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Abstract 
Tenofovir disoproxil fumarate and emtricitabine are used for HIV treatment and pre-exposure prophylaxis. 
Previously, we found that topical rectal application of tenofovir 1% gel caused many gene expression changes. 
Here, we measured RNA and protein expression in several clinical trials of oral administration in HIV-
uninfected individuals (using microarrays, RNAseq, droplet digital PCR, mass spectrometry, and microscopy). 
We found tens to hundreds of differentially expressed genes in the gastrointestinal tract, but none in the 
blood or female reproductive tract. In rectal samples from one trial, most of the 13 upregulated genes were 
related to type I/III interferon signaling. Similar changes were seen at the protein level in the same trial and in 
the duodenum and rectum in another trial. We conclude that tenofovir disoproxil fumarate and emtricitabine 
have little effect on gene expression in the blood or female reproductive tract but increase type I/III interferon 
signaling in the gut. This effect may enhance their anti-viral efficacy when used as pre-exposure prophylaxis, in 
particular to prevent rectal HIV transmission. However, it may also contribute to chronic immune activation 
and HIV reservoir maintenance in chronically treated people living with HIV. 
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Introduction 
Tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are nucleotide/nucleoside reverse transcriptase 
inhibitors (NRTIs) used for HIV treatment and oral pre-exposure prophylaxis (PrEP). Treatment with TDF/FTC 
and other combination antiretroviral therapy drugs has changed the lives of HIV-infected individuals, allowing 
lifespans approaching those of HIV-uninfected individuals. In addition, when used as PrEP, TDF/FTC is 
extremely effective at preventing HIV infection among individuals at high risk of infection1,2. 
 
Our studies in MTN-007, a phase 1 randomized, placebo-controlled safety study of topical rectal application of 
tenofovir 1% gel, revealed changes to rectal gene expression after once-daily application for 7 days3,4. The 
genes affected by tenofovir in MTN-007 suggested perturbations in mucosal immune homeostasis, 
mitochondrial function, and regulation of epithelial cell differentiation and survival. In MTN-007, tenofovir was 
formulated as a 1% reduced glycerin gel and applied topically to the rectum. In clinical practice, TDF (the 
prodrug of tenofovir), and especially co-formulated TDF/FTC, are widely used in oral form for both treatment 
and prevention. We therefore sought determine if oral administration also causes gene expression changes. 
Because lifelong treatment is required, even small drug effects on gene expression could have significant 
consequences, possibly even related to HIV infection and persistence.  
 
To determine whether TDF or TDF/FTC cause gene expression changes when delivered orally, we performed 
transcriptome-level gene expression studies with samples from several trials of oral PrEP in HIV-uninfected 
individuals. We looked for gene expression changes in the blood as well as in gastrointestinal and female 
reproductive tract biopsies. The trials included TDF used alone as well as in combination with FTC, with 
samples taken after about two months of treatment. In some of these studies, we performed additional 
experiments using RNA sequencing, droplet digital PCR (ddPCR), mass spectrometry, and microscopy. 
 
We found differentially expressed genes in the upper and lower gastrointestinal tract, but not in the blood or 
the female reproductive tract. In both the duodenum and rectum, we found increased expression of genes 
related to type I/III interferon signaling. Similar changes were found at the protein level by mass spectrometry 
and microscopy. Given the widespread use of TDF/FTC, as well as other NRTI drugs, the relatively limited gene 
expression changes were reassuring. However, we were surprised by the consistency of increased expression 
of type I/III interferon genes in the gastrointestinal tract. The long-term health importance of this change in 
gene expression is unclear: it could cause greater antiviral efficacy, in particular when used to prevent rectal 
HIV transmission, or it could contribute to chronic immune activation in people living with HIV.  
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Results 
We measured the effect of TDF/FTC or TDF alone on blood, gastrointestinal biopsies, and female reproductive 
tract biopsies from several trials of oral PrEP in HIV-uninfected individuals. We measured gene expression by 
microarray, RNAseq, and ddPCR and protein expression by mass spectrometry and microscopy. Samples were 
obtained from the Genital Mucosal Substudy (GMS)5 of the Partners PrEP Study6 (paired blood and female 
reproductive tract biopsies during and after treatment, GMS A, and unpaired placebo vs. treatment blood, 
GMS B), the Microbicide Trials Network trial 0177 (MTN-017; paired rectal biopsies before and during 
treatment); and ACTU-3500 (paired rectal and duodenal biopsies and blood before and during treatment). A 
complete discussion of samples and assays are given in Table 1 and in the Methods. RNA quality was assessed 
for all samples with the RNA integrity number, as presented in Supplementary Table 1.  
 
Differentially expressed genes 
Gene expression was measured with microarrays. The expression of each probe was compared between no 
treatment and treatment with oral TDF or TDF/FTC, generally paired within individuals as described in the 
methods. Differential expression was defined by an FDR-adjusted p-value less than 0.05, with up-regulation 
meaning higher expression during treatment. As shown in Figure 1 and Table 2, differentially expressed genes 
were found in two studies: MTN-017 rectal samples (13 genes up, n = 36 paired samples) and ACTU-3500 
duodenal samples (116 genes up and 135 genes down, n = 8 paired samples). No differentially expressed 
genes were found in any of the other study arms to our chosen FDR-adjusted p-value threshold of 0.05. Gene 
lists for every study arm and sample type are in Supplemental File 1.   
 
All 13 genes differentially expressed in the rectum in MTN-017 were expressed more highly during treatment 
with TDF/FTC than prior to treatment. As shown in Table 3, seven of these 13 genes related to type I 
interferon signaling as defined by membership in the gene ontology biological process “type I interferon 
signaling pathway” (GO:0060337). Of the six genes not included in GO:0060337, several have been identified 
in the literature as nonetheless induced by type I interferon: DDX608,9, SAMD98, IFI27L110, and HERC611. Thus 
only two of the thirteen genes (the pseudogene MROH3P and CCDC77) have no reported roles related to type 
I interferon. Gene ontology overrepresentation analysis of these thirteen genes revealed biological processes 
related to type I interferon and response to virus as the overrepresented processes with the smallest adjusted 
p-values (complete overrepresentation analysis results are provided as Supplemental File 1).   
 
While the dominant role of genes differentially expressed in rectal tissue during daily oral TDF/FTC was related 
to type I/III interferon signaling, the differentially expressed genes in the duodenum had different roles. For 
the genes that were downregulated in the duodenum during treatment, the top biological processes related 
to cellular metabolism, suggesting that oral TDF/FTC caused reduced expression of genes involved in 
metabolism, especially of lipids and carbohydrates. The upregulated genes were related to a variety of 
biological processes including RNA splicing and phospholipid transport (complete overrepresentation analysis 
results are provided as Supplemental File 1).   
 
Correlation of fold changes across study arms 
While no genes met the FDR < 0.05 threshold for differential expression in the rectum in ACTU-3500, the fold 
changes of the 13 differentially expressed genes from the rectum in MTN-017 were strongly correlated with 
the fold changes of these same genes in the rectum in ACTU-3500 and two, ISG15 and DDX60, had unadjusted 
p-values less than 0.05 (Figure 2A, left). The Spearman correlation coefficient of the fold changes between the 
two studies for those 13 genes was 0.91, as compared to 0.07 for all other genes detected in the rectum in 
both studies.   
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Similarly, there was a strong correlation between the fold changes of the 13 differentially expressed genes in 
the rectum from MTN-017 with the fold changes of the same genes in the duodenum in ACTU-3500, as shown 
in Figure 2A (right). Only one of these genes had an FDR-adjusted p-value of less than 0.05 in the duodenum, 
but all 13 had positive fold changes and unadjusted p-values less than 0.05. The Spearman correlation 
coefficient for these 13 genes was 0.81, as compared to 0.06 for genes that were not differentially expressed 
in either study. The correlation of the differentially expressed genes from the duodenum with the same genes 
in the rectum in MTN-017 was 0.13.  
 
Gene set testing of gene sets of differentially expressed genes 
To further compare expression patterns across study arms, we created three gene sets consisting of all of the 
differentially expressed genes: the 13 genes that were higher during treatment in the rectum, the 116 that 
were higher in the duodenum, and the 135 that were lower in the duodenum (the complete gene set lists are 
provided in the supplement and consist of all the genes with FDR < 0.05). We then used gene set testing (as 
described in the Methods) to test whether these gene sets were enriched in the microarray data from the 
other study arms. As shown in Figure 2B, the set of genes upregulated in the rectum was positively enriched 
(higher expression during treatment) in the rectum and duodenum in the ACTU-3500 study as well as the 
ectocervix (Figure 2B, left) in the GMS A study. This means that the genes that were upregulated by TDF/FTC in 
the rectum in MTN-017 tended to also be expressed more highly during TDF/FTC in the rectum and duodenum 
in ACTU-3500. The same gene set was up in one PBMC (Figure 2B, right) arm in the GMS A study, down in 
whole blood, and neither in three other PBMC arms. This result suggests that changes in gene expression seen 
in the rectum in MTN-017 also occurred in other mucosal tissues in other studies, but not in the blood.  
 
The 116 genes that were upregulated in the duodenum were also enriched in the same direction in both rectal 
study arms and in one PBMC study arm. They were enriched in the opposite direction in the vagina and 
ectocervix. The 135 genes that were downregulated in the duodenum were only enriched in two study arms, 
both of which were PBMC. This result suggests that gene expression changes seen in the duodenum were less 
generalizable to other tissues and study arms than the changes in the rectum. Complete gene set testing 
results are provided as supplementary data files. 
 
Taken together, the results shown in Figures 1 and 2 suggest that the oral use of TDF or TDF/FTC affects the 
expression of relatively few genes. In particular, we did not find any evidence of differential gene expression in 
the blood, despite assessing both PBMC and whole blood in several distinct cohorts. We did detect 
differentially expressed genes in the gastrointestinal tract, specifically the rectum and the duodenum. The 13 
genes that were differentially expressed in the rectum in MTN-017 also increased in expression in the 
duodenum and rectum in ACTU-3500, with large correlation coefficients for their fold changes. The genes that 
were differentially expressed in the duodenum, by contrast, did not have highly correlated fold changes in 
other study arms. Gene set testing supported this finding. This suggests that those 13 genes, most of which 
are interferon-related, may represent an underlying biological pathway that is affected by TDF/FTC in the 
gastrointestinal tract.  
 
Gene set testing of Hallmark gene sets 
To assess higher level biological effects, we tested the fifty Hallmark gene sets12 against each study arm and 
specimen type. Each gene set comprises genes that are involved in a biological state or process. The gene sets 
that had adjusted p-values below 0.05 in at least two study arms for tissue and blood are shown in Figure 3A-
B. Complete gene set testing results are provided as supplementary data files. 
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For tissue (Figure 3A), thirteen gene sets had adjusted p-values below 0.05 in at least two study arms. Of these 
gene sets, four were related to immunity (allograft rejection, interferon-α and -γ responses, and TNF-α 
signaling via NF-κB), and four were related to cell proliferation (E2F targets, G2M checkpoint, and two MYC 
targets gene sets). In all but one case, the immune related gene sets were enriched in the positive direction, 
meaning that the genes in the sets tended to be expressed at higher levels during product use. All four of the 
immune-related gene sets were enriched in the ectocervix, and several were enriched in the gastrointestinal 
tract or vagina, in particular the interferon-α response gene set. All four proliferation-related sets were 
enriched in the vagina and duodenum during TDF/FTC use, being higher in the duodenum and lower in the 
vagina. Two proliferation-related gene sets (Myc targets v1 and v2) went up in the rectal biopsies from ACTU-
3500. The same two gene sets went down in the rectal biopsies from MTN-017. Overall, TDF/FTC seemed to 
induce interferon-α responses in the gastrointestinal tract and to suppress inflammatory responses in the 
blood.  
 
Only two gene sets had adjusted p-values below 0.05 in at least two study arms for blood samples (Figure 3B). 
Both of the gene sets were immune-related (complement, interferon-γ response, and TNF-α signaling via NF-
κB). In all cases, these gene sets were enriched in the negative direction, meaning that the genes in the sets 
tended to be expressed at lower levels during product use. This result suggests that TDF/FTC has a somewhat 
dampening effect on interferon-γ and tumor necrosis factor-α-related gene expression in the blood.  
 
ddPCR validation of microarray data 
We used ddPCR to measure the expression of three genes—ISG15, IFI6, and MX1—chosen to represent the 
type I/III interferon-related genes that increased in expression in the duodenum and rectum during TDF/FTC 
treatment. Out of the 13 genes that were differentially expressed in MTN-017, these three genes had the 
highest fold changes in the rectum in MTN-017 and ACTU-3500 and were among the top five in the duodenum 
in ACTU-3500. The expression of each gene of these three genes was normalized to the expression of ubiquitin 
C (UBC), which was chosen as reference due to the stability of its expression across tissues and treatments in 
the microarray data.  
 
The fold changes for ddPCR and microarray are shown in Figure 4. In all cases, the changes were in the same 
direction by ddPCR as they were by microarray, and the sizes of the changes were similar between the two 
methodologies, though the magnitudes tended to be larger by ddPCR than by microarray. The participant-
level fold changes calculated from ddPCR measurements correlated well with the microarray data. The 
Pearson correlations were 0.93 for MX1, 0.92 for ISG15, and 0.90 for IFI6. Taking each gene separately and 
stratifying by study, sample type and gene, Pearson correlations ranged from 0.54 to 0.99, with a mean of 0.86 
and median of 0.92. These data suggest that the microarray data provide reasonable estimates of gene 
expression levels and fold changes and add confidence to our conclusions that genes related to type I/III 
interferon are induced in the gut, but not the blood, by oral TDF/FTC.  
 
RNA sequencing of MTN-017 
In addition to microarrays, the RNA from MTN-017 was analyzed by RNA sequencing, to potentially take 
advantage of its wider dynamic range and ability to pick up novel transcripts and/or variants. As shown in 
Figure 5AB, two genes were differentially expressed in the RNAseq data (at an FDR-adjusted p-value threshold 
of 0.05), both higher during TDF/FTC treatment than at baseline: IFIT1, which was also differentially expressed 
by microarray, and SLC6A20 (solute carrier family 6 member 20), which was not. When we looked at 
correlations of fold changes between the microarray and the RNAseq data from MTN-017, we saw an overall 
Spearman correlation coefficient of 0.34. The correlation coefficient was 0.84 when only looking at the genes 
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differentially expressed by microarray (Figure 5B). In other words, the genes that were differentially expressed 
by microarray tended to have similar fold changes by RNAseq.  
 
By virtue of having both microarray and RNAseq data on the same samples, we were able to look at genes that 
had similar fold changes by both methodologies. We looked at genes that had log2-fold changes below -0.25 
or above 0.25 by both assays. Only twelve genes fell into the downregulated group and none had adjusted p-
values below 0.05 by either assay but, strikingly, eight were metallothioneins (MT1A, 1E, 1F, 1G, 1H, 1M, 1X, 
and 2A), which bind to heavy metal ions. There were 28 genes with fold changes above 0.25 by both 
microarray and RNAseq, including 11 of the 13 genes that were differentially expressed (as defined by 
adjusted p-value) by microarray. Many of the additional genes were also related to type I/III interferon 
signaling: IRF7, IRF9, OAS2, OAS3, IFITM1, and IFI44L, for example. Overrepresentation analysis of these 28 
genes (with or without the 11 differentially expressed genes from the microarray) again yielded many gene 
ontology biological processes related to type I/III interferon signaling.  
 
Mass spectrometry-based proteomics of MTN-017 
Rectal biopsies from MTN-017 were run by mass spectrometry for protein identification. The biopsies were 
run in two batches, with the samples from American participants in one batch and samples from Thai 
participants in the other. In both cases, no proteins were detected as differentially expressed after adjustment 
for multiple comparisons (Figure 5C). A complete list of protein fold changes is provided as supplementary 
data. 
 
When we compared the fold changes of all proteins or the proteins that had unadjusted p-values below 0.05 
between transcript and protein (Figure 5D), we found little correlation. However, we were particularly 
interested in assessing the fold changes of the protein forms of the 13 differentially expressed genes we 
identified by microarray in the same study. None of these proteins were present in the American participant 
batch. However, five (ISG15, MX1, OAS1, DDX60 and SAMD9) were present in the samples from the Thai 
participants. Four of the five proteins had positive fold changes (all except SAMD9) and there was a strong 
correlation between the fold changes detected by microarray and mass spectrometry (Spearman correlation 
coefficient of 0.8; Figure 5D). These data suggest that the upregulation of certain type I/III interferon genes by 
TDF/FTC seen at the RNA level may extend to the protein level.   
 
Microscopy 
Because we found increased expression of some type I IFN-related genes in the gut during TDF/FTC use, we 
evaluated the expression of ISG15 and MX1 by immunofluorescence microscopy in duodenal and rectal 
biopsies from ACTU-3500. Slides were evaluable from 8 pairs of duodenal biopsies and 6 pairs of rectal 
biopsies (before and during treatment). ISG15 was expressed by few if any stromal cells. In contrast, we found 
ISG15 expression in essentially all epithelial cells (Figure 6A) and its expression could be divided into dim and 
bright cells (Figure 6A). The intensity of ISG15 staining did not change within either category of cell with 
TDF/FTC use (Figure 6B). However, the percentage of cells falling into the bright category (Figure 6C) increased 
in both the rectum (increase of 0.43 percentage points, Bonferroni-adjusted p-value = 0.009) and the 
duodenum (0.43 percentage points, Bonferroni-adjusted p-value = 0.25).  
 
Because MX1 was expressed in the epithelium and the stroma, we assessed its expression in both locations 
(Figure 6D). Within the stroma, preliminary test staining of biopsies from two individuals showed that MX1 
was associated mostly with DC-SIGN+ dendritic cells (Figure 5D), whereas few CD68+ macrophages or CD3+ T 
lymphocytes expressed MX1 (not shown). We therefore co-stained for DC-SIGN in all biopsies and stratified 
stromal cell analysis by DC-SIGN+ and DC-SIGN- cells. We did not detect a change in the intensity of MX1 
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expression in any of the groups (Figure 5E; all Bonferroni-adjusted p-values > 0.45). The differences were small 
and increased in most cases. In summary, ISG15 and MX1 protein levels were mostly stable by 
immunofluorescence microscopy, but TDF/FTC use increased the proportion of cells expressing high levels of 
ISG15.  
 
Signature of TDF/FTC effect on the gastrointestinal mucosa 
In total, we had data on gene expression after TDF/FTC treatment for two months from two different 
anatomical sites in the gastrointestinal tract (rectum and duodenum), two different studies (MTN-017 and 
ACTU-3500), and several different assays (microarray, RNAseq, ddPCR, and mass spectrometry-based 
proteomics). As shown above (Figures 2, 4 and 5), the differentially expressed genes from the rectum in MTN-
017 by microarray had similar fold changes when assessed by different assays, in different studies, and at 
different sites. These data are summarized in Figure 7 and show that in general the 13 genes were consistently 
upregulated during TDF/FTC treatment regardless of study, assay, or site in the gastrointestinal tract. In 
particular, IFI6 and IFI27 (which with the also differentially expressed IFI27L1 form three of the four FAM14 
family members13) as well as ISG15, MX1, DDX60, RSAD2, and IFIT1 showed very consistent upregulation. On 
the other hand, CCDC77 and MROH3P—the only two genes in the set that have not been shown to be related 
to type I/III interferon signaling—do not show convincing evidence of being affected by treatment, suggesting 
that these two genes may have been false positives. The overall consistency of the results, in particular for the 
genes related to type I/III interferon, strengthens the evidence for TDF/FTC-induced changes in the 
gastrointestinal mucosa.   
 
Discussion 
In the studies described here, we found that oral treatment with TDF/FTC or TDF alone had limited effects on 
host gene expression, with no differentially expressed genes in the blood or female reproductive tract and 
tens to hundreds in the gastrointestinal tract. Notably, though, genes related to type I/III interferon signaling 
were common among the TDF/FTC-induced genes in the gut, with good agreement between the microarray 
hybridization and RNA sequencing platforms. ddPCR testing of ISG15, IFI6, and MX1 expression levels 
confirmed the microarray/RNAseq findings. Protein-level data by mass spectrometry-based proteomics, as 
well as focused immunohistology of gut sections for MX1 and ISG15, were largely in congruence.  
 
The limited gene expression changes we found here indicate that TDF/FTC have few off-target effects on host 
gene expression. TDF/FTC’s limited effects on host gene expression are reassuring in light of its widespread 
use among HIV-infected individuals for treatment and HIV-uninfected individuals for prevention.  
 
The main gene expression change caused by TDF/FTC was increased expression of interferon-stimulated genes 
in the gastrointestinal tract. We found 13 differentially expressed genes in the rectal samples from MTN-017, 
eleven of which were type I/III interferon-related. As shown in Figure 7, the differentially expressed genes 
from the rectum from the MTN-017 microarrays changed in similar ways in other studies, anatomical sites, 
and assays. The fold changes of these genes in MTN-017 strongly correlated with their fold changes in the 
rectum and duodenum in ACTU-3500, a smaller, independent cohort, though in that study most of these 
genes had FDR-adjusted p-values > 0.05. In addition, similar changes were seen to these genes as measured by 
ddPCR and RNA sequencing, as well as to protein forms as measured by proteomics and immunohistology. 
These eleven type I/III interferon-related genes may represent a signature of TDF/FTC-induced changes in the 
gastrointestinal tract. A targeted assay measuring expression of some of these genes could provide a tool for 
future studies to monitor the effect of TDF/FTC use at other sites and time points, including in treated HIV-
infected individuals, a group not studied here. 
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Type I and type III interferons stimulate very similar interferon-stimulated genes, making it difficult to 
differentiate which type of interferon is being affected on the basis of changes to interferon-stimulated genes 
alone14. We have therefore referred to these genes as type I/III interferon-related throughout. Type III 
interferon signaling plays an important role in the epithelium and its receptors are predominantly expressed 
on epithelial cells15. The fact that we saw changes in interferon-stimulated genes only in mucosal samples may 
indicate that the changes seen here are type III interferon signaling, but determining with confidence whether 
TDF/FTC affects primarily type I or type III interferons will require further research. 
 
Moreover, we cannot yet explain how TDF/FTC induce the type I/III interferon gene expression changes. Our 
data did not provide information about whether the gene expression changes were initiated by IFN-α, IFN-β 
(type I interferons) or IFN-λ (type III interferon) secretion, as these cytokines were not detectable by 
microarray, RNAseq, or mass spectrometry. Nevertheless, our data indicate that the finely tuned balance 
between type I/III activating signals that induce antiviral states and promote immune responses and 
suppressive signals that limit toxicity are perturbed by TDF/FTC16. Intracellular upregulation of the three most 
highly and consistently induced factors, ISG15, MX1 and IFI6, increases the antiviral state of a cell17. However, 
ISG15, for example, can also be secreted, and adopt cytokine-like functions that may affect neighboring and 
even distant immune cells18.  
 
Thus, stimulation of interferon pathways by TDF/FTC could have beneficial or detrimental effects. On the one 
hand, increased type I/III interferon signaling could enhance innate immune response readiness, in particular 
anti-viral preventative or treatment efficacy. On the other hand, it may play a role in the persistent immune 
activation seen in HIV-infected patients. The causes of chronic immune activation despite fully suppressive 
antiretroviral therapy (ART) remain unclear; it is possible that long-term ART may itself contribute through 
stimulation of type I interferon pathways in the gastrointestinal tract. The effects we observed after two 
months of drug use were relatively mild (less than 2-fold in the rectum, less than 4- to 6-fold in the 
duodenum). However, their biological impact may accumulate over long periods of treatment, especially in 
HIV-infected individuals that develop comorbidities already associated with chronic inflammation as they age, 
such as cardiovascular disease19. 
 
By changing type I/III interferon signaling, TDF/FTC may affect the latent HIV reservoir as well. Blocking of 
interferon-stimulated gene signaling reduced the frequency of HIV reservoir cells and caused delayed HIV 
rebound after ART discontinuation in two studies in humanized mice20–22. In contrast, interferon-α treatment 
of ART-treated macaques failed to reduce the size of the HIV reservoir23. Thus, type I/III interferon pathway 
stimulation by TDF/FTC could have a stabilizing effect on the HIV reservoir.  
 
It is notable that the type I/III interferon-pathway stimulation we observed with TDF/FTC occurred in the 
gastrointestinal tract and was not detected in the blood. The gastrointestinal tract is where HIV spreads most 
devastatingly during initial infection and where a large latent reservoir is established24. On ART the vast 
majority of latently infected cells capable of producing virus resides in the gut25. Thus, the gene expression 
changes we observed occur at precisely the site where they may be most likely to affect the HIV reservoir. The 
explanation for gene expression changes being restricted to the gastrointestinal tract may be the high 
concentrations achieved there with oral dosing. However, the detection of some gene expression changes (at 
the gene set level and perhaps by ddPCR) in the ectocervix (where drug concentrations are presumably lower) 
argues against this. Optimization of formulation to avoid excessive drug concentrations in the gut may reduce 
off-target effects. Tenofovir alafenamide, for example, yields significantly lower drug levels in the gut but 
retains equivalent efficacy compared to TDF, the formulation studied here26.  
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Oral PrEP more effectively prevents rectal than vaginal HIV transmission27. The gene expression changes 
caused by TDF/FTC occurred primarily in the gastrointestinal mucosa and not in the female genital tract. If the 
induction of type I/III interferon genes by TDF/FTC causes increased antiviral efficacy, this could be an 
explanation for oral PrEP’s greater efficacy in the rectum than in the vagina. Other explanations that have 
been proposed include pharmacokinetic differences in tenofovir levels between vaginal and rectal tissues28 
and perturbations of tenofovir metabolism by a dysbiotic vaginal microbiome29.  
 
In addition to changes to immune-related gene expression in the gastrointestinal tract, the other notable gene 
expression changes we observed related to cell proliferation. Specifically, we saw some evidence of increased 
expression of gene sets related to cell proliferation in the duodenum, and reduced expression of these gene 
sets in the vagina. Proliferation-related gene sets were conflicting in the rectum (two sets up in one study, one 
set down in the other). It is difficult to speculate about the clinical relevance of changes to cell proliferation 
pathways. Factors associated with cell cycle regulation are crucial to balance cell proliferation with cell death, 
and for cells to respond to DNA damage. TDF/FTC’s effect on cell cycle processes in the duodenum may not be 
surprising given the increased drug concentrations likely achieved in the upper gastrointestinal tract. Long-
term, high concentration oral administration of TDF to mice has been reported to cause a low incidence of 
duodenal tumors (Canadian product monograph for VIREAD) and liver adenomas (US prescribing information 
for VIREAD). It is unclear whether our findings with human duodenal biopsies relate in any way to these 
outcomes in rodents and no such findings have been reported during human use. 
 
Our study has a few limitations. One is the use of within-person comparisons between on- and off-drug. As 
participants were aware of when they were or were not taking an intervention, behavioral changes or other 
factors than the drug itself could explain the gene expression changes we observed. The only study where 
placebo was compared to treatment is the GMS B study, in which the only available samples were PBMC and 
no differentially expressed genes were observed. Another limitation is that the ddPCR and RNAseq 
confirmations were performed on the same RNA samples as the microarrays. In our study, we looked for gene 
expression changes at the level of tissue, PBMC, and whole blood. If we had looked at specific cell types, we 
may have seen different results, as there is evidence that PrEP alters the composition of immune cells in 
tissues in the female genital tract and the blood30. We were also limited in our ability to differentiate effects of 
FTC from those of TDF, given that only a limited set of participants received TDF alone and none received FTC 
alone. Importantly, we also do not know if the effects of TDF and FTC extend to other drugs of the NRTI class. 
This is an important question, which we will attempt to answer in a planned clinical trial comparing NRTI-
based ART regimens to an NRTI-sparing one. The NRTI-sparing arm will reveal whether switching away from 
NRTI-based therapy may decrease chronic immune activation and affect the dynamics of the latent reservoir. 
 
In conclusion, our results are reassuring in terms of safety of oral TDF or TDF/FTC for therapy and prevention 
and thought-provoking in terms of the potential ramifications of increased type I/III interferon-related gene 
expression in the gastrointestinal tract. Increased expression of the 13 differentially expressed genes from 
MTN-017—or of ISG15, IFI6, and MX1 by themselves—may represent a signature of the effect of TDF/FTC on 
the gastrointestinal tract. Follow-up studies are required to clarify whether this newly uncovered effect has 
any bearing on chronic immune activation or HIV reservoir dynamics.  
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Methods 
 
Studies 
Samples were used from four studies, which are described in Table 1. Two sets of samples were used from the 
Genital Mucosal Substudy (GMS)5 of the Partners PrEP Study6: paired samples during and after treatment 
(GMS A) and unpaired placebo vs. treatment samples (GMS B). The samples all came from the same parent 
study, but were processed separately. The Microbicide Trials Network trial 017 (MTN-017) included oral 
TDF/FTC as well as topical tenofovir; only the oral TDF/FTC samples are included in this analysis. Rectal 
biopsies taken after two months of oral TDF/FTC use were compared to baseline samples. ACTU-3500 
followed nine men initiating oral PrEP with TDF/FTC in Seattle, with a baseline visit and a visit after two 
months of PrEP use. Eight men completed both visits; the ninth moved out of state before the second visit. 
Ethics reviews are published in the primary manuscripts for the GMS and MTN-017 studies (listed in Table 1). 
ACTU-3500 was reviewed through the University of Washington institutional review board, number 49167. 
Sample sizes varied within each trial depending on drug (TDF/FTC or TDF) and sample type. Complete sample 
size information is listed in Table 1. 
 
Gene expression was measured in this study at the level of RNA and protein using a number of different 
assays, as indicated in Table 1. RNA levels of most human genes were measured by microarray for all samples. 
For almost all samples (excepting GMS A vagina and GMS B), the RNA levels of a select few genes were 
measured by ddPCR to assess the consistency of our findings by a different method. In addition, RNA levels 
were measured by RNA sequencing for the MTN-017 study in order to assess consistency across a third 
method. In addition to measuring RNA levels, we measured protein levels. Samples from MTN-017 were 
measured by mass spectrometry, which measures the level of expression of thousands of proteins. Finally, 
samples from ACTU-3500 were used for microscopy to measure protein expression level and localization of 
selected proteins of interest. We chose to use multiple assays and measure expression at the RNA and protein 
level to add robustness to our study design.    
 
Adherence 
Tenofovir levels were measured in the serum for the GMS A and GMS B studies as previously described31. 
Samples from the treatment arm without detectable tenofovir were removed, as was one post-treatment 
sample, where drug was unexpectedly detected. 
 
Tenofovir levels were measured in serum in the MTN-017 study. Adherence was high in the oral arm of this 
study, with 94% of participants taking the daily pill at least 80% of the time32. Participant report of pill use was 
largely concordant with serum tenofovir levels, with only 4.4% of serum samples having no detectable 
tenofovir when participants reported product use. All samples from this study were included.  
 
Adherence was determined for the ACTU-3500 study by participant self-report. All participants reported daily 
use of TDF/FTC throughout the study period.  
 
Sample processing and storage  
Vaginal, cervical, and rectal biopsies were obtained in GMS A and B and MTN-017 as described in the primary 
manuscripts5–7. Rectal biopsies were obtained in ACTU-3500 by anoscopy using Radial Jaw 4 biopsy forceps 
(Boston Scientific).  Duodenal biopsies were obtained by esophagogastroduodenoscopy under light anesthesia 
also using Radial Jaw 4 biopsy forceps. Biopsies were placed into RNALater Stabilization Solution 
(ThermoFisher Scientific, Waltham, MA, USA) and held at 4oC for 24 h and then frozen at -80oC. PBMC were 
isolated from whole blood by density gradient centrifugation and then cryopreserved and stored in the vapor 
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phase of a liquid nitrogen freezer. Whole blood was drawn into PAXgene tubes (PreAnalytiX, Hombrechtikon, 
Switzerland), which were frozen at -20oC for 24 h and then stored at -80oC.   
 
RNA extraction and quality control 
Biopsies were thawed at room temperature. They were transferred with forceps into 600 µL of Buffer RLT 
(Qiagen, Hilden, Germany) and homogenized using a Bio-Gen PRO200 homogenizer (PRO Scientific, Oxford, 
CT, USA) followed by passing 10 times through a needle and syringe. RNA was extracted using the RNeasy 
fibrous tissue mini kit (Qiagen) automated on a QIAcube (Qiagen). PBMC were thawed, washed by 
centrifugation, counted, and RNA was extracted using the RNeasy mini kit (Qiagen) on a QIAcube. PAXgene 
tubes were thawed and held at room temperature for 3 h with occasional mixing, in order to completely lyse 
red blood cells. RNA was extracted from PAXgene samples using the PAXgene Blood RNA kit (PreAnalytiX) 
according to the manufacturer’s instructions. RNA was stored at -80oC until use.  
 
Sample quality control 
Cell viability was measured prior to RNA extraction for PBMC samples (Guava Viacount, EMD Millipore, 
Burlington, MA, USA). The quality of all RNA was determined using the RNA integrity number as calculated 
from the TapeStation R6K assay (Agilent, Santa Clara, CA, USA) and the concentration was determined by 
NanoDrop (ThermoFisher).  
 
Microarray labeling and hybridization 
For the GMS A and GMS B studies, samples were prepared for microarray using 50 ng of total RNA with the 
Ovation PicoSL WTA System V2 kit (NuGEN, San Carlos, CA, USA) and labeled with the Encore BiotinIL kit 
(NuGEN). The Illumina TotalPrep RNA Amplification kit (ThermoFisher) was used to prepare samples for 
microarray from the ACTU-3500 study (275 ng total RNA as input) and the MTN-017 study (500 ng input), with 
input sizes chosen based on available RNA. 
 
750 ng of the labeled cDNA (from the NuGEN kits) or cRNA (from the Thermo kit) was hybridized to HumanHT-
12 v4 Expression BeadChips (Illumina, San Diego, CA, USA) and scanned by the Fred Hutch Genomics Core 
facility. Images were converted to expression data using GenomeStudio (Illumina). 
 
Microarray analysis 
Microarray analysis was done using R. All microarrays were pre-processed within study and sample type using 
variance stabilizing transformation33 and robust spline normalization from the lumi package34. Probes that 
were rarely expressed in a given study arm were removed. 
 
Differential gene expression was assessed using the limma package,35 which fits a linear model to each probe 
measured in the microarray, calculates empirical Bayes moderated t-statistics, and adjusts probe-level p-
values for multiple comparisons to control the false discovery rate using the method of Benjamini and 
Hochberg36.  In general, paired models were fit, with modeling done separately for each sample type and 
study (due to the separate preprocessing of different sample types). For the ACTU-3500 and MTN-017 study, 
within-participant comparisons were done comparing baseline samples to those obtained at the end of two 
months of treatment. Similar within-participant comparisons were done for the GMS A study, with the 
difference that samples during treatment were compared to samples taken two months after the end of 
treatment. For the GMS B study, treatment samples were compared to samples taken at the same time point 
from placebo recipients.  Individual probes with an adjusted p-value of less than 0.05 were defined as 
differentially expressed. Gene set testing was done using the camera function from limma,37 using the default 
inter-gene correlation of 0.01. The camera function is a competitive gene set, meaning that it tests whether 
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the genes in a set are highly ranked as compared to genes outside of the set. The same threshold of 0.05 was 
used for gene sets, where p-values were adjusted using the false discovery rate for the number of gene sets 
times the number of study arms tested (e.g. 50 Hallmark gene sets * 11 study arms). Because there are 
multiple probes for some genes, probes were collapsed into genes by taking the probe with the lowest 
adjusted p-value for each gene38.  
 
Thirteen cervical samples from the GMS A study clustered separately on principal components analysis plots 
from the rest of the cervical samples. Differential gene expression analysis comparing this cluster to the rest of 
the cervical samples revealed tens of thousands of genes to be differentially expressed and suggested that 
these samples may have included endocervical tissue, rather than only ectocervical as intended, possibly due 
to cervical ectopy. Keratin genes and gene ontology processes related to keratinocyte and epidermal 
development were higher in the main group of cervical samples, while the small cluster had higher expression 
of processes related to cilia movement and development, consistent with the ciliated epithelial cells of the 
endocervix. Because gene expression differed so dramatically in the thirteen cervical samples in question, we 
removed them from the analysis.  
 
Reverse transcription and ddPCR of selected genes 
We used all the paired samples with sufficient RNA available to repeat measurements of transcript levels for 
MX dynamin like GTPase 1 (MX1), ISG15 ubiquitin-like modifier (ISG15), and interferon-α inducible protein 6 
(IFI6) by ddPCR assay. As the reference gene, we used Ubiquitin C (UBC), selected based on a comparison of 
commonly used reference genes in the microarray data. Among those genes, UBC was expressed in all sample 
types and the average fold change (across different sample types and studies) was close to 0 and the standard 
deviation was small. The samples used for ddPCR were the same as used for microarray, except that the GMS 
B samples were not used (because they were unpaired), the number of sample pairs was reduced by one each 
for the vaginal and ectocervical samples from the TDF arm of the GMS A study because of insufficient RNA 
remaining from those samples. The vaginal samples from the TDF/FTC arm of the GMS A study were not 
tested by ddPCR because the sample size was so low (only three pairs of samples). 
 
Reverse transcription was performed using 100 ng of RNA per sample in a 20 µL reaction mixture using qScript 
cDNA Synthesis Kit (QuantaBio, Beverly, MA, USA) according to the manufacturer’s instructions. The 
incubation conditions were 22oC for 5 minutes, 42oC for 30 min, and then 85oC for 5 min. After reverse 
transcription, the samples were diluted to 100 µL with water and 5 µL (cDNA equivalent of 5 ng RNA) was used 
per ddPCR well.  
 
The primers and probes used for ddPCR are shown in Supplementary Table 2 and were purchased from 
Integrated DNA Technologies (Skokie, IL, USA). Assays were run in duplex (IFI6 on the FAM channel with MX1 
on the HEX channel in one set of wells and ISG15 on the FAM channel with UBC on the HEX channel in a 
second set of wells). Each sample was run in duplicate for each assay. Sample pairs (i.e. on- and off-treatment) 
were always run on the same plates. ddPCR was performed using ddPCR Supermix for Probes (no dUTP), with 
droplets generated on a QX200 Automated Droplet Generator and droplets read on a QX200 Droplet Reader 
according to the manufacturer’s instructions (Bio-Rad, Hercules, CA, USA).  
 
The ddPCR data was analyzed using QuantaSoft version 1.7.4.0917 (Bio-Rad). The same fluorescence 
thresholds were applied to all samples across all plates. Wells with fewer than 10,000 droplets were removed. 
Concentrations of IFI6, MX1 and ISG15 were divided by the concentration of UBC from the corresponding 
sample to yield copies of each gene per copy of UBC. This value was log2-transformed to convert it to a normal 
distribution and place it on a comparable scale to the microarray data. Replicate wells were then averaged. 
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Fold changes were calculated by subtracting the expression level from the off-treatment sample from the on-
treatment sample.     
 
RNA sequencing in MTN-017 
Total RNA prepared above was normalized to 300 ng input for library preparation with the TruSeq Stranded 
Total RNA with Ribo-Zero Globin kit (Illumina). The resulting libraries were assessed on the Agilent Fragment 
Analyzer with the HS NGS assay (Agilent) and quantified using the KAPA Library Quantification Kit (Roche) on a 
ViiA 7 Real Time PCR platform (Thermo Fisher). High depth sequencing (50 million reads per sample) was 
performed with a HiSeq 2500 (Illumina) on two High Output v4 flow cells as a 50 base pair, paired-end run.  
Raw demultiplexed fastq paired end read files were trimmed of adapters and filtered using the program 
skewer39 to remove any reads with an average phred quality score of less than 30 or a length of less than 36 
bp. Trimmed reads were aligned using the HISAT240 aligner to the Homo sapiens NCBI reference genome 
assembly version GRCh38 and sorted using SAMtools41. Aligned reads were counted and assigned to gene 
meta-features using the program featureCounts42 as part of the Subread package.  Counts data were analyzed 
analogously to the microarray data, using the voom function from limma and then fitting models for each 
transcript. Because the samples were processed in two batches, batch number was included in the model in 
addition to participant ID and treatment.  
 
Proteomics in MTN-017 
Frozen rectal biopsies from MTN-017 were processed as described previously43. For protein extraction, tissues 
were washed 3 times with 10 mM Tris (pH 7.6), placed in 5 mL of a lysis solution consisting of 7 M Urea, 2 M 
Thiourea, 40 mM Tris, and 10 mM DTT, and homogenized with a gentleMACS Octo Dissociator (RNA02-01M 
setting, Miltenyi Biotec, Bergisch Gladbach, Germany). Precipitates were removed by centrifugation at 9000 g 
for 20 minutes at 4oC, transfer of supernatant to a new tube, and a second round of centrifugation at 15,000 g 
for 20 minutes. Supernatants were stored at -80oC. Trypsin digestion was performed as described previously44. 
Briefly, for each sample, 600 µL of tissue lysate was denatured in urea exchange buffer (8 M Urea in 1:10 0.5 
M HEPES:water solution, GE HealthCare, Uppsala, Sweden) and filtered through a 10 kDa membrane. Filtered 
lysates were alkylated with 50 mM iodoacetamide for 20 minutes, and then washed with 50 mM HEPES 
buffer. Nucleic acids were removed by treatment with benzonase (150 units/µL in HEPES with MgCl2, 
Novagen, Darmstadt, Germany) for 30 minutes, and then lysates were washed with HEPES buffer. Trypsin 
digestion (2 µg trypsin per 100 µg protein, Promega, WI, USA) was performed overnight at 37oC. Eluted 
peptides were dried using a speed vacuum and then stored at -80oC. Reverse-phase liquid chromatography 
using a step-wise gradient was used to remove salts and detergents. Peptide quantification was performed 
with the LavaPep Fluorescent Protein and Peptide Quantification Kit (Gel Company, San Francisco, CA, USA).  
 
Mass spectrometry was performed using a nano flow liquid chromatography system (Easy nLC, Thermo Fisher) 
connected inline to a Velos Orbitrap mass spectrometer as described previously45,46. One µg of peptide was 
run for each sample. Feature detection, normalization, and quantification were performed using Progenesis 
LC-Mass Spectrometry software (Nonlinear Dynamics, Newcastle upon Tyne, UK) with default settings. 
Peptides were found using Mascot v.2.4.0 (Matrix Science, Boston, MA, USA) to search against the SwissProt 
database47 restricting taxonomy to Human. Search results were imported into Scaffold (Proteome Software, 
Portland, OR, USA) for peptide identification, requiring ≤0.1 FDR for protein identification, ≤0.01 FDR for 
peptide identification, and at least 2 unique peptides identified per protein. Samples were run in two batches, 
with US participants in one batch and Thai participants in the other. Data from the two cohorts were 
combined using Combat48. 
 
Immunofluorescence microscopy  
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Pairs of rectal and duodenal biopsies from eight subjects were stained for ISG15 or for MX1 and DC-SIGN 
protein for immunofluorescence microscopy. Each pair consisted of one pre- and one on-treatment (~60 days) 
sample from the ACTU-3500 study. Two rectal biopsies were of poor quality, so they and their pairs were 
excluded from analysis, reducing the sample size for the rectal biopsies to six pairs. The biopsies were 
collected into RNAlater Stabilization Solution (ThermoFisher), held at 4 oC overnight, and then stored at -80 oC. 
Prior to use, biopsies were thawed, fixed in 10% neutral buffered formalin for 3 days, and stored in 70% 
ethanol until paraffin embedding. Four micron thick sections were cut, attached to positively-charged slides 
and baked at 60 oC for 1 h, with each slide holding one pre- and one on-treatment tissue section from the 
same participant. The histopathologist and data analyst were blinded to treatment status. Staining was 
performed using the procedure described previously49. Primary antibodies were anti-MX1 antibody (Atlas 
Antibodies Cat#HPA030917, RRID: AB_10602010), anti-DC-SIGN (Santa Cruz (DC28): sc-65740), and anti-ISG15 
(Atlas Antibodies Cat#HPA004627, RRID: AB_1079152). 
 
Slides were scanned on an Aperio FL (Version 2; Leica Biosystems). Exposure times were 125 ms for ISG15 and 
64 ms for DAPI. For the triple stain, exposure times were 20 ms for MX1, 125 ms for DC-SIGN and 80 ms DAPI. 
Images were analyzed with HALO v2.2 image analysis software (Indica Labs, Albuquerque, NM, USA) with the 
CytoNuclear FL v1.4 algorithm. Images were annotated manually to select stroma or epithelium, which were 
analyzed separately. Individual cells were identified by the software via DAPI-stained nuclei in conjunction 
with cell-defining parameters including nuclear contrast threshold, minimum nuclear intensity, nuclear 
segmentation aggressiveness, nuclear size, minimum nuclear roundness and maximum nuclear radius. These 
parameters were set to be optimal for each pair (i.e. settings were the same for the on- and off-treatment 
pairs for each person and sample type). The ISG15 signal was so bright that the software identified 
surrounding cells as positive for ISG15, despite manual inspection clearly showing that only one central cell 
was positive. To correct for this, hierarchical clustering was used on the spatial positions of the cells identified 
as positive. A distance threshold was empirically determined to count adjacent cells as a single positive cell, 
while still identifying nearby but distinct positive cells as distinct. The output of this analysis was verified by 
comparison to manual counting. Moreover, there was a strong correlation between the percentage of cells 
that were bright for ISG15 before and after adjustment for falsely positive surrounding cells (r = 0.98 for 
duodenum and 0.95 for rectum), the numbers were simply lower (and more reflective of manual inspection) 
after adjustment.  
 
Data analysis 
Data were initially processed using instrument-specific software as described in the above sections. Following 
export from instrument-specific software, data were analyzed using R version 3.5.250 and the following 
packages from CRAN or Bioconductor51: AnnotationDbi52, Biobase51, broom53, conflicted54, edgeR55, ggrepel56, 
here57, limma35, lumi34, msigdbr58, org.Hs.eg.db59, pander60, patchwork61, plater62, RColorBrewer63, tidyverse64, 
and writexl65. R was run through RStudio version 1.1.463.  
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Tables 
Table 1. Characteristics of studies from which samples were obtained. GMS Genital Mucosal Substudy of the 
Partners PrEP study, MTN-017 Microbicide Trials Network study 017, ACTU-3500 AIDS Clinical Trial Unit Study 
3500, TDF tenofovir disoproxil fumarate, FTC emtricitabine, PBMC peripheral blood mononuclear cells. 
 

Study Drug Sample Genes up Genes down 
MTN-017 TDF/FTC Rectum 13 0 
ACTU-3500 TDF/FTC Duodenum 116 135 
ACTU-3500 TDF/FTC Rectum 0 0 
ACTU-3500 TDF/FTC Whole blood 0 0 
ACTU-3500 TDF/FTC PBMC 0 0 
GMS A TDF/FTC Vagina 0 0 
GMS A TDF Vagina 0 0 
GMS A TDF Ectocervix 0 0 
GMS A TDF PBMC 0 0 
GMS B TDF PBMC 0 0 
GMS B TDF/FTC PBMC 0 0 

Table 2. Differentially expressed genes as defined by an FDR-adjusted p-value less than 0.05, with up 
indicating higher expression during drug treatment.  
 
 
 

Study Gender Control Treatment Drug Sample N Assays 
MTN-017 
NCT016872187 

Men, trans 
women 

Pre-treatment 2 months of 
treatment 

TDF/FTC Rectum 36 pairs Microarray   
RNAseq  
ddPCR   
Proteomics 

ACTU-3500 
NCT02621242 
 

Men Pre-treatment 2 months of 
treatment 

TDF/FTC Duodenum 8 pairs Microarray   
ddPCR   
Microscopy 

TDF/FTC Rectum 8 pairs Microarray   
ddPCR   
Microscopy 

TDF/FTC Whole 
blood 

8 pairs Microarray   
ddPCR 

TDF/FTC PBMC 8 pairs Microarray   
ddPCR 

GMS A 
NCT026212425,6 

Women 2 months after 
treatment 
cessation 

24-36 months 
of treatment 

TDF/FTC Vagina 3 pairs Microarray 
TDF Vagina 12 pairs Microarray   

ddPCR 
TDF Ectocervix 9 pairs Microarray   

ddPCR 
TDF PBMC 10 pairs Microarray 

ddPCR 
GMS B 
NCT026212425,6 
 

Women Placebo 24-36 months 
of treatment 

TDF PBMC 36 drug 
20 placebo 

Microarray 

TDF/FTC PBMC 26 drug 
20 placebo 

Microarray 
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Entrez 
ID 

Gene Gene name Link to type I/III 
interferon 

Fold change 
(log2) 

FDR 

3429 IFI27 interferon alpha inducible protein 27 Gene set 0.76 3.54E-7 
2537 IFI6 interferon alpha inducible protein 6 Gene set 0.80 2.27E-4 
3434 IFIT1 interferon induced protein with 

tetratricopeptide repeats 1 
Gene set 0.75 2.49E-3 

9636 ISG15 ISG15 ubiquitin-like modifier Gene set 0.98 2.49E-3 
91543 RSAD2 radical S-adenosyl methionine domain 

containing 2 
Gene set 0.53 3.14E-3 

4599 MX1 MX dynamin like GTPase 1 Gene set 0.92 3.60E-3 
4938 OAS1 2'-5'-oligoadenylate synthetase 1 Gene set 0.32 0.016 
122509 IFI27L1 interferon alpha inducible protein 27 

like 1 
Literature10 0.25 2.27E-4 

55601 DDX60 DExD/H-box helicase 60 Literature8,9 0.39 2.49E-3 
54809 SAMD9 sterile alpha motif domain containing 9 Literature8 0.35 0.012 
55008 HERC6 HECT and RLD domain containing E3 

ubiquitin protein ligase family member 
6 

Literature8 0.31 0.049 

647215 MROH3P maestro heat like repeat family member 
3, pseudogene 

None reported 0.22 0.021 

84318 CCDC77 coiled-coil domain containing 77 None reported 0.12 0.048 
Table 3. Genes differentially expressed (higher during daily oral TDF/FTC use) in rectal biopsies in MTN-017. 
“Gene set” indicates membership in GO:0060337. “Literature” indicates that a link to type I/III interferon has 
been reported in the indicated articles.  
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Supplementary tables 
 

Study Sample RIN  
ACTU-3500 Duodenum 8.4 (7.8-9) 
ACTU-3500 Whole blood 8.1 (7.1-8.7) 
ACTU-3500 PBMC 9.6 (9.3-9.8) 
ACTU-3500 Rectum 7.9 (6.9-8.8) 
GMS A Ectocervix 8.1 (7.1-8.8) 
GMS A PBMC 8.3 (6.5-9.4) 
GMS A Vagina 8.3 (6.5-9.7) 
GMS B PBMC 9.1 (7-9.7) 
MTN-017 Rectum 7.8 (5.5-8.8) 

Supplementary Table 1: Sample quality. RNA Integrity Number (RIN) was determined by Agilent TapeStation. 
Values are displayed as mean (range). 
 

Target Assay Name Component Sequence 
IFI6 Hs.PT.58.4407609 Probe /56-FAM/CCA AGG TCT /ZEN/AGT GAC GGA 

GCC C/3IABkFQ/ 
Primer 1 GTA GCA CAA GAA AAG CGA TAC C 
Primer 2 CTG CTG TGC CCA TCT ATC AG 

MX1 Hs.PT.58.38362411 Probe /5HEX/CTT GGA ATG /ZEN/GTG GCT GGA 
TGG C/3IABkFQ/ 

Primer 1 CAT TCA GTA ATA GAG GGT GGG A 
Primer 2 TGA AAT CTG GAG TGA AGA ACG C 

ISG15 Hs.PT.58.39185901.g Probe /56-FAM/CAC CTG GAA /ZEN/TTC GTT GCC 
CGC /3IABkFQ/ 

Primer 1 GCC TTC AGC TCT GAC ACC 
Primer 2 CGA ACT CAT CTT TGC CAG TAC A 

UBC Hs.PT.39a.22214853 Probe /5HEX/TCG ATG GTG /ZEN/TCA CTG GGC TCA 
AC/3IABkFQ/ 

Primer 1 CCT TAT CTT GGA TCT TTG CCT TG 
Primer 2 GAT TTG GGT CGC AGT TCT TG 

Supplementary Table 2. Primers and probes used for ddPCR.  
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Figure 1. Gene expression changes during oral TDF or TDF/FTC product use. Changes in gene expression in 
tissue (A) and blood (B) samples. Each point represents the expression of a single gene. Positive fold 
changes indicate higher expression during product use and negative fold changes indicate lower expression 
during product use. Filled black symbols indicate genes with FDR-adjusted p-values less than 0.05, while 
open gray symbols indicate genes with FDR-adjusted p-values greater than 0.05.  
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Figure 2. Consistent changes to differentially expressed genes. (A) Fold changes of all genes detected in 
the rectal samples from MTN-017 compared to the rectal samples from ACTU-3500 (left) and the duodenal 
samples from ACTU-3500 (right). Colors indicate genes with FDR-adjusted p-values less than 0.05 in MTN-
017 (red), ACTU-3500 (blue), both (purple), or neither (gray). Spearman correlation coefficients for the 
genes falling into each subset are shown. (B) Gene sets composed of differentially expressed genes from the 
rectum in MTN-017 or the duodenum in ACTU-3500 were tested for enrichment against other study arms in 
the mucosa (left) and blood (right). Bars indicate the result of a gene set test for the gene set shown on the 
x-axis tested against the study labeled at right. Filled bars indicate an FDR-adjusted p-value less than 0.05 
and open symbols the opposite, with bar length showing the -log10 of the FDR-adjusted p-value. Colors 
indicate the direction of change, with “up” meaning more expression during product use and “down” 
meaning the opposite. The horizontal grey lines show an FDR-adjusted p-value of 0.05. Gene sets were not 
tested against the study arm they came from; this is indicated by a lack of bar and of gridlines. 

r = 0.81 0.13 0.06r = 0.91 0.07
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Figure 3. Gene set testing of Hallmark gene sets. The Hallmark gene sets were tested for enrichment in the 
mucosa (A) and the blood (B). All gene sets that had an FDR-adjusted p-value less than 0.05 in at least two 
of the mucosa (A) or blood (B) data sets. Bars indicate the result of a gene set test for the gene set shown 
on the x-axis tested against the study shown at right. Filled bars indicate an FDR-adjusted p-value less than 
0.05 and open bars the opposite, with bar length proportional to the -log10 of the FDR-adjusted p-value. 
Colors indicate the direction of change, with orange meaning more expression during product use and 
green meaning less. The horizontal grey lines show an FDR-adjusted p-value of 0.05. The gene sets are 
grouped into categories as labeled at the top.
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Figure 4. Comparison of gene expression changes measured by ddPCR or microarray. Fold changes in gene 
expression of three genes (IFI6, ISG15, or MX1) as detected by ddPCR (open symbols) and microarray (filled 
symbols) after treatment with TDF/FTC (A) or TDF alone (B). Symbols show the mean across all participants 
and vertical lines show the 95% confidence intervals of the mean. IFI6 stands for interferon alpha inducible 
protein 6, ISG15 for ISG15 ubiquitin-like modifier, and MX1 for MX dynamin like GTPase 1. A positive fold 
change means higher expression during treatment and a negative fold change means higher expression off 
of treatment. 
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Figure 5. RNA sequencing and protein expression changes during oral TDF/FTC product use. (A) TDF/FTC-
induced changes in RNAseq transcript (left) or protein (right) expression. Each point represents the 
expression of a single gene/protein (averaged across subjects as described in the Methods). Positive fold 
changes indicate higher expression during product use and negative fold changes indicate lower expression 
during product use. Open gray symbols indicate genes with FDR-adjusted p-values greater than 0.05. (B) 
Correlation of fold changes of genes as detected by microarray (y-axis) with genes/proteins detected by 
RNAseq (left) or proteomics (right) from the rectal samples from MTN-017. Colors indicate genes with FDR-
adjusted p-values less than 0.05 in microarray transcripts (red), RNAseq genes (blue, by FDR, left)  or 
proteins (blue, unadjusted p-value, right), both (purple, FDR for microarray and RNAseq, unadjusted for 
protein), or neither (gray). Spearman correlation coefficients for the genes falling into each subset are 
shown. Selected genes are labeled.

A

B r = 0.84 0.34 r = 0.80 0.05 0.06
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Figure 6. Immunofluorescence microscopy staining for ISG15 and MX1. (A) 20X magnification images of 
duodenal (top) and rectal (bottom) biopsies, stained for ISG15 (yellow) and DAPI (blue). Biopsies from pre-
treatment (left) and at the end of two months of treatment (right) are shown. Scale bar is 50 µm. Duodenal 
biopsies came from one donor and rectal biopsies came from a second. (B) ISG15 intensity was measured in 
paired duodenal (n = 8 donors) and rectal (n = 6) biopsies from ACTU-3500. Cells were divided into bright and 
dim/negative groups. The intensity of the median cell is shown for each biopsy. (C) The percentage of all cells that 
fell into the bright ISG15 group is shown for each biopsy. (D) 20X magnification images of duodenal (top) and 
rectal (bottom) biopsies, stained for MX1 (yellow), DC-SIGN (green), and DAPI (blue). Biopsies from prior to 
treatment initiation (left) and at the end of two months of treatment (right) are shown. Scale bar is 50 µm. 
Duodenal biopsies came from one donor and rectal biopsies came from a second. (E) MX1 and DC-SIGN were 
measured in paired duodenal (n = 8 donors) and rectal (n = 6) biopsies from ACTU-3500. Cells were divided into 
epithelial, stromal without DC-SIGN and stromal with DC-SIGN. The MX1 intensity of the median cell within each 
group is shown for each biopsy. Gray points indicate measurements from a single biopsy and cell group, with gray 
lines connecting the matching observation from the same donor. Black symbols and vertical lines show the mean 
and 95% confidence interval of the mean. 
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Figure 7. Comparison of expression changes in the gastrointestinal tract across assay of the thirteen 
differentially expressed genes from MTN-017 microarray data. Fold changes in gene expression of the 
thirteen genes that were differentially expressed in the rectal microarray data of MTN-017 after treatment 
with TDF/FTC. Symbols show the mean across all participants and vertical lines show the 95% confidence 
intervals of the mean. The colors indicate the assay by which the fold changes were detected (red = ddPCR, 
blue = microarray, green = proteomics, purple = RNAseq). There were 8 pairs of samples for all tissues in 
ACTU-3500 and 36 pairs for MTN-017. A positive fold change means higher expression during treatment, 
where a negative fold change means higher expression off of treatment. 95% confidence interval bars are 
truncated at the top of the plots for ddPCR for ISG15 and IFI6 and for microarray for IFIT1.  
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