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1. Online Materials and Methods 1 

 2 

1.1 Discovery population. 3 

Analyses were conducted on data collected in the UK Biobank project31 under project 19655. All 4 

subjects gave written informed consent. UK Biobank has approval from the North West Multi-5 

Centre Research Ethics Committee (MREC), In Scotland, UK Biobank has approval from the 6 

Community Health Index Advisory Group (CHIAG). We included only subjects who completed the 7 

food frequency questionnaire and were defined by UK Biobank as genomically British and 8 

unrelated. 9 

  10 

1.2 Phenotype modelling   11 

Quantitative food and drink intake phenotypes were all converted to weekly consumption, e.g. 12 

consuming 3 cups of tea a day was converted to 21 cups/week. Semi-quantitative descriptors: 13 

never, 2-4 times a week, 5-6 times a week, once or more daily were converted to 0, 3, 5.5 and 7 14 

respectively. All “Prefer not to answer” and “Do not know” answers were excluded from the 15 

analysis. 16 

All coffee traits were stratified by type (instant, ground, decaffeinated) to account for differences in 17 

consumption patterns such as cup size and caffeine concentration. Participants who did not 18 

specify the type of coffee they usually consume were excluded from the analysis. 19 

Coffee consumption (any type of coffee, including unspecified type of coffee) was treated as a 20 

covariate for water consumption due to a very high negative phenotypic correlation between water 21 

and coffee consumption. Some semi-quantitative traits do not directly refer to the amount of food 22 

or drink consumed but to its type. Fat content in milk was calculated as the fat percentage and 23 

non-dairy types of milk (e.g. soy) were removed. Drink temperature (very hot, hot and warm) were 24 

converted to an arbitrary 3-unit scale (3, 2, 1). People who did not report consuming hot drinks 25 

were excluded from the analysis. Summary statistics for the traits are reported in Supplementary 26 

data 10. 27 
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All traits including the binary ones were treated as being quantitative. For binary traits this is the 28 

same as running a trend test. We did this because standard software cannot perform logistic 29 

regression on such a large sample in a timely fashion. Residuals for each trait using a linear model 30 

were first estimated in R using age and sex and then used as phenotype for the association 31 

analysis using BOLT-LMM. Coffee and tea consumption were added as covariates for the analysis 32 

of water consumption as described before. 33 

In order to verify the best function for trait normalisation in the association analysis and to ensure 34 

that most quantitative traits demonstrated a right-tailed distribution, we applied both log10(x+1) and 35 

sqrt(x) transformations to the traits and then regressed them against the covariates. The best 36 

transformation was chosen by visually inspecting the Q-Q plots of the residuals from these 37 

regressions and checking which one better approximated a normal distribution: in all cases the 38 

residuals were properly normalised. Supplementary data 3 gives full details of the phenotype 39 

modelling. 40 

  41 

1.3 Genome wide association study (GWAS). 42 

Association analyses were conducted on SNPs imputed to the HRC panel1, as provided by the UK 43 

Biobank, using BOLT-LMM2. Population stratification was assessed using LD-score regression as 44 

implemented in ldsc3 both for both GWAS and after meta-analysis using the LD scores provided 45 

with the software: no evidence of residual stratification was observed. Table S15 reports the LD 46 

regression intercept and h2 estimation using ldsc. Given that we identified 5 main clusters of traits 47 

we set the genome-wide significance threshold at 1x10-8. 48 

 49 

1.4 Replication Analysis 50 

Replication analyses were conducted independently by using genetic and dietary data from the 51 

EPIC-Norfolk Study4 and the Fenland Study5. Both are on-gonig population based cohort studies 52 

conducted in the East of England. At baseline of the EPIC-Norfolk Study (1993-1997) and the 53 

Fenland study (2005-2015), the same food-frequency questionnaires (FFQs)4,6 were administered 54 

to participants. Each participant was requested to report frequency of consumption of 131 food 55 
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items by selecting one of nine categories of frequency of food consumption (‘never or less than 56 

once/month’, ‘1-3 per month’, ‘once a week’, ‘2-4 per week’, ‘5-6 per week’, ‘once a day’, ‘2-3 per 57 

day’, ‘4-5 per day’, and ‘6+ per day’). As performed in the analysis of the UK BioBank, the 58 

quantitative information on frequency of consumption was assigned to each response for 131 food 59 

items. We summed up frequencies of consumption of multiple food items in each food group (e.g. 60 

margarine and butter for bread spread; different types of vegetables for total vegetable 61 

consumption), so that resulting variables were comparable with those used in the UK BioBank. 62 

 63 

Participants were genotypes with different genotyping arrays. In the EPIC-Norfolk Study, 64 

Affymetrics Axiom UKBiobank was used (n=21,044). In the Fenland Study, three arrays were used: 65 

Affymetrics Axiom UKBiobank (n=8,994), Illumina Metabochip (n=3,217), and Illumina ExomeChip 66 

v1.0 Human Exome-12v1-B (n=1,650). Further details are available elsewhere5. Missing 67 

information of SNPs was imputed to the HRC and UK10K panels by population and genotyping 68 

array. After we excluded participants without either dietary or genetic information, 32,779 69 

participants in total became available for the replication analysis of EPIC-Norfolk Study (n=21,337; 70 

noriginal=25,639) and the Fenland Study (n=11,442; noriginal=12,731). Association analyses were 71 

conducted with BOLT-LMM in each of the four population-array strata.  72 

 73 

1.5 Univariate MR 74 

Univariate MR to measure the causal effect of health-related traits on food was conducted using 75 

the TwoSampleMR7 R package. We decided to focus on traits for which dietary medical advice is 76 

given due to medical conditions in particular: body mass index (BMI), low density lipoprotein (LDL) 77 

Cholesterol, high density lipoprotein (HDL) Cholesterol, Total Cholesterol, Triglycerides, Diastolic 78 

and Systolic blood pressure, Educational attainment, Type II diabetes and Coronary Heart 79 

Disease.The full list of studies from which the summary statistics were derived is given in Table 80 

S6.  81 

For each trait we selected all SNPs with p<5 x 10-8 and r2<0.001. We then performed stepwise 82 

heterogeneity pruning, first estimating heterogeneity using the Q statistic, if p<0.05, we removed 83 
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one SNP at a time, looking at which removal would improve the statistic more. This procedure was 84 

repeated until p>0.05. We then tested if the intercept from the MR-Egger regression was different 85 

from zero (p<0.05). If this was the case, MR-Egger was used for the MR analysis otherwise the 86 

Inverse Variance method was used. We considered as significant those relationships in which the 87 

Benjamini and Hochberg FDR<0.05.  88 

 89 

1.6 Estimation of prior expected effect through bGWAS and genome-wide mediation 90 

analysis.  91 

One of the main issues in GWAS studies is to decide which covariates to apply in the regression 92 

model. When deciding to include a covariate or not, depending on the causal relationships 93 

between the traits, we may risk creating different types of biases. One approach could be to 94 

include in the model just the non-heritable covariates (i.e. sex and age) which will avoid spurious 95 

results due to collider bias. The problem with including heritable covariates is that the GWAS will 96 

also detect those SNPs which are associated with the covariates which are causally related to the 97 

trait, making the interpretation of the results harder. For example if educational attainment causally 98 

influences BMI, if the study is powered enough, it is possible that the genes from educational 99 

attainment show up on the BMI GWAS. Moreover, this limits the generalisability of at least part of 100 

the results to other populations in which the phenotypic architecture of the trait may be different. 101 

For example, following the previous example educational attainment was causal to the trait in the 102 

European population and not in East Asia the SNPs causal from Educational attainment will not be 103 

replicated in East Asian populations affecting also the generalisability of results. 104 

It is thus extremely important to identify a technique which allows to distinguish between those 105 

SNPs which are directly causal of the trait of interest from those which are associated through 106 

other mediators. 107 

 108 

There are 3 possible scenarios: 109 

1) The covariate is causing the trait of interest in which case it would be correct to include it in the 110 

model (i.e. diet and socioeconomic status). 111 
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2) The trait of interest is causing the covariate in which case including the covariate in the model 112 

could result in collider biases. 113 

3) The trait and the covariate are causing each other. In this case, using the covariate in a 114 

regression framework will correct for the overall effect while in truth we are interested in correcting 115 

only for the effect of the covariate on the trait and not vice versa. 116 

 117 

So, in order to properly correct our analyses, we need to determine if a covariate is causing the 118 

trait of interest and at the same time estimate the size of the effect. In this respect, we can use 119 

two-sample MR to establish both causality and effect size, using a multivariable MR approach if 120 

there are multiple covariates. In principle, once this is done we can correct the phenotype given the 121 

covariates and run the GWAS based on this new corrected trait. However, given that in many 122 

cases information on covariates may be missing, a method which exploits available GWAS 123 

summary statistics would be more desirable. Such a method would need to first estimate which 124 

covariates are causal to the trait of interest and then based on their causal estimates, perform 125 

mediation analysis for each SNP. In the second step, for each SNP an expected mediated effect is 126 

estimated, combining the effect of the SNP on each of the causal traits with their multivariable 127 

causal effects. The expected effect can be subtracted from the observed effect on the trait of 128 

interest to get the “direct causal effect” of the SNP on the trait.  129 

 130 

For the estimation of the prior expected effect, we used a Bayesian GWAS (bGWAS)8. The 131 

bGWAS approach leverages information from studies of related traits to carefully build informative 132 

priors for each SNP. To analyse food choices, we decided to include information from the same 133 

traits used for the univariate MR plus Crohn’s disease and ulcerative colitis. Given that the traits 134 

were meant to be used in a multivariable model, total cholesterol was removed to avoid strong 135 

collinearity with LDL and/or HDL cholesterol. MR was used to derive multivariate causal effects of 136 

the set of related traits on the different food choice phenotypes, using independent instruments 137 

(association p-value below 5 x 10-8 for at least one related trait, LD pruned r2<0.001). For each 138 

food choice phenotype, a stepwise selection approach was used to select only the related traits 139 
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significantly affecting the focal phenotype.  To calculate the prior for SNPs on a given 140 

chromosome, we first apply multivariate MR (masking the focal chromosome) using the 141 

significantly related traits identified by the stepwise selection to estimate causal effects. We next 142 

use the causal effect estimates in combination with GWAS summary statistics of the related traits 143 

to estimate the prior effects. The prior effect of a SNP i (𝜇") is calculated using the observed 144 

standardised effects (Z-scores) for the T different related traits (𝑍",%	) and the causal effects 145 

estimated masking one chromosome (𝛽%): 146 

𝜇(	 = 	 *
%+, 𝑍",%	𝛽% (1) 147 

 148 

The prior estimated by bGWAS is on the scale of the z-score of the GWAS from the trait of 149 

interest, so the non-mediated z-score can be easily then estimated as the difference between the 150 

original z-score and the prior. The prior can be thought of as the total indirect effect while the 151 

corrected effect as the pure direct effect from mediation analysis9. Keeping the standard error 152 

constant, it is then easy to derive the corrected beta as z-corrected*se. It is important to note that 153 

when we estimate the prior expected effect we do not take into account the error of the 154 

multivariable estimates and we use the point estimates directly. This is because in MR the 155 

standard errors linked to each beta estimate are relatively large and if taken into account would 156 

lead to a very large final standard error and thus all pure direct effect estimates would have 157 

extremely large errors making them not usable. Although this is of course an approximation this is 158 

not unlike the estimation of polygenic risk scores where the SNP point estimates are used as 159 

weights for the score. It is important to note that for the further causal inference we used 160 

uncorrected betas and thus this will not influence the effect estimation.  161 

 162 

This approach has several advantages compared to correcting the phenotype directly. First, it 163 

allows the GWAS to be corrected for covariates which have not been measured directly on the 164 

same samples. This is a great advantage in terms of the models that can be explored, for example 165 

in our case we have corrected the GWAS for LDL although LDL had not been measured in UK 166 
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biobank at the time of the analyses, and this is also useful for phenotypes such as Crohn’s 167 

disease, for which relatively few cases are present in UKB. 168 

 169 

Moreover, it is possible to compare the effects before and after correction, giving us information on 170 

the likelihood the observed effect is directly associated with the trait of interest or is mediated. it is 171 

important to remember that conditioning on a phenotypic covariate will not necessarily completely 172 

correct the mediated effect, due to noise, and thus the comparison of the two effects is more 173 

informative. Finally, we should be able to trace back the path of mediation looking at the different 174 

components of the prior for each SNP thus helping greatly in interpreting the results and planning 175 

subsequent studies. 176 

All the exposure traits GWAS have been first imputed using SSimp10 177 

(https://github.com/zkutalik/ssimp_software)  and the UK10K genotypes as the reference panel. 178 

Finally, all A/T or G/C SNPs were removed to avoid errors in the harmonisation of effects coming 179 

from different GWAS, due to strand errors. The proportion of genetic variance of the food traits 180 

explained by the health-related traits was measured by taking the squared genetic correlation 181 

between the expected Z-score and the observed one.  182 

 183 

1.7 Genetic correlations with other traits and stratified LD-score regression. 184 

Genetic correlations of the self-reported food consumption traits against 844 traits have been 185 

estimated using LD-score regression as implemented in LD Hub 3,11. Genetic correlations were 186 

estimated both with the corrected and uncorrected traits using the bivariate LD-score regression 187 

model. Stratified LD-score regression12 was run using ldsc and the annotation files available on the 188 

ldsc website. 189 

 190 

1.8 Identification of the SNPs directly associated with the food traits. 191 

One of the main objectives of GWAS is to identify genes directly responsible for the trait of interest, 192 

in our specific case, however, we have shown that looking just at the genome-wide hits is not 193 

sufficient and does not exclude SNPs truly associated with other causal heritable traits, due to 194 
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vertical pleiotropy. In order to distinguish between these two types of SNPs, we decided to look at 195 

the ratio between the corrected trait and the original trait or corrected-to-raw ratio (CRR).  196 

To understand this choice let’s suppose we have a trait of interest (Y) and a second heritable trait 197 

(X) which is causal with effect, 𝛽-→/. We will call SNPy, the SNPs directly causing Y with effect,   198 

𝛽0123→/ and SNPx, the SNPs which are directly causing X with effect, 𝛽0124→-. If the whole effect 199 

of SNPx on Y is mediated through X its effect will be given by  200 

 201 

𝛽(0124→/)74879%7: = 𝛽0124→-×𝛽-→/ (2)  202 

 203 

𝛽-→/can be estimated through MR, while 𝛽0124→- can be retrieved from the GWAS of X. Assume 204 

we measure the effect of a SNP for which it is unknown if the effect is mediated through X or not 205 

(as is the case in real data). We define 𝛽012→/, the observed effect of the SNP on Y 206 

if 𝛽012→- is truly 0, then we can estimate the expected mediated effect of the SNP through X as  207 

𝛽(012→/)74879%7: = 𝛽0124→-×𝛽-→/ ≈ 0   (3) 208 

and  209 

𝛽(012→/)9>??79%7: = 𝛽012→/ − 𝛽(012→/)74879%7: 	≈ 𝛽012→/   (4) 210 

thus  211 

𝐶𝑅𝑅 =
C(DEF→G)HIJJKHLKM	

CDEF→G
	≈ 1(5) 212 

 213 

On the other hand if   214 

𝛽 012→- ≠ 0 (6) 215 

then  216 

𝛽 012→/	74879%7: = 𝛽012→-×𝛽 -→/ ≠ 0(7) 217 

𝛽(012→/)9>??79%7: = 𝛽012→/ − 𝛽(012→/)74879%7: 	≠ 𝛽012→/   (8) 218 

then  219 

𝐶𝑅𝑅 =
C(DEF→G)HIJJKHLKM	

CDEF→G
	≠ 1(9) 220 
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Figure S1. Directed acyclic graph explaining the two possible scenarios for the effect of a SNP on the trait of 221 
interest Y. (a) The SNP has a direct effect on Y not mediated through X. Then the estimated effect of SNP on X will be 222 
normally distributed around 0, thus the corrected and uncorrected effects will be similar and their CRR will be close to 1. 223 
(b) The SNP effect is mediated through X, thus the corrected effect will deviate from the observed one and CRR will 224 
deviate from 1. 225 

 226 

In real-life situations, the betas are estimated and thus will carry an error due to chance and it is 227 

thus important to understand what values the CRR may assume under different scenarios. We 228 

can, however, summarise three types of relationship between the trait of interest and its causal 229 

factors:  230 

1) X→Y  231 

2) X→Y and Y→X    232 

3) U→Y and U→X   233 

 234 

Where U is a heritable confounder responsible for the relationship between X and Y. We thus use 235 

simulations to understand how the relationships between the traits influence the CRR and our 236 

ability to use it to distinguish between SNPs, the effects of which are mediated through X or U, and 237 

SNPs which are causal to the trait of interest without mediation mediation. The details and results 238 

of the simulations are reported in Supplementary Data 2.1. 239 

 240 
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1.9 Clustering of food and drink consumption traits. 241 

Genetic correlations between the food traits were estimated using LD-score regression as 242 

implemented in the ldsc software35 separately for the corrected and uncorrected GWAS. 243 

Hierarchical clustering of the two genetic correlation matrices was performed using two different 244 

algorithms: “complete” as implemented in the hclust() function from R and the ICLUST algorithm17 245 

from the R package psych. ICLUST assigns items to the same cluster based on the loadings of an 246 

underlying common factor. Items are then iteratively added to the clusters only if they increase the 247 

internal consistency of the cluster. The algorithm also allows for addition of traits in case of strong 248 

negative correlation. This has a compelling advantage for food consumption, as for example the 249 

intake of fatty foods has a strong negative correlation with eating healthy food, thus both can 250 

contribute to the same grouping. Differences in clusterings were compared graphically using a 251 

tanglegram in both cases. Given that ICLUST seemed to give more stable results compared to the 252 

“complete” clustering algorithm, the clusters produced with this algorithm were used for further 253 

analyses. 254 

 255 

1.10 Multi-trait genome-wide association analysis 256 

For each of the three main clusters of phenotypes (Meat/Fat, Healthy foods and Psychoactive 257 

Drinks), we performed multi-trait genome scans using a MANOVA-based multivariate analysis 258 

method implemented in the MultiABEL package37 (https://cran.r-project.org/package=MultiABEL). 259 

The method can take genome-wide summary association statistics to infer phenotypic correlation 260 

coefficients and conducts a MANOVA test for each variant across the genome. This overcomes 261 

the issue of non-overlapping samples (e.g. it would be impossible to directly combine people 262 

drinking different type of coffee). The phenotypic correlation coefficient of any two traits can be 263 

estimated in an unbiased manner via the correlation of the genome-wide z-scores, and for binary 264 

outcomes, this is proportional to the phenotypic correlation on the liability scale. The MultiABEL 265 

package also calculates the best linear combination of multiple phenotypes that is associated with 266 

each variant.  267 

 268 
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1.11 Locus definition and prioritisation of genes. 269 

To define a locus, we first selected all SNPs with p-value <1x10-5 and then estimated the distance 270 

between each consecutive SNP located on the same chromosome. Two consecutive SNPs were 271 

identified as belonging to different loci if they were more than 250 kb apart. A locus was then 272 

considered significant if it contained at least one SNP with p-value below the previously described 273 

significance threshold: we thus identified 582 significant locus-phenotype associations. Given the 274 

high pleiotropy between different traits, we merged overlapping loci, which resulted in 302 275 

independent loci. 276 

In order to define for each locus which gene is more likely to be responsible for the observed 277 

association, we proceeded with custom prioritisation according to the following criteria. We first ran 278 

Haploreg v4.138 using r2=0.8 as threshold (Supplementary Data 11). We also ran SMR39 on each 279 

locus in order to identify eQTLs compatible with the observed association pattern. We used the 280 

tissue-specific significant eQTL from the Gtex Project website26 (Supplementary data 12). We then 281 

proceeded to prioritise the genes according to the following criteria; if the locus met one of them 282 

the following ones were not tested: 283 

1) The sentinel SNP is itself or is in strong LD (r2>0.8) with a non-synonymous SNP 284 

2) There is evidence of an eQTL (as tested with SMR) and the sentinel SNP and the eQTL 285 

are in strong LD (min r2=0.5). Given the high number of significant eQTLs detected by 286 

SMR we used a dynamic selection starting from r2≥0.99 and decreasing by 0.05 at each 287 

step until an eQTL was found or until r2≤0.5. 288 

3) The sentinel SNP is itself or is in strong LD (r2>0.8) with a coding SNP (synonymous or 289 

in the untranslated region of the gene) 290 

4) The top SNP is intronic or is in complete LD with an intronic SNP in the gene. 291 

5) The top SNP is in strong LD (r2>0.8) with an intronic SNP in the gene. 292 

6) The closest gene. 293 

The category and prioritised gene for each locus is annotated in supplementary table 3. 294 

  295 

1.12 Prioritised gene annotation and network construction 296 
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Tissue enrichment using MAGMA13 was run using FUMA14. For each available SNP, we chose the 297 

lowest p-value from all corrected analyses. For the functional annotation of the prioritised genes, 298 

we focused only on those coming from the “direct effect only” loci. First, we used the 299 

gene2Function tool from FUMA to identify enrichment in the same tissue used for the analysis with 300 

MAGMA. For both analyses, only tissues with Bonferroni corrected p < 0.05 were considered 301 

significant (Table S11-S12 report full results).  302 

We then constructed an interaction network using STRING15 (Table S13). After removing the 303 

genes which were not connected with any of the others, we ran community detection using 304 

Leuvain’s method (Table S14 for membership). Tissue enrichment analysis was then performed for 305 

each community as done for the full gene set, focusing only on the overexpressed tissue analysis. 306 

Given the much higher number of tests performed, we used Storey’s q-values to define significant 307 

tissues. Gene ontology enrichment was performed for each community using the compareCluster() 308 

function from the clusterProfiler R package16. We considered significant those terms which had a 309 

FDR<0.05 using the Benjamini and Hochberg method. 310 

 311 

1.13 Mendelian randomisation to assess causal relationships between food and health 312 

MR was conducted using the food traits as exposures and 79 traits available in MR-base7 as 313 

outcomes. The genetic instruments were chosen from those with p<5x10-8 and pruning for LD 314 

(r2<0.01). We selected two sets of instruments: the first using raw p-values for thresholding (Raw) 315 

and the second using bias-corrected p-values and the filter with values comprised between 0.95 316 

and 1.05 (CRR). Both sets of instruments were run using both raw effect estimates and corrected 317 

ones for comparison purposes (uncorrected/corrected). We considered the main analysis the one 318 

with the CRR-uncorrected analysis and multiple test correction was applied to these results. All 319 

other analyses were used for comparison purposes to show the difference in applying the CRR 320 

filtering. In order to maximise the number of SNPs available for analysis, the instrumental variables 321 

(IVs) were selected from those available for the specific outcome, thus the IVs change from 322 

outcome to outcome even if the exposure trait is the same. As exposures, we used 26 specific 323 

food items: adding butter to bread, and percentage fat in milk were not analysed as none of the 324 
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significant SNPs passed the CRR filter; fortified wine was also excluded as no significant SNPs 325 

were detected in the GWAS. Principal components (PC) traits were also estimated using as 326 

rotation matrix the eigen decomposition of the genetic correlation matrix. Betas from the GWAS for 327 

the interested traits were then projected on the rotated PC space. IVs for the PC analyses were 328 

selected by merging first all SNPs which could be selected as IVs in each trait of the group and 329 

assigning the lowest p-value in case of overlap. Then the SNPs were pruned for LD and the betas 330 

projected onto the PC space. Only PCs which could be interpreted were retained (not more than 331 

3). Groups were created based on the groups created with ICLUST but also grouping the foods 332 

which had a clear common origin (e.g. oily and non-oily fish). A Sankey diagram of the 333 

relationships amongst the different traits is reported in Figure S2.     334 

Figure S2. Sankey diagram describing the relationships between the single food traits and the composite ones.  335 

 336 

 337 

 338 
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All analyses were run using the same pipeline. After selecting the SNPs to be used as IVs, 339 

exposure and outcome data were harmonised. Only non-palindromic SNPs were used to avoid any 340 

misalignment between the two datasets. The IVs were tested for heterogeneity and outliers were 341 

removed using the MR-Radial method17. Inverse variance-weighted (IVW) MR was then used as 342 

the main analysis method, using random effects IVW if the residual heterogeneity had a p-value 343 

less than 0.05/79. We then tested for the presence of directional pleiotropy using the intercept from 344 

the MR-Egger regression. Finally, MR median and MR-Raps were used as sensitivity analyses. All 345 

results have been made available through an online app ( https://npirastu.shinyapps.io/Food_MR/) 346 

which allows interrogation of the results both visually and in tabular form. 347 

  348 
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2. Extended Figures/Results 349 
 350 

Fig S3. Results for the Mutlivariable MR. Panel A The heatmap represents the effect of the health related traits on 351 
each food trait using from the multivariable model. The color is proportional to the effect size. 352 
Panel B. The plot represents the proportion of genetic variance which is explained by the effect of the health related traits 353 
on the food traits. Clearly some of the food traits are extremely biased having up to 40% of genetic variance due to the 354 
mediation of the health related traits. 355 
 356 

 357 
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2.1 Simulation results for optimal parameter tuning for selecting SNPs directly associated 358 

with the trait of interest. 359 

The objective of the simulations was to understand if the corrected/raw beta ratio limits chosen 360 

based on the genes for which biology is well known are correct. The simulations are particularly 361 

complex to set up since the DAG of the studied relationships involves bidirectional causal effects. 362 

Another important limitation is the fact that the exposure trait is not directly and correctly observed 363 

but it is the result of a FFQ in which the noise is extremely high with a test-retest correlation that 364 

can be as low as 0.5 (r2=0.25). 365 

  366 

The simulations include 4 different normally distributed traits: 367 

Yt which is the true trait of interest (food consumption in our case) without the effects of the 368 

outcome. X and U represent each the sum of all traits causal to Y. The difference between X and U 369 

is that U traits are also causal to X (so they act as a confounders) while X traits may also be 370 

subject to reverse causality by Yt. Yo is the observed trait which thus includes all causal effects and 371 

the noise due to the use of the questionnaire. 372 

Figure S4. Diagram describing the relationships between the simulated traits and their relative parameters. Gy refers to 373 
the genetic variants which directly affect Y before any influence of confounding or other mediated traits (Yt). Gu 374 
represents the genetic component of a confounder trait U which causally affects both Y and X. Gx represents the genetic 375 
component of the outcome trait X which is in turn causally affecting the trait Yi. Yo represents the actual observed trait to 376 
which we add noise to reflect the test-retest correlation in FFQ data. 377 
 378 
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For simplicity each of the first 3 traits is determined by 10 SNPs each of which has a frequency of 379 

0.3 and explains 1% of variance. Overall 30 SNPs have been used for each simulation and they 380 

are denoted as SNPY, SNPX and SNPU depending if their direct effect is through Y, X or U. 381 

The relationships between the different traits are summarised in Figure S4. 382 

Where: 383 

βU->Y represents the effect of the confounder on Yt, 384 

βU->X represents the effect of the confounder on X, 385 

βYt->X represents the effect of Yt on X, 386 

βX->Yt represents the effect of X  on Yt. 387 

βYo->X represents the causal effect we would be able to measure through MR. This measure is not 388 

of interest for the scope of our simulations. 389 

  390 

For simplicity the βU->Y and βU->X were both set so that the confounder explained 20% of the variance 391 

of Y and X. Simulations were then conducted for a large array of values of βX->Yt and βYt->X , which 392 

ranged from 50% of variance explained to 0%, with both positive and negative effects. Values of 393 

βYt->X=0 simulates the case where no reverse causality exists. A denser grid was used between 394 

r2=0-0.1 to examine more closely the results at smaller effects which likely better resembles most 395 

real cases. Each set of parameters was run 10 times so that 100 SNPs were simulated for each 396 

category and set of parameters. To replicate the conditions of the paper we simulated two different 397 

independent populations so that we could apply the MV MR correction procedure to study the 398 

effects in a setting which resembles the real life scenario. Both populations were simulated so that 399 

N=400,000. 400 

  401 

After simulating the two populations we proceeded to perform the association analysis for all 30 402 

SNPs with all three observed traits, leaving out the original trait of interest Yt, assuming we would 403 

not be able to directly observe it (as is the case for food consumption measured with FFQ). We 404 

then performed the MV MR of X and U on Y using as IV all SNPs which had p<5x10-8  in either the 405 

GWAs from X or U  assuming we had no way of distinguishing the source of the SNP. For this 406 
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analysis we used population 2 for the exposure betas and p values while population 1 for the 407 

effects of Y. Finally we used the betas combined with the population one Yo association results to 408 

estimate the corrected/raw ratio (CRR). 409 

 410 

The main objective was to verify if using the proper limits of the corrected/raw ratio allows the 411 

SNPYs to be correctly distinguished from the SNPXs and the SNPUs. Figure S5 shows the 412 

scatterplot of the CRR for the 3 categories of SNPs for each combination of simulated parameters. 413 

R2 refers to the amount of variance explained by the causal trait. The values are both positive and 414 

negative to reflect the direction of the correlation. The CRR range for the plot is limited to values 415 

between 0 and 2 because SNPYs never assumed values outside this range. 416 

  417 
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Figure S5. Scatterplot of the CRR values for Gx (in red), Gy (in green) and Gu (in blue) at the different values of the 418 
effect of Y on X and of X on Y. 419 

 420 

  421 

Clearly for most combination of parameters it is possible to easily separate the SNPYs from the 422 

SNPUs. The task becomes slightly more complex in the case of the SNPYs and SNPX in which 423 

some overlap is possible, especially when βX->Y=βY->X however this particular case is probably 424 

unlikely in real case scenarios as it would mean that the two effects cancel each other out. 425 

From the previous figures, it is clear that if we were to know βX->Y and βY->X, we would be able to 426 

determine which values of CRR to use for the selection of the IVs in most cases. However without 427 

knowing these a priori it is however quite difficult as they would require prior knowledge of valid IVs 428 

for both Y and X, which is the objective of the method. Thus, the real question is if there is a range 429 

of values for the CRR which maximises the probability of not discarding the SNPYs while not 430 

including SNPXs or SNPUs. 431 
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 432 

Therefore we verified how the probability of actually detecting a SNPY, P(detection), and the 433 

probability that an IV which met the criteria was actually a SNPY, P(SNPY), at different ratio limits. 434 

For the values selected for our study (1±0.05), the P(detection) is 0.27 overall, and 0.57 for the 435 

combination of the weak effects, while P(SNPY) is >80% in both cases (Figure S6). Given that, for 436 

almost all traits we have at least 1 SNP which meets these criteria and that loosening them will 437 

increase the chances of including SNPXs as instruments, the choice of parameters used so far 438 

seems reasonable. 439 

Figure S6. Corrected-to-raw ratio (CRR) successfully distinguishes mediated and non-mediated associations. (a) 440 
Graph showing mediated and non-mediated pathways. The values of CRR that different types of simulated SNPs (Gx, 441 
Gy, Gu) assume at different explained variances (σ2) of X->Y when (Y->X)≠0, i.e. presence of reverse causality (b). 442 
The values we used for defining a “non-mediated” variant are highlighted in purple. (c) The proportion of variants that are 443 
truly Gy, that is directly associated with the trait of interest, across a range of CRR. (d) The overall proportion of variants 444 
directly associated with the trait (SNPy) whose CRR falls inside the specified ranges, i.e., the probability of detecting 445 
SNPy over all possible scenarios.When the effect of Y->X is equal to zero, Gy is clearly distinguishable from Gx and Gu 446 
using CRR (Fig. S5), however, when (Y->X) increases, values of CRR for both Gy and Gx start varying and 447 
overlapping (Fig. S6b). We thus determined which values of CRR would maximise the probability of correctly selecting 448 
Gy under all scenarios. Clearly the parameters we have chosen for defining a “non-mediated” SNPs maximise both the 449 
probability of  correctly selecting a SNPy. 450 

 451 

 452 

 453 
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2.3 Effects of GWAS correction on genetic correlations. To investigate how the mediation 454 

procedure affected the genetic correlations amongst the consumption traits, we compared the 455 

correlation patterns using the raw and corrected results (Table S10). Overall, the two genetic 456 

correlation matrices were very similar, but with some important differences. In particular, the 457 

number of Bonferroni-corrected significant correlations diminished in the corrected results, 458 

reflecting the fact that the conditioning on the health-related traits will weaken those correlations 459 

which are partly due to those traits. The hierarchical clustering of the traits (Fig. S7a) using the two 460 

different matrices shows an improvement in the quality of the clustering with the groups formed 461 

using the corrected rG matrix being more interpretable than the raw ones. While the group 462 

composed of healthy foods is stable across methods, we can see that using the raw rGs, salt 463 

clusters with beer and strongly alcoholic beverages, while wine clusters closer to coffee than other 464 

alcoholic drinks, perhaps reflecting medical advice. Also, the fatty foods (percentage fat in milk and 465 

adding spread to bread) cluster in an unexpected way, grouping closer to healthy foods than to 466 

meat. Looking at the corrected rGs, clustering accords better with common sense, for example fatty 467 

foods grouping with meat and salt.   468 
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Fig S7. Clustering of food consumption traits before and after correction. (a) Comparison between the hierarchical 469 
clustering of the food traits based on the uncorrected (on the left) and corrected (on the right) genetic correlations. Black 470 
lines connect the same traits for which the clustering has changed. Dendrograms connect the items in each case with 471 
the boldness of the line representing the strength of support for the tree nodes. Unique nodes are represented with a 472 
dashed line while shared nodes with a bold one. The thickness of the line is thicker for conserved higher level nodes. (b) 473 
Genetic correlation plot amongst the food traits. The lower triangle reports the corrected genetic correlation results while 474 
the upper triangle reports the uncorrected ones. The stars report the Bonferroni-corrected significant correlations. The 475 
dendrogram and the boxes represent the clustering according to the ICLUST algorithm. 476 

 477 

 478 
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The clustering results show that the mediation correction procedure has been at least partly able to 479 

remove the genetic correlations due to shared heritable factors, rather than common biology. Such 480 

correction is extremely important, not only for creating homogeneous clusters of traits for 481 

multivariate GWAS, but also because these may change in a population- or age-dependent 482 

manner. It is reasonable to believe that some of these strong mediating factors (e.g. LDL 483 

cholesterol) are due to the older age of the samples in UKB (indeed ~27% are prescribed lipid-484 

lowering therapy and will thus likely have been given medical advice to change their diet). It will be 485 

interesting to compare with a younger population less affected by perceived or actual medically 486 

advised lifestyle changes. 487 

 488 

To explore the shared genetic underpinnings of food choices and a broad range of complex traits, 489 

we estimated genetic correlations with 832 traits present in LDhub11. We identified 6967 and 4943 490 

significant (FDR<0.05) genetic correlations for raw and corrected traits, respectively across a large 491 

number of traits (Table S10, interactive view available at 492 

https://npirastu.shinyapps.io/rg_plotter_2/). The correction affected greatly not only the genetic 493 

correlations with the traits used for the correction but also those with many others. We can only 494 

highlight a number of examples of changes in genetic correlations here. A notable instance is that 495 

prior to adjustment, CVD and percentage fat in milk showed a genetic correlation of -0.24, i.e. 496 

decreasing the %fat increased the chances of CVD, but after correction, rG was 0.02. Another 497 

example is again cheese consumption which has a genetic correlation with a longer paternal 498 

lifespan of 0.5 before adjustment, but only 0.2 afterwards. These results are particularly important 499 

because they suggest that the recent epidemiological findings associating higher consumption of 500 

fat in milk with protection from CVD18,19 may be due to confounding and caution should be used 501 

when defining dietary policies. 502 

 503 

2.4 Multivariate association analysis. Clustering of the traits using ICLUST identified five 504 

different groups (Fig 7b): one composed of increased meat, fat, salt and decreased vegetarianism 505 

(labeled as “Meat/Fat”), one made up of alcoholic beverages and coffee (labeled “Psychoactive”) 506 
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and one comprised of healthier items such as fish, fruit and vegetables (labeled “Low Calorie 507 

Foods”). Two final groups contained only two items each: drink temperature and tea; and cheese 508 

and bread; these were not used for the MV analysis. In order to explore if additional loci influence 509 

these groups we ran a multivariate GWAS using the package MultiABEL, which performs 510 

MANOVA on summary statistics. 168 additional associations, including 42 novel loci not identified 511 

at the single trait analysis, were identified in multivariate analysis of the three main food groups 512 

(Table S5) An example of these group-level loci is rs17400325, a non-synonymous variant at 513 

PDE11A associated with the consumption of Low Calorie Foods. When each trait was examined 514 

singularly we found that the C allele was associated with higher fresh and dried fruit consumption 515 

and a lower consumption of fish and vegetables. Mutations in this gene are responsible for primary 516 

pigmented nodular adrenocortical disease-2 (OMIM:610475), which leads to high cortisol levels, 517 

which in turn are associated with a higher consumption of highly palatable foods20. 518 

 519 

2.5 Functional annotation of food consumption genes. We used several approaches to 520 

understand the biological underpinnings of food choice. First we ran stratified LD-score 521 

regression12 using the bias-corrected GWAS (Fig. S8). Looking at functional annotation (Fig. S8a), 522 

we found a strong enrichment for almost all food traits in conserved genomic regions with the 523 

exception of being vegetarian, decaffeinated coffee and fortified wine consumption. This is not 524 

surprising if we consider that nutrition is one of the most basic biological functions. We next looked 525 

at tissue enrichment in the Gtex21 and Franke lab expression22 datasets and epigenetic signatures 526 

from Roadmap23. There was substantial agreement across the two expression datasets with 527 

enrichment mostly limited to brain areas linked to reward and feeding, e.g. hypothalamus, nucleus 528 

accumbens, putamen. Most food traits were also enriched for epigenetic marks annotated to the 529 

male and female fetal brain, which underlies the importance of foetal development in determining 530 

food choices. 531 

  532 
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Fig S8. Heatmap of tissue and functional enrichments. The colour is proportional for the enrichment revealed by 533 
stratified LD-score regression. Only correlations with FDR<0.05 are reported. (a) Enrichment among different classes of 534 
functional annotation. (b) Tissue enrichment from Gtex expression. (c) Tissue enrichment from ROADMAP epigenetics. 535 
(d) Tissue enrichment from the Franke lab dataset.  536 

 537 

 538 

Tissue over-representation analysis using MAGMA13 (which first runs a gene-wide test and then 539 

measures enrichment using those which results significant) on the merged GWAS results (for each 540 

SNP the lowest p-value was used) confirmed the results from LD-score regression highlighting the 541 

same brain areas, e.g. substantia nigra, nucleus accumbens, hypothalamus, amygdala, known to 542 

influence food choices and reward (Fig. S9). Very similar results were obtained when the analysis 543 

was conducted using only the prioritised genes in the “direct effect only” loci. In this case, as well 544 
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as over-expression in the brain, we also detected under-expression in the kidney, stomach, 545 

pancreas, oesophagus, colon, lung and small intestine (Fig. S9).  546 

Fig. S9. Dotplot of the overexpression analysis run on the prioritised genes from the non-mediated loci and the 547 
overrepresentation analysis performed with MAGMA. The overexpressed tissue involved by the two methods were 548 
highly overlapping with the analysis performed on the prioritised genes showing also the tissues in which there is 549 
evidence of underexpression. 550 

 551 

2.6 Network analysis. The fact that the genes we prioritised show the same enrichment pattern as 552 

stratified LD-score regression and MAGMA, also suggests that the prioritisation is in most cases 553 

correct. In order to explore any interactions between the selected genes, we used STRING24 to 554 

build an interaction network between them. A large network is revealed (Fig. 4, Table S13), 555 

including 132 genes (out of 215 overlapping the STRING database), sharing 224 edges (p<1 x 10-556 

16). To identify if there were groups of genes which were more interconnected than the others, we 557 

performed community identification using Leuvain’s method24,25. Ten communities are identified, 558 

each with specific characteristics in terms of function, cellular localisation and preferential 559 

expression (Fig. S11 for and overview and FigS 12-21 for specific comunities, Table S15 for 560 

significant Gene Ontology terms, Fig. S10, Table S16 for significant tissue enrichment). For 561 
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example, community 1 genes are linked to numerous biological processes ranging from feeding 562 

behaviour and taste to hormone binding and transport of fatty acids, and preferentially include the 563 

genes expressed in several brain areas and the liver. Genes in community 2, on the other hand, 564 

are linked to energy and glucose metabolism, are preferentially located in the mitochondrion and 565 

are over-expressed in the skeletal muscle and tibial artery.  Another interesting example is 566 

community 8 which contains genes specifically over-expressed in the brain and which are involved 567 

in synaptic assembly and organisation and in neurotransmitter secretion, while other communities 568 

relate to steroid hormone response, acetylcholine receptor regulation, drug metabolism and Golgi-569 

mediated transport. Thus, although the overall expression analysis strongly links dietary choices to 570 

the central nervous system, there are actually several different groups of genes at play, with 571 

specific functions in specific tissues. 572 

  573 
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Figure S10 Tissues which overexpress the genes in each community. 574 

 575 

  576 
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Figure S11 Overlap in Go-terms between different communities. The figure shows that there is no overlap (with the 577 
exception of 2 terms) between the terms enriched in each community. The labels have been removed as the plot is 578 
meant to only show the overlaps. Figure S12-22 show the enriched terms for each community separately. 579 

 580 
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Figure S12 Enriched GO-Terms for community 1.581 

 582 
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Figure S13 Enriched GO-Terms for community 2583 

 584 

  585 
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Figure S14 Enriched GO-Terms for community 3586 

 587 

  588 
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Figure S15 Enriched GO-Terms for community 4 589 

 590 

Figure S16 Enriched GO-Terms for community 5591 

 592 

  593 
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Figure S17 Enriched GO-Terms for community 6594 

 595 
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Figure S18 Enriched GO-Terms for community 7596 

 597 

  598 
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Figure S19 Enriched GO-Terms for community 8599 

 600 
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Figure S20 Enriched GO-Terms for community 9602 

 603 
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Figure S21 Enriched GO-Terms for community 10604 

 605 

  606 
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Figure S22. Selected forest plots of MR-estimated effect sizes. For each of the six examples described in the main 607 
text. Exposure trait, outcome trait, effect size and 95% confidence intervals are reported. Abbreviations: CHD Coronary 608 
Heart Disease, BMI Body Mass Index, TG Triglycerides, MI Myocardial Infarction, TC Total Cholesterol, WC Waist 609 
Circumference, WHR Waist to Hip Ratio, WHR|BMI Waist to Hip Ratio BMI adjusted, LDL Low Density Lipoprotein 610 

 611 

  612 
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Figure S23 Effect of food on obesity related measures. The forest plot compares the effect of each food trait on four 613 
obesity related measures: BMI, Body Fat, Waist to Hip Ratio (WHR) and BMI adjusted WHR (WHR|BMI). Each color and 614 
shape represents a different obesity related measure while the transparency of the points and error bars are proportional 615 
to the strength of association. 616 

 617 

 618 

 619 
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2.6 Significant results from the Raw uncorrected analysis. 620 

 621 

In order to understand what would have been the impact of performing MR without using CRR for 622 

filtering the IVs, we estimated Storey q-values using only the p-values coming from the Raw 623 

Uncorrected set of results. The following forest plots refer to these results and compare the Raw 624 

uncorrected results with the CRR filtered IVs using the uncorrected betas.  625 

Of the 115 significant exposure/outcome pairs which resulted significant after multiple test 626 

correction only 26 were in common with those significant at the CRR filtered analysis. In many 627 

cases this is clearly due to an overestimation of the effect size. This is particularly evident when 628 

looking at Cheese which seems to have a large number of beneficial effects (7) which all disappear 629 

(apart from BMI which is diminished in any case) after selecting only the IVs with non-mediated 630 

effects. This is unsurprising given that Cheese was the food that had the largest proportion of 631 

genetic variance explained by the health related traits (~40%).  632 

These results show how risky it is to make causal claims based on the naive analysis. In our case 633 

we could have used these results to make claims of a huge number of beneficial effects of Cheese 634 

which do seem to be true and are likely due to the fact that people who consume a larger amount 635 

of cheese have a higher education and lower cholesterol which is thus creating the confounding 636 

effect. This is of particular importance as MR is generally considered (when performed properly) a 637 

sturdy and reliable method of testing causal relationships. However we have shown that there can 638 

be issues and particular care should be used when human behaviour is involved in the definition of 639 

the exposure trait. 640 

A slightly different example is the case of dried fruit were, despite none of the effects are still 641 

significant after using the CRR filtered IVs, comparing the forest plots seems to suggest that this 642 

difference is in some cases due to an actual difference in effect size (Years of schooling, Lung 643 

Cancer and Ovarian Cancer) while in the rest of the cases the difference is due to a loss in power 644 

which has led to an increase in the standard errors of the estimates. 645 

It is unfortunately impossible to perform a direct test of the difference in estimates as the wide 646 

confidence intervals of the MR estimates do allow to have enough power to detect the differences. 647 



42 

This problem will be overcome in the future through the increase in power due to the increasing 648 

size of GWAs studies but at the moment we are not able in many cases to distinguish which 649 

associations are not significant any more due to power or difference in effect size. We have 650 

however reported the forest plot comparing the two methods and have provided an online tool that 651 

each researcher can evaluate all the different estimates coming from different methods and thus 652 

make up their own mind based also on external evidence.  653 

Fig S24-S50 Forest plots of the exposure/outcome pairs significant at the raw analysis. 654 
The forest plots represent the estimated effect sizes for all the non CRR filtered MR analyses. The squares represent the 655 
point estimates while the bars the 95% confidence intervals. Results from the Raw analysis (raw) and CRR filtered IVs 656 
(CRR) are reported. The exposure trait is indicated in the header of the plots while the row labels refer to the outcomes. 657 
Beta’s always refer to standard deviations for the exposure while for the outcomes it is standard deviations for the 658 
quantitative traits and log(OR) for the disease traits.659 

 660 
Fig S25661 

 662 
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Fig S26 663 

 664 
Fig S27665 

 666 
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Fig S28667 
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Fig S30671 
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Fig S32675 
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Fig S34679 
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Fig S35681 
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Fig S38687 
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Fig S40691 
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Fig S42695 
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Fig S44699 
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Fig S50711 

 712 
 713 

2.7 Comparison of the CRR filtering with Mendellian randomization common practice. 714 

It is common practice in Mendellian randomization studies to determine the effect of horizontal 715 

pleiotropy through sensitivity analyses using methods such as the weighted median26 or by 716 

evaluating the amount of heterogeneity in the effect estimates. In our case however we have 717 

shown that at least in some cases more than half of the variants can’t be considered reliable. This 718 

means on one side that the assumption of the weighted median that at least half of the SNPs are 719 

valid IVs is violated for several of our food stuff and on the other that heterogeneity filtering (as in 720 

MR-Radial27, or MR-PRESSO28) could potentially exclude the SNPs which are the true valid 721 

instruments. This is extremely problematic as it would lead to the wrong conclusions and results. 722 

We have in fact used the MR-Radial method in the MR pipeline and still obtained biased results. 723 

Another important point is that for the selection of the IVs it is in principle possible to use Steiger 724 

filtering29 for understanding for each SNP if the causal pathway goes from the exposure to the 725 

outcome or the opposite. The test is based on evaluating how much variance of the exposure and 726 

the outcome is explained by the instrument, if the SNP explains more variance of the exposure 727 

than the outcome we can assume that the causal pathway goes from the exposure to the outcome, 728 

if the opposite is true, we can then infer that the causal pathway is going in the other direction. 729 
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Although the test is generally quite sturdy, in our case the extremely high noise present in the 730 

phenotype makes using Steiger’s test for distinguishing the SNPs directly associated to the food 731 

trait from those associated through other traits less reliable.  732 

To understand this issue let’s imagine for simplicity that BMI is the only trait which is influencing 733 

causally either food consumption or food frequency questionnaire answers. As we cannot 734 

distinguish between the two cases not having an objective measure of consumption we can regard 735 

the two as being the same phenomenon, in fact if BMI influences how much we eat this will be 736 

transferred to the FFQ accordingly. Given we cannot distinguish between the two we need to 737 

evaluate any such effect as having a biasing effect on the FFQ response.  738 

Adding a SNP which is causal to BMI the resulting DAG would look as such 739 

 740 

 741 

In this case Steiger test will work as the variance explained by the SNP of BMI will always be 742 

greater than that explained on the FFQ as the effect is mediated through BMI, this is even truer if 743 

the effect is not directly on the FFQ but is mediated through FC. 744 

So if we knew the factors biasing the FFQ and if they were independent from each other we could 745 

in principle use Steiger test to distinguish which are the SNPs which are mediated through these 746 

factors.  747 

The problem arises when food consumption is causal to the confounding factor (as in many of the 748 

traits we used). For example, BMI is clearly caused by Food consumption, so after adding this 749 

information the DAG would look like. 750 

 751 
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 752 

In this case we can think of FFQ as an independent trait which is caused by FC. In this case things 753 

get more complicated as the r2 of the SNP on FFQ (which is what we would be using for the 754 

comparison) depends on the correlation of FC and FFQ. This can be very variable but it rarely over 755 

0.530 with the exception of alcohol and coffee consumption which have higher reliability. Thus, it 756 

can be realistic that the causal effect of FC on BMI is similar in size to the direct causal effect of FC 757 

on FFQ. In this case, the Steiger test may fail to detect the correct direction of effect. While our 758 

approach has similarities to Steiger’s test, its aims and settings are quite different in many aspects. 759 

First, in our case the causal direction is clear because it is highly unlikely that FFQ items cause 760 

other traits, only the upstream FC can do so. Second, our underlying DAG is more complicated 761 

(with multiple exposures and underlying FC) than it is assumed by the Steiger test and our 762 

approach fully exploits the a priori knowledge of the DAG. On the other hand, the Steiger test could 763 

be used to select valid (direct) exposure (e.g. BMI) instruments in order to estimate the total (direct 764 

plus indirect) exposure->FFQ causal effect, which in turn could be used to derive direct and 765 

indirect SNP-FFQ effects.   766 

  767 

  768 
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