γ, IL-2 etc.) are coherence with actual immune response and also showed 

faster antigen clearance for repeated exposures. Finally, disulfide engineering enhanced vaccine stability and in silico cloning confirmed the better 

expression in E. coli K12. Nonetheless, experimental validation can proof the proposed vaccine’s safety and ability to control Hantavirus infection. 
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Introduction 

The Hantaviruses are emerging as they cause about 200,000 outbreaks in humans annually with case fatality rates of 0.1%-50% depending on the species with the 

majority occurring in Asia 1–3; and their amplitude and magnitude of outbreaks are increasing day by day. The Hantaviruses (Genus: Orthohantavirus, Family: 

Hantaviridae, Order: Bunyavirales) are negative-stranded and trisegmented zoonotic viruses hosted by rodents, shrews, moles, bats and insects 4,5. Its genome 

composed of three molecules of negative-sense single-stranded RNA, designated S (small) encodes nucleoprotein (N), M (medium) encodes glycoproteins (Gn and 

Gc), L (large) encodes RdRp or L protein 6. The discovery of Hantaviruses in the Old and New World was issued by the two major outbreaks in the past century. 

Although the first clinical recognition of HFRS was in 1931 in northeast China 7, it became to the attention of western physicians when 3200 United Nations 

troops fell ill in Korea between 1951 to 1954 8. Secondly in 1993, the major outbreak of previously unrecognized syndrome occurred in the Four Corners region of 

the United States and was referred as Four Corner disease and later it called Hantavirus cardiopulmonary syndrome (HCPS) 9. Therefore, Hantaviruses can cause 

two human acute febrile diseases so-called hemorrhagic fever with renal syndrome (HFRS) in the Old World and Hantavirus cardiopulmonary syndrome (HCPS) 

in the New World 10. The Old World and New World Hantaviruses exhibit a similar organization of nucleotide sequences and similar aspects in their lifecycle but 

they induce different diseases 9. China classified the HFRS as a class B notifiable disease 11 and considered it as a severe health problem 7,12 with a total of 112,177 

cases and 1,116 deaths over the past ten years 13,14. From 1978 to 1995, 3,145 HFRS cases with morbidity of 1.7% were reported in Asian Russia 15 and in Korea, 

300-500 cases are reported annually with a mean case fatality of 1% 3. Also, in Europe, over 3,000 HFRS cases are diagnosed annually 3 and over 2,800 cases were 

reported in Latvia 16. An important HFRS case has been reported in Ecuador 17. Furthermore, HFRS cases were reported in Vietnam, Singapore, Thailand, India, 

and Sri Lanka, Finland, Sweden, France, Germany, Balkans, Czech Republic, Switzerland, Poland, Greece, Lithuania, Estonia, Slovenia, Turkey, United 

Kingdom, and all about the African countries 3. In contrast, the United States listed the HCPS as a notifiable disease since 1995 18 and 624 HCPS cases have been 

reported between the period 1993 to 2013 3. In Chile, 837 HCPS cases have been recorded with a fatality rate of 36.1% during 2013 and 1,600 cases have been 

reported in Brazil before 2013 3. Argentina reported annually 100-200 HCPS cases and some cases occurred in Canada 3. Furthermore, the serological evidence 

and cases of HCPS have been discovered in Central America, Bolivia, Colombia, French Guiana, Peru, Uruguay, Paraguay, Venezuela, and Suriname 3,19–21.  

In 1976, Hantaan virus (HTNV) with its reservoir, striped field mouse (Apodemusagrarius) of Muridae family were reported by Lee et al. as the first etiological 

agent of HFRS in South Korea along the Hantaan River 22 and later in China and Russia 3. In 1930s, the milder form of HFRS called Nephropathia Epidemica 

(NE) was first described in Sweden and thousands of infection cases occur annually throughout Europe 23 and it is an etiological agent Puumala virus (PUUV) was 

found in bank voles (Myodesglareolus) in Finland in 1980 24. The Puumala virus (PUUV) is also an agent of HFRS and recently HCPS was reportedly induced by 

PUUV in Germany 25. The Seoul virus (SEOV) hosted by rates is the second most significant pathogenic agent of HFRS found predominantly in Korea and 

worldwide 26,27. Further, the Dobrava-Belgrade virus (DOBV) 28 and Tula virus (TULV) were found as human pathogenic agents of HFRS in Europe 29. The 

causative agent Thailand virus (THAIV) and THAIV-like virus Anjozorobe virus (ANJOV) were in Thailand and Madagascar, respectively 6,30–32. Heinemann et 

al. reported the Bowe virus (BOWV) as HFRS related human pathogenic agent 2 and also the Sangassou virus (SANGV) have described as HFRS agents and 

found in West Africa (Guinea) 33. In contrast, the Sin Nombre virus (SNV) and Andes virus (ANDV) were discovered as etiological agents of HCPS in North and 

South America, respectively 3,34 where only ANDV has the characteristics of person-to-person transmission. Subsequently, there are about 43 strains have been 

identified in the Americas and 20 strains of them are associated with human disease 3. In Brazil, the Araraquara virus (ARAV) is a top virulent agent of HCPS with 

a case fatality rate of 50% 20. Furthermore, HCPS was also reported for the cause of Bayou virus (BAYV), Black Creek Canal virus (BCCV), Choclo virus 

(CHOV), Bermejo virus (BMJV), Lechiguanas virus (LECV), Oran virus (ORNV), Maciel virus (MCLV), Laguna Negra virus (LNV), Hu39694 virus, Neembucu 

virus, Cano Delgadito virus (CADV), Tunari virus, Blue River virus, and El Moro Canyon virus (ELMCV) 3,35–38. 

The main route of the human infection by Hantaviruses is the inhalation of aerosols contaminated with the virus concealed in the excreta, saliva, and urine of the 

infected animals 10. The human kidney and lung are the main targeted organs of HFRS-associated and HCPS-associated viruses, respectively 3. In humans, 

Hantaviruses mainly infect vascular endothelial cells and dysfunctioning them in capillaries and small vessels. Therefore, the dramatic increase in vascular 

permeability is the basic pathology of hantavirus-associated diseases 12. Basically, HFRS patients have manifested five clinical phases including fever, hypotensive 

shock, oliguric, polyuric, and convalescent and on the other hand, prodromal, cardiopulmonary, and convalescent are the three clinical phases of HCPS patients 3. 

The incidence in males is over three times greater than that in females 3. Acute encephalomyelitis, bleeding, multiorgan dysfunction, pituitary hemorrhage, 

glomerulonephritis, pulmonary edema, shock, respiratory distress syndrome, disseminated intravascular coagulation, and lethal outcome are the main 

complications of HFRS and in contrast, renal insufficiency, thrombocytopenia, bleeding, myalgia, headache, nausea, vomiting, diarrhea, shock, and lethal outcome 

are associated with HCPS 3. HCPS is a fast-evolving disease with a high case fatality rate and a patient can evolve from acute febrile illness to severe pneumonia 
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with respiratory failure and cardiogenic shock 9. However, against this severely emerging virus, there are only some inactivated vaccines have been developed 

from Hantavirus in cell cultures or the rodent brain, and a few of these have been licensed for humans in Korea and China 35. 

The immune response plays an important role in the pathogenesis of Hantavirus infection 3 and conversely plays a critical role in fighting tumors and viral 

infections 39. In modern times, immunotherapy is a powerful and efficient strategy for the prevention of infectious diseases. Recently, the multi-epitope vaccine is 

an ideal approach for the prevention and treatment of tumors or viral infections 40–44. There are many multi-epitope vaccine design studies involving various  

viruses like HIV 45, Dengue virus 46, Hepatitis B virus 47, Hepatitis C virus 48,49, Ebola virus 50, Chikungunya virus 51, Avian influenza A (H7N9) virus 52, Zika virus 
53, Classical swine fever virus 54, Nipah virus 55, and Norovirus 56. An ideal multi-epitope vaccine should be designed to include a series of or overlapping epitopes 

so that its every basic unit called antigenic peptide fragment can elicit either a cellular or a humoral immune response against the targeted tumor or virus 39. In 

present, the multi-epitope vaccine approach has fascinated more global attention over traditional or single-epitope vaccine as it has a unique design mechanism 

with some properties 39: (a) consist of multiple MHC-restricted that can be recognized by TCRs of multiple clones from various T-cell subsets; (b) consist of TC, 

TH, and B-cell epitopes that can induce strong cellular and humoral immune response simultaneously; (c) consist of multiple epitopes from different tumor/virus 

antigens that can expand the spectra of targeted tumors or viruses; (d) introduce some components with adjuvant capacity that can enhance the immunogenicity 

and long-lasting immune responses; and (e) reduce unwanted components that can trigger either pathological immune responses or adverse effects. A well-

designed multi-epitope vaccine should become a powerful prophylactic and therapeutic agent against the targeted tumor or virus. In this study, a series of 

immunoinformatics approaches have been applied on the whole proteome of Hantavirus for developing a multi-epitope vaccine using the screened robust TC, TH, 

and B-cell vaccine candidates. Furthermore, the developed vaccine was studied for its antigenicity and allergenicity and subsequently the structural prediction was 

done. Moreover, the codon adaptation and in silico cloning, disulfide engineering, binding affinity with the immune receptor, and the molecular dynamics 

simulation of the best vaccine-receptor docked complex were sequentially studied. The in silico immune simulation has also been performed. 

Results and discussion 

Representative Proteins Selection of Orthohantavirus 

In order to design a candidate vaccine, the total of 2487 protein sequences of 112 organisms of orthohantavirus was retrieved from the NIAID Virus Pathogen 

Database and Analysis Resource (ViPR) in a single FASTA file; where 68 organisms with 2162 proteins are classified and the remaining 44 organisms with 325 

proteins are unclassified. The data overview is illustrated in Fig. 1 after rearranging the retrieved sequences according to their category, organism, and epidemic 

nature.  

 
(a) 

 
(b) 

Figure 1: Overview of the analyzed data where (a) indicates the classification of the whole proteome of the Hantavirus retrieved from ViPR database and (b) 

represents the summary of the highest antigenic proteins. 
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In Fig. 1(a), only 27 organisms (classified: 17, unclassified: 10) with 137 proteins (classified: 88, unclassified: 49) are causative for human HCPS and 23 

organisms (classified: 8, unclassified: 15) with 120 proteins (classified: 65, unclassified: 55) are unknown for human infection but associated with HCPS. As 

opposed to, only 14 organisms (classified: 9, unclassified: 5) with 1700 proteins (classified: 1599, unclassified: 101) are causative for human HFRS and 48 

organisms (classified: 34, unclassified: 14) with 530 proteins (classified: 410, unclassified: 120) are unknown for human infection but associated with HFRS. 

Among 18 protein categories, only the envelope glycoprotein, envelope glycoprotein G1, envelope glycoprotein G2, nucleocapsid protein, RNA dependent RNA 

polymerase (RdRp) protein, and nonstructural protein from every group are the central target of this study. The mentioned proteins of the classified causative 

groups were tested for antigenicity and the 11 highest antigenic proteins were selected as an input dataset of the immunoinformatics study. The summary of the 

selected highest antigenic proteins is shown in Fig. 1(b). 

Prediction of Cytotoxic and Helper T-Lymphocyte Vaccine Candidates with Their Associated MHC HLA Alleles 

The highest antigenic proteins were subjected to the NetCTL v1.2 server and a total of 3769 epitopes with a combined score≥0.5 were predicted. The predicted 

epitopes were considered to investigate their antigenicity, immunogenicity, conservancy, toxicity, and their respective MHC HLA alleles. Thereafter, the predicted 

epitopes were filtered according to the antigenicity≥0.4, immunogenicity>0, toxicity<0, and allele available in PDB>0 and found that 654 epitopes successfully 

satisfied all the criteria. Later, these 654 epitopes were tested their allergenicity and found that only 380 epitopes showed a non-allergic nature. Finally, among 

those 380 epitopes, the best one epitope from each protein was selected as a vaccine candidate that has characteristics better than others of that protein (Tab. 1). 

Again, the highest antigenic proteins were submitted to the IEDB MHC II binding tool and a total of 2197 epitopes were predicted with consensus percentile 

rank≥2. The predicted epitopes were tested their antigenicity, conservancy, and toxicity and found that 1245 epitopes were satisfied antigenicity≥0.4 and non-toxin 

criteria. Afterword, these 1245 epitopes were evaluated for their allergenicity and observed that 771 epitopes were found to be non-allergic. Later, these 151 

epitopes were investigated for their IL-10 and IFN-γ inducing criteria. Finally, the best one epitope from each protein was selected as vaccine candidate that 

satisfied IL-10 and IFN-γ inducing criteria and have other characteristics better than the remaining epitopes of that protein (Tab. 2). 

Prediction of Linear B-Lymphocyte Vaccine Candidates 

The selected highest antigenic 11 proteins were submitted to the LBtope server and a total of 2939 epitopes were predicted. The predicted epitopes were 

considered for the evaluation of their antigenicity, conservancy, and toxicity. According to the antigenicity≥0.4 and non-toxin criteria, only 1789 epitopes have 

remained and were taken into account for investigating their allergenicity and found that 1011 epitopes have non-allergic nature. Subsequently, among the non-

allergic epitopes, from each protein the best one epitope was selected as a vaccine candidate that significantly satisfies all the characteristics than other epitopes of 

that protein (Tab. 3). 

Table 1: Potential CD8+ T-cell vaccine candidates and their characteristics corresponding to each protein of orthohantavirus. 
Protein name Peptide 

sequence 

Start Combined 

score 

Super 

type 

Antigenicity 

score 

Immunogenicity 

score 

Conservancy for 

classified-

causative group 

Conservancy 

for classified-

unknown 

group 

Conservancy 

for unclassified-

causative group 

Conservancy for 

unclassified-

unknown group 

Toxicity 

prediction 

Allergenicity 

prediction 

Allele 

HCPS_GP1 MPITWTGFL 342 1.4992 B7 1.1079 0.4315 100.00% (2/2) 0.00% (0/1) - - Non-Toxin Non-Allergen HLA-B*07:02,HLA-

B*53:01,HLA-B*39:01,HLA-

B*35:01,HLA-B*51:01,HLA-

B*35:03,HLA-B*42:01,HLA-

A*32:15,HLA-A*69:01,HLA-

B*08:02,HLA-B*15:09,HLA-

A*02:17,HLA-B*08:03,HLA-

B*83:01 

HCPS_GP2 YAYPWQTAK 94 1.1519 A3 0.4823 0.14992 100.00% (2/2) 100.00% (1/1) - - Non-Toxin Non-Allergen HLA-A*03:01,HLA-

A*11:01,HLA-A*68:01,HLA-
C*03:03,HLA-A*66:01,HLA-

C*14:02,HLA-B*14:02 

HCPS_GP RTLGVFRYK 620 1.5999 A3 1.0703 0.22242 100.00% (7/7) 33.33% (1/3) 100.00% (1/1) - Non-Toxin Non-Allergen HLA-A*11:01,HLA-

A*03:01,HLA-A*30:01,HLA-

A*31:01,HLA-A*68:23,HLA-

B*15:42,HLA-C*15:02 

HCPS_NP LRYGNVLDV 96 1.2427 B27 1.4139 0.06906 100.00% (39/39) 22.73% 

(10/44) 

72.22% (26/36) 36.96% (17/46) Non-Toxin Non-Allergen HLA-C*06:02,HLA-

B*27:05,HLA-C*07:01 

HCPS_RDRPP LPTRVRLEI 900 1.3724 B7 0.9167 0.20274 100.00% (15/15) 100.00% (9/9) 100.00% (4/4) 100.00% (5/5) Non-Toxin Non-Allergen HLA-B*51:01,HLA-

B*53:01,HLA-B*07:02,HLA-

B*42:01,HLA-B*83:01,HLA-

B*08:02 

HFRS_GP1 QCIYTITSL 433 0.6363 A26 0.5673 0.13866 99.40% (165/166) 100.00% (6/6) - - Non-Toxin Non-Allergen HLA-B*39:01,HLA-

B*14:02,HLA-B*15:09 

HFRS_GP2 KYEYPWHTA 93 0.5453 A24 0.6315 0.27647 99.40% (166/167) 100.00% (6/6) - - Non-Toxin Non-Allergen HLA-A*24:02,HLA-

A*32:07,HLA-A*02:50 

HFRS_GP CYGAESVTL 1013 1.2413 A24 0.9011 0.04966 96.45% (190/197) 6.94% (5/72) 94.29% (33/35) 0.00% (0/10) Non-Toxin Non-Allergen HLA-A*24:02,HLA-
A*24:03,HLA-A*23:01,HLA-

B*35:03,HLA-C*07:02,HLA-

C*04:01 

HFRS_NonP REQWKWTQM 16 1.0668 B44 1.0756 0.14888 66.67% (2/3) - - - Non-Toxin Non-Allergen HLA-B*40:02,HLA-B*40:01 

HFRS_NP AELGAFFSI 330 1.878 B44 0.6213 0.18094 88.87% (631/710) 28.02% 
(65/232) 

98.00% (49/50) 28.89% (26/90) Non-Toxin Non-Allergen HLA-B*40:02,HLA-
B*44:03,HLA-B*44:02,HLA-

B*18:01,HLA-A*02:06,HLA-

B*40:01,HLA-B*45:01 

HFRS_RDRPP TNAEFLSTF 1167 0.8146 B62 0.4938 0.10007 100.00% 

(132/132) 

100.00% 

(60/60) 

100.00% (5/5) 92.31% (12/13) Non-Toxin Non-Allergen HLA-B*18:01,HLA-

A*24:02,HLA-A*26:02,HLA-

A*25:01 

Population Distribution Analysis 

A combined population distribution analysis was performed for the finally selected CTL & HTL vaccine candidates and their respective HLA alleles. The analysis 

result showed excellent population coverage in different epidemic and non-epidemic countries, areas, and ethnic groups (Tab. S1). Among epidemic regions, the 

result exhibited the maximum coverage of the population in Finland (99.62%), closely followed by Germany (99.45%), Poland (99.31%), Czech Republic 

(99.27%), Mexico (99.19%), Sweden (99.14%), Russia (98.98%), Japan (98.91%), France (98.86%), South Korea (98.50%), United States (98.45%), and others 

(Fig. 2(a)). Herein, we mentioned 16 different geographical areas capturing the world where the maximum percentage of cumulative population coverage in 

Europe (99.10%), nearly followed by East Asia (98.72%), North America (98.43%), and others (Fig. 2(b)). The 97.94% population of the world covered by 

predicted vaccine candidates (Fig. 2(b)). The population coverage analysis revealed that the MHC HLA alleles corresponding to predicted T-cell vaccine 

candidates are well & widely distributed throughout the world, which is a robust property of rational vaccine design 57,58. 

Molecular Docking Analysis of MHC HLA Alleles-Peptides Interactions 

The binding ability of the predicted vaccine candidates with their associated MHC HLA alleles should be checked for their robustness. To do this, the predicted 

vaccine candidates were modeled through PEPFOLD v3.5 and their associated lowest percentile ranked allele proteins were downloaded from PDB. At first, the 

control score of the allele proteins with their experimental ligand was examined. Thereafter, the molecular dockings of the peptide-allele complexes were done 

through AutoDock & AutoDock Vina and the docking scores were compared with their control scores (Fig. 3). The vaccine candidates exhibited good binding 

energy with their respective HLA-alleles. The epitope-allele docked complexes were shown in Fig. 4. 
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Table 2: Potential CD4+ T-cell vaccine candidates and their characteristics corresponding to each protein of orthohantavirus. 

Protein 

name 

Peptide 

sequence 

Start Antigenicity 

score 

Conservancy 

for classified-

causative 

group 

Conservancy 

for classified-

unknown group 

Conservancy 

for 

unclassified-

causative group 

Conservancy 

for 

unclassified-

unknown group 

Toxicity 

prediction 

IL10 

prediction 

IFNγ 

prediction 

Allergenicity 

prediction 

Allele 

HCPS_G

P1 

EGLCFIPTHT

IALTQ 

168 0.8556 100.00% 

(2/2) 

0.00% (0/1) - - Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-DRB1*07:01 

HCPS_G

P2 

ILILSILLFSFF

CPI 

466 0.5902 100.00% 

(2/2) 

0.00% (0/1) - - Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-

DPA1*02:01/DPB1*05:01, 

HLA-

DPA1*01/DPB1*04:01, 

HLA-DRB4*01:01, HLA-

DQA1*01:01/DQB1*05:01, 

HLA-

DPA1*01:03/DPB1*02:01 

HCPS_G

P 

VGLVWGILL

TTELII 

633 0.6975 85.71% (6/7) 0.00% (0/3) 100.00% (1/1) - Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-

DPA1*03:01/DPB1*04:02, 

HLA-

DPA1*01:03/DPB1*02:01, 

HLA-DRB1*09:01, HLA-

DPA1*01/DPB1*04:01 

HCPS_N

P 

PIILKALYML

STRGR 

132 0.9266 89.74% 

(35/39) 

86.36% (38/44) 50.00% (18/36) 67.39% (31/46) Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-DRB4*01:01 

HCPS_R

DRPP 

ADRGFFITTL

PTRVR 

891 0.6445 100.00% 

(15/15) 

100.00% (9/9) 100.00% (4/4) 80.00% (4/5) Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-DRB1*09:01, HLA-

DPA1*01/DPB1*04:01, 

HLA-DRB1*01:01, HLA-

DRB1*07:01, HLA-

DPA1*03:01/DPB1*04:02 

HFRS_G

P1 

ALLVTFCFG

WVLIPA 

468 0.8778 91.57% 

(152/166) 

50.00% (3/6) - - Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-

DQA1*01:01/DQB1*05:01 

HFRS_G

P2 

VHALGHWF

DGRLNLK 

68 0.415 97.01% 

(162/167) 

66.67% (4/6) - - Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-

DQA1*01:01/DQB1*05:01 

HFRS_G

P 

GCYRTLNLF

RYKSRC 

611 0.9354 93.91% 

(185/197) 

18.06% (13/72) 100.00% 

(35/35) 

0.00% (0/10) Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-

DPA1*02:01/DPB1*05:01 

HFRS_N

onP 

QREQWKWT

QMTLIKT 

15 0.7028 66.67% (2/3) - - - Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-DRB1*07:01, HLA-

DPA1*02:01/DPB1*01:01 

HFRS_N

P 

QSYLRRTQS

MGIQLD 

367 0.5736 97.61% 

(693/710) 

18.53% 

(43/232) 

100.00% 

(50/50) 

27.78% (25/90) Non-

Toxin 

IL10 

inducer 

NEGATIV

E 

Non-Allergen HLA-DRB1*09:01, HLA-

DRB1*07:01 

HFRS_R

DRPP 

TEADRGFFIT

TLPTR 

888 0.5602 96.97% 

(128/132) 

71.67% (43/60) 100.00% (5/5) 61.54% (8/13) Non-

Toxin 

IL10 

inducer 

POSITIVE Non-Allergen HLA-

DPA1*03:01/DPB1*04:02 

 

Table 3: Potential B-cell vaccine candidates and their characteristics corresponding to each protein of orthohantavirus. 

Protein name Peptide sequence Start SVM score Percent 

probability 

of correct 

prediction 

Antigenicity 

score 

Conservancy 

for classified-

causative 

group 

Conservancy 

for classified-

unknown 

group 

Conservancy 

for 

unclassified-

causative 

group 

Conservancy 

for 

unclassified-

unknown 

group 

Toxicity 

prediction 

Allergenicity 

prediction 

HCPS_GP1 TPVPLGQVTDLK

IESSCNFD 

30 0.70815019 73.61 1.3796 100.00% 

(2/2) 

0.00% (0/1) - - Non-

Toxin 

Non-

Allergen 

HCPS_GP2 IVSLKYTRKVCI

QLGTEQTC 

148 0.81914362 77.3 1.4872 100.00% 

(2/2) 

0.00% (0/1) - - Non-

Toxin 

Non-

Allergen 

HCPS_GP LNRDVSFQDLSD

NPCKVDLH 

959 0.90270442 80.09 0.6206 100.00% 

(7/7) 

33.33% (1/3) 100.00% 

(1/1) 

- Non-

Toxin 

Non-

Allergen 

HCPS_NP FPAQVKARNIISP

VMGVIGF 

206 0.73092054 74.36 0.9974 84.62% 

(33/39) 

86.36% 

(38/44) 

36.11% 

(13/36) 

41.30% 

(19/46) 

Non-

Toxin 

Non-

Allergen 

HCPS_RDRPP YQRTEADRGFFI

TTLPTRVR 

886 0.60504896 70.17 0.4233 100.00% 

(15/15) 

100.00% 

(9/9) 

100.00% 

(4/4) 

80.00% (4/5) Non-

Toxin 

Non-

Allergen 

HFRS_GP1 KQNRFRLTEQQV

NFVCQRVD 

391 0.6006102 70.02 1.0686 94.58% 

(157/166) 

100.00% 

(6/6) 

- - Non-

Toxin 

Non-

Allergen 

HFRS_GP2 RIEWKDPDGML

RDHINILVT 

290 0.3364916 61.22 0.7663 97.01% 

(162/167) 

100.00% 

(6/6) 

- - Non-

Toxin 

Non-

Allergen 

HFRS_GP KHRMVEESYRN

RRSVICYDL 

110 0.34849335 61.62 0.942 27.41% 

(54/197) 

1.39% (1/72) 94.29% 

(33/35) 

0.00% (0/10) Non-

Toxin 

Non-

Allergen 

HFRS_NonP TRLGLNLMTTSR

RDQALGME 

67 0.73619828 74.54 1.4148 66.67% (2/3) - - - Non-

Toxin 

Non-

Allergen 

HFRS_NP SKTVGTAEEKLK

KKSSFYQS 

349 0.33873278 61.29 0.6994 32.39% 

(230/710) 

13.79% 

(32/232) 

0.00% (0/50) 81.11% 

(73/90) 

Non-

Toxin 

Non-

Allergen 

HFRS_RDRPP ILLGSLSDLPGLG

YFDDLAA 

1188 0.50581281 66.86 0.4247 97.73% 

(129/132) 

26.67% 

(16/60) 

80.00% (4/5) 23.08% 

(3/13) 

Non-

Toxin 

Non-

Allergen 

Cluster Analysis of the MHC Restricted HLA Alleles 

The MHCcluster v2.0 generated a correlation heat-map for clustering both the MHC-I and MHC-II HLA molecules interacted with the predicted robust vaccine 

candidates. The generated heat-map is illustrated in Fig. 5 showing a satisfactory functional relationship among detected allele molecules as the red-colored zones 

indicating strong correlation and gradually yellow-colored zones indicating weaker correlation 59.  

Multi-Epitope Subunit Vaccine Protein Construction 

The immune response plays a critical role in fighting viral infections and its molecular and cellular mechanisms induced by the multi-epitope vaccine 39. Therefore, 

extracted robust vaccine candidates of total 11 CTL, 11 HTL, and 11 BL epitopes were sequentially fused together with the help of suitable linkers for the long 

chain of multi-epitope vaccine protein. The linkers GGGS, GPGPG, and KK were used to connect the intra-CTL, intra-HTL, and intra-BL epitopes, respectively. 

A multi-epitope subunit vaccine must contain a strong immunostimulatory adjuvant for enhancing the immunogenicity and activating long-lasting innate and 

adaptive immune response 39,60. Four vaccine models of length 654, 692, 686, and 777 amino acids were designed by adding TLR4 agonist, β3-defensin, β3-

defensin with RR residues, and 50S ribosomal protein L7/L12 at the N-terminal site of the vaccine protein using EAAAK linker, respectively. The lengths of the 

designed vaccine models are not too long comparing to the other developed multi-epitope vaccine against Fasciola gigantic, Schistosoma mansoni and 

Onchocerca volvulus of length 765, 617 and 599, respectively 61–63. Shanmugam et al. reported that synthetic TLR4 can be used as a novel adjuvant 64. The β-

defensin can recruit the Naïve T-cell and immature dendritic cells (DC) at the site of infection through the CCR6 receptor and it can also provide an adaptive 

immune response and innate host response in microbial infection 65. The 50S ribosomal protein L7/L12 act as an immunoadjuvant for dendritic-cell (DC) based 

immunotherapy and it is capable of inducing DC maturation 66. The schematic diagram of the vaccine construct is represented in Fig. 6. 
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Figure 2: Percentage of population coverage. (a) Percentage of population coverage in the Hantavirus affected countries. (b) Percentage of population coverage in 

16 different areas covering the world as well as in the whole world. 

Immunological Comparison of Vaccine Models 

Immunological properties such as antigenicity and allergenicity were evaluated for all vaccine models and the results were illustrated in Fig. 7(a). The high 

antigenicity indicates the better ability to induce an immune response. As the allergy involves a series of complex reactions by the immune system due to the 

foreign antigenic substance and results in sneezing, wheezing, skin rash, and swelling of the mucous membrane, the non-allergic vaccine is safe for human life 67. 

All the vaccine models showed antigenic and non-allergic in nature. The vaccine model-1 was characterized by higher antigenicity of 0.9876 but the higher non-

allergen score of -0.917 was assigned to the vaccine model-3. 

 
Figure 3: Epitope-allele docking scores comparing with the experimental peptide-allele docking scores (dark red color indicating the epitope-allele docking score 

and light red color indicating the experimental peptide-allele docking score). 
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Structural Comparison of Vaccine Models 

The secondary structural features of the vaccine models were assessed from SOPMA server using their amino acid sequences. The predicted results were 

illustrated in Fig. 7(a). Thereafter, the vaccine models were submitted to RaptorX server for predicting their 3D structures. The predicted results were checked for 

the gap between domains of the predicted 3D models and observed that only the vaccine model-1 exhibited no gap between domains (Fig. 7(a)). The 3D protein 

models having a gap between domains create problems in the refining stage of those models 68. Therefore, the vaccine model-1 was selected as the final vaccine 

construct for further immunoinformatics approaches. A probability score graph of occurrence of helix, strand, turn, and coil at each amino acid position in the 

secondary structure of the final vaccine construct is shown in Fig. 8(a). The tertiary structure of the final vaccine construct was predicted as 2 domains (5j81:A, 

4ind:A) and modeled using 4ind:A as the best template with a score of 50. All of the 654 amino acids were modeled, but 10% of residues were predicted as 

disordered. The p-value and uGDT value are the quality measures in homology modeling, lower p-value and higher uGDT value confirm the quality of the 

modeled structure 69. The p-value and uGDT values obtained for the modeled structure were 8.84×10-5 and 120, respectively, which are sufficiently low and large, 

respectively. 

 
Figure 4: Epitope-allele docked complexes. In all the figures, red color represents the allele protein, cyan color indicates the experimental ligand, and blue & 

yellow colors highlight the epitopes. The figure (a) shows the docked complexes of HLA-A2402 with HFRS_GP2-CTL_Epitope (blue) and HFRS_GP-

CTL_Epitope (yellow) and the figure (b) shows the docked complexes of HLA-B4002 with HFRS_GP-CTL_Epitope (blue) and HFRS_NP-CTL_Epitope 

(yellow). The figures (c-i) highlight the docked complexes of HLA-C0602, HLA-A0301, HLA-B0702, HLA-B3901, HLA-B1801, HLA-B5101, and HLA-A1101 

with HCPS_NP-CTL_Epitope, HCPS_GP2-CTL_Epitope, HCPS_GP1-CTL_Epitope, HFRS_GP1-CTL_Epitope, HFRS_NonP-CTL_Epitope, HCPS_RDRPP-

CTL_Epitope, and HCPS_GP-CTL_Epitope, respectively. The figure (j) shows the docked complex between HLA_DRB1_0101 and HFRS_NP-CTL_Epitope. 

Refinement and Quality Assessment of the Tertiary Structure of the Final Vaccine Construct 

Structural refinement with GalaxyRefine can improve the structural quality by increasing the number of residues in the favored region. GalaxyRefine provided five 

models with various quality assessment parameters (Tab. S2). Among them, the model 4 was taken into consideration as the best 3D structure of the final vaccine 

construct for further analysis according to various quality parameters including GDT-HA (0.9209), RMSD (0.502), MolProbity (2.432), Clash score (28.6), Poor 
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rotamers (0.8), and Rama favored (91.9). For the structural validation of the refined model, the Ramachandran plot analysis was done and found that 86.2%, 

11.3%, 1.0%, and 1.3% residues in Rama-favored regions, additional allowed regions, generously allowed regions, and disallowed regions, respectively (Fig. 

8(b)). The overall quality and potential errors in a crude 3D model were verified through ERRAT and ProSA-web server. The overall quality factor of the refined 

model was 52.13% using ERRAT. While ProSA-web has shown the Z-score of -3.51 of the refined model which is out of range that commonly found in the case 

of native proteins for comparable size but it is supported by experimentally validated structures and close to the database average (Fig. 8(c)) 70. The refined 3D 

model is illustrated in Fig. 8(d). 

 
Figure 5: Cluster analysis of the MHC HLA alleles where (a) is the clustering of MHC-I HLA alleles and (b) is the clustering of the MHC-II HLA alleles (red 

colors is the indication of strong interaction, while the yellow zone indicating the weaker interaction). 

Assessment of Primary Sequence Features of the Final Vaccine Construct 

The various primary sequence features of the final vaccine construct were evaluated through ExPASy ProtParam server (Fig. 7(b)). The molecular weight of the 

final vaccine construct was found to be 70.5 kDa which is the indication of good antigenic nature of the final vaccine construct 70. The proteins having <110 kD 

molecular weight are believed to be good vaccine candidates 71. The theoretical isoelectric point (pI) is valuable to provide a buffer system for vaccine purification 

which was computed to be 10 showing slightly basic in nature of the construct. Moreover, the estimated half-life was found to be 1 hour in mammalian 

reticulocytes, in vitro; while 30 minutes in yeast and >10 hours in E. coli, in vivo. The instability index was assessed to be 32.04 which represents the stable nature 

of the final vaccine construct 72. The score of the aliphatic index was 76.22 which is the indication of the thermostable nature of the final vaccine construct; the 

higher aliphatic index is associated with more thermostability 60. The estimated grand average of hydropathicity (GRAVY) value was calculated as -0.255, 

negative GRAVY value declared the final vaccine construct is hydrophilic in nature and it has good interaction with a water molecule 60. 

 
Figure 6: Schematic diagram of the multi-epitope subunit vaccine construct. An adjuvant was added at the N-terminal site of the construct with the help of 

EAAAK linker and the TC, TH, and BL epitopes were merged with the help of GGGS, GPGPG, and KK linkers, respectively. 

 
Figure 7: Immunological and tertiary structural properties of the vaccine constructs. (a) Comparison of the vaccine models by immunological and structural 

properties. (b) Physicochemical properties of the finally selected vaccine model-1. 
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Mapping of Conformational B-cell Epitopes in Final Vaccine Construct 

B-cells are the key player of humoral immunity and epitope corresponding to the B-cell receptor plays an important role in vaccine design following antibody 

production 60. The discontinuous B-cell epitopes were searched in the final vaccine construct using the IEDB ElliPro tool and found 10 significant discontinuous 

B-cell epitopes with length range 4-110 and score range 0.557-0.811 (Tab. S3). The structural view of those epitopes was illustrated in Fig. 9. 

Molecular Docking of Final Vaccine Construct with TLR4 Immune Receptor 

The vaccine-receptor docking was performed through ClusPro v2.0 for assessing the binding affinity of the vaccine construct with the immune receptor TLR4 and 

the ClusPro 2.0 server predicted a total of 26 complex forms (Tab. S4). Among them, the model having the lowest energy score properly occupied the receptor 73 

and found that the model number 11 was selected as the best-docked complex (Fig. 10). The energy score of the best-docked complex was found to be -1292 

which is the lowest among all other predicted complexes showing the highest binding interaction. 

 
Figure 8: Structural assessment of the final vaccine construct. (a) Probability score graph of occurrence of helix (purple), strand (green), turn (red), and coil (light 

blue) at each amino acid position in the secondary structure of the final vaccine construct. (b) Ramachandran plot of the refined model showing 86.2%, 11.3%, 

1.0%, and 1.3% residues were found in most Rama-favored regions, additional allowed regions, generously allowed regions, and disallowed regions respectively. 

(c) The overall quality Z-score plot from ProSa server showing Z-score of -3.51. (d) Refined 3D structure of the final vaccine construct. 

In Silico Cloning of the Final Vaccine Construct 

To express the deigned vaccine protein into the E. coli expression system, in silico cloning was done. Therefore, it was necessary to adapt the codon respective to 

the vaccine constructs as per the codon usage of E. coli expression system. The adaptation of the codon usage of vaccine construct as per E. coli K12 was done 

using the JCat server. The JCat provided the optimized codon sequence of 1962 nucleotides, whose codon adaptive index (CAI) and percentage of the GC-content 

codon were found to be 0.98 and the percentage of the GC-content codon of 53.77%. The CAI value is very close to the best score 1.0 and the percentage of the 

GC-content codon lying in the allowed range 30-70%, therefore, both of them ensured the high expression rate of vaccine construct in E. coli K12 46. Later on, the 

adapted codon sequence was inserted into the E. coli pET28a(+) vector and obtained a cloned vaccine of 7258 base pairs (Fig. 11). 

 
Figure 9: Ten conformational B-lymphocyte epitope mapping in final vaccine construct with length range 4-110 and score range 0.557-0.811 (cyan color 

represent the vaccine construct and yellow colored balls represent the conformational B-lymphocyte epitope). 
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Disulfide Engineering of the Final Vaccine Construct 

To stabilize the constructed vaccine structure, disulfide engineering was done through Disulfide by Design 2 (DbD2), and a total of 70 pairs of residues were 

predicted for the probable formation of disulfide bonds (Tab. S5). However, only 5 pairs of residues (Gly344-Ile507, Arg184-Pro265, Thr401-Gly436, Tyr413-

Glu556, and Ala270-Pro375) were selected for the disulfide bond formation because their energy and Chi3 values lies within the allowed range i.e. the energy 

score should be less than 2.2 and the Chi3 value should be in between -87 to +97 74. Thereafter, the stability of the vaccine structure for the mutation of every 

residue by cysteine in the selected 5 pairs was evaluated through DynaMut server and found that only three mutations of Gly344, Thr401, & Gly436 residues have 

positive vibrational entropy changes, which indicates the stability of the vaccine construct (Tab. S6). Among those three residues, Thr401 and Gly436 fulfill a pair 

for probable disulfide bond. Therefore, these two residues, Thr401 and Gly436 were taken into account for the mutation with cysteine (Fig. 12). 

 
Figure 10: The docked complex of the vaccine construct with the TLR4 receptor (cyan color represent the vaccine construct and magenta color represent the 

TLR4 receptor). 

Molecular Dynamics Simulation of the Best Vaccine-Receptor Docked Complex 

The stability and large-scale mobility of the best vaccine-receptor docked complex were investigated by performing normal mode analysis (NMA) of its internal 

coordinates via iMODS. The vaccine protein and the receptor TLR4 were directed towards each other and the direction of each residue was represented by arrows 

(Fig. 13); where the length of the line indicates the degree of mobility. The vaccine-receptor complex deformability depends on the individual distortion of each 

residue, indicated by hinges in the high deformability region of the chain (Fig. 14(a)). The B-factor values inferred via NMA was equivalent to RMS (Fig. 14(b)). 

The complex eigenvalue was found to be 5.608279×10-06 (Fig. 14(c)); where the lower the eigenvalue, the easier the deformation 75. The eigenvalue is inversely 

related to the variance of the complex (Fig. 14(d)) 76. In the covariance matrix, the red, white, and blue colors indicate the correlated, uncorrelated, and anti-

correlated pairs of residues (Fig. 14(e)) 75,77. An elastic network model was generated to represent the pair of atoms connected via springs (Fig. 14(f)). In the elastic 

graph, each dot represents one spring between the corresponding pair of atoms, where the darker grays indicate stiffer springs and vice versa 75. 

 
Figure 11: Cloned multi-epitope vaccine construct. In silico cloning of the adapted codon sequence of the final vaccine construct (red-green color) into the E. coli 

pET28a(+) vector (blue-magenta color). 
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In Silico Immune Simulation of Final Vaccine Construct 

The in silico immune response of the vaccine construct was generated by C-ImmSim immune simulator. The immune simulation showed results consistent with 

the typical immune response (Fig. 15). The primary response was identified by high levels of IgM. Following the secondary and tertiary responses were 

characterized by the high level of IgG1 + IgG2, IgM, and IgG + IgM antibodies with a corresponding decrease in antigen concentration (Fig. 15(a)). 

 
Figure 12: Disulfide engineering of the final vaccine construct where green color indicating the final vaccine construct and magenta colored ball indicating the 

pair of residues (Thr401-Gly436) for the probable formation of disulfide bond by mutating this pair with cysteines. 

 
Figure 13: The vaccine-receptor docked complex after dynamics simulation. The large arrows indicate the direction of the vaccine protein and receptor TLR4 

towards each other. The small arrows indicate the direction of the residues where the length of the line indicates the degree of mobility. 

Furthermore, several long-lasting B-cell isotypes were observed, indicating possible isotype switching potentials and memory formation (Fig. 15(b-c)). A similarly 

high response was highlighted in the TH (helper) and TC (cytotoxic) cell populations with respective memory development (Fig. 15(d-g)). During exposure, 

increased macrophage activity was demonstrated while dendritic cell activity was identified as consistent (Fig. 15(h-i)). The macrophages and dendritic cells are 

important when the expression of TLR4 in human is considered 78. High levels of IFN- γ and IL-2 were also evident and the lower the Simpson index (D), the 

greater the diversity (Fig. 15(j)) 79. The high level of IFN-γ and IL-2 production confirms the efficient Ig production, thereby, supporting a humoral response 63. In 

addition, there are many other characteristics have been produced such as PLB cell population, TR cell population per state, NK cell population, and EP population 

per state (Fig. S1); where all of them showed excellent immune response. This profile indicates the immune memory development and consequently the increased 

clearance of the antigen at subsequent exposures. 

Conclusion 

The Zoonotic Hantavirus infection has emerged as a globally severe life-threatening problem characterized by an increasing number of infections and followed by 

deaths by 50%, worldwide. Despite this, there is no permanent cure or preventive treatment against Hantavirus is currently available. Therefore, it is urgent to 

explore an effective vaccine against Hantavirus to fight this severe problem. This study harnessed a complete series of immunoinformatics approaches to develop a 

novel multiepitope subunit vaccine containing T & B-cell epitopes for inducing cellular and humoral immunity, respectively. The T & B-cell epitopes were 

predicted from the selected highly antigenic proteins of every gene product. The predicted epitopes were filtered by antigenicity≥0.4 & immunogenicity>0 and 

followed by filtering by the non-toxin & non-allergic criterions. In addition, the helper T-cell epitopes were over-filtered by IL-10 & IFN-γ inducing criterions. 

Furthermore, the top conservancy associated epitope from every gene product was selected as potential vaccine candidate; among those the T-cell vaccine 

candidates along with their HLA alleles were subjected to analysis of the population coverage in both the epidemic and non-epidemic regions. Thereafter, the 

potential vaccine candidates were fused together with the help of suitable linkers for their adequate separate functions in the human body. 
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Figure 14: Molecular dynamics simulation of the best vaccine-receptor docked complex. (a, b) Deformability and B-factor at each atom, respectively. (c, d) 

Eigenvalue and variance of 20 modes of the docked complex, respectively. (e) The covariance matrix of the pairs of residues. (f) Elastic network graph of atoms. 

Subsequently, four vaccine models were generated by adding four different adjuvants to the nascent vaccine protein to increase the vaccine immunogenicity. The 

vaccine models were tested and compared for its antigenicity and allergenicity and followed by the structural analysis. Further, the physicochemical parameters of 

the final vaccine protein were evaluated and followed by the discontinuous B-cell epitope prediction. Molecular docking and dynamics simulation were also 

performed to investigate the binding affinity with immune receptor TLR-4 and stability of the vaccine-receptor complex, respectively and followed by conducting 

immune simulation to ensure the immune response and antigen clearance rate. At last, the disulfide engineering was performed to enhance the vaccine stability and 

followed by the in silico cloning to confirm the effective expression of the vaccine construct. However, this recommended vaccine requires experimental 

validation to ensure that it can induce immunity against Hantavirus. 

Methodology 

Retrieval of Whole Proteome, Grouping, and Assurance of Highest Antigenic Protein of Orthohantavirus 

In order to design the subunit vaccine, the whole proteome of the Orthohantavirus was identified and found to be three gene products such as nucleoprotein, 

envelope glycoprotein (Gn, and Gcformerly known as G1, and G2, respectively), and RNA dependent RNA polymerase (RdRp) protein 9. The complete amino 

acid sequences of those proteins were retrieved from the NIAID Virus Pathogen Database and Analysis Resource (ViPR) 80 through the web site at 

www.viprbrc.org. The retrieved protein sequences were then grouped according to their strain, protein category, and epidemic nature. Thereafter the protein 

sequences of the targeted groups were subjected to the VaxiJen v2.0 server 81 available at http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html for 

predicting their antigenicity and ensuring the highest antigenic proteins for the final dataset preparation, where the threshold parameter was fixed as default. 

Prediction of Cytotoxic and Helper T-cell Epitopes with Corresponding Major Histocompatibility Complex Alleles and B-cell Epitopes 

The cytotoxic T lymphocytes or CTLs or CD8+ T-cells are essential for immune defense against intracellular pathogens, including virus, bacteria, and tumour 

surveillance. Therefore, the highly antigenic proteins were submitted to the NetCTL v1.2 82 server available at http://www.cbs.dtu.dk/services/NetCTL/ for 

predicting CD8+ T-cell epitopes. In the NetCTL server, we predicted the epitopes for 12 supertypes with a combined threshold score of 0.5. Furthermore, the 

IEDB MHC I Binding tool available at http://tools.iedb.org/mhci/ was used to predict the MHC-I binding alleles corresponding to each CD8+ T-cell epitopes 83; 

where the parameters consensus and human were set as the prediction method and MHC source species, respectively. In addition, the percentile rank≤2 was 

considered as alleles filtering criteria. On the other hand, the prediction of HTL or CD4+ T-cell epitopes is also a crucial stage of epitope-based vaccine design. 

The 15-mer CD4+ T-cell epitopes and their corresponding MHC-II binding alleles were predicted through the IEDB MHC II Binding tool 

(http://tools.iedb.org/mhcii/) using its consensus prediction method 84. A consensus percentile rank of ≤2 was set as a cutting point for allele selection because a 

lower percentile rank indicates a more binding affinity. B-cells are considered a core component of the adaptive immune system due to their ability to recognize 

and provide long-term protection against infectious pathogens by producing antibodies 85. Therefore, the prediction of B-cell epitopes is important for rational 

vaccine design. The highly antigenic protein sequences were subjected to the LBtope server (http://crdd.osdd.net/raghava/lbtope/) for predicting the B-cell epitopes 
86. The LBtope predicts the B-cell epitopes based on the support vector machine (SVM) technique (the parameters are LBtope_Fixed, 20-mer peptide, and the 

percent of probability is 60%). 

Screening of CTL, HTL and LBL Epitopes for Potential Vaccine Candidates 

The ability of CTL epitopes to trigger humoral and cell-mediated immune response called immunogenicity is the center of the vaccine efficacy 87. Consequently, 

the MHC I Immunogenicity tool of IEDB 88 available at http://tools.iedb.org/immunogenicity/ was used to analyze the immunogenicity of CTL epitopes. In the 

case of subunit vaccination, an epitope is considered to be effective if it has the ability (antigenicity) to induce protection from subsequent challenge by a disease-

causing infective agent in an appropriate animal model following immunization 81. The epitope-based vaccine containing highly conserved epitopes can provide 

broader protection across multiple strains or even species 89. Therefore, the conservancy of the predicted epitopes was analyzed through the IEDB Conservation 

Across Antigens tool available at http://tools.iedb.org/conservancy/ 89. Another two important characteristics of peptides such as non-allergenicity and non-toxicity 

were checked using AllerTOP v2.0 67 and ToxinPred server (http://crdd.osdd.net/raghava/toxinpred/) 90, respectively. The epitope-based vaccine should be 

designed to maximize population coverage in any geographical region especially in the region where the associated disease frequently occurs. In contrast, 

minimizing the number of T-cell epitopes included in the vaccine and the variability of population coverage obtained in different ethnic groups is important to be 

potential vaccine candidates 91. Hence, population coverage is a key factor for the development of the peptide-based vaccine 92. Finally, the IEDB Population 

Coverage tool 91 (http://tools.iedb.org/population/) was introduced to calculate the population coverage of the T-cell epitopes. 

Screening of Cytokine-inducing HTL Epitopes 

Several cytokines such as IL-2, IL-6, IL-10, IFN-γ, and TNF-γ are associated with Hantavirus immune system 93. Herein, due to the tools unavailability, we only 

predicted the IL-10, and IFN-γ inducer HTL epitopes through the IL-10Pred server (https://webs.iiitd.edu.in/raghava/il10pred/) 94 and IFNepitope server 

(http://crdd.osdd.net/raghava/ifnepitope/) 95, respectively in which the SVM technique was chosen as a prediction method. 
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Figure 15: In silico simulation of immune response after injecting three injections by 4-weeks apart. (a) Antigen and immunoglobulins (antibodies are sub-divided 

per isotype). (b) B-lymphocytes count. (c) B-lymphocytes count per entity-state. (d) CD4 T-helper lymphocytes count. (e) CD4 T-helper lymphocytes count per 

entity-state. (f) CD8 T-cytotoxic lymphocytes count. (g) CD8 T-cytotoxic lymphocytes count per entity-state. (h) Macrophages count per entity-state. (i) Dendritic 

cell (DC) can present antigenic peptides on both MHC class-I and class-II molecules (the curves show the total number broken down to active, resting, 

internalized, and presenting the Ag).  (j) Concentration of cytokines and interleukins. Simpson index (D) in the inset plot is danger signal. 

Docking Simulation of the MHC HLA Alleles and the Peptide 

The predominant binding affinities of the screened epitopes with their corresponding MHC HLA alleles of the known 3D structure were evaluated by the 

molecular docking simulation 96. Herein, we used PEPFOLD v3.5 server 97 to predict the tertiary structure of both the screened epitopes and the crystal structures 

of the lowest percentile ranked HLA proteins such as HLA-B*07:02 (6AT5), HLA-A*03:01 (2XPG), HLA-A*11:01 (5WJL), HLA-C*06:02 (5W6A), HLA-

B*51:01 (1E27), HLA-B*39:01 (4O2F), HLA-A*24:02 (4F7M), HLA-B*40:02 (5IEK), HLA-B*18:01 (6MT3), & HLA-DRB1*01:01 (2FSE) 98–107. However, the 

allele structures were retrieved from Protein Data Bank (PDB). The Discovery Studio v16.0.0.400 was used for the separation of the protein and ligand and the 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2019. ; https://doi.org/10.1101/832980doi: bioRxiv preprint 

https://doi.org/10.1101/832980
http://creativecommons.org/licenses/by-nd/4.0/


AutoDock tools were used for the preparation of the protein and ligand files into PDBQT files by selecting the binding region and the number of torsion trees, 

respectively 108. Finally, these PDBQT files were analyzed by AutoDock Vina software for docking simulation 109. 

Cluster Analysis of the MHC Restricted HLA Alleles 

In vaccine development, the resolved MHC super-families (clusters) play an important role for the identification of new targets with optimized affinity and 

selectivity of hits 110. The MHC HLA proteins with similar binding affinities were well clustered by the structure-based clustering technique 110. Herein, the 

MHCcluster v2.0 available at http://www.cbs.dtu.dk/services/MHCcluster/ was carried out to develop the heat-map of the HLAs functional relationship 59. 

Multi-Epitope Subunit Vaccine Design 

An ideal effective multi-epitope vaccine should be composed of epitopes that can elicit CTL, HTL, and B cells and induce effective responses against the targeted 

virus 39. The screened CTL, HTL, and LBL vaccine candidates were conjugated in sequential manner to establish the final vaccine construct. In the vaccine 

construct, the epitopes were separated by proper linkers for their individual effective function 111. In this study, thelinkers GGGS, GPGPG, and KK were used for 

the separation of CTL, HTL, and LBL epitopes, respectively. Herein, the immunostimulatory adjuvants TLR4 agonist namely, RS-09, β3-defensin, β3-defensin 

with RR residues, and 50S ribosomal protein L7/L12 were used as adjuvants to construct four separate vaccine models. The problem of high polymorphic HLA 

alleles was solved by incorporating the PADRE sequence along with the adjuvants. The EAAAK linker was used to link the adjuvant with the CTL epitope. 

Immunological Assessment of the Vaccine Models 

The antigenicity is a measure of the ability of an antigen to binds with the B & T-cell receptor that may lead to induce the immune response and memory cell 

formulation 60. Accordingly, the whole vaccine construct was submitted to the VaxiJen v2.0 server for predicting the antigenic nature of the vaccine protein. 

However, a vaccine with non-allergic behavior will be completely safe for human life 70. Therefore, the vaccine protein was analyzed for allergenicity using two 

modules, SVM (amino acid composition) and Hybrid approach under the AlgPred server (https://webs.iiitd.edu.in/raghava/algpred/submission.html) 112. The 

allergenicity of the vaccine protein was crosscheck through AllerTOP v2.0, and AllergenFP v1.0 113. 

Secondary and Tertiary Structure Prediction of the Vaccine Models 

The whole vaccine constructs were submitted to the Self-Optimized Prediction Method with Alignment (SOPMA) server (https://npsa-

prabi.ibcp.fr/NPSA/npsa_sopma.html) for predicting the secondary structural features of the vaccine models 114. As a large portion of the immunoinformatics 

approach depends on the protein tertiary structure, the three-dimensional structure (3D) prediction is a crucial step for rational vaccine design. Therefore, the 

tertiary structures of the vaccine models were predicted using the RaptorX server available at http://raptorx.uchicago.edu/ 69. RaptorX is a multiple-template 

threading based protein modeling technique, which provides different factors of quality measure such as P-value for relative global quality, GDT & uGDT for 

absolute global quality, and modeling error at each residue 69. 

Refinement and Quality Assessment of the Tertiary Structure of the Vaccine Construct 

The accuracy of the predicted tertiary structure is an important factor for protein docking, function and it depends on the degree of the alikeness of the target and 

available template structures 46,115. Although the template-based protein modeling is more accurate than the template-free protein modeling, but they may still have 

some problems in local and global structures and the errors such as irregular contacts, clashes, and unusual bond angles & lengths in the predicted 3D models 115. 

Since the inaccuracy in the predicted 3D models also limits the usage of the models for further studies, there was a necessity to improve the accuracy of the 

predicted model using refinement technique 115. The refinement of the predicted crude 3D model was done through the GalaxyRefine server 

(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) 68. This server works based on a CASP10 tested refinement method which rebuilds the side chains 

and then repacking the overall structure by molecular dynamics simulation 68. To validate the accuracy of the refined 3D model, the Ramachandran plot was 

generated using PROCHECK under the PDBsum server available at www.ebi.ac.uk/pdbsum/ 116,117. The refined model also validated by calculating the quality Z-

score using the ProSA-web server (https://prosa.services.came.sbg.ac.at/prosa.php) 118 and analyzing the non-bonded interactions using ERRAT server 

(http://servicesn.mbi.ucla.edu/ERRAT/) 119. The quality score outside the characteristic range of native proteins indicates possible errors in the predicted 3D 

structure. 

Physicochemical Properties Assessment of the Vaccine Construct 

We further characterized the vaccine construct by assessing the various physicochemical properties including molecular weight (MW), theoretical pI, solubility, 

extinction coefficients (EC), estimated half-life, instability index (II), aliphatic index (AI) and grand average hydropathy (GRAVY) value associated with the 

vaccine construct. The physicochemical properties excluding solubility were computed by analyzing the vaccine protein sequence through the ProtParam tool 

under the bioinformatics resource portal Expert Protein Analysis System (ExPASy) (https://web.expasy.org/protparam/) 72. Later, the solubility of the vaccine 

protein upon over-expression in E. coli was predicted using the SOLpro tool in the SCRATCH suite 120. 

Conformational B–Cell epitopes Prediction of the Vaccine Construct 

The patch of atoms on the protein surface is termed as the discontinuous or conformational epitope. It is predicted to design a molecule that can mimic the 

structure and immunogenic properties of an epitope and replace it either in the process of antibody production-in this case an epitope mimic can be considered as a 

prophylactic or therapeutic vaccine-or antibody detection in medical diagnostics or experimental research 121. Therefore, the CBLs of the vaccine construct were 

predicted by subjecting the 3D structure of the vaccine construct to the IEDB ElliPro tool available at http://tools.iedb.org/ellipro/ 121. 

Disulfide Engineering of Vaccine Construct 

Disulfide bonds can provide increased stability of the protein by reducing unfolded conformational entropy and raising the free energy of the denatured state along 

with the examination of protein interactions and dynamics 70. The Disulfide by Design 2 (DbD2) v2.12 server available at http://cptweb.cpt.wayne.edu/DbD2/ was 

carried out to perform the disulfide engineering of the predicted 3D model of the vaccine construct 74. The DbD2 can predict the probable pairs of residues that 

have the characteristics to forma disulfide bond by mutating the individual residues with cysteine. Afterward, the DynaMut server available at 

http://biosig.unimelb.edu.au/dynamut/ was used to crosscheck the stability of the vaccine construct for the mutation by cysteine of each residue predicted by DbD2 
122. The DynaMut server predicts the stability based on the vibrational entropy changes, where the positive value indicates the stability of the vaccine construct.  

Molecular Docking of Vaccine Construct with Immunological Receptor Protein 

Molecular docking helps us to characterize the small molecules (ligand) in the binding site of target proteins (receptor) by modeling the ligand-receptor complex 

structure at the atomic level and predicting the tentative binding parameters of ligand-receptor complex 123. The host endothelial cells become dysfunctional and 

pathogenic by the innate immune response induced by Hantavirus 124. As toll-like receptor 4 (TLR4) expression is upregulated and mediates the secretion of 

several cytokines in Hantaan virus infected endothelial cells, it was used as an immunological receptor protein to induce anti-hantavirus immunity 124. The TLR4 

(PDB ID: 4G8A) was retrieved from RCSB-Protein Data Bank. The vaccine construct was treated as ligand protein. The ClusPro 2.0 server available at 

https://cluspro.bu.edu/login.php helps to finish the docking of vaccine construct with the TLR4 receptor protein 125. The docked complex with the lowest energy 

score was selected as the best complex. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2019. ; https://doi.org/10.1101/832980doi: bioRxiv preprint 

https://doi.org/10.1101/832980
http://creativecommons.org/licenses/by-nd/4.0/


Molecular Dynamics Simulation of Vaccine-Receptor Complex 

The molecular dynamic simulation is the most popular computational simulation approach for studying the physical basis of the structure and function of the 

biological macromolecules 126. The dynamic simulations with biologically relevant sizes and time scales are difficult for understanding macromolecular 

functioning 127. The comparison of the essential dynamics of proteins to their normal modes is an alternative powerful tool than the costly atomistic simulation 127–

129. The stability of the vaccine-receptor complex was determined through the iMOD server (iMODS) available at http://imods.chaconlab.org/, which describes the 

collective functional motions in terms of deformability, eigenvalues, and covariance map by analyzing normal modes in internal coordinates 75. The capacity of a 

given molecule to deform at each of its residues is measured by the deformability. The eigenvalue associated with each normal mode indicates the motion stiffness 

and it is directly related to the energy required to deform the structure. The covariance map represents the coupling between pairs of residues.  

Immune Simulation of Vaccine Construct 

The immune simulation is a key step for understanding the immune system by determining the immunogenicity and immune response profile of the vaccine 

protein 79. The agent-based immune simulator, C-ImmSim available at http://kraken.iac.rm.cnr.it/C-IMMSIM/ was utilized to conduct the immune simulation of 

the vaccine protein. The C-ImmSim simulator uses the position-specific scoring matrix (PSSM) and machine learning techniques for the prediction of immune 

epitopes and immune interactions, respectively 79. The minimum recommended time interval between doses is four weeks for most of the currently used vaccines 

and in accordance with the TOVA approach; three injections are given at intervals of four weeks for the target product profile of a prophylactic onchocerciasis 

vaccine 63,130. Therefore, three injections of the designed peptide were considered at an interval of four weeks with conserved host HLA alleles and time step set at 

1, 84, and 168 (each time step is equivalent to 8 hours of real-life and time step 1 is injection at time=0). The simulation volume and simulation steps were set at 

110 and 1100, respectively. The remaining simulation parameters were set at default (random seed=12345, what to inject=vaccine (no LPS), adjuvant=100, and 

num Ag to inject=1000). The Simpson index, D (a measure of diversity) was interpreted from the plot. 

Codon Adaptation and In Silico Cloning of Vaccine Construct 

Codon adaptation is a process to increase the expression rate of the foreign genes in the host when the codon usages in both organisms differ from each other. 

Therefore, the Java Codon Adaptation Tool (JCat) available at http://www.jcat.de/ was used to express the vaccine protein in a most sequenced prokaryotic 

organism, E. coli K12 73,131. The expression rate parameters, the codon adaptation index (CAI) and the percentage of GC-content codon should be in range 0.8-1.0 

and 30-70%, respectively, where CAI of 1.0 is considered as the best score 46. In JCat, additional three options were checked to avoid rho-independent 

transcription terminators, prokaryotic ribosome binding sites, and cleavage sites of restriction enzymes. Furthermore, in the optimized nucleotide sequence, the 

absence of the restriction enzyme cutting sites (XhoI and NdeI) was confirmed. Afterward, the XhoI and NdeI restriction sites were added to the N and C-terminal 

of the optimized sequence, respectively. Finally, the restriction cloning module of the SnapGene tool was used to clone the optimized adapted codon sequence of 

the vaccine construct into the E. coli pET28a(+) vector. 
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