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Abstract

Motivation: Physical interaction between two proteins is strong evidence that the proteins are involved in
the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource
for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for non-
model species. Here, we test whether these incomplete networks are still useful for genome-wide function
prediction.
Results: We used a simple network-based classifier to predict Biological Process Gene Ontology terms
from protein interaction data in three species: Saccharomyces cerevisiae, Arabidopsis thaliana and
Solanum lycopersicum (tomato). The classifier had reasonable performance in the well-studied yeast,
but performed poorly in the other two species. We show that this poor performance is because many
proteins are disconnected in the network and that the performance can be considerably improved by
adding edges predicted from various data sources. In yeast, the addition of predicted edges did not lead
to improvement. It did help when we randomly removed a large amount of edges though.
Conclusion: Our work highlights the necessity of obtaining more protein-protein interactions in non-model
species, either by means of prediction or experiment.
Availability: Data and code to reproduce the results are available at github.com/stamakro/ppi-missing-
data.
Contact: s.makrodimitris@tudelft.nl
Supplementary information: Supplementary data are available online.

1 Introduction
One of the main challenges of the postgenomic era is how to extract
functional information from the vast amount of sequence data that
are available. As the number of known protein sequences grows at a
very fast pace, experimentally determining the functions of all proteins
has become practically infeasible. This creates the need for accurate
Automatic Function Prediction (AFP) methods, which can predict a
protein’s function(s) using the knowledge that has been accumulated in
the past. To this end, the Gene Ontology (GO) is a very valuable resource
that provides a systematic representation of function in the form of three
ontologies: Biological Process (BP), Molecular Function (MF) and Cell
Component (CC) (Ashburner et al., 2000).

The Critical Assessment of Function Annotation (CAFA) is a
community-driven benchmark study that compares a large number of

available AFP methods in an independent and systematic way (Radivojac
et al., 2013; Jiang et al., 2016; Zhou et al., 2019). One of the main
conclusions that one can draw from the several editions of CAFA is that top-
performing methods tend to use a combination of different data sources
and not only the amino acid sequence. For example, MS-kNN, one of
the best methods in CAFA2, combined sequence similarity with gene co-
expression and protein-protein interaction (PPI) data (Lan et al., 2013).
GOLabeler, which was the best in CAFA3, combined six different data
sources with a powerful algorithm that predicts how suitable a GO term
is for the input protein (You et al., 2018). More recently, the authors of
GOLabeler introduced an extension named NetGO which also uses PPI
networks as an extra data source, reporting even better performance than
GOLabeler on the CAFA3 dataset (You et al., 2019). These observations
show that PPI networks are informative data sources for AFP, which can
be understood, since if two proteins physically interact, they are likely to
be involved in the same biological process or pathway.
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Table 1. Number of proteins and known PPI’s per species in BIOGRID. (version 3.5.171)

Yeast Arabidopsis Tomato

#protein-coding genes 6,000 (Engel et al., 2014) 27,029 (Lamesch et al., 2012) 34,727 (Suresh et al., 2014)
#proteins with BPO annotations 4,962 10,460 670
#experimental edges between proteins with
BPO annotations 146,434 27,049 57
#pairs of proteins with BPO annotations 12,308,241 54,700,570 224,115
% protein pairs interacting 1.18 0.05 0.03
% disconnected proteins 2.0 45.3 97.0

However, almost all PPI networks are incomplete. The best-
characterized model species, Saccharomyces cerevisiae (baker’s yeast),
has one of the densest PPI networks, with 115,729 experimentally-derived,
physical interactions in the BIOGRID database (Oughtred et al., 2019).
Given the fact that S. cerevisiae has about 6,000 protein-coding genes
(Engel et al., 2014), this means that roughly 0.6% of all possible pairs of
proteins are known to interact. The human interactome is also quite well
characterized, with 389,300 experimental interactions in BIOGRID (about
0.2% of all possible interactions). Moreover, a recent study identified
52,569 high-quality interactions of 8,275 human proteins (Luck et al.,
2019). On the other hand, in Arabidopsis thaliana, the most well-studied
plant species, there are about 27,000 protein coding genes and 48,577
experimentally-derived physical interactions in BIOGRID, i.e. only 0.01%
of the possible interactions are known. This is not likely due to protein
interactions being less common in A. thaliana, but rather because it is not
as well-studied as yeast.

The number of known edges is orders of magnitude smaller in other
plant species, even in very important crops. For example, in tomato
(Solanum lycopersicum), there are only 107 interactions in BIOGRID as
of June 2019 («0.01% of the total number of possible interactions). In rice
(Oryza sativa japonica), there are 327 and in corn (Zea mays) 13. This
phenomenon is not restricted to plants, but is true for many non-model
animal species of major economic importance, such as cow (Bos taurus,
433) and pig (Sus scrofa, 80 interactions).

Most methods that employ PPI networks in AFP predict functions by
propagating the GO annotations through the network (Lan et al., 2013;
You et al., 2019). The simplest of such methods transfers the annotations
of a protein to its immediate neighbors. This is also known as Guilt-By-
Association (GBA). Figure 1a illustrates the GBA method in an example
network with 6 proteins: Proteins 1 and 2 are annotated with a GO term,
while protein 6 is not. We are asked to predict whether proteins 3-5 should
be annotated with that GO term. As seen in Figure 1a, for all three of these
proteins we are at least 66.6% certain that they should be assigned that GO
term. Figure 1b shows the same example network, assuming that some
of its edges are missing. In this case, protein 5 has no known interacting
partners, so it is impossible to determine its function. Similarly, protein 1
has a known function, but is disconnected from the rest of the network, so
its function cannot be propagated to other proteins. This example shows
that when interactions in a PPI network are missing, function prediction
cannot benefit from PPI information (as most proteins will have few or no
connections to other proteins).

A way to counter the lack of edges is to predict them using other
data sources. The STRING database contains a large collection of protein
associations predicted using different sources, such as gene co-expression
and text mining (Szklarczyk et al., 2015). Moreover, the recent rise in
popularity of deep learning has caused an increase in methods that attempt
to predict protein-protein interactions purely from protein sequence. One
of the first examples was from Sun et al. (Sun et al., 2017), followed by
DPPI (Hashemifar et al., 2018), PIPR (Chen et al., 2019) and the work of

(a) (b)

Fig. 1. Toy PPI network with 6 nodes. Nodes annotated with a GO term are shown in blue
and nodes not annotated in red. Unlabeled (test) nodes are shown in white. In (a) the entire
network is known and the posterior probabilities for each unlabeled node can be calculated
accurately. In (b) some of the edges are missing (signified by the dashed lines), making the
calculation of posterior probabilities either erroneous or even impossible (e.g. node 5).

Richoux et al. (Richoux et al., 2019). The advantage of predicting edges
from sequence is that it is - at least in theory - not biased towards previous
experiments. In contrast to, for example, predictions within the STRING
database that still require other people to have previously studied a specific
protein or its orthologues. Having an accurate sequence-based predictor
of PPI’s means that we can feed it with all possible pairs of proteins and
obtain a score for how probable each interaction is. This enables us to find
possible interacting partners for proteins that have not been previously
studied at all, thereby improving function prediction for those proteins.

In this study, we are interested in quantifying the influence of missing
edges in a PPI network on protein function prediction. This will give
valuable information on whether to use this data resource for predicting
protein function in organisms with a less-well measured PPI network.
Moreover, we are interested in how well (deep learning based) sequence-
based PPI predictors can recuperate this missing information, and how
that translates in improvements of the function prediction. We show that
in species with few known interactions, the performance of a network-
based AFP method is significantly worse than a simple baseline and that
this performance increases as we add predicted edges. We also show that
in species with a dense PPI network, predicted edges do not provide any
performance improvement for AFP.

2 Materials & Methods

2.1 Protein-Protein interaction networks

We compared PPI networks in S. cerevisiae, A. thaliana and S.
lycopersicum using three types of PPI’s: 1) Physical interactions that
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have been experimentally derived. 2) Predicted interactions based on non-
experimental protein association data from the STRING database, and 3)
Sequence-based predicted interactions based on the amino acid sequence
of two proteins using PIPR.

Physical interactions: For the experimental interactions we used
the BIOGRID (version 3.5.171) (Oughtred et al., 2019) and STRING
databases (Szklarczyk et al., 2015). We only used physical interactions
and ignored the genetic interactions. Of note, the STRING database
contains a collection of experimental protein-protein interactions from
different databases, including BIOGRID (marked with the "experiments"
data source code) and we found edges in BIOGRID that were not present
in STRING. From STRING, we only chose experimental protein-protein
interactions with association scores larger than the median score over the
non-zero scores for each species individually.

Predicted interactions: Besides the experimental evidence, STRING
contains predicted protein associations from 12 data sources in total:
neighborhood, neighborhood transferred, co-occurrence, database,
database transferred, experiments transferred, fusion, homology, co-
expression, co-expression transferred, text mining and text mining
transferred. Table S1 (Supplementary Material 1) shows the number of
interactions per species and per data type. We removed two data sources
("neighborhood" and "database transferred") because they did not add
any new edges in any of the three species. We also removed "database",
as it includes protein associations that were identified by using the GO
annotations of proteins and these edges would cause circular reasoning
if used to predict GO terms, leading to a biased evaluation. This left us
with 9 data sources from which we could infer PPI’s. In tomato, there
were no predicted associations with the "co-expression" evidence code,
so we only used 8 data sources for that species. From all these sources,
we only selected the protein pairs with the 50% highest non-zero scores
for each data source and species individually. Next to individually using
the data sources as proxies for the protein-protein interactions, we also
combined data sources. This was done by first integrating the STRING
scores from different sources as described in (von Mering et al., 2005)
(see Supplementary Material 2 for more information) and then keeping
the 50% top non-zero scores for every combination. To combine a binary
STRING network with the experimental one, we applied an element-wise
logical OR to the corresponding adjacency matrices, so an interaction is
added to the combined network if it is present in at least one of the original
networks.

Sequence-based predicted interaction: We used PIPR (Chen et al.,
2019) to predict PPI’s from protein sequence. It uses a Siamese twin
architecture with both convolutional and recurrent units and three fully
connected layers at the end. PIPR also makes use of predefined amino
acid embeddings, obtained from both chemical properties of amino acids
and their co-occurence in protein sequences. The original PIPR model
had an accuracy of about 97% in predicting yeast PPI’s when trained on
a large, balanced dataset from the DIP database. The originally trained
PIPR model in yeast generalized poorly in Arabidopsis (accuracy of 51%
on a balanced dataset). Therefore, we chose to train PIPR on Arabidopsis
by using the original trained model as initial conditions. We trained using
Stochastic Gradient Descent with learning rate 0.001 and early stopping
based on the validation loss with patience of 40 epochs. As validation
set, we randomly selected 10% of the data and as loss function the binary
cross-entropy. We did not use RMSprop optimizer, which was used by the
authors, as it produced unstable results. After having trained a model, we
feed it all pairs of proteins. For each pair we get a score in the range [0,1]
denoting the probability that these two proteins interact. We add an edge to
our predicted PPI network if the score for that edge is greater than or equal
to 0.5. For tomato, we did not retrain, but rather used the model trained on
A. thaliana.

2.2 GO annotations

We obtained GO annotations from the GOA website (Huntley et al.,
2015) and only used the experimental annotations and curated annota-
tions (evidence codes "EXP", "IDA", "IPI", "IMP", "IGI", "IEP", "IBA",
"IBD", "IKR", "IRD", "TAS" and "NAS"). We focused on the Biological
Process Ontology (BPO), as it is the most difficult ontology to predict
(Jiang et al., 2016) and also is the most commonly used in further analyses
such as gene set enrichment. Table 1 gives an overview of the different
dataset sizes for the three species.

2.3 Network-Based function prediction

We represent the protein-protein interactions as a network with the proteins
as nodes and the interactions as binary, undirected edges. Let A be the
network’s adjacency matrix, Vtrain a set of training proteins and Vtest a
set of test proteins. Moreover, let T (p) be the set of GO terms assigned
to p ∈ Vtrain. Given this representation we are using three different
approaches to predict protein function: 1) a random approach to be able
to compare performance values to those that could be achieved by chance,
2) the naïve approach of CAFA that we consider as baseline, and 3) a
Guilt-By-Association approach (GBA).

Random-approach: The posterior probability that a protein is
associated with a GO term (P (pi, t)) is drawn from a uniform distribution
between [0, 1]. Note that this method can produce predictions that are
inconsistent with the ontology graph, as it is possible that a GO term gets
a higher score than its ancestors.

Baseline approach: This method follows the "naïve" method of CAFA
(Radivojac et al., 2013) and assigns a GO term to a protein with probability
equal to the fraction of training proteins annotated with that term (equation
1).

P (pi, t) =
|{p : p ∈ Vtrain ∧ t ∈ T (p)}|

|Vtrain|
(1)

This means that all test proteins get the same annotation using this method
(making it a quite weak baseline).

Guilt-By-Association approach (GBA): In this method functions are
transferred to a protein from its direct interacting partners. For a protein
pi ∈ Vtest, we define its neighborhood N(pi) as all its interacting
partners that are in the training set:

N(pi) = {p : p ∈ Vtrain ∧A[p, pi] = 1} (2)

For a GO term t, the probability it is assigned to test protein pi is
equal to the fraction of its annotated neighbors that are annotated with t
(equation 3):

P (pi, t) =

∑
p∈N(pi)

I(t ∈ T (p))
|N(pi)|

(3)

Where I(x) = 1 iff x is a true statement and |S| denotes the number of
elements in set S.

2.4 Experimental set-up

To compare function prediction across the differently constructed protein-
protein interaction networks, we followed a 5-fold cross-validation. Our
main evaluation metric was the protein-centric Area Under the precision-
recall Curve (AUC), but we also applied the Fmax and normalized Smin

that are extensively used in the CAFA challenges (Table S2, Supplementary
Material 3). In each fold, we discarded the GO terms that had no
positive examples in either the training or the test set. We compared
three PPI networks: 1) the experimental PPI network (EXP), 2) combined
experimental and predicted PPI networks using functional genomic data
from the STRING database (FG-STRING), and 3) the sequence-based
predicted PPI networks (SEQ).
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Experimental PPI - EXP: We started from the experimental PPI
network of a given species. This network includes as nodes all proteins
that have at least 1 functional annotation, even if they have no interacting
partners. Proteins without functional annotations were removed, even if
they had known interactions.

Combined experimental and predicted PPI - FG-STRING: We added
predicted edges to the experimental network from the different data sources
in STRING. We evaluated all possible combinations of the 9 STRING
data sources (8 for tomato): First, we added each data source individually.
Then, we tested all combinations of 2 data sources (36 possibilities), all
combinations of 3 (84 possibilities) and so on, until we have included all
9 data sources. So, in total, we tested

∑9
i=1

(9
i

)
= 511 combinations of

data sources (255 for tomato) along with the experimental network.
Sequence-based predicted PPI - SEQ: We used edges predicted by

PIPR for predicting function. We tested the performance of a network with
only the PIPR edges and a network with the experimental edges combined
with the PIPR predictions.

3 Results

3.1 The naïve method outperforms GBA in plant
experimental PPI networks

Figure 2 and Table S3 (Supplementary Material 4) show the AUC values
for the three studied species. In yeast, the simple GBA method on the EXP
network outperforms the naïve baseline. In Arabidopsis and tomato, the
picture is quite the opposite, with the naïve method largely outperforming
GBA. In tomato, the EXP network performs only slightly better than
random (Figure 2). This shows that existing experimental PPI networks
are insufficient for any kind of protein function prediction in plants.

When inspecting the performance of the EXP network for each
individual protein (Figure S1, Supplementary Material 4), we can see
that for most Arabidopsis and tomato proteins the AUC is close or equal
to 0. This is mainly because for many proteins the interacting partners
are not known, and consequently no predictions can be made. Indeed,
when calculating the Spearman correlation between the node degree in
the EXP network of Arabidopsis with protein-centric performance (AUC)
we find a correlation of ρ = 0.75. In yeast, the performance also largely
depends on node degree, but not as much as in A. thaliana (ρ = 0.29).
Moreover, in yeast the AUC values are more spread in the range [0, 1]

compared to the other species (Figure S1, Supplementary Material 4). This
implies that in yeast there are proteins with varying levels of difficulty for
the classifier, while in Arabidopsis and tomato most proteins are difficult,
having performance close to 0. We obtained similar results when evaluating
with the Fmax and Smin metrics (Table S2, Supplementary Material 3).

3.2 Adding predicted edges is beneficial for plant PPI
networks, not for yeast

We tested whether predicted interactions from other data sources can
improve protein function prediction performance. As we can see in
Figure 2, combining the experimental PPI network of S. cerevisae with
other protein association networks (see methods) has almost no effect on
the average protein-centric performance.

On the other hand, in Arabidopsis and tomato we observed a substantial
improvement in performance by adding predicted edges, although the
naïve classifier still outperforms them (Figure 2). The most informative
data source in Arabidopsis was "text mining" (AUC = 0.28) and in
tomato "text mining transferred" (AUC = 0.26). These data sources are
almost by themselves able to explain the maximum performance (AUC =

0.31 in Arabidopsis and 0.29 in tomato). Figure S2 (Supplementary
Material 4) shows the AUC values for each combination of FG-STRING

S. cerevisiae A. thaliana S. lycopersicum
0.00
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random
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EXP+FG-STRING
SEQ
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Fig. 2. AUC (y-axis) achieved by the baseline methods (black) and the GBA method using
different data types for the three species (x-axis). The error bars denote the standard error
over the 5 cross-validation folds.

data sources for the three species and Figure S3 (Supplementary Material
4) shows the AUC of the individual data sources in tomato.

The Spearman correlation between node degree in the experimental
network of Arabidopsis andAUC of the combined EXP and "text mining"
network was reduced to 0.48, which hints at the fact that the predicted edges
often manage to connect functionally related proteins that were previously
disconnected. Indeed, in Figures 3c-d, we see that many proteins that have
an AUC close to 0 in the EXP network get higher values when combining
that network with the "text mining" network. The performance difference
as a function of node degree is shown in Figure S4b (Supplementary
Material 5). The same pattern is also evident for tomato (Figures 3e-f and
S4c), while in yeast the functions of the vast majority of the proteins can be
predicted about equally well using any of the two networks (Figures 3a-b
and S4a ). For all three species there are cases where adding edges actually
reduces the performance, but this is much rarer according to the densities
in Figures 3b, d and f.

3.3 Function Prediction with SEQ edges

Notably, the sequence-based predicted PPI network hampers the AFP
performance in yeast as compared to the EXP PPI (Figure 2). This
is probably due to the addition of false positive edges. In contrast,
in Arabidopsis and tomato the SEQ PPI network seems to be useful,
providing significant improvements (Figure 2) compared to the combined
EXP+FG-STRING PPI networks, even outperforming the naïve classifier.

3.4 Removing edges from the yeast network gives similar
results

We randomly removed 90% of the edges from the yeast experimental PPI
network and repeated the experiment. In this case, we observed a pattern
more similar to the one observed in our plant data (Figure S5, Table S4,
Supplementary Material 6). The experimental network with missing edges
(EXP-10%) is significantly outperformed by the naïve method, despite
the fact that it is about 10 times denser than the plant EXP networks.
The addition of predicted edges from FG-STRING to EXP-10% network
leads to an improvement, however the performance remains significantly
worse than that of the full EXP network (Tables S3, S4). As in the case
of Arabidopsis and tomato, "text mining" was by far the most informative
data source when added to the reduced yeast network. In fact, it was enough
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Fig. 3. Comparison of the AUC of the experimental PPI network (x-axis) against that of the “experimental” network complemented with the “text mining” network (y-axis) for yeast (a
,b),A. thaliana (c, d) and tomato (e, f). a,c,e): Each blue dot corresponds to a protein. b,d,f): Gaussian-kernel based density of the number of proteins, with regions of low density appearing
in light color and regions of high density in dark.

by itself to achieve the top performance. Not including the "text mining"-
derived edges in our experiments, we managed to obtain similar maximum
performance, but with more data sources, with "co-expression" being the
driving force of the improvement in that case.

We further investigated how the performance of the GBA EXP classifier
varies as a fraction of the amount of missing edges (Figure 4 and
Supplementary Material 6). We observed that when 60% or more of the
edges are removed, the performance of the experimental network starts
decreasing very rapidly, eventually reaching zero when we remove all
edges. The performance of the predicted network also decreases, but at
a much slower rate, demonstrating the usefulness of predicted edges in
cases where many experimental edges are not known.

Figure 4 also shows the performance when using the sequence-based
predicted PPI. The performance of the sequence-based PPI is higher than
that of the naïve method and lower than that of the complete experimental
PPI network, but when the number of experimental edges drops below
30% then the sequence-based predicted PPI outperforms all other methods,
including "text-mining" based networks.

4 Discussion
The aim of this work was to investigate the applicability of protein-protein
interaction networks to genome-wide function prediction in not well-
studied species. For that purpose, we evaluated the performance of an AFP

method based on a PPI network in three species with different degrees of
missing annotations.

We did not compare the network-based classifier to any state-of-the-
art methods, such as GOLabeler (You et al., 2018) or INGA (Piovesan
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Fig. 4. AUC performance in S. cerevisiae as a function of the percentage of missing edges
in the “experimental” PPI network (purple). This performance is compared to the AUC
performance when the sampled experimental PPI is supplemented with the predicted PPI
(light blue). The performance of the SEQ network obtained using PIPR is shown as a dashed
horizontal line.
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and Tosatto, 2019), but rather to the so-called “naïve” classifier from the
CAFA challenges. This classifier, as its name suggests, does not use any
information to relate specific proteins to GO terms, rather it only uses the
frequency of each GO term in the training set. In the machine learning
literature, this classifier is called the "Bayesian Marginal Predictor" (El-
Yaniv et al., 2017) and it corresponds to the optimal classifier when the
distributions of the classes (P (y)) are known, but information about the
relationship between the data and the classes (P (x|y)) is missing. This
means that any classifier that uses any kind of (informative) data is expected
to outperform the naïve one.

However, we clearly demonstrated the failure of the GBA classifier
in predicting BPO terms in A. thaliana and tomato, as it performed
considerably worse than the naïve method. In tomato, the GBA method
barely outperformed the random one. This is probably due to the very
small dataset size, which makes it easier to predict correctly by chance.
This was not the case in yeast, where the GBA classifier outperformed the
naïve one. When examining the performance for individual proteins, we
found a high correlation between the number of known interacting partners
and the prediction accuracy. These validate our hypothesis that a sparse
PPI network is detrimental to genome-wide AFP.

The computational prediction of protein-protein interactions has been
an active research area for many years (Valencia and Pazos, 2002; Jansen
et al., 2003). Our work is the first to evaluate the contribution of predicted
edges in protein function prediction in a species-specific way. We used
the STRING database as a proxy for predicting interaction using omics
data such as genome features, homology, co-expression and text mining.
In the very sparse experimental plant PPI networks, the FG-STRING-
derived edges contribute a great deal, increasing the performance almost
2-fold in A. thaliana (from 0.16 to 0.30) and almost 3-fold in tomato
(from 0.11 to 0.30). This is because these extra edges connect proteins that
were previously disconnected from the rest of the graph. But, remarkably,
it was still not enough to reach the performance of the naïve classifier,
hinting that these information sources do not contribute knowledge about
the posterior distributions (P (y|x)). In the case of yeast, which has a
“complete” network, the FG-STRING-derived edges did not affect the
performance, again showing that they did not bare additional information.
Because yeast has a quite dense interactome, it offers us the opportunity
to remove edges at random in order to obtain insights about how the AFP
performance changes as a function of the number of edges (Figure 4).
We observed that we can remove up to 40% of the edges (resulting in
about 0.7% of all possible protein interactions) with only a minor drop in
performance and up to 60% (about 0.5% of all possible interactions) while
performing better than the naïve classifier. Moreover, we found that only
after removing at least 60% of the edges (i.e. one order of magnitude denser
than the A. thaliana and tomato networks), we start observing a benefit
from adding FG-STRING edges, but this benefit is not enough to reach
the performance of the full experimental network. These exact numbers
are likely to differ across species, but they are indicative of the relative
resilience of the PPI networks, after they become "complete enough".

Notably, text mining was the most informative STRING data source
for all three species (for yeast in the case with simulated missing edges).
Interestingly, from the descriptions of the methods submitted to the CAFA
challenges, we know that only a small minority of them make use of text
mining (Zhou et al., 2019). Some of these methods are (De Bie et al.,
2007; Jaeger et al., 2008). Our work shows that perhaps text mining is an
underrated data source for functional annotation.

We also applied a sequence-based neural network model (PIPR) in PPI
edge prediction. Firstly, we noticed that although PIPR was very accurate
in predicting edges in yeast, it did not generalize in A. thaliana, performing
very close to random guessing. However, starting from the PIPR model
trained in yeast and re-training it with the known A. thaliana edges yielded
a much higher accuracy in a held-out validation set. Also, applying this

newly trained model on all pairs of Arabidopsis proteins significantly
improved the GBA classifier compared to the predicted networks from
STRING, reaching performance similar to the naïve classifier. Note that
a performance boost was attained even without using the experimental
edges, i.e. only with predicted ones.

Yeast and Arabidopsis are evolutionarily distant (about 1,200 million
years (Hedges et al., 2015)), which might explain why the PIPR model
did not immediately generalize from the one to the other. On the contrary,
our results show that a model trained in Arabidopsis can be very useful for
predicting functions in tomato, a much more closely related species (about
120 million years distance (Hedges et al., 2015)) with almost no known
PPI’s. This suggests that it is informative to always test the generalization
ability of such neural network models in other species.

A limitation of our study is that except for the variable degree of
unknown PPIs among the tested species, there is also large variability in
the amount of missing experimental annotations, with yeast being the most
well-characterized species followed by Arabidopsis. This means that it is
much more likely that a correctly predicted protein-GO term pair is flagged
as a false positive in tomato than in yeast, simply because that annotation
has not been discovered yet. Moreover, the GO terms have different
frequencies in the three species, meaning that is virtually impossible to
compare performances across species. For example, yeast contains a lot
more "deeper", more specific annotations than e.g. tomato. This is not an
issue in our analyses because we do not focus on the exact performance
values, but rather on how the performances of different networks (i.e.
networks with different edge types) compare to the performance of the
naïve method within a species. Also, we have shown that the same
conclusions can be drawn when using the semantic distance instead, which
punishes shallow predictions.

A possible way to overcome the fact that performance values are not
comparable across species, would be to report the performance for each
protein relative to the performance of the naïve method for that protein.
That could be done as follows by using the transformation suggested in
(El-Yaniv et al., 2017):

AUCcorr =
1−AUCobserved

1−AUCnaive
(4)

Using this transformation, the naïve method has performance equal to
0 for each protein and each evaluated classifier has a positive score if
it outperforms the naïve one (with a maximum of 1, if it makes perfect
predictions) and a negative one if it is worse. This would make comparisons
across species easier, although this measure is not defined if for a protein the
naïve method achieves perfect performance, but such cases are extremely
rare.

In conclusion, our work highlights the difficulty of applying PPI
networks in AFP for non-model species. We show that predicted PPIs can
partially compensate for the sparsity of the networks but cannot surpass
the high-quality experimental networks that exist for model organisms.
Importantly, too many predicted edges can have a negative impact when
added to a good experimental network. Perhaps, that calls for a shift in
the focus of the research community: At least for the aim of predicting
function, it is not nearly as useful to predict edges in well-characterized
model species as to non-model species. Also, for non-model species of
great interest it would be beneficial to obtain more experimental edges.
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