
Table S1 – Frequencies of ESBL positive gram negative taxa observed in the dataset. *E. coli* and other Enterobacteriaceae (e.g. *Citrobacter, Klebsiella*) were the most common species observed. Some genera were isolated in very low numbers, (e.g. *Stenotrophomonas, Aeromonas).*

Таха	Number of Isolates
E. coli	219
Citrobacter	28
Klebsiella	16
Enterobacter cloacae	11
Acinetobacter	12
Other	20
Total	306

Figure S1 – Distribution of observed *E. coli* sequence types sorted by participant number and date. In some instances, there are clear single sequence types that longitudinally colonise a single participant (e.g. 1722, Participant 03). Other participants exhibit transient colonisation by multiple sequence types (e.g. Participant 33).

				Participant Number																		
		03	04	05	06	08	09	11	12	13	16	17	18	19	21	23	26	33	34	35	36	40
	19-Sep																	34				
	20-Sep		101			69	4682									5895		34		167		
	21-Sep					69	1072								457	5895		34	1081	5848		
	22-Sep					69	48 & 101									5895			167	167		195
	23-Sep	195	101			69 & 195	48		394					101 & 34				34		34 & 101		195
	24-Sep					195	48			101		1638			457	5895	10	34 & 195				195
	25-Sep	1722			3285	69			394	101	101	515			101			34 & 195	617			
	26-Sep	1722				69				101	101			34					617	101		
ate	27-Sep	1722				69		2067	69				410		3285		34		167			
D L	28-Sep			1722		69			746		101			34	3285 & 101	542		34 & 195	167		101	48
ctio	29-Sep	1722		6856				2067	101		101			101		542		34 & 195	167			48
Collection Date	30-Sep	1722		38				2067		1722	38 & 101			34	101	457			34		101	48
ပိ	01-Oct	1722		1722				2067			93 & 101				10	457			167			
	02-Oct	1722				6984		2067		38	93	515		34	10	457		195	34 & 195		398	195
	03-Oct	1722				6984		2067		38	93	542		34	3285	457		515	34			
	04-Oct	1722			515	69		2067			38				10	457			34 & 195			40
	05-Oct	1722		542				2067			101							515	167			38
	06-Oct							2067			93				457	457			167			38
	07-Oct	1722						2067							69	457		195	34			38
	08-Oct	1722		515				2067								457		38	34 & 195			38
	09-Oct																		34			

Figure S2 – Phylogeny of *E. coli* isolates shown with presence of observed beta-lactamase genes. The majority of isolates carried at least one type of CTX-M, and an alarming amount of isolates also carried colistin resistance gene MCR. Some less common beta-lactamase genes were also observed (e.g. ACT, ADC). Purple = gene present, orange = gene absent.

Present 📕 🛛 Absent 📕

Table S2 – Total frequencies at which CTX-M subtypes were observed amongst the dataset. CTX-M-55 was the most common type observed, with other CTX-M types that are typically more dominant in other parts of the world (e.g. CTX-M-15) found to be less abundant.

	Number of Isolates with
СТХ-М Туре	CTX-M Present
CTX-M-55	64
CTX-M-14	58
CTX-M-159	57
CTX-M-15	30
CTX-M-102	25
CTX-M-40	2
CTX-M-63	2
CTX-M-164	1
CTX-M-181	1
CTX-M-196	1
CTX-M-32	1
CTX-M-65	1
CTX-M-76	1
CTX-M-77	1